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Abstract

The main idea of this paper is to introduce Tradeable Measures of Risk as an objective and model
independent way of measuring risk. The present methods of risk measurement, such as the standard
Value-at-Risk supported by BASEL II, are based on subjective assumptions of future returns. Therefore
two different models applied to the same portfolio can lead to different values of a risk measure. In order
to achieve an objective measurement of risk, we introduce a concept of Realized Risk which we define
as a directly observable function of realized returns. Predictive assessment of the future risk is given
by Tradeable Measure of Risk – the price of a financial contract which pays its holder the Realized Risk
for a certain period. Our definition of the Realized Risk payoff involves a Weighted Average of Ordered
Returns, with the following special cases: the worst return, the empirical Value-at-Risk, and the empirical
mean shortfall. When Tradeable Measures of Risk of this type are priced and quoted by the market (even
of an experimental type), one does not need a model to calculate values of a risk measure since it will
be observed directly from the market. We use an option pricing approach to obtain dynamic pricing
formulas for these contracts, where we make an assumption about the distribution of the returns. We
also discuss the connection between Tradeable Measures of Risk and the axiomatic definition of Coherent
Measures of Risk.

1 Introduction

The most popular risk measures, such as Value-at-Risk (VaR), expected shortfall, and standard deviation,
are based on a distribution of future returns of an asset or a portfolio. These measures are inherently
model dependent, and thus two different approaches may assign different risk values to an otherwise identical
portfolio. The idea of this paper is to define a risk measure that would not depend on subjective assumptions
about future returns, but instead would be determined by a market. In order to achieve an objective
measurement of risk, we first introduce a concept of Realized Risk, which is a directly observable function of
realized returns. A tradeable contract with the Realized Risk payoff is called Tradeable Measure of Risk.

We show that most of the currently traded contracts are in fact Tradeable Measures of Risk, but unfortunately
they typically do not satisfy axioms which are desirable for a Measure of Risk. In particular, they are not
good estimators of the popular Measures of Risk (such as VaR), and/or they do not satisfy properties for a
Coherent Measure of Risk. Thus we focus on a contract on Weighted Average of Ordered Returns, which
serves both as an estimator of a weighted average of quantiles from the distribution of returns (Theorem 4.1),
and under certain conditions satisfies properties for Coherent Measure of Risk (Theorem 5.2).

Even a small or experimental market for Weighted Average of Ordered Returns would indicate the implied
distribution and structure of future risk. In order to achieve objectivity of risk measurement, the market for
Weighted Average of Ordered Returns can be organized by a central bank or similar regulatory entity. Let us
consider greenhouse gas emissions as an analogy for financial risk. For a company, it is desirable to have low
financial risk just as for society it is desirable to produce a low volume of emissions. However, it is frequently
the case that in order to achieve economic success, a company needs to take financial risks. Analogously,
to achieve success, a society might engage in industrial production which leads to emissions. Interestingly
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enough, there is a market for trading emissions quota (such as the one set up by Kyoto protocol), but a
market for trading coherent financial risk which would transfer an excess or unused financial risk quota does
not exist.

There are two advantages of having a market where a contract on Realized Risk (especially on Weighted
Average of Ordered Returns) would be traded: its market price can be viewed as a risk measure and the
contract itself can serve as a way of financial risk insurance. In Section 5 we will show that under certain
conditions, a Weighted Average of Ordered Returns satisfies generalized axioms for Coherent Measures of
Risk.

Within the areas of mathematical finance and mathematical insurance, there has been almost simultaneous
development in an axiomatic approach to measuring risk. Arztner et al. [2] and [3] established the rep-
resentation theorem of a risk measure as a supremum of expectations under the axioms of monotonicity,
subadditivity, positive homogeneity and translation invariance in a finite probability space. Wang et al.
[21] deduced the Choquet integral representation of the distributional property of risk measures based on the
work of Yaari [23] with additional assumptions of law invariance and comonotonicity. Kusuoka [16] developed
equivalent representations to Wang et al. [21]. Recent research focused on extending the space where the
representation theorem applies (Delbaen [9], Cherny [7]), attempted to develop a dynamic version of coherent
risks (Artzner et al. [4], Riedel [18], Cheridito et al. [6], Frittelli and Scandolo [12], Kloppel and Schweizer
[15], Weber [22]), or relaxed the axioms to convex risk measures (Föllmer and Schied [10]). The industry
approach culminates with the latest BASEL II framework which adopts Value-at-Risk (VaR) as a universal
minimal capital requirement. Though the fact that VaR is not a Coherent Measure of Risk motivated the
original work of Artzner et al. [2] and [3], it has nevertheless remained as the industry standard up to date.
On the transfer side, there already exists significant volume in trading non-coherent based risks in today’s
market. For example, volatility swaps provide a way to trade and hedge realized volatility. For options on
realized variance, see Carr et al. [5]. Jarrow [14] also studied put option premium as a risk measure.

