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Abstract

We explore sustainable paths out of a debt trap with a highly stylized two-sector

differential equations model for the stocks of money in Government and Society. The

model fits the data for the U.S. between 1981 and 2012 with a coefficient of corre-

lation of 0.996. The solutions provide detailed “escape conditions” from the debt

trap. A primary surplus is required. Then a government can escape its debt trap

either through sustained annual monetary outflows from society to the government

(taxation) but with a low initial growth rate, or through annual monetary inflows

into both sectors (stimulus) with higher initial growth rate. We illustrate the use

of our model with simulations which show how five indebted countries can escape

their debt trap in 30 (or 70) years.
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1 Introduction

Many countries today have a debt to GDP ratio between 50 and 100 %. A few are above

100 % and Japan tops the chart well over 200 %. A debate rages between “hawks” who

advocate rapid deficit reduction and “doves” who believe the best way out of the debt

trap is to tax less and stimulate more (Cottarelli, 2013).

Those in the first group feel that debt-reduction is indeed the first priority. For

example Reinhart and Rogoff (2010) warn against a debt above 90% of GDP - a finding

questioned by some (Herndon et al., 2013). Those in the second group, led by Krugman

urge caution and warn that austerity can lead to doubts about government solvency

(see Krugman (2012) and other articles on Krugman’s blog). They also fear the long-

term impact of reduced growth associated with austerity measures and advocate stimulus

spending instead of austerity. One can see both sides: pro-austerity economists emphasize

the need to stabilize public finances while pro-stimulus ones fear that austerity can be a

vicious circle that keeps an economy permanently in its debt trap.

In their attempts at finding objective solutions to these fraught questions, policy mod-

ellers have deployed impressive arsenals of sophisticated mathematical tools that were

supposed to help policy-makers understand, predict and affect macroeconomic trends

(Ruiz Estrada and Yap, 2013). Perhaps the best-known of these tools are the Discrete

Stochastic General Equilibrium (DSGE) models. Although criticized by some (Solow,

2010; Kocherlakota, 2010; Knibbe, 2013) these models have proved useful and have in-

formed macro-economic debates. They are used by Central Banks and the European

Union among others (see Ratto et al. (2009), Marattin et al. (2011) and Annicchiarico

et al. (2013) for a recent application to Italy). For example Trachanas and Katrakilidis

(2013) warn of unsustainable debt in Greece, Italy, and Spain.

More generally econometric methods have been used to assess the role of taxation and

find ways of restoring “ fiscal sanity” (Hauptmeier et al., 2011; Saunoris and Payne, 2010).

Others have studied “fiscal gaps” in order to assess the fiscal consolidation required for an

escape from the debt trap (Merola and Sutherland, 2012). In the U.S. the Congressional
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Budget Office issues detailed budget projections (CBO, 2013). A highly stylized model

with a “good” and a “bad” equilibrium has been used to explore conditions under which

the southern euro area could move from one equilibrium to the other (Padoan et al.,

2013). This model relies on two variables (output Y and real government debt D). The

dynamics are formulated with a simple differential equation.

The model we propose here is similar in spirit to the good/bad equilibrium model of

Padoan et al. (2013): it is both extremely parsimonious (also two variables) and extremely

simple. Ours is a “toy model” which aims to shed light on the macroeconomic conditions

needed for an escape from the debt trap. We focus on the “very big picture”, that is the

flow of money in and out of government. Indeed, national governments are like households

and firms: money flows in, money flows out, and the balance contributes to the stock of

money in the system. A natural and simple way of describing these flows is with a two-

sector economy, Government (G) and Society (S), each one characterized by its stock

of money (money supply). Ours is a dynamical systems approach: accounting identities

are formulated through a system of two linear differential equations which capture the

essential mechanisms that drive the monetary flows between the two compartments. Such

a compartmental representation is borrowed from epidemiology and has been recently

introduced in economics (Tramontana, 2010).

In Section 2 we describe the model and provide simple closed-form expressions for the

two stocks. In Section 3 we show that the model captures well the trajectories of the

two stocks in the U.S. from 1981 to 2012. In Section 4 we formulate escape conditions

which show that an escape hinges on a fine balance between a primary surplus and the

inflows into (or between) the two compartments. In Section 5 we apply the model by

showing how five indebted countries can theoretically escape their debt trap in 30 (or

70) years. Section 6 discusses policy prescriptions and perspectives while Section 7 closes

with concluding remarks.
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2 The model

A compartmental representation is used to describe a two-sector economy consisting of a

Government and Society. The G and S compartments are characterized at every instant

t by the stocks of money G(t) and S(t) in the two sectors (Figure 1). In the sequel a

compartment’s ”stock” will always refer to its stock of money.

