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Abstract

A leading solution concept in the evolutionary study of extensive-form games is Selten’s (1983) [16]

notion of limit ESS. This note demonstrates that a limit ESS does not imply neutral stability, and

that it may be dynamically unstable (almost any small perturbation takes the population away).

These problems arise due to an implicit assumption that “mutants” are arbitrarily rare relative to

“trembling” incumbents. Finally, I present a novel definition that solves this issue and has appealing

properties.
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1 Introduction

In a seminal paper, Maynard-Smith & Price [12] defined an evolutionarily stable strategy (ESS)

as a Nash equilibrium that is a strictly better reply against other best-reply strategies. It was

extended in [11] to the weaker notion of a neutrally stable strategy (NSS) that is a weakly

better reply against other best-reply strategies. The motivation for these notions is that a

stable strategy, if adopted by a population of players, cannot be invaded by any alternative

strategy that is initially rare. This is formalized in [4, 17], in which it is shown that any NSS is

Lyapunov stable in the replicator dynamics: no small change in the population composition can

take it away from the state in which everyone follows the NSS, and any ESS is asymptotically

stable: any sufficiently small change results in a movement back toward the ESS.

Extensive-form games rarely admit an ESS due to the existence of “equivalent” strategies

that differ only off the equilibrium path. Selten [16] relaxes this notion by requiring evolutionary

stability in a converging sequence of perturbed games in which the players may infrequently
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2 2 Definitions

“tremble” and play different actions by mistake (see Section 2 for the formal definitions).

Selten’s solution concept, called limit ESS, is a central notion in the evolutionary study of games

with more than one stage, and it has been applied to various interactions in the economics and

biology literature (see, e.g., [3, 6, 8, 10]).1

van Damme [18, Cor. 9.8.6.iii] has proved that the notion of limit ESS refines neutral

stability.2 However, Van Damme’s proof contains a mistake.3 Section 3 presents a simple game

that admits a limit ESS that: (1) is not neutrally stable, and (2) is dynamically unstable in

a strong sense: almost any nearby initial state takes the population away from the limit ESS.

Section 4 shows that the reason for this is the implicit assumption in the notion of limit ESS

that mutants are arbitrarily rare relative to the “trembling” incumbents. Finally, I present

a novel definition, which I call a uniform limit ESS, that only assumes that the mutants are

sufficiently rare relative to the non-trembling incumbents. I show that this new notion refines

limit ESS, implies neutral stability, and has appealing properties.

2 Definitions

Let Γ be a symmetric two-player extensive-form game (a formal detailed definition is given in

the appendix). Let index i ∈ {1, 2} denote one of the players, and let −i denote the other

player. Let Ui be the set of information sets of player i. For each such information set u ∈ Ui,

let Cu be the set of choices (or actions) in information set u. The game is endowed with a

symmetry function T that maps each choice c of player i to the symmetric choice cT of player

−i. Let Bi denote the set of behavior strategies of player i (a mapping that assigns a probability

distribution over the set of choices at each information set of player i). Let Ri (b1, b2) be the

expected payoff to player i when each player i plays strategy bi ∈ Bi. Given strategy b ∈ B1,

let bT denote the symmetric strategy of player 2. The symmetry between the strategies implies

that R1

(

b, bT
)

= R2

(

b, bT
)

.

An evolutionarily (neutrally) stable strategy (abbreviated ESS, NSS) is a strategy that

satisfies two conditions: (1) it is a best reply to itself (i.e., a symmetric Nash equilibrium), and

(2) it achieves a strictly (weakly) better payoff against any other best-reply strategy. Formally:4

Definition 1. [11, 12] Strategy b ∈ B1 is an ESS (NSS) if for every b̃ ∈ B1 (b̃ 6= b):

1 The notion is also central in the study of asymmetric one-shot games that are played by a population in
which each agent is randomly assigned one of the roles in the game (see, e.g., [7, 14]).

2 Accordingly, several papers state that “it is well known that a limit ESS is an NSS (e.g., Bhaskar [1, page
274] and Bhaskar [2, page 115]).

