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Abstract 

This paper presents a forward looking model for selection of hedge fund investment strategies. 

Given excess skewness observed in hedge funds’ return distributions, we assume that the 

historical return distribution is a skewed student t distribution. We implement a Bayesian 

framework to derive the parameters of the posterior return distribution. The predictive return 

distribution is easily obtained once the posterior parameters are known by assuming that the 

unknown future expected returns are equal to the posterior distribution multiplied by the 

likelihood of unknown future expected returns conditional on available posterior parameters. We 

derive the predictive mean, predictive variance and predictive skewness from the predictive 

distribution after twenty-one thousand simulations using GIBS sampler, and solve a multi-

objective problem using a data set of monthly returns of investment strategy indices published by 

the Hedge Fund Research group. Our results show that the methodology presented in this paper 

provides the highest rate of return (16.79%) with a risk of 2.62% compared to the mean variance, 

which provides 0.8% rate of return with 1.41% risk respectively.  

 

 

 

 

Keywords: Predictive distribution, skew t distribution, posterior distribution, prior distribution, 

MCMC simulations, GIBS sampler 

 

 

 

 

 

 

  



3 

 

Introduction 

Markowitz’s (1952) mean-variance portfolio selection model assumes that asset returns are 

normally distributed and uses its historical parameters (mean and standard deviation) as key 

inputs to portfolio selection. Despite its theoretical importance, the mean-variance portfolio 

selection model doesn’t provide any forward looking framework for asset allocation. Two major 

limitations are worth mentioning here: firstly, the use of historical standard deviation as measure 

of risk is inappropriate (Sharpe, 1964; Sortino and van der Meer, 1991). Secondly, the idea that 

asset returns can be modelled by a normal distribution is somewhat dubious, especially for hedge 

funds due to the structure of investment strategies they employ to exploit market inefficiencies 

(Gehin, 2006). There is a growing need from finance practitioners for portfolio selection models 

that have a forward-looking approach following the sub-prime financial crisis. Portfolio 

managers want to allocate their fund different investments by taking into account not only the 

history (historical mean and variance) as in the original Markowitz (1952) but also incorporating 

the future (future expected parameters) in their investment decision making.  

This paper is a response to the growing need in the hedge fund industry for an allocation model 

that has a forward looking approach. The presence of such a forward looking allocation model is 

crucial in that it can help fund managers to invest their funds only in investments that will 

perform very well in the future by providing the highest rate of return at the lowest cost. This 

paper presents a Bayesian forward looking framework for the investment strategies allocation 

problem under skew t distribution. We first build a predictive expected return distribution based 

on the posterior distribution with a skew t distribution and use its predictive parameters (i.e. 

predictive mean, predictive standard deviation and predictive skewness) as key inputs to the 

portfolio selection model.  

By using the predictive parameters we account for estimation risk, which arises as a result of the 

use of historical parameters. As Scott and Horvath (1980) pointed out, the inclusion of skewness 

in the selection model is also important: under non-normality assumption investors will exhibit a 

preference for positively skewed portfolios. We allow for different levels of attitude toward risk 

and skewness. In practice, most hedge fund managers are unregulated; they use unlimited 

leverage and short selling depending on their appetite for risk and/or skewness. The multi-

objective utility function formulated in this paper is consistent with the reality in the hedge fund 

industry and reflects their freedom with regard to leverage and short selling behaviour.   



4 

 

We compare our portfolio selection model with the original Markowitz (1952) model by making 

use of a data set of monthly investment strategy indices published by the Hedge Fund Research 

group.
1
 The data set extends from January 1995 to June 2010 and includes different bull and bear 

market trends. Our results show that the methodology presented in this paper provides the 

highest rate of return (16.79%) with a risk of 2.62%, compared to the mean variance, which 

provides 0.8% rate of return with 1.41% risk respectively.  

Methodology 

The effect of the uncertainty of future expected returns parameters in the hedge fund industry can 

be overcome by expressing the investment selection problem in terms of the predictive 

distribution of the future expected returns. We use the parameters of predictive return 

distribution instead of those of historical return distribution employed in the original mean-

variance model. 

Suppose that a fund manager has a holding period of length ; the fund manager’s objective is to 

maximize his wealth at the end of the investment period T  where T is the sample period. 