This paper is organized as follows: in Section 2, we define a payoff based on realized returns, which allows
us to introduce a Tradeable Measure of Risk – a contract with a Realized Risk payoff. Section 3 provides
formulas for a special case of Tradeable Measure of Risk, Weighted Average of Ordered Returns, if one makes
an assumption about the distribution of the returns. Miura [17] set up a similar pricing problem of a lookback
option on order statistics. Since it was applied directly to the asset price instead of the returns, a closed-form
solution was not obtained. Section 4 shows that the Weighted Average of Ordered Returns converges to
a weighted average of quantiles from the distribution of returns, and thus it can serve as an estimator to
popular risk measures such as VaR or the expected shortfall. A consequence of obtaining the price process
of the contract is that it can serve as a dynamic risk measure itself. This aspect will be detailed in Section
5. Section 6 concludes the paper.

2 Realized Risk and Tradeable Measures of Risk

Suppose the financial return on an asset of a bank over a finite time horizon [0, t], 0 ≤ t ≤ T, is an adapted
stochastic process Xt (which could be either log return, percentage return, or absolute return) with values
in R on a probability space (Ω,F , (Ft)0≤t≤T ,P) that satisfies the usual conditions. BASEL II requires banks
to put aside capital equal to V aRλ(XT ) which corresponds to the negative value of the λ-quantile from the
distribution of the total return XT . At time T , the real loss will be known and will almost certainly be
different than the capital set aside initially. Therefore, the capital requirement targets the loss and provides
a cushion under financial stress, but will not be an exact match. What we provide here is insurance against
the Realized Risk.

Definition 2.1 Suppose we have a collection of sampling times 0 = t0 ≤ t1 ≤ . . . ≤ tN = T . The return
for period [ti−1, ti] is denoted by Xi, for 1 ≤ i ≤ N . The Realized Risk g is a function of realized returns
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g : RN → R. Tradeable Measure of Risk is the market value ρ(t, T, (Xi)ti≤t) of the contract with the Realized
Risk payoff at any given time t, 0 ≤ t ≤ T .

Realistically speaking, for some of these contracts there will be no good hedging possibility for the Realized
Risk, therefore this is an incomplete market pricing problem. Let us assume there is a risk neutral pricing
measure Q and a constant interest rate r. The forward price of the Realized Risk (Tradeable Measure of
Risk) is given by

(1) ρ(0, T ) = e−rT EQ[g((Xi)1≤i≤N )],

while the call and put option prices on the Realized Risk are given by

(2) c(0, T ) = e−rT EQ[(g((Xi)1≤i≤N ) −K)+],

(3) p(0, T ) = e−rT EQ[(K − g((Xi)1≤i≤N ))+].

Notice that both the call and the put options are Tradeable Measures of Risk directly if we use
(g((Xi)1≤i≤N ) −K)+ and (K − g((Xi)1≤i≤N ))+ respectively in the definition of the Realized Risk.

Examples of Realized Risk:

1. Asset Itself. The most trivial example of Realized Risk is the underlying asset ST itself. Assume that

{X1, . . . , XN} are percentage returns: Xi =
Sti

−Sti−1

Sti−1
. If we set

g((Xi)1≤i≤N ) = S0

N
∏

i=1

(1 +Xi) = ST ,

then ρ(0, T ) coincides with a forward on the underlying asset and c(0, T ) and p(0, T ) are respectively European
call and put options on that asset.

