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SIGN-BASED PORTMANTEAU TEST FOR ARCH-TYPE

MODELS WITH HEAVY-TAILED INNOVATIONS

By Min Chen and Ke Zhu

Chinese Academy of Sciences

This paper proposes a sign-based portmanteau test for di-

agnostic checking of ARCH-type models estimated by the least

absolute deviation approach. Under the strict stationarity con-

dition, the asymptotic distribution is obtained. The new test

is applicable for very heavy-tailed innovations with only finite

fractional moments. Simulations are undertaken to assess the

performance of the sign-based test, as well as a comparison with

other two portmanteau tests. A real empirical example for ex-

change rates is given to illustrate the practical usefulness of the

test.

1. Introduction. After the seminal work of Engle (1982) and Bollerslev (1986),

the following ARCH-type model has been widely used in economics and finance:

εt = ηt
√

ht and ht = h(εt−1, εt−2, · · · ; θ0),(1.1)

where ηt being independent of {εj; j < t} is a sequence of i.i.d. random variables,

θ0 ∈ Rm is a parameter vector belonging to a parameter space Θ and h : R∞×Θ →
(0,∞). The variable ht is generally referred as the conditional variance of εt in the

econometrics literature. Many existing models, such as GARCH model (Bollerslev

(1986)), asymmetric power GARCH model (Ding et al. (1993)) and asymmetric log-

GARCH model (Geweke (1986)), are embedded into model (1.1); see e.g., Bollerslev

et al. (1992) and Francq and Zaköıan (2010) for more discussions in this context.

Due to the widespread use of model (1.1), a fundamental problem for practitioners

is to check its adequacy. The portmanteau test initially proposed by Box and Pierce

(1970) and Ljung and Box (1978) is for testing the i.i.d. assumption of ηt, and has

become a popular tool for diagnostic checking of model (1.1). Li and Mak (1994)

studied a portmanteau test for the Gaussian QMLE-type fitted GARCH model by

using the square-residual autocorrelations; Ling and Li (1997) extended this method

to the multivariate ARCH models; Carbon and Francq (2011) further investigate the

portmanteau test for the asymmetric power GARCH model; see also Hong and Li

Keywords and phrases: ARCH-type model; heavy-tailed innovation; LAD estimator; model di-

agnostics; sign-based portmanteau test.
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(2003), Escanciano (2007) and Ling and Tong (2011) for other diagnostic checking

methods of model (1.1).

Although all of the aforementioned tests have achieved a great success, a necessary

set-up for them is that Eη4t < ∞. This is because the asymptotic normality of the

Gaussian QMLE in model (1.1) needs the condition that Eη4t < ∞; see, e.g., Hall and

Yao (2003), Francq and Zaköıan (2004), and Ling (2007). Recently, more and more

empirical studies have documented the very heavy-tailed innovations in financial

time series; see Rachev (2003) and the reference therein. However, relatively few

references have considered the diagnostic checking of model (1.1) when Eη4t = ∞.

Based on the LAD-type estimator in Peng and Yao (2003), Li and Li (2005) proposed

two portmanteau tests for GARCH models when Eε2t < ∞ and Eη4t < ∞. However,

none of portmanteau tests is valid when Eη2t = ∞ or Eε2t = ∞ up to now.

In this paper, we first derive the limiting distribution of the autocorrelation func-

tions of the sign of η̂2t − 1, where the residual η̂t is obtained from model (1.1) fitted

by the LAD approach in Peng and Yao (2003). Based on this, we further propose a

sign-based portmanteau test statistic for model (1.1), and obtain its asymptotic dis-

tribution under the strict stationarity condition. The new test is applicable for very

heavy-tailed innovations with only finite fractional moments of ηt (i.e., E|ηt|2ι < ∞
for some ι > 0). Simulations are undertaken to assess the performance of the sign-

based test, as well as a comparison with other two portmanteau tests in Li and Li

(2005). A real empirical example for exchange rates is given to illustrate the practical

usefulness of the test. To our best knowledge, our sign-based portmanteau test is the

first one for testing the adequacy of the fitted ARCH-type model when Eη2t = ∞.