Denote by T the unobserved next   period’s expected returns; the predictive returns 

distribution can be written as: 

   dSddYSpSYpYYp nTnT  )/,,(),,/()/(                                                            (1) 

where nY is a  NT   matrix of historical returns of all investment strategies ( N strategies) 

during the past T  periods. 

)Y/S,,(p n  is the joint posterior distribution of investment strategy returns assumed to be a 

skewed student’s t-distribution with first, second and third moments given by 

S and , , respectively. This distribution summarizes uncertainty about the future expected 

returns distribution. 

                                                           

1
 For more details on the definition of these investment strategies we refer the reader to 

www.hedgefundresearch.com 

 

http://www.hedgefundresearch.com/
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),,/( SYp T   is a multivariate skewed student’s t-distribution for the next  period future 

expected returns, and : is a proportionality sign. 

We account for estimation risk by averaging in (1) over the posterior distribution of the 

parameters S and , , . Therefore the distribution of TY will not depend on unknown 

parameters, but only on the past returns series nY assumed to be skewed student’s t-distribution. 

The analytical solution of (1) is computationally difficult to obtain; often numerical methods 

such as the MCMC simulations (Metropolis-Hasting or the Gibbs sampler algorithm) are used to 

obtain the predictive distribution. In this paper the Gibbs sampler algorithm is used for this 

purpose. 

Substituting the predictive returns distribution into the fund manager’s objective functions, the 

following multi-objective portfolio selection problem is presented: 
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where    and , , ,S
~
 ,

~
 ,~

TT  T  
represents the predictive mean, predictive covariance matrix, 

predictive coskewness matrix of future expected returns, aversion to change in risk, aversion to 

change in skewness, and the kronecker product.  

To obtain the predictive moments of future expected returns, we use a skew t distribution derived 

from the skew elliptical class of distributions presented by Sahu et al (2003). The general form of 

elliptical distribution is given by 
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multivariate student’s t-distribution under the condition that the vector of random variables X is 

transformed as follows: 

  DZX                                                                                                                  (4) 

where Z is a vector of unobservable random variables whose distribution is elliptical with mean 

zero and identity covariance matrix pI  ; P vector of mean; D , is a pp matrix of 

skewness and co-skewness:                
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with ij  representing the co-skewness of random variable ix and jx for all ji  ; and skewness 

for ji  ; and  , a vector of error terms defined as ),,0(   st (i.e. skew t-student random 

variable). Consequently Sahu et al (2003) show that the conditional distribution of random 

variable )0/(  ZXY given   and ,,, D  has the following multivariate skew t-distribution: 

),/(,2),,,/( 2
DYtDYp   

                                                                               (5) 

where   is the degree of freedom for a skewed student’s t distribution. 

It is now possible to implement a Bayesian investment selection model under the assumption that 

hedge fund returns have excess skewness characteristic i.e. a skew t-distribution. This 

implementation is done using the MCMC simulations with a Gibbs sampler that requires us to 
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first specify the likelihood function and the priors before computing the predictive moments of 

future expected returns. 

The likelihood for each observation can be specified as 


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For the informative priors scenario we consider the conjugate priors distribution for the unknown 

parameter D and , ,given    , and the unknown parameter  , which has a multivariate inverted 

Wishart distribution: 

),(

),(

),(

),(























dND

CWInv

mN

p

p

p

                                                                                                       (7) 

Notice that  is a parameter that adjusts the degree of our beliefs about the skewness in the 

distribution of the data, and a prior value of this parameter must be specified in the informative 

prior settings. The same goes for the mean vector d , which reflects our prior information. 

Following Polson and Tew (2000), and Harvey et al (2004), we then obtain the predictive 

moments of future expected distribution as 
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where    TT S
~
 ,

~
 ,~

T are the predictive moments, and S ,,  are the posterior moments 

obtained with the Gibbs sampler (see Geman and Geman, 1984). 
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To implement the Gibbs sampler algorithm we need to be able to sample from the posterior 

distribution )/,,( YSp  . The algorithm proceeds by drawing iteratively from this distribution, 

starting with our informative prior set of values ),,( )0()0()0(
S , and then draws 
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Geman and Geman (1984) showed that for the ),,( )()()( ttt
S sample obtained after N iterations 

we need: 

      tas  )/,,(,,),,( y  toProbabilit    to)()()(
YSpSS

Inconvergettt   

Once the predictive parameters are computed, the optimization problem in equation (2) can be 

solved with a different level of aversion to risk and skewness ( ) and ck  using a numerical 

method such as the genetic algorithm. 