3 The source of the mistake lies in the penultimate sentence before Cor. 9.8.6. (page 253), which states that
if a strategy is a limit of ESSs in a converging sequence of perturbed normal-form games, then by taking the
limit, it follows that the strategy is neutrally stable in the unperturbed game. Section 3 demonstrates that this
statement is false.

4 Part of the literature calls it “direct-ESS,” and uses the name “ESS” only for for mixed strategies.
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1. R1

(

b, bT
)

≥ R1

(

b̃, bT
)

; and

2. if R1

(

b, bT
)

= R1

(

b̃, bT
)

, then R1

(

b, b̃T
)

> R1

(

b̃, b̃T
)

(R1

(

b, b̃T
)

≥ R1

(

b̃, b̃T
)

).

Bomze & Weibull [4] showed that any NSS is Lyapunov stable in the replicator dynamics:

populations starting close enough to the NSS remain close forever (though a sequence of small

perturbations may take the population away).Taylor & Jonker [17] showed that ESS satisfies the

stronger notion of asymptotic stability: populations starting close enough to the ESS eventually

converge to it (see extensions to other payoff-monotonic dynamics in [5, 15]).

Extensive-form games rarely admit an ESS due to the existence of “equivalent” strategies

that differ only off the equilibrium path. Selten [16] relaxes this notion by requiring evolu-

tionary stability only in a converging sequence of perturbed games (but not necessarily in the

unperturbed game). Formally:

Definition 2. [16] A perturbance of a symmetric two-player extensive-form game Γ is a map-

ping η from the set of choices into the reals such that: (1) for each choice c the following hold:

η (c) ≥ 0 and ηc = ηcT ; and (2) for each information set u:
∑

c∈Cu
η (c) < 1.

The perturbed game (Γ, η) has the same structure as Γ except that strategy b is admissible

only if bu (c) ≥ ηc for all u and c. Let Bi (η) denote the set of all such admissible strategies

of player i. A limit ESS is the limit point of the ESS of a converging sequence of perturbed

games.

Definition 3. [16] Strategy b ∈ B1 is a limit ESS if there exists a sequence
(

ηk, bk
)

k∈N
with

ηk → 0 and bk → b when k → ∞ such that bk ∈ B1

(

ηk
)

is an ESS of the game
(

Γ, ηk
)

.

Note that the special case of η ≡ 0 is not excluded; hence, every ESS is a limit ESS.

3 Example: Limit ESS That is not Neutrally Stable

This section presents a limit ESS that (1) is not neutrally stable, and (2) is dynamically unstable

in a strong sense.

Consider the following one-shot symmetric two-player game in which each player has to

simultaneously choose either c1, c2, c3, and the payoff matrix is given by Table 1. With a slight

abuse of notation, let ci denote the strategy that assigns probability one to choice ci. Observe,

first, that strategy c1 is a limit ESS. Let the sequence
(

ηk, bk
)

be defined as follows for each

k ≥ 4: ηk (c1) = ηk (c2) = ηk (c3) = 1

k
, and bk (c1) = 1 − 2

k
, bk (c2) = bk (c3) = 1

k
. Observe that

each bk is an ESS of the perturbed game
(

Γ, ηk
)

with ηk → 0 and bk → c1 when k → ∞.

Next, observe that strategy c1 is not an NSS, because R1 (c2, c1) = R1 (c1, c1) and R1 (c2, c2) >

R1 (c1, c2). Moreover, strategy c2 is dynamically unstable in the replicator dynamics: any initial
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Tab. 1: Payoff Matrix of a Symmetric Two-Player Game

c1 c2 c3

c1 2
2

1
2

4
0

c2 2
1

3
3

1
0

c3 0
4

0
1

0
0

state that assigns a positive mass to c2 takes the population in the long run to assign mass one

to c2. The reason for this is that strategy c3 is strictly dominated and its frequency converges

to zero; as soon as the frequency of c3 is sufficiently small, strategy c2 achieves a strictly higher

payoff than all other strategies in all the remaining stages.

4 Uniform Limit ESS

In this section I reformulate the definition of limit ESS to highlight what leads to the counter-

intuitive implication demonstrated in the example, and I present a refinement that deals with

this issue.