This paper is organized as follows. Section 2 derives our main results and hence the

sign-based portmanteau test. Section 3 reports the simulation results. A real example

is provided in Section 4. The proofs are presented in the Appendix. Throughout the

paper, some symbols are conventional. A′ is the transpose of matrix A. op(1) (Op(1))

denotes a sequence of random numbers converging to zero (bounded) in probability.

→d denotes convergence in distribution. I(·) is an indicator function.

2. Main results. Let θ ∈ Θ be the unknown parameter of model (1.1). Given

the observations {εn, ..., ε1} and the initial values Y0 ≡ {ε0, ε−1, ...}, we can rewrite

the parametric model (1.1) as

ηt(θ) = εt/
√

ht(θ) and ht(θ) = h(εt−1, εt−2, · · · ; θ).

Here, ηt(θ0) = ηt and ht(θ0) = ht. Assume that Θ is compact and the true value θ0 is

an interior point in Θ. Following Peng and Yao (2003), the least absolute deviation
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(LAD) estimator of θ0, denoted by θ̂n, is defined as

θ̂n = argmin
Θ

Ln(θ), Ln(θ) =
1

n

n
∑

t=1

∣

∣log ε2t − log ht(θ)
∣

∣ .

Compared to Gaussian QMLE, the LAD estimator θ̂n is generally more robust and

requires a weaker moment condition of ηt; see also Fan et al. (2013) for other robust

alternative QML estimators in GARCH models. Let zt = log η2t . We first introduce

the following assumptions:

Assumption 2.1. (i) Almost surely (a.s.), ht(θ) ≥ w for some w > 0 and all θ ∈
Θ. Moreover, ht(θ) = ht(θ0) a.s. if and only if θ = θ0; (ii) if x

′(∂ht(θ)/∂θi)i=1,··· ,m =

0 a.s. for any x ∈ Rm, then x = 0.

Assumption 2.2. median(zt) = 0 and the probability density function f(x) of

zt satisfying f(0) > 0 and supx∈R f(x) < ∞, is continuous at zero.

Assumption 2.3. εt is strictly stationary and ergodic.

Assumption 2.4. (i) E log |εt| < ∞; (ii) E[supθ | log ht(θ)|] < ∞; (iii)

E

[

sup
θ

∥

∥

∥

∥

1

ht(θ)

∂ht(θ)

∂θ

∥

∥

∥

∥

]2

< ∞ and E

[

sup
θ

∥

∥

∥

∥

1

ht(θ)

∂2ht(θ)

∂θ∂θ′

∥

∥

∥

∥

]

< ∞.

Assumption 2.1 imposes some basic requirements on the function ht(θ), and they

are satisfied by most ARCH-type models; see, e.g., Francq and Zaköıan (2004, 2013).

Assumption 2.2 is a general set-up for the LAD-type estimator; see, e.g., Peng and

Yao (2003), Li and Li (2008) and Zhu and Ling (2011). Assumption 2.3 is weaker

than the moment condition Eε2t < ∞ as in Peng and Yao (2003) and Li and Li (2005,

2008), and its necessary and sufficient condition is provided in Bougerol and Picard

(1992) for GARCH models; see also Hamadeh and Zaköıan (2011) and Francq et al.

(2013) for sufficient conditions in asymmetric power GARCH/log-GARCH models,

respectively. Assumption 2.4 gives some technical moment conditions, which have

been verified for GARCH models in Ling (2007), asymmetric power GARCH models

in Hamadeh and Zaköıan (2011) and asymmetric log-GARCH models in Francq et

al. (2013) provided that Assumptions 2.1 and 2.3 and Assumption 2.5 below hold.

Assumption 2.5. E|ηt|2ι < ∞ for some ι > 0.

Note that Assumption 2.5 as in Berkes and Horváth (2004) and Linton et al. (2010)

allows for the very heavy-tailed ηt. As an independent interest, the strong consistency
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and asymptotic normality of θ̂n are derived in Lemma A.1 based on Assumptions

2.1-2.4.