2. Weighted Average of Ordered Returns. The main focus of our paper is the case when Realized Risk
g((Xi)1≤i≤N ) is a weighted average of order statistics:

(4) g((Xi)1≤i≤N ) = −

N
∑

i=1

wiX(i), where wi ≥ 0 and

N
∑

i=1

wi = 1.

Order statistics is a collection of ordered returns {X(1), X(2), . . . , X(N)} with X(1) ≤ X(2) ≤ · · · ≤ X(N)

from the sample {X1, X2, . . . , XN}. The Tradeable Measure of Risk at time t, ρ(t, T, (Xi)ti≤t), with partial
observations up to time t, is given by the conditional expectation:

(5) ρ(t, T, (Xi)ti≤t) = e−r(T−t)EQ[g((Xi)1≤i≤N )|Ft].

If the weights in (4) are decreasing, w1 ≥ . . . ≥ wN , then g((Xi)1≤i≤N ) is a statistical approximation of the
class of law invariant convex comonotonic risk measures, called Weighted VaR, that is based on probability
distortion of Conditional VaR and is equivalent to the Choquet integral representation (see Kusuoka [16] and
Wang et al. [21]). The details are given in Appendix A, in order not to deviate from the current presentation.
For additional justification from an axiomatic approach in finite probability space, see Heyde et al. [13].
Important special cases of Weighted Average of Ordered Returns include: the worst return, the empirical
VaR, and the empirical mean shortfall.

2a. Worst Return. The Worst Return and its corresponding Tradeable Measure of Risk are defined as:

g((Xi)1≤i≤N ) = −X(1), ρ(t, T, (Xi)ti≤t) = −e−r(T−t) EQ[X(1)|Ft],
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i. e.,

wi =







1, i = 1;

0, i > 1.

2b. Empirical VaR. The empirical V aRλ(X) is given by weights:

wi =







1, i = ⌊Nλ⌋ ;

0, i 6= ⌊Nλ⌋ ,

where ⌊Nλ⌋ denotes the largest integer less than or equal to Nλ, 0 < λ < 1.

2c. Empirical Mean Shortfall. The empirical shortfall is defined by weights:

wi =







1
⌊Nλ⌋ , i ≤ ⌊Nλ⌋ ;

0, i > ⌊Nλ⌋ .

The corresponding Realized Risk and the Tradeable Measure of Risk are:

g((Xi)1≤i≤N ) = −
1

⌊Nλ⌋

⌊Nλ⌋
∑

i=1

X(i), ρ(t, T, (Xi)ti≤t) = −e−r(T−t) 1

⌊Nλ⌋

⌊Nλ⌋
∑

i=1

EQ[X(i)|Ft].

3. Maximum Drawdown. Another example of Realized Risk is the discretely monitored maximum
drawdown of the price process St, which we obtain if we define the payoff as

g((Xi)1≤i≤N ) = − min
1≤k<l≤N

l
∑

i=k+1

Xi = max
0≤k<l≤N

(Stk
− Stl

) ,

where the returns are absolute changes in S : Xi = Sti
− Sti−1 for i = 1, . . . , N. For a more systematic

treatment of Maximum Drawdown, see Vecer [20].

4. Realized Variance. As mentioned earlier, contracts on realized variance are already traded. In fact,
such contracts are Tradeable Measures of Risk with payoff:

g((Xi)1≤i≤N ) =
1

N

N
∑

i=1

(

Xi − X̄
)2
.

See Carr et al. [5] for details.

A particular feature of Tradeable Measures of Risk is that the past is seamlessly connected to the future in
a non-parametric way. If the current time is t and the time of maturity T , the realized returns (Xi)ti≤t have
impact on ρ(t, T, (Xi)ti≤t) through its reflection in the payoff function g((Xi)1≤i≤N ).

3 Pricing Contracts on Weighted Average of Ordered Returns

In this section, we will limit our focus to a special case of Realized Risk, namely on the Weighted Average
of Ordered Returns. Assume that the financial returns {X1, X2, ..., XN} are independent and identically
distributed with cumulative distribution function FX(x). The cumulative distribution function of the ith
order statistic X(i) is:

(6) FX(i)
(x) =

N
∑

k=i

(

N
k

)

[FX(x)]k[1 − FX(x)]N−k.
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When the returns have a continuous distribution with probability density function fX(x), the density of X(i)

is given by:

(7) fX(i)
(x) =

N !