Government 

G(t) 

Society  

S(t)>0 

 s S(t) 

 -i G(t) 
 i S(t)  aG  aS 

Central  and 

other banks 

Figure 1: Compartmental model of Government and Society stocks with links to Central
and other banks. If a flow is given as a positive value it is in the direction of the arrow, and
vice versa. For example if the government stock G(t) is negative the interest flow −ιG(t)
is positive and in the direction of the arrow, towards the banks. If G(t) escapes the debt
trap and becomes positive the flow −ιG(t) is negative and in the opposite direction to the
arrow, towards G. Bidirectional arrows reflect our uncertainty concerning the direction of
the annual flows that are needed for an escape from the debt trap.

The model is in continuous time and we will describe the temporal dynamics of G(t)

and S(t) in nominal terms with a system of two linear differential equations:

dG

dt
=

monetary policy︷ ︸︸ ︷
ιG+ αG +

fiscal policy︷︸︸︷
σS (1)

dS

dt
= ιS + αS − σS. (2)

The first components of the derivatives are the interests ιG(t) and ιS(t) that are

received or paid out depending on the sign of G(t) and S(t). A simplification of the

model is that the lending and borrowing are thus at the same unchanging ”intrinsic
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interest rate” ι. When G(t) is negative then ιG(t) is negative and is an interest paid.

With S(t) being positive the S compartment earns an interest ιS(t) per unit of time.

These interest flows link the G and S compartments to an outside world of banks and

other financial institutions that lend, borrow and print money. (For this reason these

financial institutions must not be included in the S sector).

The constant annual flows αG and αS are of arbitrary sign. A positive α reflects an

infusion of “fresh money” resulting from money printing, quantitative easing, government

bond-buying, a positive balance of trade, etc. A negative α reflects annual expenditures

which can benefit the other compartment, e.g. constant annual expenditures/stimulus

from G to S or constant tax flow from S to G (more on this in the discussions). The

“monetary policy” annotation in Eqs. (1) - (2) reflects the role of the interest rate ι and

of the annual monetary flows αG and αS.

The quantity σS(t) is a net annual flow from S into G. This flow captures the bal-

ance of receipts (e.g. taxes) and of outlays (e.g. schools, civil servants, defense, etc.).

These receipts and outlays are assumed to be intrinsically proportional to the size of the

economy/population crudely measured by society’s stock S(t). The coefficient of pro-

portionality σ (or ”transfer rate”) is positive when receipts exceed outlays and negative

otherwise (always assuming S(t) remains positive). The “fiscal policy” annotation in Eqs.

(1) - (2) reflects the role of taxation and government spending which are captured in the

transfer rate σ.

In short the government and society’s stocks both change under three effects: i) a

constant flow in or out of each compartment (the α’s); ii) interests paid or received at

rate ι; iii) a primary surplus or deficit at rate σ (i.e. the net transfer σS(t) of government

funds in or out of the S compartment, which excludes interest payments).

The linear system (1)-(2) is simple particularly as Eq. (2) is a differential equation in
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S alone. The solution is

G(t) = (ι(G(0) + S(0)) + αG + αS)
eιt

ι
−

(
S(0) +

αS

ι− σ

)
e(ι−σ)t +

σ(αG + αS)− ιαG

ι(ι− σ)
,

(3)

S(t) =

(
S(0) +

αS

ι− σ

)
e(ι−σ)t −

αS

ι− σ
. (4)

3 Model fitting to U.S. data

We illustrate the model with data on the total (federal) public debt in the U.S. (G(t))

which is readily available. We recognize that this is gross simplification, mostly because

we ignore the role of states which provide many services. Society’s stock is an even bigger

challenge. The money supplies M1-M3 come to mind but we are unsure which one is the

most relevant; M1 or M3 may be too narrowly or broadly defined. In the U.S. no data on

the M3 money supply is available after 1986. For these reasons we chose M2.1

We fit the model starting in 1981, the earliest year available for the readily download-

able data on M2 from the Federal Reserve.2 The last data point was for 2012 (n = 32).

We fixed the initial values of the stocks G(0) and S(0) at their 1981 values.

We next need at least a crude estimate for a constant value of our ”intrinsic interest

rate” ι during the period 1981-2012. We divided for each year the ”Interest Expense on

National Debt” by the debt as a naive estimate of the interest rate paid by the government.

This interest rate declined from roughly 7 to 4 % during the 32 years between 1981 and

2012. We thus chose to estimate ι as the average value during that period which is

ι = 5.875%.

1If society’s real stock is quite different from M2 and/or immeasurable this complicates the use of the
model, although all is not necessarily lost. Indeed suppose a ”real” stock S were an affine but unknown
function of the M2 stock: S = ρ0 + ρ1M2. Substituting this expression for S in Eqs. (1)-(2) yields a
model in (G(t),M2(t)) that is structurally the same as before with M2(t) as a proxy stock for society.
Indeed σ becomes ρ1σ; αG becomes αG + ρ0σ and αS becomes αS − ρ0σ. The unknown ρ’s have been
folded into the model’s unknown parameters.

2Federal Reserve Economic Data; https://research.stlouisfed.org/fred2/.
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Estimates Value
α̂G -0.07447
α̂S -0.02359
σ̂ -0.00561
Coeff. corr. r 0.996

Table 1: Parameter estimates and coefficient of correlation in fitting of U.S. data (1981-
2012).