Next, let ξt = sgn(η2t−1), where sgn(x) = I(x > 0)−I(x < 0). Sincemedian(η2t ) =

1 by Assumption 2.2, {ξt} is a sequence of i.i.d. random variables with mean zero

and variance one. Thus, we can propose a portmanteau test for model (1.1) by using

the residual-autocorrelation functions of {ξt}. Denote the residuals η̂t , ηt(θ̂n) and

ξ̂t , sgn(η̂2t − 1). Then, the lag-l residual autocorrelation function can be defined as

ρ̂∗l =

∑n

t=l+1

(

ξ̂t − ξ̄n

)(

ξ̂t−l − ξ̄n

)

∑n

t=1(ξ̂t − ξ̄n)2
,

where ξ̄n = n−1
∑n

t=1 ξ̂t. Note that θ̂n − θ0 = op(1) by Lemma A.1. Under As-

sumptions 2.1-2.4, by Theorem 3.1 in Ling and McAleer (2003) and the dominated

convergence theorem, we can show that ξ̄n = E(ξt) + op(1) = op(1) and

1

n

n
∑

t=1

(

ξ̂t − ξ̄n

)2

= var(ξt) + op(1) = 1 + op(1),(2.1)

and hence theoretically we only need to consider

ρ̂l =
1

n

n
∑

t=l+1

ξ̂tξ̂t−l.

Denote ρ̂ = (ρ̂1, · · · , ρ̂M)′. We are now ready to give our main result on the limiting

distribution of ρ̂ in the following theorem:

Theorem 2.1. Suppose that Assumptions 2.1-2.4 hold. Then,

√
nρ̂ →d N

(

0, IM −XΣ−1X ′) as n → ∞,

where X = (X1, · · · , XM)′ and

Σ = E

[

1

h2
t (θ0)

∂ht(θ0)

∂θ

∂ht(θ0)

∂θ′

]

with Xl = E

[

ξt−l

ht(θ0)

∂ht(θ0)

∂θ

]

for l ≥ 1.

Proof. See the Appendix.

Remark 2.1. In practice, the initial values Y0 are unknown, and can be replaced

by any constants. Unless stated otherwise, we set the initial values Y0 ≡ 0, and denote
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the corresponding ht(θ) as h̃t(θ). Following the same argument as in Zhu (2011), we

can show that this will not affect our asymptotic result in Theorem 2.1, if

(i) sup
θ

∥

∥

∥

∥

∥

1

h̃t(θ)

∂h̃t(θ)

∂θ
− 1

ht(θ)

∂ht(θ)

∂θ

∥

∥

∥

∥

∥

≤ O(ρt)Rt

(ii) sup
θ

∥

∥

∥

∥

∥

1

h̃t(θ)

∂2h̃t(θ)

∂θ∂θ′
− 1

ht(θ)

∂2ht(θ)

∂θ∂θ′

∥

∥

∥

∥

∥

≤ O(ρt)Rt,

for some constant ρ ∈ (0, 1) and positive random variable Rt such that ER2
t < ∞.

Particularly, based on Assumptions 2.1, 2.3 and 2.5, conditions (i)-(ii) have been

verified for GARCH models in Ling (2007), asymmetric power GARCH models in

Hamadeh and Zaköıan (2011), and asymmetric log-GARCH models in Francq et al.

(2013).

Given the observations {εn, · · · , ε1}, we then can estimate the matrixes X and Σ

by their sample means Xn and Σn, respectively. Under Assumptions 2.1-2.4, by a

similar argument as for (2.1), we can show that X̂n = X+op(1) and Σ̂n = Σ+op(1).

Thus, from Theorem 2.1, the following corollary is straightforward.

Corollary 2.1. Suppose that Assumptions 2.1-2.4 hold. Then,

S(M) , nρ̂′
(

IM − X̂nΣ̂
−1
n X̂ ′

n

)−1

ρ̂ →d χ
2(M) as n → ∞.

