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Abstract

This study analyzes the effects of inflation on the long-run nexus between unemployment
and economic growth. We introduce money demand via a cash-in-advance (CIA) constraint on
R&D investment into a scale-invariant Schumpeterian growth model with matching frictions
in the labor market. Given the CIA constraint on R&D, a higher inflation that raises the
opportunity cost of cash holdings leads to a decrease in innovation and economic growth,
which in turn decreases labor-market tightness and increases unemployment. In summary,
the model predicts a positive relationship between inflation and unemployment, a negative
relationship between inflation and R&D, and a negative relationship between inflation and
economic growth. These theoretical predictions are consistent with recent empirical evidence.
Therefore, when inflation is a fundamental variable that affects the economy, unemployment
and economic growth exhibit a negative relationship.
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1 Introduction

The relationship between unemployment and economic growth has long been a fundamental question
in economics. This study provides a growth-theoretic analysis on this important relationship in a
Schumpeterian model. Creative destruction refers to the process through which new technologies
destroy existing firms. On the one hand, the destructive part of this process leads to job losses. On
the other hand, new technologies also create new firms with new employment opportunities. In a
frictionless labor market, these job destructions and job creations could offset each other leaving the
labor market with full employment. However, given the presence of matching frictions between firms
and workers, this continuous turnover in the labor market as a result of creative destruction leads to
what Joseph Schumpeter (1939) referred to as "technological unemployment". At the first glance,
it may seem that technological unemployment is a very specific kind of unemployment; however, as
Schumpeter [1911] (2003, p.89) wrote, "[i]t doubtlessly explains a good deal of the phenomenon of
unemployment, in my opinion its better half."
To analyze the effects of inflation on the long-run nexus between unemployment and economic

growth, we introduce money demand into a scale-invariant Schumpeterian growth model with equi-
librium unemployment via a cash-in-advance (CIA) constraint on R&D investment. Early empirical
studies such as Hall (1992) and Opler et al. (1999) find a positive and significant relationship be-
tween R&D and cash flows in US firms. Bates et al. (2009) document that the average cash-to-assets
ratio in US firms increased substantially from 1980 to 2006 and argue that this is partly driven by
their rising R&D expenditures. Brown and Petersen (2011) provide evidence that firms smooth
R&D expenditures by maintaining a buffer stock of liquidity in the form of cash reserves. A recent
study by Berentsen et al. (2012) argues that information frictions and limited collateral value of
intangible R&D capital prevent firms from financing R&D investment through debt or equity forc-
ing them to fund R&D projects with cash reserves. We capture these cash requirements on R&D
investment using a CIA constraint.
Given the CIA constraint on R&D, an increase in inflation that determines the opportunity

cost of cash holdings raises the cost of R&D investment. Consequently, a higher inflation decreases
R&D. Given that we remove scale effects1 by considering a semi-endogenous-growth Schumpeterian
model in which the long-run rate of creative destruction is determined by exogenous parameters,
a decrease in R&D leads to a decrease in the growth rate of technology only in the short run but
decreases the level of technology in the long run. Although the rate of creative destruction decreases
temporarily, the decrease in innovation decreases the number of labor-market vacancies in the long
run causing a positive effect on long-run unemployment. In other words, due to the decrease in labor
market tightness, a higher inflation increases unemployment. This positive long-run relationship
between inflation and unemployment is consistent with the empirical relationship based on US data
documented in Ireland (1999), Beyer and Farmer (2007) and Berentsen et al. (2011). As for the
negative relationship between inflation and R&D, it is consistent with the cross-country evidence
in Chu and Lai (2013). Finally, the negative relationship between inflation and economic growth
is supported by the cross-country evidence in Fischer (1993), Guerrero (2006), Vaona (2012) and
Chu et al. (2013). Therefore, when inflation is a fundamental variable that affects the economy,
unemployment and economic growth (measured by the level of technology and output) exhibit a
negative relationship.
This study relates to the literature on Schumpeterian growth; see Segerstrom et al. (1990),

1See Jones (1999) for a discussion of scale effects in the R&D-based growth model.
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Grossman and Helpman (1991) and Aghion and Howitt (1992) for seminal studies. However, these
studies feature full employment rendering them unsuitable for the purpose of analyzing unemploy-
ment. Early contributions in the Schumpeterian theory of unemployment are Aghion and Howitt
(1994, 1998), Cerisier and Postel-Vinay (1998), Mortensen and Pissarides (1998), Pissarides (2000),
Şener (2000, 2001) and Postel-Vinay (2002). The present study complements these seminal studies
by introducing money demand into the Schumpeterian model with unemployment and analyzing
the effects of inflation on unemployment and economic growth. To our knowledge, this combination
of Schumpeterian growth, money demand and equilibrium unemployment is novel to the literature.
This study also relates to the literature on inflation and economic growth. In this literature,