Empirical Results 

We consider a set of returns on hedge fund indices provided by Hedge Fund Research Inc. 

(HFRI). The data is drawn from a database containing more than 6 500 hedge funds from all over 

the world. The monthly returns series are HFRI strategy indices representing the equally 

weighted returns, net of fees, of hedge funds classified in each strategy. The database is updated 

bi-weekly with new funds information (removed and/or newly included funds).  

The data set on these strategy indices spans January 1995 to June 2010; to account for 

survivorship bias we consider only the sample periods of after 1994. Following Capocci and 

Hubner (2004), hedge fund data starting after 1994 is more reliable and does not contain any 

survivorship bias. 
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For the purpose of this study we re-categorize HFRI indices into seven main investment 

strategies: equity hedge (EH), event-driven (ED), macro (MCRO), relative value RV), fund of 

funds (FOF), emerging markets (EM), and the fund of weighted composite index (FWC). The 

weighted composite index category is an equal-weighted index with no fund of funds. Table 1 

reflects the first, second and third moments of the historical return distribution. 

Table 1: Sample first, second and third moments 

                  ED      EH EM FOF FWC MCRO RV       

Mean 0.914 0.956 0.876 0.530 0.810 0.8086 0.727 

Variance 2.046 2.778 4.208 1.805 2.136 1.8932 1.299 

Skewness 1.374 -0.225 -1.027 -0.752 -0.691  0.416 -3.069 

        

This table shows that event-driven (ED) and macro (MCRO) investment strategies have positive 

skewness, while the rest of the investment strategies exhibit negative skewness. The higher 

historical return is observed with event-driven investment strategies.  

 

Figure 1: Risk reward trade-off 
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However, in the risk-reward trade-off analysis carried out in Figure 1 above we find that 

emerging market investment (EM) is more risky than any investment strategy that exists in the 

hedge fund universe: it has the highest annualized risk during our sample period, and is ranked 

third in terms of return. The relative value (RV) investment strategy is the least risky investment 

strategy during the same period, followed by fund of funds (FOF), which has the lowest rate of 

return. The equity hedge (EH) investment strategy has the highest rate of return during this 

period. The macro and weighted composite in currencies (FWC) has almost the same rate of 

return but with a different risk level, and the lowest is macro investments. 

To obtain the first, second and third posterior moments we use 21 000 MCMC Gibbs sampler 

simulations using WinBUGS package
2
. The posterior means, MCMC error, 2.5 percentile, 

median, and 97.5 percentiles of the posterior parameters are shown in Tables 4, 5 and 6 of the 

appendix respectively. 

Predictive mean, predictive skewness and predictive covariance are obtained using expressions 

in equation (8) above. In fact, the predictive mean is equal to the posterior mean, and the 

predictive variance and predictive skewness equal the posterior means of variance and skewness 

plus additional terms that account for uncertainty about the unknown future true parameters. We 

use these predictive parameters as proxy for the unknown future expected returns to solve the 

investment selection problem in equation (2) using a numerical optimization technique known as 

the genetic algorithm technique. The predictive optimal weights are shown in Table 2 below, 

where k and c  are aversion to risk and skewness respectively.  

We distinguish aggressive fund managers from moderate and conservative fund managers. This 

categorization follows Waggle et al (2005), who showed that reasonable values of aversion 

should be in the range of 1 to 10. They classify an aggressive investor as having an aversion 

coefficient between 1 and 2. A moderate investor has a coefficient of aversion between 2 and 5. 

They argue that a conservative investor would have a coefficient of aversion between 5 and 10. 

They call an investor with a coefficient of aversion of 3 an average investor.  