We call S(M) in Corollary 2.1 the sign-based portmanteau test statistic. Unlike the

portmanteau tests Q(M) and Q2(M) in Li and Li (2005), the limiting distribution

of S(M) only requires a fractional moment of ηt and it is still valid when Eε2t = ∞.

Thus, S(M) is applicable for the very heavy-tailed εt and ηt. Also, it is worthy noting

that no estimation for f(0) is needed in calculation of S(M).

3. Simulation. In this section, we first examine the asymptotic result in The-

orem 2.1. We generate 1000 replications of sample size n = 200 and 400 from model

(3.1) and fit each replication by using the LAD method:

εt = ηt
√

ht, ht = 0.01 + 0.2ε2t−1 + 0.2ht−1,(3.1)

where ηt is chosen to be the re-scaled N(0, 1), t3, t2 and t1, respectively, such that

it satisfies median(η2t ) = 1. In this case, it is not hard to check that the conditions

in Assumption 2.2 are satisfied. The asymptotic standard deviations of the residual

autocorrelations ρ̂ are calculated from Theorem 2.1 with M = 6. Table 1 lists the
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sample standard deviations (SD) and the average estimated asymptotic standard

deviations (AD) of ρ̂ for all lags. From Table 1, we can see that all pairs of AD and

SD are close to each other for n as small as 200. As n increases from 200 to 400, all

of the SDs and ADs become smaller.

Table 1

SDs and ADs (×10) for model (3.1)

Lags
ηt n 1 2 3 4 5 6

N(0, 1) 200 SD 0.441 0.629 0.697 0.655 0.693 0.701
AD 0.435 0.615 0.674 0.689 0.696 0.699

400 SD 0.313 0.450 0.464 0.487 0.494 0.504
AD 0.299 0.438 0.474 0.486 0.492 0.495

t3 200 SD 0.451 0.662 0.666 0.661 0.677 0.671
AD 0.452 0.653 0.680 0.691 0.696 0.699

400 SD 0.313 0.471 0.474 0.493 0.475 0.510
AD 0.311 0.464 0.480 0.488 0.493 0.496

t2 200 SD 0.456 0.684 0.649 0.682 0.696 0.701
AD 0.457 0.663 0.683 0.691 0.696 0.699

400 SD 0.323 0.477 0.474 0.495 0.500 0.498
AD 0.316 0.470 0.483 0.489 0.493 0.495

t1 200 SD 0.495 0.665 0.693 0.695 0.676 0.671
AD 0.478 0.667 0.691 0.697 0.699 0.700

400 SD 0.346 0.458 0.458 0.482 0.495 0.512
AD 0.336 0.472 0.490 0.494 0.495 0.496

Next, we compare the finite sample performance of our sign-based test S(M) with

those of two portmanteau tests Q(M) and Q2(M) in Li and Li (2005). We choose

our null model as

εt = ηt
√

ht and ht = 0.01 + αε2t−1 + 0.8ht−1,(3.2)

and use the following two models to study the powers for all tests:

εt = ηt
√

ht and ht = 0.01 + αε2t−1 + 0.2ε2t−2 + 0.8ht−1,(3.3)

εt = ηt
√

ht and ht = 0.01 + αε2t−1 + 0.2ε2t−2,(3.4)

where ηt is chosen as in model (3.1). In order to make sure that E(η2t )α+0.8 ≈ 1 for

N(0,1) and t3 distributions, we take α = 0.08 and 0.03, respectively. For t1 and t2

distributions, we take α = 0.03 as for t3 distribution. Based on these choices of α, we

generate 1000 replications of sample size n = 200, 400 and 1000 from each model and

fit each replication by a GARCH(1,1) model with the LAD method. The significance

level α = 0.05 and M = 6. In all calculations (hereafter), f(0) is estimated by using

the default syntax “ksdensity” in MatLab. The empirical power and sizes of these

tests are reported in Table 2. Their sizes correspond to the results for model (3.2).
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Table 2