Stockman (1981) and Abel (1985) analyze the effects of inflation via a CIA constraint on capital
investment in a monetary version of the Neoclassical growth model. Subsequent studies in this
literature explore the effects of inflation in variants of the capital-based growth model. This study
instead relates more closely to the literature on inflation and innovation-driven growth. In this
literature, Marquis and Reffett (1994) analyze the effects of inflation via a CIA constraint on
consumption in a variety-expanding growth model based on Romer (1990). In contrast, we analyze
the effects of inflation in a Schumpeterian quality-ladder model. Chu and Cozzi (2013) and Chu and
Lai (2013) also analyze the relationship between inflation and economic growth in the Schumpeterian
model. However, all these studies exhibit full employment due to the absence of matching frictions in
the labor market. The present study provides a novel contribution to the literature by introducing
equilibrium unemployment driven by matching frictions to the monetary Schumpeterian growth
model. A recent study by Wang and Xie (2013) also analyzes the effects of inflation on economic
growth and unemployment driven by matching frictions in the labor market. Their model generates
money demand via CIA constraints on consumption and wage payment to production workers. In
contrast, we model money demand via a CIA constraint on R&D. More importantly, they consider
capital accumulation as the engine of economic growth whereas our analysis complements their
interesting study by exploring a different growth engine that is R&D and innovation.
The rest of this study is organized as follows. Section 2 describes the Schumpeterian model.

Section 3 analyzes the effects of inflation on unemployment and economic growth. The final section
concludes.

2 A monetary Schumpeterian model with unemployment

The simple Schumpeterian model with equilibrium unemployment in the present study is based
on Mortensen (2005). In this model, economic growth is driven by quality improvement. R&D
entrepreneurs invent higher-quality products in order to dominate the market and earn monopolistic
profits. When R&D entrepreneurs create new inventions, they open up vacancies to recruit workers
from the labor market, in which the number of job separations is determined by creative destruction
and the number of job matches is determined by an aggregate matching function and labor market
tightness. Due to matching frictions between workers and firms with new technologies, the economy
features equilibrium unemployment in the long run. We modify the model in Mortensen (2005) by
(a) allowing for population growth and removing scale effects via increasing R&D difficulty as in
Segerstrom (1998), (b) introducing money demand via CIA constraints on consumption and R&D
investment as in Chu and Cozzi (2013), and (c) considering elastic labor supply.

3



2.1 Households

In the economy, the population size is Lt that increases at an exogenous rate g > 0, and there is a
representative household who has the following lifetime utility function:

U =

∫
∞

0

e−(ρ−g)t [ln ct + γ ln(1− lt)] dt, (1)

where ct denotes per capita consumption (numeraire) and lt denotes per capita labor supply at time
t. The parameter ρ > g determines subjective discounting, and γ ≥ 0 determines leisure preference.
The asset-accumulation equation expressed in real terms is given by

ȧt + ṁt = (rt − g)at − (πt + g)mt + itdt + It − τ t − ct. (2)

at is the real value of financial assets (in the form of equity shares in monopolistic intermediate
goods firms) owned by each member of the household. rt is the real interest rate. πt is the inflation
rate. mt is the real money balance accumulated by each member of the household. dt is the amount
of money lent to R&D entrepreneurs subject to the following constraint: dt + ξct ≤ mt, where
ξ ∈ [0, 1] parameterizes the strength of the CIA constraint on consumption. The interest rate on
money lending dt to R&D entrepreneurs is the nominal interest rate,

2 which is equal to it = rt+ πt
from the Fisher identity. τ t is a lump-sum tax levied on each member of the household. It is the per
capita amount of labor income given by It ≡ (wtxt + ωtRt + btut)/Lt, where wt is the wage rate of
production labor xt, ωt is the wage rate of R&D labor Rt, and bt is unemployment benefits provided
to unemployed labor ut. To ensure balanced growth, we assume that bt = byt/Lt is proportional to
total output per capita, where b ∈ (0, 1) is an unemployment-benefit parameter. The size of the
labor force at time t is ltLt, and the resource constraint on labor is

xt +Rt + ut = ltLt. (3)

Following the standard treatment in the literature, we assume that workers are mobile across R&D
and manufacturing. Given this substitutability between manufacturing labor and R&D labor, it is
better not to think of R&D labor as high-skilled R&D entrepreneurs but instead as low- to medium-
skilled research assistants, administrative and support staff employed by the R&D entrepreneurs.
The household maximizes (1) subject to (2) and (3). The resulting optimality condition for

labor supply is

lt = 1−
γ(1 + ξit)ct

ωt
, (4)

where the opportunity cost of leisure is the R&D wage rate ωt because workers can freely choose
between employment in the R&D sector and job search.3 The intertemporal optimality condition
is

−
ζ̇t
ζt
= rt − ρ, (5)

2It can be easily shown as a no-arbitrage condition that the interest rate on dt must be equal to it.
3Although this formulation appears to be unrealistic, Mortensen (2005) argues that "in the real world R&D

requires "skill," which is either an endowment that is distributed over the population or is acquired through education.
Still these two alternative specifications require either that the marginal worker is indifferent between unemployed
search and R&D activity or that the value of acquiring the needed education is equal to the value of unemployment
respectively. My conjecture is that the comparative static implications of either specification are not materially
different from those implied by the simpler model studied here."
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where ζt is the Hamiltonian co-state variable on (2) and determined by ζt = [(1 + ξit)ct]
−1. In the

case of a constant nominal interest rate i, (5) becomes the familiar Euler equation ċt/ct = rt − ρ.