With ι now fixed we define the vector θ of the three remaining parameters

θ = (αG, αS, σ). (5)

The parameters are estimated by minimizing over θ the sum of squared deviations

SS1(θ) =
∑

k

(G(k)actual −G(k, θ))2 +
∑

k

(S(k)actual − S(k, θ))2 (6)

where G(k, θ) and S(k, θ) are for the year k the modelled values given in Eqs. (3)-(4).

The initial values of the stocks are the debt and M2 money supply on 1/1/1981: G(0) =

−0.991;S(0) = 1.679 (in trillions of USD). Standard numerical procedures converged

nicely to the same estimated value θ̂ = (α̂G, α̂S, σ̂) for any reasonable initial values of

the parameters. The three parameter estimates are given in Table 1 together with the

coefficient of correlation.3

The solutions in Eqs. (3)-(4) are now

G(t) = −0.98105 e0.05875t −1.31213 e0.06437t +1.3026 (7)

S(t) = 1.31213 e0.06437t +0.36657 (8)

with t = 0 corresponding to Jan 1, 1981 (Figure 2). With a coefficient of correlation of

0.996 the model is able to describe with four parameters (one of which, ι, was fixed) the

3Ours is not an econometric model and we do not attempt to derive confidence interval for the
parameters - which we estimate just for illustrative purposes.
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dynamics of the U.S. debt and of the M2 stock of money over 32 years.

Equation (7) shows unsurprisingly that the U.S. economy is caught in a debt trap:

extrapolating the model beyond 2012 leads to an irreversible decline of the government

stock, which is neither desirable nor realistic. In the next section we will find what

parameter values can reverse such a trend and bring an indebted government’s stock back

into positive territory.
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Figure 2: Fitted and actual trajectories of public debt G (left axis) and M2 money supply
S (right axis) in the U.S., 1981-2012, trillions of USD (coefficient of correlation r = 0.996).

4 Dimensionless dynamics and escape conditions

4.1 Dimensionless dynamics

The public debt and the deficit are usually measured as percentages of GDP in order

to make international comparisons with dimensionless quantities that do not depend on

monetary units. We do the same here by defining the stocks of the two compartments as

fractions G∗(t) and S∗(t) of the initial gross domestic product GDP (0) = v(0)S(0) where

v(t) is the velocity of S(t) money stock (e.g. the M2 money stock in the U.S. case above
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and the five countries below):

G∗(t)
def.
=

G(t)

GDP (0)
=

G(t)

v(0)S(0)
, (9)

S∗(t)
def.
=

S(t)

GDP (0)
=

S(t)

v(0)S(0)
. (10)

In a similar manner we define the model’s annual inflows into the two compartments as

fractions of initial GDP:

α∗

G

def.
= αG/GDP (0);α∗

S

def.
= αS/GDP (0). (11)

With these notations the solutions are the starred equivalents of Eqs. (3)-(4), namely

G∗(t) = (ι(G∗(0) + S∗(0)) + α∗

G + α∗

S)
eιt

ι
−

(
S∗(0) +

α∗

S

ι− σ

)
e(ι−σ)t +

σ(α∗

G + α∗

S)− ια∗

G

ι(ι− σ)
,

(12)

S∗(t) =

(
S∗(0) +

α∗

S

ι− σ

)
e(ι−σ)t −

α∗

S

ι− σ
. (13)

The initial conditions are now the initial debt to GDP ratio G∗(0) = G(0)/GDP (0) and

the inverse of the initial velocity of money S∗(0) = S(0)/GDP (0) = 1/v(0), two readily

available statistics for most countries.

4.2 Escape conditions

We will say that the economy escapes the debt trap if in the long-run both G∗(t) and

S∗(t) remain positive. Equations (3)-(4) show that this can only happen with G∗(t) and

S∗(t) in the long run growing exponentially with rates ι > 0 and ι − σ > 0 respectively

(i.e. G∗(t) ∼ eιt and S∗(t) ∼ e(ι−σ)t for large t). Before giving the escape conditions in

the proposition below we define

ωG
def.
= −ιG∗(0)− σS∗(0), ωS

def.
= (σ − ι)S∗(0) (14)
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and

tm
def.
=





ln
(

α∗

S
+S∗(0)(ι−σ)

α∗

G
+α∗

S
+ι(G∗(0)+S∗(0))

)

σ
if argument of ln is > 1, (15a)

0 otherwise, (15b)

where tm of Eq. (15a) is the root of the equation dG∗(t)/dt = 0 (from Eq. (12)) when

the argument of the logarithm is larger than 1; G∗(t) then reaches an extremum at tm.