Empirical size and power (×100) for S(M), Q(M) and Q2(M)

model(3.2) model(3.3) model(3.4)
ηt n S(M) Q(M) Q2(M) S(M) Q(M) Q2(M) S(M) Q(M) Q2(M)

N(0, 1) 200 4.60 6.00 10.6 10.3 19.38 16.8 19.2 43.5 34.3
400 4.70 5.60 7.70 15.6 42.0 36.6 33.2 76.0 65.5
1000 4.70 5.10 6.30 35.2 86.7 80.4 65.3 99.6 99.1

t3 200 6.20 6.20 6.50 14.3 18.7 10.1 35.2 58.4 23.3
400 5.70 6.90 7.10 26.3 40.7 12.9 64.1 84.1 29.0
1000 5.50 5.10 5.40 58.2 82.5 14.2 96.8 98.3 39.7

t2 200 6.50 6.60 5.80 16.7 12.8 6.20 44.1 38.3 12.0
400 5.10 8.80 6.90 26.7 19.3 6.50 76.3 55.5 11.1
1000 5.60 5.90 4.60 61.3 34.9 6.30 99.9 76.6 11.1

t1 200 4.80 6.00 3.30 20.8 6.20 3.50 76.8 9.20 3.90
400 6.50 6.20 3.50 33.1 4.60 2.90 97.4 8.50 3.60
1000 4.20 4.60 1.60 72.0 3.80 1.10 100.0 6.40 2.10

From Table 2, it is clear that the sizes of S(M) are always close to their nominal

ones, while the sizes of Q(M) and Q2(M) are not precise when n is small. For the

power of these tests, it is generally as expected. First, except Q(M) and Q2(M) in

the case that Eη2t = ∞, all the powers become large as n increases. Second, Q(M)

is the most powerful test among these three tests when Eη2t < ∞. Third, Q2(M) is

more powerful than S(M) when Eη4t < ∞, while its power is less than that of S(M)

when Eη4t = ∞. Forth, S(M) becomes more powerful when ηt is more heavy-tailed,

but Q(M) and Q2(M) lose their power substantially when Eη2t = ∞. Overall, S(M)

has a very good performance, especially when ηt is very heavy-tailed.

4. A real example. In this section, we study the daily exchange rate of United

States Dollars (USD) to Chinese Yuan (CNY) from December 19, 2008 to May 13,

2010, which has in total 351 observations; see Figure 1 (a). Its 100 times log return,

denoted by {εt}350t=1, is plotted in Figure 1 (b). To begin with, we first plot the kernel

density of εt in Figure 2. Compared with the corresponding normal density, we know

that εt is more heavy-tailed than the normal distribution. Thus, the Gaussian QMLE

is not suitable in this case. Here, we consider the LAD estimation for the following

ARCH model with r = 3, r = 4 and r = 5:

εt = ηt
√

ht and ht = α0 +
r

∑

i=1

αiε
2
t−i.(4.1)

Our major interest concerns which of the three models can fit the data adequately.

Table 3 presents all estimation results for these three fitted models. To check the

adequacy of these models, the values of S(M), Q(M) and Q2(M) with M = 6
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and M = 12 are also reported in the same table. From Table 3, we find that an

ARCH(5) model is adequate according to all three statistics. However, S(M) implies

both ARCH(3) and ARCH(4) models are not adequate, but this can not be detected

0 50 100 150 200 250 300 350
6.815

6.82

6.825

6.83

6.835

6.84

6.845

6.85

6.855

6.86

Time

(a)

0 50 100 150 200 250 300 350
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time

(b)

Fig 1. (a) the daily exchange rate of USD/CNY from December 19, 2008 to May 13, 2010, and
(b) its 100 times log return.
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Normal density

Kernel density

Fig 2. The kernel density of εt and the normal density with the same mean and variance.

by Q(M) or Q2(M). To see the reason, Figure 3 plots the Hill’s estimator Ĥη(k)

with the largest k data of {η̂2t } for ARCH(3) model and ARCH(4) model, where

Ĥη(k) =
k

∑k

j=1(log η̃350−j − log η̃350−k)
,

and η̃j is the j-th order statistic of η̂2t . From Figure 3, we can see that the tail of η2t in

ARCH(3) model or ARCH(4) model is most likely less than 1, i.e., Eη2t = ∞. Thus,
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S(M) is more powerful than Q(M) or Q2(M) under this heavy-tailed situation.