2.2 Final goods

Final goods yt are produced by perfectly competitive firms that aggregate a unit continuum of
intermediate goods using the following Cobb-Douglas aggregator:

yt = exp

{∫ 1

0

ln [At(j)xt(j)] dj

}
, (6)

where At(j) ≡ q
nt(j) is the productivity or quality level of intermediate good xt(j). The parameter

q > 1 is the exogenous step size of each quality improvement, and nt(j) is the number of innovations
that have been invented and implemented in industry j as of time t. The price of final goods is
normalized to Pt = 1. From profit maximization, the conditional demand function for xt(j) is

xt(j) = yt/pt(j), (7)

where pt(j) is the price of xt(j) for j ∈ [0, 1].

2.3 Intermediate goods

There is a unit continuum of industries producing differentiated intermediate goods. Each industry
is temporarily dominated by a quality leader until the arrival and implementation of the next higher-
quality product. The owner of the new innovation becomes the next quality leader.4 The current
quality leader in industry j uses one unit of labor to produce one unit of intermediate good xt(j).
We follow Mortensen (2005) to assume that the employer has no outside option and the workers’
outside option is unemployment benefit bt. In this case, the generalized Nash bargaining game is

5

{xt(j), wt(j)} = argmax{[wt(j)− bt]xt(j)}
β{[pt(j)− wt(j)]xt(j)}

1−β, (8)

where the parameter β ∈ (0, 1) measures the bargaining power of workers. The bargaining outcome
on wage is6

wt(j) = βpt(j) + (1− β)bt, (9)

which is an average between the marginal revenue product pt(j) of each worker and the value of
unemployment benefit bt weighted by the bargaining power of workers. The employer and workers
commit to this wage schedule over the lifetime of the firm. Substituting (9) into (8) shows that the
xt(j) that maximizes (8) is the same as the xt(j) that maximizes the following profit function:

Πt(j) = [pt(j)− wt(j)]xt(j) = (1− β)[pt(j)− bt]xt(j) = (1− β)[yt − btxt(j)], (10)

4This is known as the Arrow replacement effect; see Cozzi (2007a) for a discussion of the Arrow effect.
5Mortensen (2005) argues that using a more general bargaining condition with the value functions of employment

and unemployment would complicate the model without providing new insight; see footnote 3 in his paper.
6This bargaining outcome can also be obtained from wt(j) = argmax{[wt(j) − bt]

β [pt(j) − wt(j)]
1−β} (i.e.,

individual wage bargaining).
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where the second equality uses (9) and the third equality uses (7).
We follow Howitt (1999) and Dinopoulos and Segerstrom (2010) to consider the realistic case

in which new quality leaders do not engage in limit pricing with previous quality leaders because
after the implementation of the newest innovations, previous quality leaders immediately exit the
market. Given the Cobb-Douglas aggregator in (6), the unconstrained monopolistic price would be
infinity (i.e., xt(j) → 0). We follow Evans et al. (2003) to consider price regulation under which
the regulated markup ratio cannot be greater than z > 1 such that

pt(j) = zwt(j) = z
1− β

1− βz
bt, (11)

where the second equality uses (9), and we impose an additional parameter restriction given by
βz < 1. Substituting (11) into (7) yields

xt(j) = xt =
1− βz

(1− β)z

yt
bt
=

1− βz

(1− β)zb
Lt, (12)

where the last equality uses bt = byt/Lt. Finally, the amount of monopolistic profit is

Πt(j) = Πt = (pt − wt)xt =
z − 1

z
yt. (13)

Given that the amount of monopolistic profit is the same across industries, we will follow the
standard treatment in the literature to focus on the symmetric equilibrium, in which the arrival
rate of innovations is equal across industries.7

2.4 R&D

R&D is performed by a continuum of competitive entrepreneurs. If an R&D entrepreneur employs
R̃t units of labor to engage in innovation in an industry, then she is successful in inventing the next
higher-quality product in the industry with an instantaneous probability given by

δ̃t =
hR̃t
At
, (14)

where h > 0 is an innovation-productivity parameter that captures the abilities of the R&D en-
trepreneur. We assume that innovation productivity h/At decreases in aggregate quality At ≡

exp
(∫ 1

0
lnAt(j)dj

)
in order to capture increasing difficulty of R&D in the economy,8 and this

specification removes the scale effects in the innovation process of the quality-ladder model as in
Segerstrom (1998).9 The expected benefit from investing in R&D is Vtδ̃tdt, where Vt is the value

7See Cozzi (2007b) for a discussion of multiple equilibria in the Schumpeterian model. Cozzi et al. (2007) provide
a theoretical justification for the symmetric equilibrium to be the unique rational-expectation equilibrium in the
Schumpeterian model.