It is well known (see, e.g., [19, Prop. 2.1 and 2.5]) that a strategy is an ESS iff it outperforms

any other strategy in a mixed population, provided that the share of the other strategy is

sufficiently small. Formally:5

Fact 1. Strategy b ∈ B1 is an ESS in a symmetric two-player game Γ iff there exists some

ǭ ∈ (0, 1) such that for every strategy b̃ ∈ B1 (b̃ 6= b) and every ǫ ∈ (0, ǭ):

r1

(

b, ǫ · b̃T + (1 − ǫ) · bT
)

> r1

(

b̃, ǫ · b̃T + (1 − ǫ) · bT
)

,

where ǫ · b̃T + (1 − ǫ) · bT ∈ B2 is the strategy that follows bT with probability 1 − ǫ and follows

b̃T with the remaining probability ǫ. The strategy is an NSS if the strict inequality is replaced

by a weak inequality.

This allows us to reformulate the definition of a limit ESS as follows:

5 The equivalence of the definitions hold for finite games. In games with an infinite number of actions (or
non-linear payoffs), the stability property described in Fact 1, which assumes the existence of a uniform barrier
(ǭ), may be strictly stronger than Definition 1.
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Fact 2. Strategy b ∈ B1 is a limit ESS if there exists a sequence
(

ηk, bk
)

k∈N
with ηk → 0 and

bk → b when k → ∞ such that for each k: (1) bk ∈ B1

(

ηk
)

, and (2) there exists ǭk ∈ (0, 1)

such that for every b̃k ∈ B1

(

ηk
)

(b̃k 6= bk) and every ǫ ∈ (0, ǭk):

r1

(

bk, ǫ · b̃T

k
+ (1 − ǫ) · bT

k

)

> r1

(

b̃k, ǫ · b̃T

k
+ (1 − ǫ) · bT

k

)

.

The order of quantifiers in the above definition implies that the share of the “mutants”

who follow the different strategy can be arbitrarily low relative to the frequency of “trembling”

incumbents. This is what allows strategy c1 to be a limit ESS in the above example (as the

mutants’ loss against trembling incumbents outweighs their gain against other mutants).

I now present an alternative notion (which I call uniform limit ESS) that uses a uniform

bound to the frequency of the mutants to capture the idea that mutants are rare relative to

the incumbents, but not relative to the “trembling” incumbents. Formally:

Definition 4. Strategy b ∈ B1 is a uniform limit ESS if there exist ǭ ∈ (0, 1) and a sequence
(

ηk, bk
)

k∈N
with ηk → 0 and bk → b when k → ∞ such that for each k: (1) bk ∈ B1

(

ηk
)

, and

(2) for every b̃k ∈ B1

(

ηk
)

(b̃k 6= bk) and every ǫ ∈ (0, ǭ):

r1

(

bk, ǫ · b̃T

k
+ (1 − ǫ) · bT

k

)

> r1

(

b̃k, ǫ · b̃T

k
+ (1 − ǫ) · bT

k

)

.

It is immediate that any uniform limit ESS is a limit ESS. The following proposition shows

that any uniform limit ESS is an NSS.

Proposition 1. Any uniform limit ESS is an NSS.

Proof. Let b ∈ B1 be a uniform limit ESS. Let b̃ ∈ B1 be any other strategy b̃ 6= b. Definition

4 implies that there exist ǭ ∈ (0, 1) and a sequence
(

ηk, bk, b̃k
)

k∈N
with ηk → 0, bk → b and

b̃k → b̃ when k → ∞ such that for each k and every ǫ ∈ (0, ǭ):

r1

(

bk, ǫ · b̃T

k
+ (1 − ǫ) · bT

k

)

> r1

(

b̃k, ǫ · b̃T

k
+ (1 − ǫ) · bT

k

)

.

By continuity, the analogous weak inequality holds when b replaces bk and b̃ replaces b̃k.