Table 3

Results for all fitted model(4.1)

Models
r = 3 r = 4 r = 5

Parameters θ̂n AD θ̂n AD θ̂n AD
α0

a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
α1 0.2701 0.0801 0.2517 0.0769 0.1904 0.0678
α2 0.0394 0.0395 0.0308 0.0364 0.0297 0.0355
α3 0.0788 0.0400 0.0658 0.0399 0.0636 0.0401
α4 0.0295 0.0285 0.0001 0.0218
α5 0.0918 0.0421

(S(6), S(12))b (13.16, 17.59) (19.87, 22.63) (9.93, 11.32)
(Q(6), Q(12))b (12.52, 17.62) (10.76, 15.48) (5.22, 10.45)
(Q2(6), Q2(12))b (0.98, 1.50) (0.71, 1.08) (0.42, 0.69)

a The estimator α̂0n and its AD are less than 10−4 for each model.
b The 95% upper percentages for χ2(6) and χ2(12) are 12.59 and 21.03, respectively.

10 20 40 60 80 100 120 140 160 180
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

k

(a)

 

 

Hill’s estimators

10 20 40 60 80 100 120 140 160 180
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

k

(b)

 

 

Hill’s estimators

Fig 3. (a) the Hill’s estimators for η2
t
in ARCH(3) model, and (b) the Hill’s estimators for η2

t
in

ARCH(4) model.
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APPENDIX

Lemma A.1. Suppose that Assumptions 2.1-2.4 hold. Then, (i) θ̂n → θ0 a.s. as

n → ∞; (ii) it follows that

√
n(θ̂n − θ0) =

Σ−1

2f(0)
√
n

n
∑

t=1

ξt
ht(θ0)

∂ht(θ0)

∂θ
+ op(1),(A.1)

and it entails
√
n(θ̂n − θ0) →d N(0, [2f(0)]−2Σ−1) as n → ∞, where Σ is defined as

in Theorem 2.1.

Proof. Let Bη(θ) ∈ Θ be an open neighborhood of θ with radius η > 0. We first

verify the following three claims to prove (i):

(a) E

[

sup
θ∈Θ

lt(θ)

]

< ∞;

(b) E[lt(θ)] has a unique minimum at θ0;

(c) E

[

sup
θ∈Bη(θ∗)

|lt(θ)− lt(θ
∗)|

]

→ 0 as η → 0,

where lt(θ) = |log ε2t − log ht(θ)|. Clearly, claim (a) follows directly from Assumption

2.5(i)-(ii). For claim (b), by using the inequality E |X − a| ≥ E |X −median(X)|
for all random variable X and real number a, we can show that

E[lt(θ)] = E
[

E
(

|zt − log[ht(θ)/ht]|
∣

∣Ft−1

)]

≥ E
[

E
(

|zt|
∣

∣Ft−1

)]

= E[lt(θ0)],

where the inequality holds since zt has median 0 by Assumption 2.2, and the equation

holds if and only if log[ht(θ)/ht] = 0 a.s., which implies that θ = θ0 by Assump-

tion 2.1(i). Moreover, by Taylor’s expansion, triangle’s inequality and Assumption

2.4(iii), it is straightforward to see that claim (c) holds. Now, based on claims (a)-

(c), following the same argument as for Theorem 2.1 in Zhu and Ling (2011), we

can show that (i) holds.

Next, we use the same argument as for Theorem 2.2 in Zhu and Ling (2011) to

prove (ii). Let Hn(u) = n [Ln(θ0 + u)− Ln(θ0)] ,
∑n

t=1 At(u), where u ∈ Λ , {u :

u+θ0 ∈ Θ}. Denote Z1t(s) = I(zt < s)−I(zt > s) and Z2t(s) = I(zt ≤ s)−I(zt ≤ 0).