8See Venturini (2012) for empirical evidence based on US manufacturing data that supports the semi-endogenous
growth model with increasing difficulty of R&D.

9Segerstrom (1998) considers an industry-specific index of R&D difficulty. Here we consider an aggregate index
of R&D difficulty to simplify notation without altering the aggregate results of our analysis.
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of the expected discounted profits generated by a new innovation and δ̃tdt is the entrepreneur’s
probability of having a successful innovation during the infinitesimal time interval dt. To facilitate
the wage payment to R&D labor, the entrepreneur borrows money from the household, and the
cost of borrowing is determined by the nominal interest rate it. To parameterize the strength of
this CIA constraint on R&D, we assume that a fraction σ ∈ [0, 1] of R&D expenditure requires the

borrowing of money from households. Therefore, the total cost of R&D is (1 + σit)ωtR̃tdt. Free
entry implies

Vtδ̃tdt = (1 + σit)ωtR̃tdt⇔ Vt = (1 + σit)ωtAt/h, (15)

where the second equality uses (14).

2.5 Matching and unemployment

When an R&D entrepreneur has a new innovation, she is not able to immediately launch the new
product to the market due to matching frictions in the initial recruitment of workers.10 Instead,
she has to open up xt vacancies to recruit xt workers for producing and launching her products to
the market. For simplicity, Mortensen (2005) assumes that the cost of a vacancy is zero. We follow
the standard treatment in the search-and-matching literature to consider an aggregate matching
function F (vt, ut), where vt is the number of vacancies in the labor market and ut is the number
of unemployed workers. F (vt, ut) has the usual properties of being increasing, concave and homo-
geneous of degree one in vt and ut. In the economy, the number of successful matches at time t is
given by F (vt, ut); in other words, the number of workers who find jobs is F (vt, ut). Therefore, the
job-finding rate is

λt = F (vt, ut)/ut = F (vt/ut, 1) ≡M(θt), (16)

where θt ≡ vt/ut denotes labor market tightness, and λt = M(θt) is increasing in θt. Similarly, the
number of vacancies filled is also F (vt, ut), so the vacancy-filling rate is

ηt = F (vt, ut)/vt =M(θt)/θt, (17)

where ηt =M(θt)/θt is decreasing in θt. Following the usual treatment in the literature,
11 we assume

that when matching occurs to a firm at time t, the firm matches with xt workers simultaneously.
In other words, the number of successful matches at time t is first determined by the matching
function F (vt, ut), and then, these matches are randomly assigned to F (vt, ut)/xt firms. Therefore,
the probability for a firm with opened vacancies to match with xt workers at time t is also ηt. After
an entrepreneur sets up her firm by having successful matches with xt workers at time t, we assume
for tractability that she can instantly recruit additional workers at the same wage schedule in (9)
as demand xt increases overtime.

12

10Dinopoulos et al. (2013) consider an interesting setting, aimed at studying the importance of rent-seeking
activities on unemployment, in which new firms are able to immediately recruit a fraction φ ∈ (0, 1) of the desired
number of workers xt.
11See for example Mortensen (2005) and Dinopoulos et al. (2013).
12Equation (12) implies that xt increases at the rate g. We assume g is sufficiently small such that it has negligible

effects on the labor market.
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2.6 Asset values

Let Ut denote the value of being unemployed. The familiar asset-pricing equation of Ut is

rt =
bt + U̇t + λt(Wt − Ut)

Ut
, (18)

where λt is the rate at which an unemployed worker becomes employed and Wt denotes the value
of being employed in an industry in which the subsequent innovation has not been invented. The
asset-pricing equation of Wt is

rt =
wt + Ẇt + δ̃t(St −Wt)

Wt

, (19a)

where δ̃t is the rate at which the subsequent innovation is invented and St denotes the value of
being employed in an industry in which the subsequent innovation has been invented but not yet
been launched to the market.13 The asset-pricing equation of St is

rt =
wt + Ṡt + ηt(Ut − St)

St
, (19b)

where ηt is the rate at which the subsequent innovation is launched to the market and the worker
becomes unemployed. Given that a worker must be indifferent between being employed by an R&D
entrepreneur and engaging in job search, the wage of R&D workers is equal to

ωt = rtUt − U̇t. (20)

We follow Mortensen (2005) to assume that the subsequent innovation cannot be invented until
the current innovation has been launched to the market.14 The asset-pricing equation of Vt, which
is the value of a new innovation for which its vacancies have not been filled, is given by

rt =
V̇t + ηt (Zt − Vt)

Vt
, (21a)

where ηt is the rate at which the product is launched to the market. The asset-pricing equation of
Zt, which is the value of the innovation when its vacancies have been filled, is given by

rt =
Πt + Żt + δ̃t (Xt − Zt)

Zt
, (21b)

where δ̃t is the rate at which the subsequent innovation is invented. The asset-pricing equation of
Xt, which is the value of the current innovation when the subsequent innovation has been invented
but not yet been launched to the market, is given by

rt =
Πt + Ẋt − ηtXt

Xt

, (21c)

where ηt is the rate at which the subsequent innovation is launched to the market.