                                                           

2
 WinBUGS is a statistical package for robust Bayesian MCMC simulation using GIBS sampler. The package is 

freely available at: www.mrc-bsu.cam.ac.uk/bugs 

 

http://www.mrc-bsu.cam.ac.uk/bugs
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Table 2: Predictive optimal allocations for the aggressive, moderate and conservative fund 

manager 

AVERSION ED EH EM FoF FWC MCRO RV 

k = c =0.5 0.1350 0.3861 0.1856 0.0117 0.1221 0.1000 0.0599 

k =0.5& c  =1 0.4408 0.1607 0.0977 0.0679 0.0678 0.0670 0.0977 

k =1& c =0.5 0.4407 0.1605 0.0979 0.0676 0.0677 0.0667 0.0979 

k = c =1 0.0449 0.3224 0.1355 0.1046 0.1549 0.1036 0.1333 

k =1& c =2 0.0244 0.3790 0.1375 0.1071 0.1073 0.1062 0.1375 

k =2& c =1 0.9980 0.0010 0.0000 0.0000 0.0020 0.0000 0.0000 

k = c =2 0.9980 0.0010 0.0000 0.0000 0.0020 0.0000 0.0000 

k = c =3 0.1904 0.1623 0.1809 0.1309 0.1345 0.1326 0.0677 

k = c =9 0.3173 0.1291 0.1289 0.1298 0.1131 0.1156 0.0652 

k = c =10 0.7847 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 

 

Table 2 shows that whenever the aversion to risk is higher than the aversion to skewness (i.e. 

k =2& c =1 or k = c =2), an aggressive fund manager would have to invest heavily in event-driven 

(ED) investments. However, his expected return will be maximized only if his skew aversion is 

higher than his risk aversion (i.e. k =1& c =2) (see Table 3 below); in this case he’d largely 

attempt to increase his holdings in equities (EH).  

The computed predictive portfolio mean return, predictive portfolio risk and predictive portfolio 

skewness are reported in Table 3 below. These are estimates of portfolio mean return, portfolio 

risk and portfolio skewness of unknown future expected returns. 
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Table 3: Portfolio predictive mean returns, risk and skewness 

Aversion Pred.Port.Mean Ret Pred. Portf Risk Pred.Portf.Skew 

k = c =0.5 15.1202% 2.7267% -0.6072% 

k =0.5& c =1 1.2808% 2.6505% -7.9655% 

k =1& c =0.5 1.2548% 2.6197% -7.9801% 

k = c =1 14.7576% 2.6284% 5.3038% 

k =1& c =2 16.7917% 2.6196% 6.3887% 

k =2& c =1 -12.8618% 2.7554% -24.2254% 

k = c =2 -12.8618% 2.7554% -24.2254% 

k = c =3 6.9979% 2.6083% -2.3831% 

k = c =9 4.0908% 2.5990% -4.6545% 

k = c =10 -8.0860% 2.6308% -18.1032% 

  

Clearly, a more aggressive fund manager (with a risk aversion equal to 1 and a skewness 

aversion of 2) will expect 16.8% of portfolio predictive return, with an overall portfolio 

predictive risk of 2.6% and a positive predictive skewness of 6.4%. This result is interesting in 

the sense that positive skewness means that the likelihood of extreme positive returns is possible. 

Table 3 shows only two possible investment options that can produce positive skewness: the first 

is the case where both risk and skewness aversions are equal to unity; in this case the overall 

portfolio predictive rate of return is 14,8%, with 2,6% predictive risk. The second case is where 

the skewness aversion is greater than the risk aversion (risk aversion equals one and skewness 

aversion equals two); in this case one would expect fund managers who always attempt to 

generate abnormal rates of return to be risk lovers and to be more skewness averse.  

In other words, changes that can affect the skewness are likely to affect the occurrence of 

extreme positive returns; hence the possibility of generating abnormal rates of return becomes 

difficult. The message here is clear: a fund manager would take any risky position as long as it 

doesn’t alter his/her aversion to the portfolio skewness. 
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Figure 2: Histogram of weights per risk and skewness aversion 

Figure 2 shows different investment allocations corresponding to each investment strategy: for 

example, if the risk aversion is greater than the skewness aversion ( k =2 and c =1) then the 

optimal investment is to allocate 100% of capital to ED. One explanation for this allocation is 

that ED managers are capable of taking advantage of private information that they may have 

obtained during merger and acquisitions events or during the acquisition of a distressed company 

and trading on this information in order to make abnormal rates of return.  