5 Concluding Remarks

1. The applications of the notion of limit ESS (e.g., [3, 6, 7, 8, 10]) also satisfy the refine-

ment of a uniform limit ESS. In this sense, the refinement is not “too strong”: it omits

implausible limit ESSs like the one presented in Section 3, but it includes interesting and

plausible limit ESSs in applications.
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2. In [6] I presented another refinement of limit ESS, which I called strict limit ESS, that

requires the strategy to be the limit of ESS for every converging sequence of ubiquitous

perturbed games (which assign minimal positive probabilities for all choices). The mo-

tivation (which is similar to Okada [13]’s arguments for the notion of strict perfection)

is that a notion stability should be robust to the specific structure of the perturbations.

One can show that these two refinements are independent.

3. Prop. 1 implies that any uniform limit ESS is Lyapunov stable. I conjecture that a

uniform limit ESS, which is also a strict limit ESS, satisfies a stronger notion of dynamic

stability (but weaker than asymptotic stability): the share of the population who follows

the uniform limit ESS strictly increases from almost any close enough initial state.

A A Formal Detailed Definition of a Two-Player Symmetric Game

The definition is based on [16] and [18, Chapters 6 and 9], and the reader is referred to these

references for interpretation and further details.

A symmetric two-player extensive-form game is a tuple Γ = (K, P, U, C, p, r, T ) where:

• The game tree K is a finite tree with a distinguished node φ - the root of K. Given a node

in the tree x, let S (x) denote its (immediate) successor. Let Z be the endpoints of the

tree (nodes with no successors), and let X be the set of nodes with successors (decision

points). The unique sequence of nodes and branches connecting the root φ with a node x

is called the path to x. We say that x comes before y if x is on the path to y and x 6= y.

• The player partition P is a partition of X into 3 sets: P0, P1, P2. The set Pi is the set

of decision points of player i. Player 0 is the chance player responsible for the random

moves occurring in the game.

• The information partition U is a pair (U1, U2), where Ui is a partition of Pi (the so-called

information sets of player i) such that: (1) every path intersects each information set at

most once, and (2) all nodes in each information set have the same number of successors.

• The choice partition C is a collection C = {Cu|u ∈ U1 ∪ U2}, where Cu is a partition of

∪x∈US (x) into so-called choices (or actions) at u, such that every choice contains exactly

one element of S (x) for every x ∈ U .

• The probability assignment p specifies for every x ∈ P0 a completely mixed probability

distribution px on S (x).
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• The payoff function r is a pair (r1, r2), where ri : Z → R assigns a payoff to player i at

each terminal node.

• The symmetry function T is a mapping (·)T from choices to choices with the following

properties: (1) if c ∈ C0, then cT ∈ C0 and p (c) = p
(

cT
)

; (2) if c ∈ Ci, then cT ∈ C−i; (3)
(

cT
)T

= c for all c; (4) for every information set u there exists an information set uT such

that every choice at u is mapped onto a choice at uT ; (5) for every endpoint z there exists

an endpoint zT such that if z is reached by the sequence c1, c2, ..., ck, then zT is reached

by a permutation of cT

1
, cT

2
, ..., cT

k
; and (6) ri (z) = r−i

(

zT
)

for every endpoint z.

As is standard in the literature, I restrict the analysis to games with perfect recall (Kuhn [9]).

Formally, for each player i, information sets u, v ∈ Ui, choice c ∈ Cu, and nodes x, y ∈ v, it

is assumed that c comes before x iff c comes before y. A behavior strategy of player i is a

mapping that assigns a probability distribution over the set of choices Cu to every information

set u ∈ Ui. Let Bi be the set of all behavior strategies of player i, and let B = B1 × B2 be the

set of all strategy profiles. Given strategy profile b = (b1, b2) ∈ B, let Pb (z) be the probability

that endpoint z is reached when b is played, and let Ri (b) be the expected payoff to player i

when the players play strategy profile b: Ri (b) =
∑

z∈Z Pb (z) · ri (z). If b ∈ B1 is a behavior

strategy of player 1 in Γ, then the symmetric image of b is the behavior strategy bT of player 2

defined by: βT

u
(c) := βuT

(

cT
)

for each u ∈ U2 and c ∈ Cu. Observe that the properties of the

symmetry function imply that R1

(

b, bT
)

= R2

(

b, bT
)

.
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