13For simplicity, Mortensen (2005) assumes that the current quality leader stops its operation as soon as the next
innovation is invented. Here we relax this assumption by allowing the current quality leader to continue its operation
until the next innovation is implemented. This generalization is rational for the current quality leader, who continues
to earn profits, and also for the workers because St > Ut.
14Mortensen (2005) writes, "the assumption that a product cannot be replaced by a better one until after it

appears on the market [...] is plausible when the technology of each innovation builds on the last one because reverse
engineering is not possible until examples of the product or services are available for inspection."

8



2.7 Government

The monetary policy instrument that we consider is the inflation rate πt, which is exogenously set by
the monetary authority. Given πt, the nominal interest rate is endogenously determined according
to the Fisher identity such that it = πt + rt, where rt is the real interest rate. The growth rate
of the nominal money supply (per capita) is µt = πt + ṁt/mt.

15 Finally, the government balances
the fiscal budget subject to the following per capita version of the balanced-budget condition:
τ t = btut/Lt − (µt + g)mt.

2.8 Steady-state equilibrium

We will define the aggregate innovation-arrival rate as δt = (1 − ft)δ̃t, where ft is the measure of
industries with unlaunched innovations. The outflow from the pool of firms searching for workers
is given by ηtft, and the inflow into this pool is given by δt. Therefore, in the steady state, we must
have ηtft = δt. The aggregate production function of final goods is given by yt = Atxt, where (the
log of) aggregate technology At is defined as

lnAt ≡

∫ 1

0

lnAt(j)dj =

∫ 1

0

nt(j)dj ln q =

∫ t

0

ηυfυdυ ln q, (22)

where we have normalized A0 = 1 (i.e., lnA0 = 0). Differentiating (22) with respect to t yields
Ȧt/At = ηtft ln q, where ηtft is the measure of industries with newly launched innovations at time
t. The steady-state growth rate of At is

Ȧt
At
= ηf ln q = δ ln q = g, (23)

where the third equality holds because δ = hRt/At must be constant on the balanced growth path
implying that Rt and At must both grow at the exogenous rate g in the long run. Therefore,
the steady-state rate of creative destruction is determined by exogenous parameters such that
δ = g/ ln q.
On the balanced growth path, (20) becomes

ωt = ρUt. (24)

Solving (18) and (19) yields the balanced-growth value of ρUt given by

ρUt = ρ
(ρ+ η) (ρ+ δ̃)bt + (ρ+ η + δ̃)λwt

(ρ+ η) (ρ+ δ̃) (ρ+ λ)− δ̃λη
, (25)

where δ̃ = δ/(1− f) = δ/(1− δ/η). From (21), the balanced-growth value of Vt is

Vt =
η(Πt + δ̃Xt)

(ρ− g + η)(ρ− g + δ̃)
=

ρ− g + η + δ̃

(ρ− g + η)2(ρ− g + δ̃)
ηΠt. (26)

15It is useful to note that in this model, it is the growth rate of the money supply that affects the real economy in
the long run, and a one-time change in the level of money supply has no long-run effect on the real economy. This is
the well-known distinction between the neutrality and superneutrality of money. Empirical evidence generally favors
neutrality and rejects superneutrality, consistent with our model; see Fisher and Seater (1993) for a discussion on
the neutrality and superneutrality of money.
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Substituting (24)-(26) into (15) yields

ρ− g + η + δ̃

(ρ− g + η)2(ρ− g + δ̃)
ηΠt =

At
h
(1 + σi) ρ

(ρ+ η) (ρ+ δ̃)bt + (ρ+ η + δ̃)λwt

(ρ+ η) (ρ+ δ̃) (ρ+ λ)− δ̃λη
. (27)

For convenience, we define a transformed variable αt ≡ At/Lt, which is the per capita level of
aggregate technology. Substituting (11), (13) and bt = byt/Lt into (27) and then rearranging terms
yield

α =
z − 1

(1 + σi)zb

h

ρ− g + δ̃

(ρ+ η) (ρ+ δ̃) (ρ+ λ)− δ̃λη

(ρ+ η) (ρ+ δ̃) + λ(ρ+ η + δ̃)(1− β)/(1− βz)
Θ(θ), (28)

where δ̃ = δ/(1− δ/η), λ =M(θ), η =M(θ)/θ and

Θ(θ) ≡
η

ρ− g + η

(
1 +

δ̃

ρ− g + η

)
.

We refer to (28) as the R&D free-entry (FE) condition, which contains two endogenous variables
{α, θ}.16 It is useful to note that the FE condition depends on the nominal interest rate i via the
CIA constraint on R&D (i.e., σ > 0).

Lemma 1 The FE curve describes a negative relationship between α and θ if ρ is sufficiently large.