(i− 1)!(N − i)!
fX(x)[FX(x)]i−1[1 − FX(x)]N−i.

If we assume the information available at any given time comprises the observed returns Xi’s up to that
time, meaning Ft = σ ((Xi)ti≤t), then we can rewrite the dynamic forward price (5) as:

ρ(t, T, (Xi)ti≤t) = −e−r(T−t)
N
∑

i=1

wiE
Q[X(i)|Ft]

= −e−r(T−t)
N
∑

i=1

wiE
Q[X(i)|X1, ..., Xn], where tn ≤ t < tn+1.(8)

In general, we need to find the conditional distributions of order statistics X(i)’s based on the first n observa-
tions X1, X2, ..., Xn. Let us formulate the question in the following way: suppose we have an ordered set of
real numbers −∞ = x0 < x1 < x2 < ... < xn < xn+1 = ∞ and a set of random variables Y1, Y2, ..., Ym which
are independent draws from a common distribution with cumulative distribution function F (x). Let us mix
the samples x1, x2, ..., xn, Y1, Y2, ...., Ym and call them Z1, Z2, ..., Zn+m. We need to compute the conditional
distribution of Z(i) as a function of x1, x2, ..., xn: FZ(i)

(z|x1, ..., xn).

Lemma 3.1 The conditional cumulative distribution function has the following representation:

(9) FZ(i)
(z|x1, ..., xk) =

n∧i
∑

k=0∨(i−m)

FY(i−k)
(z)I[xk,xk+1)(z), for 1 ≤ i ≤ n+m,

where IA(x) is the indicator function of set A.

Proof. The order statistics of Yi’s are written as Y(0), Y(1), ..., Y(m), where we have added an extra observation
Y(0) = −∞. The xi’s divide the real line into n+1 intervals, and we need to keep track of which interval each
Y(i) falls in. When z ∈ [xk, xk+1), the event Z(i) ≤ z is equivalent to Y(i−k) ≤ z. Therefore we can write:

{Z(i) ≤ z} =

n∧i
∑

k=0∨(i−m)

{

Y(i−k) ≤ z
}

I[xk,xk+1)(z), for 1 ≤ i ≤ n+m.

Note that the constraints 0 ≤ k ≤ n and 0 ≤ i− k ≤ m give the range of summation 0 ∨ (i−m) ≤ k ≤ n ∧ i
in the above equation. The cumulative distribution function is therefore given by the following expression:

FZ(i)
(z|x1, ..., xn) = Q(Z(i) ≤ z|x1, ..., xn)

=

n∧i
∑

k=0∨(i−m)

Q(Y(i−k) ≤ z)I[xk,xk+1)(z)

=

n∧i
∑

k=0∨(i−m)

FY(i−k)
(z)I[xk,xk+1)(z), for 1 ≤ i ≤ n+m.(10)

Thus, the proof is complete. ⋄

Note that the conditional cumulative distribution function, FZ(i)
(z|x1, ..., xn), is a piecewise function. On the
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interval z ∈ [xk−1, xk), it is equal to FY(i−k+1)
(z), and on the interval z ∈ [xk, xk+1), it is equal to FY(i−k)

(z).
Therefore, there is a discrete probability mass at every z = xk, whenever 1 ≤ k ≤ i :

Q(Z(i) = xk|x1, ..., xn) = FZ(i)
(xk|x1, ..., xn) − FZ(i)

(xk − |x1, ..., xn)

= FY(i−k)
(xk) − FY(i−k+1)

(xk)

=

m
∑

j=i−k

(

m
j

)

[F (xk)]j [1 − F (xk)]m−j −

m
∑

j=i−k+1

(

m
j

)

[F (xk)]j [1 − F (xk)]m−j

=

(

m
i− k

)

[F (xk)]i−k[1 − F (xk)]m−i+k.(11)

If the Yi’s have a continuous distribution with density function f(x), we can write the conditional probability
density (mass) function of Z(i), with the help of the Dirac delta function δa(x):

fZ(i)
(z|x1, ..., xn) =

n∧(i−1)
∑

k=0∨(i−m)

fY(i−k)
(z)I(xk,xk+1)(z) +

i
∑

k=1

Q(Z(i) = xk|x1, ..., xn)δxk
(z)

=

n∧(i−1)
∑

k=0∨(i−m)

m!