Then, by Taylor’s expansion and using the identity

|x− y| − |x| = −y[I(x > 0)− I(x < 0)] + 2

∫ y

0

[I(x ≤ s)− I(x ≤ 0)]ds

for x 6= 0, it follows that

At(u) = qt(u)Z1t(0) + 2

∫ qt(u)

0

Z2t(s)ds,(A.2)
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where qt(u) = q1t(u) + q2t(u) with

q1t(u) =
u′

ht

∂ht

∂θ
(θ0), q2t(u) =

u′

2

[

1

ht

∂2ht

∂θ∂θ′
(ζ∗)− 1

h2
t

∂ht

∂θ

∂ht

∂θ′
(ζ∗)

]

u,

and ζ∗ lies between θ0 and θ0 + u.

Furthermore, let Ft = σ(ηi; i ≤ t) and Wt(u) = 2
∫ q1t(u)

0
Z2t(s)ds. Since Z1t(0) =

−ξt, by (A.2) we have

n
∑

t=1

At(u) = (
√
nu)′Sn(θ0) + Π1n(u) + Π2n(u) + Π3n(u),(A.3)

where

Sn(θ0) = − 1√
n

n
∑

t=1

[

1

ht

∂ht

∂θ
(θ0)

]

ξt,

Π1n(u) =
n

∑

t=1

{Wt(u)− E[Wt(u)|Ft−1]} ,

Π2n(u) =
n

∑

t=1

E[Wt(u)|Ft−1],

Π3n(u) = −
n

∑

t=1

q2t(u)ξt + 2
n

∑

t=1

∫ qt(u)

q1t(u)

Z2t(s)ds.

Let un = θ̂n−θ0. By (i), Assumptions 2.1-2.4, and the same argument as for Lemmas

2.2-2.3 in Zhu and Ling (2011), we can show that Π1n(un) = op(
√
n‖un‖+ n‖un‖2),

Π2n(un) = (
√
nun)

′[f(0)Σ](
√
nun), and Π3n(un) = op(n‖un‖2), where Σ is positive

definite by Assumption 2.1(ii). Thus, by (A.3) and the same argument as Theorem

2.2 in Zhu and Ling (2011), it follows that (ii) holds.

Lemma A.2. Suppose that Assumptions 2.1-2.4 hold. Then,

√
nρ̂l =

√
nρl − 2f(0)X ′

l

√
n(θ̂n − θ0) + op(1)

for any integer l ≥ 1, where ρl is defined in the same way as ρ̂l with ξt replacing ξ̂t,

and Xl is defined as in Theorem 2.1.

Proof. Rewrite

√
nρ̂l −

√
nρl =

1√
n

n
∑

t=l+1

ξ̂t−l

(

ξ̂t − ξt

)

+
1√
n

n
∑

t=l+1

ξt

(

ξ̂t−l − ξt−l

)

, I1n + I2n say.
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Then, I1n = ∆1n +∆2n, where

∆1n =
1√
n

n
∑

t=l+1

E
[

ξ̂t−l

(

ξ̂t − ξt

)

|Ft−1

]

,

∆2n =
1√
n

n
∑

t=l+1

{

ξ̂t−l

(

ξ̂t − ξt

)

− E
[

ξ̂t−l

(

ξ̂t − ξt

)

|Ft−1

]}

.