Proposition 1. Given initial conditions G∗(0) and S∗(0) we define condition C1 as

0 < σ < ι. The conditions for the asymptotic exponential growths of G∗(t) and S∗(t)

are:

C2 (for G∗(t) ∼ eιt) : α∗

G + α∗

S > −ι(G∗(0) + S∗(0)) = ωG + ωS, (16)

C3 (for S∗(t) ∼ e(ι−σ)t) : α∗

S > S∗(0)(σ − ι) = ωS < 0. (17)

If in addition to C1-C3 the condition

C4 (for dG∗(0)/dt > 0) : α∗

G > −ιG∗(0)− σS∗(0) = ωG (18)

is also satisfied then the government stock G∗(t) starts increasing immediately and mono-

tonically. In this case the argument of the logarithm in Eq. (15a) is ≤ 1 and we have

a “Rapid Escape” with a “time of minimum” tm equal to 0 (Eq. (15b)). If C4 is not

satisfied then the argument of the logarithm is > 1; G∗(t) begins by decreasing to reach a

minimum at time tm in Eq. (15a) and then increases exponentially without bounds - we

have a “Delayed Escape”.

Proof. Equation (4) shows that both ι−σ and S(0)+αS/(ι−σ) must be positive (condi-

tions C1, C3) in order to have S(t) ∼ e(ι−σ)t. Equation (3) shows that we need 0 < σ < ι

and ι(G(0)+S(0))+αG +αS > 0 (C1, C2) in order to have G∗(t) ∼ eιt. Under condition

C4 the stock G∗(t) initially increases and this increase can only be monotone. If C4 is

not satisfied G∗(t) initially decreases. Given that G∗(t) ∼ eιt the trajectory must reach

10



a minimum that can only by at time tm of Eq. (15a). Then G∗(t) increases without

bounds.

 s = -  l  

Rapid  Escape  

(C1-C4: 𝑮 ↑, 𝑺 ↑) 

l=[a i
 

Delayed Escape 

 (C1-C3, not C4:  

 𝑮 ∪, 𝑺 ↑)) 

 (𝑮 ↓, 𝑺 ↑)

No Escape 

a𝑺∗   
a𝑮∗  

(w w )  

(wG ,wS)  

wG + wS  

𝑮 ↑, 𝑺 ↓

s  

𝝎𝑺 = 𝝈−𝜾𝒗  < 0 

𝝎𝑺 = 𝝈 − 𝜾𝒗  

𝛔  

𝛊  
No Escape 

Delayed Escape 

 (C1-C3, not C4:  

 𝑮 ∪, 𝑺 ↑)) 

Rapid  Escape  

(C1-C4: 𝑮 ↑, 𝑺 ↑) 

No Escape 

C4 

C4 

C2 

C2 

C3 

C3 

C1 

Escape 

conditions: 

a) in (a𝑮∗ , a𝑺∗ ) 
space 

b) in (𝜾, 𝝈) 

space 

Figure 3: Typical escape conditions in the (α∗

G, α
∗

S) space and in the (ι, σ) space. Each
one of the straight-line conditions C1-C4 is plotted with the same color in both spaces
(no visible C1 in (α∗

G, α
∗

S)). The rapid escape region is between the blue and green lines.
The critical case of both stocks remaining constant arises at the intersection of all three
constraints C2-C4 (red, green and blue line).

In Figure 3 we plotted typical escape conditions/regions in the (α∗

G, α
∗

S) space (with

ι and σ assumed fixed and 0 < σ < ι) and in the (ι, σ) space (with α∗

G and α∗

S assumed

fixed). Although the plots depend somewhat on the values of the fixed parameters Figure

3a shows that an escape hinges on a sufficiently large sum of annual flow (red condi-

tion/constraint C2 at a 45o angle). A rapid escape requires each flow to be larger than a

certain minimum (C3 (blue), C4 (green)). Figure 3b sheds light on the roles of ι and σ.

In this example α∗

S is assumed negative and a rapid escape hinges on the pair (ι, σ) being

in the narrow triangle defined by the C3 (blue) and C4 (green) borders.
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4.3 Parameterization of escape

Given initial conditions G∗(0) and S∗(0) we want to explore realistic parameter values for

which an escape can occur. Once we have chosen an interest rate ι and a positive transfer

rate σ < ι we need to choose annual flows α∗

G and α∗

S in the delayed or rapid escape

regions given in Figure 3. We will see in the Applications section that even countries

that are considered seriously indebted can have negative sums ωG+ωS, meaning that the

initial debt |G(0)| is less than society’s initial stock of money S(0) (as in Figure 3). In

this case zero flows α∗

G and α∗

S bring about at least a delayed escape since then conditions

C1-C3 are satisfied. However this would be of little use if it takes 50 years for G(t) to

reach its minimum or 200 years for G(t) to become positive.

For this reason we parametrize the annual flows required for an escape with two

economically meaningful parameters that specify the timing and tempo of the escape.

The first is the time until the escape te defined by G∗(te) = 0. Equation (12) shows that

te is the root of the equation

0 = (ι(G∗(0) + S∗(0)) + α∗

G + α∗

S)
eιte

ι
−

(
S∗(0) +

α∗

S

ι− σ

)
e(ι−σ)te +

σ(α∗

G + α∗

S)− ια∗

G

ι(ι− σ)
.