Proof. See Appendix A.

To close the model, we use the following steady-state condition that equates the inflow δ into
the pool of firms searching for workers to its outflow ηf :

δ = ηf = ηv/x =M(θ)u/x, (29)

where the second equality follows from fx = v, where f is the number of firms with opened vacancies
and x is the number of vacancies per firm. The third equality in (29) follows from (17) and uses the
definition of θ ≡ v/u. Furthermore, we need to derive the equilibrium supply of labor l. Substituting
(11), (24), (25), bt = byt/Lt and ct = yt/Lt into (4) yields

l( i
−

, θ
+
) = 1−

γ(1 + ξi)

ρb

(ρ+ η) (ρ+ δ̃) (ρ+ λ)− δ̃λη

(ρ+ η) (ρ+ δ̃) + (ρ+ η + δ̃)λ(1− β)/(1− βz)
, (30)

which is increasing in θ as we will show in the proof of Lemma 2. Substituting (3), (12), (14) and
(30) into (29) and applying the definition of α ≡ A/L yield

α =
h

δ

{
l( i
−

, θ
+
)−

[
1 +

δ

M(θ)

]
1− βz

(1− β)zb

}
. (31)

We refer to (31) as the labor-market (LM) condition, which also contains two endogenous variables
{α, θ}. It is useful to note that the LM condition depends on the nominal interest rate i via the
CIA constraint on consumption (i.e., ξ > 0). Finally, (28) and (31) can be used to solve for the
steady-state equilibrium values of {θ, α}; see Figure 1 for an illustration.

16Recall that δ = g/ ln q is determined by exogenous parameters in the steady state.
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Lemma 2 The LM curve describes a positive relationship between α and θ if ρ is sufficiently large.

Proof. See Appendix A.

Figure 1: Steady-state equilibrium

3 Inflation, unemployment and economic growth

In this section, we explore the relationship between inflation, unemployment and economic growth.
Section 3.1 considers the effects of inflation via the CIA constraint on R&D (i.e., σ > 0 and ξ = 0).
Section 3.2 considers the effects of inflation via the CIA constraint on consumption (i.e., σ = 0 and
ξ > 0). In Section 3.3, we explore an extension of the model with an additional CIA constraint on
manufacturing.

3.1 Inflation via the CIA constraint on R&D

In this subsection, we explore the effects of inflation on unemployment and economic growth under
the CIA constraint on R&D. From the Fisher identity, we have i = π + r = π + g + ρ, where the
second equality uses the Euler equation and ċt/ct = Ȧt/At = g. Therefore, a one-unit increase in
the inflation rate leads to a one-unit increase in the nominal interest rate in the long run.17 In
Figure 1, we see that an increase in the nominal interest rate i (caused by an increase in inflation
π) shifts the FE curve to the left reducing labor market tightness θ and the (per capita) level of
technology α. As for the resulting effect on unemployment u, we see from (29) that unemployment
u = δx/M(θ), where δ and x are determined by exogenous parameters and independent of i, is

17For example, Mishkin (1992) and Booth and Ciner (2001) provide empirical evidence for a positive relationship
between inflation and the nominal interest rate in the long run.

11



decreasing in the job-finding rate M(θ). Therefore, the increase in inflation π raises unemployment
u by reducing labor market tightness θ and the job-finding rate M(θ). From (14), aggregate R&D
is given by R = αLδ/h; therefore, the higher inflation π (that decreases the level of technology α)
also reduces R&D. Now we consider the effect of inflation on economic growth. The dynamics of per
capita technology αt ≡ At/Lt is given by α̇t/αt = Ȧt/At−g. Therefore, given that a higher inflation
π decreases the steady-state value of α, it must also decrease the growth rate of At temporarily
such that Ȧt/At < g before αt reaches the new steady state. We summarize all these results in
Proposition 1.

Proposition 1 Under the CIA constraint on R&D, a higher inflation has (a) a positive effect on
unemployment, (b) a negative effect on R&D, (c) a negative effect on the growth rate of technology
in the short run, and (d) a negative effect on the level of technology in the long run.

Proof. Proven in text.

The intuition of Proposition 1 can be explained as follows. A higher inflation leads to an increase
in the opportunity cost of cash holdings, which in turn increases the cost of R&D investment via
the CIA constraint on R&D. As a result, R&D decreases resulting into a lower growth rate of
technology in the short run and a lower level of technology in the long run. Although the rate
of creative destruction decreases temporarily, the decrease in innovation also reduces the number
of labor-market vacancies in the long run. Consequently, this reduction in labor-market tightness
increases long-run unemployment. These theoretical predictions are consistent with the empirical
evidence discussed in the introduction. Therefore, when inflation is a fundamental variable that
affects the economy, unemployment and economic growth (measured by the level of technology and
output) exhibit a negative relationship.