 

Figure 3: Stacked bar aggressive fund manager 

Figure 3 exhibits a stacked bar chart for an aggressive fund manager: for instance, for a fund 

manager with k = c =2, the optimal allocation would be to investment in ED only. If the principle 

of diversification matters, then the optimal allocation obtained when  k =2 and c =1with positive 
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predictive skewness would be a clever allocation. The stacked bar chart shows that the optimal 

investment option allocates more capital to equities (EH), followed by emerging markets (EM); 

less capital is allocated to ED. As mentioned earlier, EH and ED are two of the most risky 

investments and one would expect a risk-taker fund manager to have such positions as long as 

his predictive portfolio skewness is not altered i.e. remains positive and according to his 

expectations.  

The Markowitz (1952) mean-variance analysis has also been carried out for comparison 

purposes; Figure 3 below shows that the optimal portfolio is made up of 32.5% event-driven, 

32.2% macro and 35.32% relative value strategy only. The portfolio expected mean return is 

0.80% with the portfolio risk of 1.41%, which is far less than the 16,79% of the predictive 

portfolio mean return (with predictive 2.62% risk) obtained with our forward looking selection 

model. 

 

Figure 3: Pie of optimal mean-variance weights 
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Figure 4: Corresponding mean-variance efficient frontier 

Figure 4 shows the mean-variance efficient frontier with a negatively sloped down Sharpe ratio 

(blue line), meaning that as the manager’s targeted return increases, the ratio of the return to risk 

decreases inversely. The efficient frontier has only three points: these correspond to 32.5% of 

event-driven, 32.2% of macro and 35.32% of relative value investments. This allocation doesn’t 

consider the diversification principle according to which funds must be allocated across all 

available investments in order to spread the risk. 

Conclusion 

This paper presents a forward looking way of selecting hedge fund investment strategies by 

taking into account the skewness, variance and mean of the predictive of future expected returns. 

Based on monthly return indices, we have shown that a predictive return distribution can be built 

in Bayesian settings by first assuming that the historical distribution is a student t distribution, 

and that the predictive return distribution is equal to the posterior distribution multiplied by the 



16 

 

likelihood of unknown future expected returns conditional on available posterior parameters. We 

generate 21 000 simulations from this predictive distribution using GIBS sampler to obtain the 

predictive mean, predictive variance and predictive skewness that are used as key inputs to the 

portfolio optimization process. Based on different levels of risk and skewness aversion, we found 

that our portfolio selection model provides a higher rate of return than the mean variance model. 

In financial markets past performance is not indicative of future performance; hence the use of 

predictive rather than historical parameters is of great importance in asset allocation.   
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APPENDIX  

Table 4: Posterior mean 

node      mean 

    MC         

error 2.50% median 97.50% 

Mean[1] -0.130 0.210 -61.810 0.037 61.710 

Mean[2] 0.438 0.222 -61.760 0.760 62.470 

Mean[3] -0.158 0.220 -61.830 -0.361 62.080 

Mean[4] 0.136 0.207 -61.950 -0.030 61.510 

Mean[5] 0.145 0.212 -61.740 -0.004 62.330 

Mean[6] 0.205 0.216 -61.160 -0.087 62.260 

Mean[7]       -0.18       0.21     -62.06        0.02      61.95 

 

Table 5: Posterior skewness 

node  mean 

 MC 

error 2.50% median 97.50% 

Skewness[1] -0.2431 0.2429 -63.44 -0.1829 62.35 

Skewness[2] 0.1772 0.2158 -60.74 0.2247 61.25 
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Skewness[3] -0.3082 0.2261 -63.56 -0.3862 61.85 

Skewness[4] 0.2781 0.2208 -61.51 0.4952 62.81 

Skewness[5] 0.09323 0.2285 -61.64 -0.2194 61.97 

Skewness[6] -0.0258 0.2255 -62.17 0.08094 62.6 

Skewness[7] 0.05794 0.2101 -62.03 -0.1172 62.4 

 