(19)

Although a root can always be found numerically, there is no closed form solution for te.

However with a specified escape time te Eq. (19) can be viewed as a linear constraint

between the two flows α∗

G and α∗

S. This “iso-te” constraint will therefore find a straight

line expression in the (α∗

G, α
∗

S) space of Figure 4 (solid red lines). In order to decide which

point on the line to choose, we define a second parameter, namely the initial growth rate

γ of society’s stock, i.e.

γ
def.
=

dS(0)/dt

S(0)
= ι− σ +

α∗

S

S∗(0)
. (20)

We recall that GDP (t) = v(t)S(t). If the velocity of money v(t) remains constant and

equal to its initial value v(0) (at least for a short initial period) then GDP (t), S(t) and

S∗(t) are multiples of one another during that period. This means that the initial growth

rates of S∗(t) and GDP (t) are the same. The specified γ can therefore be interpreted as
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an initial value of the growth rate of the GDP, which is a meaningful economic variable.

Equation (20) determines α∗

S as an affine function α∗

S(γ) of γ > 0:

α∗

S(γ)
def.
= (γ + σ − ι)S∗(0). (21)

We use Eqs. (19)-(21) to express α∗

G as an affine function α∗

G(γ, te) of γ:

α∗

G(γ, te)
def.
= γ

S∗(0)(σ − ι ete(ι−σ) +eιte(ι− σ))

(ι− σ)(1− eιte)
− σS∗(0) +

ι eιte G∗(0)

1− eιte
. (22)

Equations (21)-(22) define parametrically (with parameter γ) a straight-line “iso-te”

locus of values (α∗

G(γ, te), α
∗

S(γ)) for which the time of escape is te (solid red lines of Figure

4 for three values of te). Specifying a small te, say te = 1, and some desired initial growth

rate γ yields values α∗

G(γ, 1) and α∗

S(γ) which bring about an escape in one year. However

if the debt is severe the resulting α∗

G(γ, 1) would be unrealistically large. The challenge

is to find a time of escape te that yields realistic annual flows α∗

G(γ, te) and α∗

S(γ). (Note

however that the flow α∗

S(γ) (Eq. (21)) in (or out of) S does not depend on te).

With an initial growth rate γ equal to 0 the point (α∗

G(0, te), α
∗

S(0)) is at the bottom

of the “iso-te” line, at the intersection with the blue horizontal borderline. As γ increases

the point (α∗

G(γ, te), α
∗

S(γ)) travels up on the straight line and crosses the border between

the rapid and delayed escape regions at a value γ∗(te)
4.

The slope of the “iso-te” line does not depend on initial conditions G∗(0) and S∗(0).

This means that the “iso-te” lines obtained in the Application section below for different

countries and common values of ι, σ and te will be parallel.

4γ∗(te) can be found in closed form by setting the right-hand side of Eq. (22) to ωG and solving for γ.
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 s = -  l  

Rapid Escape  

l=[a i
 

Delayed 

Escape 

(𝑮 ↓, 𝑺 ↑)

a𝑺∗   

a𝑮∗  

(w w )  

(wG ,wS)  

wG + wS  

𝑮 ↑, 𝑺 ↓

s  

𝝎𝑺 = 𝝈−𝜾𝒗  < 0 

𝝎𝑺 = 𝝈 − 𝜾𝒗  
Red straight-line loci  (a𝑮∗  𝜸, 𝒕𝒆 ,  a𝑺∗  𝜸 )   
of annual  flows  for  fixed  escape   

time 𝒕𝒆, parameterized  by  initial  

growth  rate  g  0. 

g =0, tm  𝜸, 𝒕𝒆 =0 
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No Escape 

g =g *(te), 

 tm  𝜸, 𝒕𝒆 =0 

g = i-s 

C4 

C2 

C3 

Smaller te 
Larger te Typical  te 

Figure 4: Space of annual flows (α∗

G, α
∗

S) with three red straight-line “iso-te” loci of flows
(α∗

G(γ, te), α
∗

S(γ)) needed for G(t) to becomes positive at time te (three different values of
te). A smaller escape time te requires larger annual inflows α

∗

G(γ, te) into G. As the value
of the initial growth rate γ (which parametrizes the “iso-te” line) increases from 0 the
point (α∗

G(γ, te), α
∗

S(γ)) moves up the line starting at the horizontal blue borderline (see
“Typical te” red line). The time tm(γ, te) at which the G stock reaches its minimum is
zero as long as (α∗

G(γ, te), α
∗

S(γ)) is in the rapid escape region (Eq.(23b)); tm(γ, te) starts
increasing (Eq.(23a)) when (α∗

G(γ, te), α
∗

S(γ)) enters the delayed escape region, i.e. for
γ > γ∗(te).