3.2 Inflation via the CIA constraint on consumption

In this subsection, we explore the effects of inflation on unemployment and economic growth under
the CIA constraint on consumption. In this case, Figure 1 shows that an increase in inflation π shifts
the LM curve to the right increasing labor market tightness θ and decreasing the level of technology
α. As for the resulting effect on unemployment u, we see from (29) that unemployment u = δx/M(θ)
is decreasing in the job-finding rateM(θ). Therefore, the increase in inflation π surprisingly reduces
unemployment u. From (14), aggregate R&D is given by R = αLδ/h; therefore, the higher inflation
π also reduces R&D. As for the effect of inflation on economic growth, given that inflation π
decreases the steady-state value of α, it must decrease the growth rate of At temporarily before αt
reaches the new steady state. We summarize these results in Proposition 2.

Proposition 2 Under the CIA constraint on consumption, a higher inflation has (a) a negative
effect on unemployment, (b) a negative effect on R&D, (c) a negative effect on the growth rate of
technology in the short run, and (d) a negative effect on the level of technology in the long run.

Proof. Proven in text.
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The intuition behind the negative relationship between inflation and unemployment can be
explained as follows. A higher inflation leads to an increase in the opportunity cost of cash holdings,
which in turn increases the cost of consumption relative to leisure. As a result, the household
consumes more leisure and reduces labor supply. The decrease in labor supply reduces the number
of workers searching for employment. The resulting increase in labor-market tightness decreases
unemployment. In other words, our model has opposite implications on the long-run relationship
between inflation and unemployment under the two CIA constraints. Specifically, under the CIA
constraint on consumption (R&D), the model predicts a negative (positive) relationship between
inflation and unemployment.
Berentsen et al. (2011) document a positive long-run relationship between inflation and un-

employment in the US. Berentsen et al. (2011) consider the unemployment rate in the data, but
the comparative statics from our model have implications on the share of unemployed workers in
the population.18 Therefore, we follow the approach in Berentsen et al. (2011) to document the
long-run relationship between inflation and the share of unemployed workers in the population. We
consider annual data from 1953 to 2007 to extend the data series in Berentsen et al. (2011) to
the year before the financial crises in 2008. Figure 2 plots the raw data, 5-year average data, and
the HP-filtered trend data on inflation and unemployment in the US. These figures show that infla-
tion and the share of unemployed workers in the population exhibit a positive long-run relationship.
Therefore, the theoretical prediction of a negative relationship between inflation and unemployment
contradicts empirical evidence suggesting that the CIA constraint on consumption is perhaps a less
relevant channel than the CIA constraint on R&D through which inflation affects unemployment.
To be more precise, we are not suggesting that the CIA constraint on consumption is irrelevant;
instead, we simply find that the consumption-leisure tradeoff via the CIA constraint on consump-
tion is not the empirically relevant channel through which inflation affects unemployment given its
counterfactual implication.

Figure 2: Inflation and unemployment

18In our model, the unemployment rate generally moves in the same direction as the share of unemployed workers
in the population, but we are unable to derive an absolutely unambiguous result in the case of the CIA constraint
on consumption.
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3.3 Extension: Inflation via the CIA constraint on manufacturing

In this subsection, we explore an extension of the model under which manufacturing employment
x is also affected by inflation. Specifically, we introduce an additional CIA constraint on the wage
payment to manufacturing workers.19 For tractability, we consider inelastic labor supply (i.e.,
γ = 0 and l = 1) under which the CIA constraint on consumption has no real effect. Under the
CIA constraint on manufacturing, the bargaining condition in (8) becomes

{xt(j), wt(j)} = argmax{[wt(j)− bt]xt(j)}
β{[pt(j)− (1 + εit)wt(j)]xt(j)}

1−β, (8a)

where ε ∈ [0, 1] parameterizes the strength of this CIA constraint. The bargaining outcome on wage
becomes

wt(j) =
β

1 + εit
pt(j) + (1− β) bt, (9a)

and the monopolistic price becomes

pt (j) = z(1 + εit)wt(j) = z(1 + εit)
1− β

1− βz
bt. (11a)

Due to the higher price, the demand for xt(j) decreases to

xt(j) = xt =
1

1 + εit

1− βz

(1− β) zb
Lt. (12a)

The rest of the model remains unchanged. Because the nominal interest rate affects xt via the CIA
constraint on manufacturing, its effect εit appears in the LM curve in (31), which becomes

α =
h

δ

{
1−

1

1 + εi

[
1 +

δ

M(θ)

]
1− βz

(1− β) zb

}
. (31a)

Figure 3 shows that an increase in inflation π shifts the LM curve to the left, which by itself leads
to a decrease in labor-market tightness θ and an increase in technology α. Together with the shift
in the FE curve via the CIA constraint on R&D, the overall effect on θ is negative, but the overall
effect on α is ambiguous. However, if we assume that σ (i.e., the strength of the CIA constraint
on R&D) is sufficiently large, then a higher inflation π would decrease technology α implying a
negative relationship between inflation and R&D and a negative relationship between inflation and
economic growth in accordance with the empirical evidence discussed in the introduction. From
(29), we have u = δx/M(θ), where x and θ are both decreasing in π. It may seem that the overall
effect on unemployment u has become ambiguous; however, if we use the resource constraint on
labor in (3), we see that u = L− (x+ R) must be increasing in π because both x and R = αLδ/h
are decreasing in π (assuming that σ is sufficiently large). In summary, we find that under the two
CIA constraints on R&D and manufacturing, a higher inflation decreases employment in both the
R&D and manufacturing sectors and increases unemployment. In other words, the presence of a
CIA constraint on manufacturing strengthens the inflation-induced negative relationship between
unemployment and economic growth (assuming that σ is sufficiently large).