(i− k − 1)!(m− i+ k)!
f(z)[F (z)]i−k−1[1 − F (z)]m−i+kI(xk,xk+1)(z)

+
i
∑

k=1

(

m
i− k

)

[F (xk)]i−k[1 − F (xk)]m−i+kδxk
(z),(12)

for 1 ≤ i ≤ n+m.

Theorem 3.2 Suppose the returns {X1, X2, ..., XN} are independent and identically distributed with cumu-
lative distribution function FX(x) under Q, and t ∈ [tn, tn+1). Let X̂(1), . . . , X̂(n) be the order statistics of

observed returns X1, . . . , Xn, and X̃(1), . . . , X̃(N−n) the order statistics of future returns Xn+1, . . . , XN . The
dynamic forward price process defined in (8) is:

ρ(t, T, (Xi)ti≤t) = − e−r(T−t)
N
∑

i=1

wiE
Q[X(i)|X1, ..., Xn](13)

= − e−r(T−t)
N
∑

i=1

wi

n∧i
∑

k=0∨(i−N+n)

∫

(X̂(k),X̂(k+1))

xFX̃(i−k)
(dx)(14)

− e−r(T−t)
N
∑

i=1

wi

i
∑

k=1

X̂(k)

(

N − n
i− k

)

[FX(X̂(k))]
i−k[1 − FX(X̂(k))]

N−n−i+k,

where

FX̃(i−k)
(x) =

N−n
∑

j=i−k

(

N − n
j

)

[FX(x)]j [1 − FX(x)]N−n−j .

Furthermore, when the distribution of Xi is continuous with probability density function fX(x), we can write:

ρ(t, T, (Xi)ti≤t) = − e−r(T−t)
N
∑

i=1

wi

n∧(i−1)
∑

k=0∨(i−N+n)

∫

(X̂(k),X̂(k+1))

xfX̃(i−k)
(x)dx(15)

− e−r(T−t)
N
∑

i=1

wi

i
∑

k=1

X̂(k)

(

N − n
i− k

)

[FX(X̂(k))]
i−k[1 − FX(X̂(k))]

N−n−i+k,
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where:

fX̃(i−k)
(x) =

(N − n)!

(i− k − 1)!(N − n− i+ k)!
fX(x)[FX(x)]i−k−1[1 − FX(x)]N−n−i+k.

Proof. The results follow directly from Lemma 3.1 and the comments afterwards, where we replace x1, ..., xn

with X1, ..., Xn, and Y1, ..., Ym with Xn+1, ..., XN . ⋄

The pricing formulas given in Theorem 3.2 are based on the distribution and density functions (6) and (7)
defined at the beginning of this section. Here, we present a lemma that associates the distribution of order
statistics to a Value-at-Risk transformation of Beta distribution in a general continuous distribution case and
provide an alternative pricing formula. As before, X(1), X(2), ..., X(N) are the order statistics of independent
and identically distributed random variables X1, X2, ..., XN with cumulative distribution function FX(x)
under Q. Since V aRλ(X) is the negative value of the λ−quantile function of X, it is the negative value of
an inverse function of FX(x). Therefore, we write it out with two variables

V aR(X;λ) = V aRλ(X).

Note that a Beta(α, β) random variable Y has probability density function:

(16) fB(α,β)(x) =
1

B(α, β)
xα−1(1 − x)β−1, 0 < x < 1,

where B(α, β) =
∫ 1

0
xα−1(1 − x)β−1dx and α > 0, β > 0. Its expectation and variance are simply given by

EY = α
α+β and V ar(Y ) = αβ

(α+β)2(α+β+1) .

Lemma 3.3 Suppose {X1, X2, ..., XN} are independent and identically distributed random variables with
continuous distribution. Then the j-th order statistics X(j) and −V aR(X;Y ) have the same law, where Y is
a random variable with Beta(j, N-j+1) distribution.