Table 6: Posterior covariance matrix 

node  mean 

 MC 

error 2.50% median 97.50% 

tau[1,1] 0.9999 0.0036 0.2447 0.9051 2.286 

tau[1,2] -0.0057 0.0026 -0.7797 -0.0034 0.7596 

tau[1,3] -0.0039 0.0027 -0.7574 -0.0017 0.7485 

tau[1,4] -2.7E-04 0.0027 -0.7677 9.7E-04 0.7717 

tau[1,5] 8.4E-04 0.0023 -0.7727 0.0021 0.7777 

tau[1,6] -0.0046 0.0024 -0.7785 -0.0026 0.7497 

tau[1,7] 0.0019 0.0025 -0.7482 2.4E-04 0.7794 

tau[2,1] -0.0058 0.0026 -0.7797 -0.0034 0.7596 

tau[2,2] 1.002 0.0038 0.2399 0.9132 2.287 

tau[2,3] -0.0038 0.0027 -0.7645 -0.0034 0.7687 

tau[2,4] 0.0017 0.0026 -0.7635 0.0024 0.7536 

tau[2,5] 0.0018 0.0024 -0.7471 -0.0027 0.7805 
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tau[2,6] 0.0032 0.0022 -0.7646 0.0033 0.7644 

tau[2,7] 0.0032 0.0024 -0.7678 0.0052 0.7769 

tau[3,1] -0.0039 0.0027 -0.7574 -0.0017 0.7485 

tau[3,2] -0.0038 0.0027 -0.7645 -0.0032 0.7687 

tau[3,3] 0.9953 0.0036 0.2437 0.9036 2.288 

tau[3,4] 2.3E-04 0.0024 -0.7679 2.3E-05 0.7417 

tau[3,5] 0.0017 0.0026 -0.7505 5.9E-04 0.7672 

tau[3,6] 9.0E-04 0.0025 -0.7566 0.0013 0.7546 

tau[3,7] -8.7E-04 0.0026 -0.7901 -0.0010 0.7719 

tau[4,1] -2.7E-04 0.0027 -0.7677 9.7E-04 0.7717 

tau[4,2] 0.0017 0.0026 -0.7635 0.0024 0.7536 

tau[4,3] 2.5E-04 0.0024 -0.7679 2.3E-05 0.7417 

tau[4,4] 0.9925 0.0038 0.2455 0.9045 2.274 

tau[4,5] -0.0016 0.0027 -0.7655 -0.0036 0.7554 

tau[4,6] -8.1E-04 0.0027 -0.7578 6.6E-05 0.7586 

tau[4,7] -6.1E-04 0.0028 -0.7483 -3.4E-04 0.7462 

tau[5,1] 8.4E-04 0.0023 -0.7727 0.0021 0.7777 

tau[5,2] 0.0018 0.0024 -0.7471 -0.0027 0.7805 

tau[5,3] 0.0017 0.0026 -0.7505 5.9E-04 0.7672 

tau[5,4] -0.0016 0.0027 -0.7655 -0.0036 0.7554 

tau[5,5] 1.001 0.0038 0.2416 0.9115 2.296 
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tau[5,6] 0.0019 0.0025 -0.7804 0.0016 0.7818 

tau[5,7] 0.0018 0.0029 -0.75 0.0023 0.7628 

tau[6,1] -0.0046 0.0024 -0.7785 -0.0026 0.7497 

tau[6,2] 0.0032 0.0023 -0.7646 0.0033 0.7644 

tau[6,3] 9.0E-04 0.0025 -0.7566 0.0013 0.7546 

tau[6,4] -8.1E-04 0.0027 -0.7578 6.6E-05 0.7586 

tau[6,5] 0.0019 0.0025 -0.7804 0.0016 0.7818 

tau[6,6] 1.002 0.0035 0.2379 0.9055 2.297 

tau[6,7] -0.002 0.0026 -0.7557 -0.0034 0.7583 

tau[7,1] 0.0019 0.0025 -0.7482 2.4E-04 0.7794 

tau[7,2] 0.0032 0.0024 -0.7678 0.0052 0.7769 

tau[7,3] -8.7E-04 0.0027 -0.7901 -0.0011 0.7719 

tau[7,4] -6.1E-04 0.0028 -0.7483 -3.4E-04 0.7462 

tau[7,5] 0.002 0.0029 -0.75 0.0023 0.7628 

tau[7,6] -0.002 0.0026 -0.7557 -0.0034 0.7583 

tau[7,7] 0.9971 0.0039 0.2383 0.907 2.258 

 