19See also Wang and Xie (2013) who analyze a CIA constraint on manufacturing.
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Figure 3: CIA on manufacturing and R&D

4 Conclusion

In this study, we have explored a fundamental question in economics that is the long-run rela-
tionship between inflation, unemployment and economic growth. We consider a standard Schum-
peterian growth model with the additions of money demand via CIA constraints and equilibrium
unemployment driven by matching frictions in the labor market. In this monetary growth-theoretic
framework, we discover a positive relationship between inflation and unemployment (under the CIA
constraint on R&D), a negative relationship between inflation and R&D, and a negative relationship
between inflation and economic growth. These theoretical predictions are consistent with empirical
evidence.
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Appendix A

Proof of Lemma 1. First, we restrict the range of values for θ to ensure that (a) λ = M(θ) <
1 (i.e., the number of workers who find jobs at a given point in time must be less than the number
of workers searching for jobs at that time), (b) η =M(θ)/θ < 1 (i.e., the number of vacancies filled
at a given point in time must be less than the number of vacancies on the market at that time),
and (c) η > δ so that f = δ/η < 1 (i.e., the number of industries with unlaunched innovations must
be less than the total number of industries, which is normalized to unity). Then, we examine each
term on the right-hand side of (28) separately. The first term in (28) is independent of θ, whereas
the second term in (28) is decreasing in θ given that δ̃ increases with θ. The third term in (28) can
be reexpressed as

ϑ(θ) ≡ ρ
ρ+ δ̃ + λ(1 + δ̃

ρ+η
)

ρ+ δ̃ + λ(1 + δ̃
ρ+η
)(1− β)/(1− βz)

. (A1)

Given (1− β)/(1− βz) > 1, we can show that ϑ′(θ) < 0 holds if20

{[1− δθ/M(θ)]2ρ+ 1}/δ > 1/M ′(θ), (A2)

which holds if ρ is sufficiently large because 1− δθ/M(θ) = 1− δ/η > 0. As for the fourth term in
(28), noting η = M(θ)/θ and δ̃ = δ/[1 − δθ/M(θ)], we can show that Θ′(θ) < 0 holds if and only
if21

ρ− g

δ

(
[1− δθ/M(θ)]2 +

2δ [1− δθ/M(θ)] θ/M(θ)

(ρ− g) θ/M(θ) + 1

)

︸ ︷︷ ︸
≡χ(θ)

> 1. (A3)

Note that χ(θ) > 0 because ρ > g and 1− δθ/M(θ) = 1− δ/η > 0. Therefore, we can conclude this
proof by saying that a large value of ρ is a sufficient (but not necessary) condition for the FE curve
in (28) to be downward sloping in θ.

Proof of Lemma 2. By (30) and (A1), l(i, θ) = 1− ϑ(θ)γ(1 + ξi)/ρb. From the proof of Lemma
1, ϑ(θ) is decreasing in θ if ρ is sufficiently large. Together with (31), one can easily show that the
LM curve is upward sloping in θ.

20Note that ϑ′(θ) < 0 holds if and only if

(ρ+ δ̃)

[
λ

(
1 +

δ̃

ρ+ η

)]′
> (ρ+ δ̃

′

)λ

(
1 +

δ̃

ρ+ η

)
,

which can be expressed as

λ(ρ+ δ̃)

[
δ̃
′

(ρ+ η)− η′δ̃

(ρ+ η)
2

]
>
[
δ̃
′

λ− (ρ+ δ̃)λ′
](
1 +

δ̃

ρ+ η

)
.

Given λ′ > 0, η′ < 0, and δ̃
′

> 0, this holds if δ̃
′

λ − (ρ + δ̃)λ′ < 0, which is equivalent to (A2) by λ = M(θ),

δ̃ = δ/ [1− δθ/M(θ)] , and δ̃
′

= δ̃
2

[M(θ)− θM ′(θ)] /M(θ)2. Note that M(θ) > θM ′(θ) by the properties of M(θ).
21Note that

Θ′(θ) =
κ
′(θ)

[1− δκ(θ)]
2
[(ρ− g)κ(θ) + 1]

2

[
δ − (ρ− g)

(
[1− δκ(θ)]

2
+
2δκ(θ) [1− δκ(θ)]

(ρ− g)κ(θ) + 1

)]
,

where κ(θ) ≡ θ/M(θ) and thus κ′(θ) > 0.
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