Proof. It is well-known that the j-th order statistics from an independent identically distributed Uni-
form(0,1) random sample of size N has a Beta(j, N-j+1) distribution. Since FX(Xj) ∼ Uniform(0,1) and FX

is an increasing function and therefore preserve the order of the statistics, FX(X(j)) ∼ Beta(j, N-j+1) and
the result follows easily. A direct proof using the probability density function in (7) is also straightforward.
Recall that:

fX(j)
(x) =

N !

(j − 1)!(N − j)!
fX(x)[FX(x)]j−1[1 − FX(x)]N−j .

We have:

Q(X(j) ≤ z) =

∫ z

−∞

N !

(j − 1)!(N − j)!
fX(x)[FX(x)]j−1[1 − FX(x)]N−jdx

=

∫ z

−∞

N !

(j − 1)!(N − j)!
[FX(x)]j−1[1 − FX(x)]N−jdFX(x)

=

∫ FX(z)

0

1

B(j,N − j + 1)
yj−1(1 − y)N−jdy

= Q(Y ≤ FX(z)) = Q(−V aR(X;Y ) ≤ z),

where we have denoted F−1
X (λ) = −V aR(X;λ). ⋄

Lemma 3.3 allows us to think of any order statistics as a transform of a Beta random variable with parameters
depending only on the order of the statistics and the sample size. From a computational perspective, it also
makes the expectation formula simpler to evaluate. Theorem 3.2 is based on the direct formula (7):

EQX(j) =

∫ ∞

−∞
x

1

B(j,N − j + 1)
fX(x)[FX(x)]j−1[1 − FX(x)]N−jdx.
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If we use Lemma 3.3 and (16) instead, we arrive to an alternative formula:

(17) EQX(j) = −

∫ 1

0

V aRλ(X)fBeta(j,N−j+1)(λ)dλ = −

∫ 1

0

V aRλ(X)
1

B(j,N − j + 1)
λj−1(1 − λ)N−jdλ.

The second approach is much more systematic for evaluation or simulation, and formula (15) in Theorem 3.2
can be simplified correspondingly in the unconditional case which we will state in the following Corollary.

Corollary 3.4 Suppose {X1, X2, ..., XN} are independent and identically distributed random variables with
continuous distribution. The initial forward price, a special case of Theorem 3.2, can be calculated as

ρ(0, T ) = − e−rT
N
∑

i=1

wiE
Q[X(i)]

= − e−rT

∫ 1

0

V aRλ(X)

(

N
∑

i=1

wifB(i,N−i+1)(λ)

)

dλ.

Another interesting perspective of the above formula (17) becomes clear when we compare it to equation
(32) in Appendix A. The negative value of the expectation of a particular order statistic is not going to be a
good risk measure that satisfies the usual axioms because the Beta density does not have the monotonicity
property which function ψ possess in the representation (32) for Weighted VaR. On the other side, the
negative value of the expectation of Weighted Average of Ordered Returns when the weights are decreasing
will serve as a good risk measure. Its convergence to Weighted VaR is proved in Section 4, and its properties
as a dynamic risk measure are discussed in Section 5.

Now let us turn to the question how to apply Theorem 3.2 to a portfolio process Wt, 0 ≤ t < ∞, and give
some numerical examples. The value of this process will be recorded at times 0 = t0 < t1 < . . . < tn = T to
compute the log returns:

Xi = ln
(

Wi

Wi−1

)

, i = 1, 2, ..., N,

where we denote Wi = Wti
. Without loss of generality, we will choose uniform time intervals with length

∆t = ti−ti−1. Therefore, N+1 observations of the portfolio value W0,W1, ...,WN+1 correspond to N returns
X1, X2, ..., XN on time interval [0, T ] = [0, N∆t]. We allow both t and T to vary, that is if t = M∆t and
T = N∆t, then the number of observed returns M and the number of future observations N can both vary.
The cumulative continuous time return process is defined as

Xt = ln
(

Wt

W0

)

, for t ≥ 0.