We first consider ∆1n. Let u = θ− θ0, and G(·) and g(·) be the c.d.f. and p.d.f. of

ηt, respectively. Note that by Taylor’s expansion, we have

ηt(u+ θ0) = ηt

√

ht

ht(u+ θ0)
= ηt

√

ht

ht + u′∂ht(ζ∗)/∂θ
,

where ζ∗ lies between θ0 and u + θ0. Thus, by the double expectation and Taylor’s

expansion again, it follows that

E [I(−1 < ηt(u+ θ0) < 1)− I(−1 < ηt < 1)|Ft−1]

=



G





√

1 +
u′

ht

∂ht(ζ∗)

∂θ



−G(1)



+



G(−1)−G



−
√

1 +
u′

ht

∂ht(ζ∗)

∂θ









=

[

g(ζ∗1t)

2ζ∗1t
− g(ζ∗2t)

2ζ∗2t

]

u′

ht

∂ht(ζ
∗)

∂θ
,

(A.4)

where ζ∗1t lies between 1 and
√

1 + (u′/ht)∂ht(ζ∗)/∂θ, and ζ∗2t lies between −1 and

−
√

1 + (u′/ht)∂ht(ζ∗)/∂θ. Similarly, we can show that

E [I(ηt(u+ θ0) > 1)− I(ηt > 1)|Ft−1] = −g(ζ∗1t)

2ζ∗1t

u′

ht

∂ht(ζ
∗)

∂θ
,(A.5)

E [I(ηt(u+ θ0) < −1)− I(ηt < −1)|Ft−1] =
g(ζ∗2t)

2ζ∗2t

u′

ht

∂ht(ζ
∗)

∂θ
.(A.6)

Let wt(u) = sgn(η2t (u+θ0)−1). Since wt−l(u) ∈ Ft−1, by (A.4)-(A.6), we know that

1√
n

n
∑

t=l+1

E {wt−l(u) [wt(u)− wt(0)] |Ft−1}

= −
{

1

n

n
∑

t=l+1

[

g(ζ∗1t)

ζ∗1t
− g(ζ∗2t)

ζ∗2t

]

wt−l(u)

ht

∂ht(ζ
∗)

∂θ′

}

(
√
nu).(A.7)

Furthermore, for any M > 0, by a similar argument as for (2.1), we can show that

sup√
n‖u‖≤M

∣

∣

∣

∣

∣

1

n

n
∑

t=l+1

[

g(ζ∗1t)

ζ∗1t
− g(ζ∗2t)

ζ∗2t

]

wt−l(u)

ht

∂ht(ζ
∗)

∂θ′

− E

[

[g(1) + g(−1)]
wt−l(0)

ht

∂ht(θ0)

∂θ′

]∣

∣

∣

∣

= op(1).(A.8)
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Recall that ûn = θ̂n − θ0. Since g(1)+ g(−1) = 2f(0) and
√
nûn = Op(1) by Lemma

A.1(ii), by (A.7)-(A.8), it follows that

∆1n =
1√
n

n
∑

t=l+1

E {wt−l(ûn) [wt(ûn)− wt(0)] |Ft−1}

= −2f(0)X ′
l(
√
nûn) + op(1).(A.9)

Next, we consider ∆2n. Since {ξ̂t−l(ξ̂t − ξt)−E[ξ̂t−l(ξ̂t − ξt)|Ft−1]} is a martingale

difference sequence, it is not hard to see that

E[∆2
2n] ≤

1

n

n
∑

t=l+1

E
[

ξ̂2t−l(ξ̂t − ξt)
2
]

≤ 1

n

n
∑

t=l+1

E
{

E
[

(ξ̂t − ξt)
2|Ft−1

]}

→ 0

as n → ∞, where the last relation holds by the dominated convergence theorem.

Thus, it follows that ∆2n = op(1), which implies I1n = −2f(0)X ′
l(
√
nûn) + op(1) by

(A.9). Moreover, by a similar argument as for I1n, we can show that I2n = op(1),

and hence the conclusion holds.

Proof of Theorem 2.1. First, by Lemma A.2, we have

√
nρ̂ =

√
nρ− 2f(0)X

√
n(θ̂n − θ0) + op(1),

where ρ = (ρ1, · · · , ρM)′. Next, by Lemma A.1, it follows that
√
nρ̂ = V Zn + op(1),

where

V = [IM ,−XΣ−1] and Zn =
√
n

[

ρ′,
1

n

n
∑

t=1

ξt
ht(θ0)

∂ht(θ0)

∂θ′

]′

.

Finally, the conclusion holds by the martingale central limit theorem. �
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