When an economy is in debt (G∗(0) < 0) the “iso-te” line always intersects the blue

C3 horizontal borderline on the right of the point (ωG, ωS) as in Figure 4. A shorter

escape time te means an “iso-te” line shifted/rotated to the right with a steeper negative

slope: the escape requires larger annual inflows into G. Conversely, a longer escape time

shifts/rotates the line to the left with a slope that is less steep but always < −1: more

time for an escape requires smaller annual inflows.

For all values of γ the time tm at which G(t) will reach its minimum, obtained from
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(15), can now be written as

tm(γ, te)
def.
=





ln
(

α∗

S
(γ)+S∗(0)(ι−σ)

α∗

G
(γ,te)+α∗

S
(γ)+ι(G∗(0)+S∗(0))

)

σ
if argument of ln is > 1, (23a)

0 otherwise. (23b)

Equation (23b) (or Eq. (23a)) applies when (α∗

G(γ, te), α
∗

S(γ)) is in the rapid (or delayed)

escape region. In the next section we illustrate the model with projection scenarios that

show how five countries can escape their debt traps.

5 Appplication

We apply the model to five countries in various states of indebtedness with the initial time

set in 2011. The World Bank database provides the (initial) debt to GDP ratio G∗(0),

which is routine. They also provide the ratio of the M2 money supply (“quasi money”)

to GDP. Conveniently this is our S∗(0) = 1/v(0) with the M2 definition we chose for the

money supply. (Data in Table 2 with countries listed in increasing order of initial debt to

GDP ratio).

We set ι = 0.05, a plausible interest rate for our illustrative purpose. The parameter

σ is trickier and of course vital since an escape hinges on a positive value of σ. Our only

indication on its value is provided by the data fitting exercise for the U.S. which yielded

σ̂ = −0.00561, a value pretty close to being positive. For this reason we somewhat

arbitrarily choose σ = 0.01, which combined with ι = 0.05 and a realistic escape time

te = 30 will provide plausible parameters and trajectories. (A smaller te would require

implausibly high annual inflows).

The big picture is given in Figure 5 where we have plotted the five “iso-te” segments

(te=30) parametrized by values of γ ranging from 0.02 to 0.04 and to 0.06. Based on

past experience these values represent a plausible range of initial growth rates (Salvatore,

2010). The dotted lines at a right angle are for each country the borders C3 and C4 of

the rapid escape region. Numerical values α∗

G(γ, te) and α∗

S(γ) are given in Table 2 for

15



γ = 0.02, 0.04, 0.06.

In order to gauge however crudely the plausibility of the results for the α’s in Table 2

we can compare their maximum 0.071 (7.1 %) to the planned one-off injection of $ 0.475

trillion USD in the U.S. economy in 2008 (known as TARP for Troubled Asset Relief

Program). This amount was roughly 3 % of the year’s GDP. This was a one-off program

(actually spread over a couple of years) that was considered massive and we are talking

here of annual inflows continuing over decades. Still our percentages in the 0 to 7.1 %

range seem plausible for the purpose of our illustrative examples.

With a low initial growth rate of γ = 0.02 the escape occurs with annual outflows

α∗

S(0.02) between -1.7 % for Sweden and -3.2 % for France. When the absolute values of

these outflows are smaller than the corresponding flow α∗

G(30, 0.02) into G these outflows

can be channelled into G and viewed as annual constant “adjustment” taxes. This reduces

the requirement for fresh funds into G accordingly. For example if γ = 0.02 then in the

U.S. an escape in 30 years is achieved with a (constant) diversion of |α∗

S(0.02)| = 1.8%

of initial GDP from S to G. The inflow of fresh funds into G is reduced from 4.1 %

to 2.3% which is the (algebraic) sum of flows α∗

G(30, 0.02) + α∗

S(0.02). In order for this

interpretation of the flows to be valid this sum of flows must be positive. However this

will always be the case with a sufficiently small te - which we are seeking anyway. (The

negative value -0.004 of the sum α∗

G(30, 0.02)+α∗

S(0.02) for Sweden with γ = 0.02 means

that the country could escape the debt trap in less than 30 years with a realistic net sum

of incoming flows just larger than 0).

The intermediate initial growth rate γ = 0.04 corresponds to the special case γ = ι−σ.

The α∗

S(0.04) flows are then 0 for all countries. The corresponding flows α∗

G(0.04, 30) of

fresh money into the government sector range from 1% of initial GDP in the least indebted

country (Sweden) to 5.2 and 4.6 % in the most indebted ones (Greece and Italy).
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Sweden U.S. France Greece Italy

Initial conditions

G∗(0) = G(0)
GDP (0)

-0.383 -0.818 -0.937 -1.065 -1.109

S∗(0) = 1
v(0)

0.867 0.897 1.585 0.979 1.538

ω’s
ωG 0.010 0.032 0.031 0.043 0.040
ωS -0.035 -0.036 -0.063 -0.039 -0.062
ωG + ωS -0.024 -0.004 -0.032 0.004 -0.021
γ=0.02

α∗

G(30, 0.02) 0.013 0.041 0.039 0.055 0.051
α∗

S(0.02) -0.017 -0.018 -0.032 -0.020 -0.031
α∗

G(30, 0.02) + α∗

S(0.02) -0.004 0.023 0.007 0.036 0.020
γ =0.04

α∗

G(30, 0.04) 0.010 0.038 0.034 0.052 0.046
α∗

S(0.04) 0 0 0 0 0
α∗

G(30, 0.04) + α∗

S(0.04) 0.010 0.038 0.034 0.052 0.046
γ=0.06

α∗

G(30, 0.06) 0.007 0.035 0.029 0.049 0.041
α∗

S(0.06) 0.017 0.018 0.032 0.020 0.031
α∗

G(30, 0.06) + α∗

S(0.06) 0.025 0.053 0.06 0.069 0.071

Table 2: Initial conditions (five countries, 2011), ω’s (Eq. (14)), annual inflows α∗

G(te, γ)
(Eq. (22)) into G and α∗

S(γ) (Eq. (21)) into S for an escape at te = 30 and initial growth
rate γ = 0.02, 0.04, 0.06 (ι = 0.05, σ = 0.01). (Inconsistencies in the sums are due to
rounding errors). Source of initial conditions : http://data.worldbank.org/indicator.

These are values in the middle of each “iso-te” segment at which the line crosses the

α∗

G(γ, te) axis of Figure 4. This Figure shows that for all countries the escape is rapid with

both γ = 0.02 and γ = 0.04. (For Sweden the point (α∗

G(30, 0.04), α
∗

S(0.04)) in the middle

of the segment is just on the border between the rapid and delayed escape regions).

A high initial growth rate of γ = 0.06 requires for all five countries annual inflows of

fresh money into both compartments between 1.7% and 7.1% of initial GDP. The escape

is still rapid for all countries except France and Sweden whose escape is delayed with

minimum stocks G∗(t) reached at times tm= 2.6 and 6.3 years, respectively.

17



 𝑮∗  𝜸, 𝟑𝟎  

 𝑺∗  𝜸  

Figure 5: Straight-line loci of (α∗

G(γ, 30), α
∗

S(γ)) annual flows for five countries escaping
in te = 30 years. Initial growth rates γ range from 0.02 (low point of segment) to 0.04
(middle point) and 0.06 (high point). The dotted lines are for each country the right
angle borders of the rapid escape region in Figure 4 (conditions C3, C4).

We emphasize the purely illustrative nature of these projections which are probably

too optimistic. Indeed, in its recent “Long-Term Budget Outlook” the Congressional

Budget Office predicts a much more protracted increase in the U.S. debt (CBO, 2013).

In their best-case scenario the federal debt held by the public is 65 % of GDP in 2038,

a date close to the year 2041 at which the exercise above predicts a return into positive

territory.

Our model can easily produce realistic delayed escape scenarios in line with the CBO

projections. As an example we specify a time of escape of 70 years instead of 30, an

initial growth rate γ of 0.02 and the same σ and ι of 0.01 and 0.05. Figure 6 shows the

resulting delayed escape with the debt bottoming out in tm = 40 years (2051) at a value

G∗(tm) = −1.05, i.e. 105% of initial (2011) GDP (which cannot be compared to current

GDP, whether total of held by the public). The annual flow out of S is α∗

S(0.02) = −0.018

as in Table 2 with γ = 0.02. The annual flow α∗

G(0.02, 70) into G has dropped from 0.041
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to 0.026: a later time of escape requires a smaller annual infusion of funds into G, 0.018

of which can be drawn from S.
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Figure 6: A possible delayed escape for the U.S. government stock G∗(t), with S∗(t) on
right axis. Transfer rate σ = 0.01, interest rate ι = 0.05, initial growth rate γ = 0.02 and
specified time of escape te = 70 years (2081).

6 Policy prescriptions and caveats

6.1 Prescriptions

We now bring together guidelines policy-makers can follow if they wish to use our model

to devise strategies toward fiscal consolidation. Our model may be very simple but its

initial conditions reflect the fact that the prospects for fiscal consolidation depend not

only on the debt to GDP ratio but also, not unreasonably, on the velocity of money, an

indicator of economic activity. Given these initial conditions policy-makers first need to

specify realistic interest and transfer rates satisfying 0 < σ < ι. They also decide on an

escape horizon te they think is realistic. The required annual flows α∗

G(γ, te) and α∗

S(γ)

then depend on the specified initial growth rate γ.
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If policy-makers want the government’s stock to start increasing right away (“rapid

escape”) this can happen only with a small γ and will lead to an outflow from S. One can

put this flow to good use by diverting it into G which then requires a smaller infusion of

fresh funds. We can think of this diversion of funds from S to G as an annual constant

“adjustment” tax which then decreases in real terms over time. This “adjustment” tax

must not be confused with the (main) taxation implicit in σ, i.e. income and corporate

taxes which are proportional to the size of the economy (measured by the stock in S).

Policy-makers may prefer an escape with a larger initial growth rate γ. The higher initial

growth will require non-negative infusions of funds into both compartments (stimulus)

and cause the debt to increase temporarily (“delayed escape”) while still recovering in

time for an escape at the same time horizon te. If the annual flows corresponding to the

prescribed σ, ι, te and γ are plausible the corresponding policy is implemented. Otherwise

the policy-maker re-assesses the parameter values until he obtains plausible flows - as we

did for the five countries considered above.

In short, the model provides answers to policy-makers on both sides of the ideological

divide who may have agreed on a desirable time horizon te for fiscal consolidation. The

hawks will find solutions that reverse immediately the trajectory of the government’s

stock but at a cost of lower growth and higher annual constant “adjustment” taxes which

will also mean less borrowing by the government. The doves will emphasize growth and

lower taxes - which is no doubt desirable but will come at the cost of a delayed recovery

and more government borrowing. There are complications however.

6.2 Caveats

The prescriptions described above illustrate the fact that within our model quite different

policies can lead to the same long-term results. However we recognize that our model

is still mechanistic and ignores intangible factors and complex feedback mechanisms be-

tween fiscal and monetary policies that may render some policies more realistic, desirable,

or attainable than others. For example it may be unreasonable to assume that fiscal and
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monetary parameters in the model can vary independently of one another (or of initial

conditions, as we will see below). Although beyond the scope of this paper such mech-

anisms can be fruitfully explored through a ”Russian dolls”-type modelling that would

take us deeper and deeper into the heart of an increasingly detailed model. We would

start by taking apart (or “deconstructing”) the neglected but important transfer rate σ.

The obvious first step is to model the flow σS(t) as receipts minus outlays. Under the

assumption of a constant velocity of money v, receipts are crudely obtained as a (possibly

time-varying) tax rate τ applied to the gross domestic product GDP (t) = vS(t). Outlays

are equally crudely modelled as proportional to society’s size measured by its stock S(t)

with coefficient of proportionality ǫ. The transfer rate then becomes σ = τv − ǫ. Within

this framework the initial S∗(0) which is now the inverse of the (constant) velocity of

money v cannot change without causing a change in σ. More generally, a time-varying

constraint of the form σ = τ(t)v(t) − ǫ(t) can be used to capture fluctuations of GDP

or diverse feedbacks resulting for example from Laffer-curve or fiscal multipliers effects.

These effects and feedbacks should not doubt incorporate other components of the model

such as the interest rate and the annual flows.

7 Conclusion

The uses and abuses of mathematics in economics have attracted criticism, much of it

justified (Ruiz Estrada and Yap, 2013). Mindful of this criticism we do agree with Krug-

man (2000) however that simple economic models must not be neglected, particularly

those with modest but well defined ambitions. Indeed ours is a ”toy model” which at-

tempts to capture the essence of the mechanisms required to keep a government ”afloat”

- or to bring it back to solvency when it is in debt. We conceptualized the resulting

fiscal consolidation not as an equilibrium, the standard approach in economics, but as

an asymptotically exponential growth of money supplies. Endless exponential growth is

a mathematical construct however. Once the system has escaped the debt trap we trust

policy-makers to escape the confines of our model and plan their masters’ next election
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by spending more in Society - perhaps even making σ at least temporarily negative. The

government’s long-term aim then is to keep its budget at or near an equilibrium. This “fi-

nancial” equilibrium is not unlike the nutritional equilibrium experienced by populations

of the past once they had escaped the Malthusian trap (Komlos and Artzrouni, 1990).

A highly simplified model has shortcomings. One can dispute the central role played

in our model by society’s slightly nebulous ”money supply” S(t) (measured here by the

M2 money supply). Many important factors are omitted such as inflation, population

growth, consumption, savings, investments, to name just a few. Also a positive “fiscal

flow” σS(t) (i.e. a primary surplus) may not be a surprising escape condition. We still

need to know how realistic the model is and what combination of the “fiscal flow” σS(t)

and of the annual “monetary flows” αG and αS are needed in order to achieve an escape

at some reasonable prescribed time.

We have provided answers to these questions on two levels: first by showing that at

least for the U.S. there were parameter values for which the model’s trajectory approxi-

mated well the evolution over 32 years of the government’s and society’s stocks of money;

second, by showing that for five countries with debts to GDP ratios in the 38 % (Sweden)

to 111 % (Italy) range there are realistic parameter values which yield optimistic escapes

in 30 years. A realistic delayed escape is obtained for the U.S. in 70 years. Unrealistic pa-

rameter values are required for an escape in 10 or 20 years. We think this could well be the

case for any projection model, however complex or simple. In that sense the usefulness of

our (or any other) simple model lies in its ability to capture fairly accurately and robustly

the salient features of the system under study. For these reasons we believe that despite

its simplicity our model provides policy-makers with general, quantitative guidelines that

might help them find sensible solutions to the burning problem of preventing the train

wreck facing many economies caught in a debt trap.
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