The exact link between the discrete and the continuous returns is easy to find: Xi = Xti
− Xti−1

. If Wt

follows the Black-Scholes model, then:

dWt = Wt(αdt+ σdBt),

where α and σ are positive constants, and Bt a standard Brownian motion. Discrete returns in the Black-
Scholes model,

(18) Xi = (α− σ2

2 )∆t+ σ(Bti
−Bti−1

),

are independent and identically distributed with N
(

(α− σ2

2 )∆t, σ2∆t
)

distribution. Thus, Theorem 3.2

applies, and the dynamic forward price can be explicitly calculated as:

ρ(t,T, (Xi)ti≤t) = −e−r(T−t)
N
∑

i=1

wi

n∧(i−1)
∑

k=0∨(i−N+n)

∫

(X̂(k),X̂(k+1))

xfX̃(i−k)
(x)dx

− e−r(T−t)
N
∑

i=1

wi

i
∑

k=1

X̂(k)

(

N − n
i− k

)

[

Φ
(

X̂(k)−m∆t

σ
√

∆t

)]i−k [

1 − Φ
(

X̂(k)−m∆t

σ
√

∆t

)]N−n−i+k

,

8



where m = α− σ2

2 , Φ is the cumulative distribution function of the standard normal distribution, and:

fX̃(i−k)
(x) = (N−n)!

(i−k−1)!(N−n−i+k)!
1√

2πσ2∆t
e−

(x−m)2

2σ2∆t

[

Φ
(

x−m∆t
σ
√

∆t

)]i−k−1 [

1 − Φ
(

x−m∆t
σ
√

∆t

)]N−n−i+k

.

We mentioned in Section 1 that VaR is not coherent and the assigned weights for empirical VaR does not
satisfy the conditions in (4). However, VaR is widely used in practice and adopted by BASEL II, therefore it
is useful to give a benchmark numerical example for the forward price based on the empirical VaR. We will
denote the dynamic forward price of the empirical VaR as ρλ:

ρλ(t, T, (Xi)ti≤t) = −e−r(T−t)EQ
[

X(⌊Nλ⌋)|X1, . . . , Xn

]

,

where tN ≤ T < tN+1, and tn ≤ t < tn+1. Figure 1 shows a path of process −ρ5%(t, T, (Xi)ti≤t), where
T = 3 months and ∆t = 1 day. In this case, ⌊Nλ⌋ = 3, therefore the last element of the process,
−ρ5%(T, T, (Xi)1≤i≤N ), is equal to the third worst return, X(3).

In Figure 2, we present the term structure of forward prices: ρ5%(0, T ) for different values of T (from 6 months
to 12 years). We can see that the prices with longer time to maturity tend to be closer to the theoretical
value of quantile q5%(X).

Figure 1: Evolution of −ρ5%(t, T, (Xi)ti≤t), where T = 3 months and ∆t = 1 day. The daily returns, X, are assumed
to follow the Black-Scholes model with interest rate r = 4% and annual volatility σ = 20%.

We give a numerical example to compare the forward prices when the returns are derived from the Black-
Scholes model and the Merton model with jumps while the total volatilities in both models are kept the
same. The Merton model is defined as:

dWt = Wt−(α̃dt+ σ̃dBt + YtdNt),

where Bt is a standard Brownian motion, Nt is a standard Poisson process with intensity λPo, and Yt are
independent and identically distributed normal random variables with mean µ and standard deviation ν,
Yt ∼ N(µ, ν2). The discrete return can be calculated from Doléans-Dade exponential formula:

(19) Xi = (α̃− σ̃2

2 )∆t+ σ̃(Bti
−Bti−1) +

Nti
−Nti−1
∑

k=1

Yk.

9



Figure 2: Term structure of −erT ρ5%(0, T ), where T ∈ [0.5, 12] years and ∆t= one day. Daily returns X are assumed
to follow the Black-Scholes model with interest rate r = 4% and annual volatility σ = 20%. The horizontal line
represents the theoretical 5% quantile, q5%(X) = F−1

X
(0.05).

The density function of Xi has a series expansion:

fXi
= e−λP o∆t

∞
∑

k=0

(λPo∆t)
k exp

{

−
(x−(α̃−σ̃2/2)∆t−kµ)

2

2(σ̃2∆t+kν2)

}

k!
√

2π(σ̃2∆t+ kν2)
.

In Figure 3, we plot values of ρ5%,M (0, T ), where T = 6 months and ∆t = 1 day, obtained from the Merton
model with different intensities λPo. The total volatility of the returns is kept at 30% by reducing σ̃ along with
increasing λPo. We compared these values to ρ5%,BS(0, T ) from the Black-Scholes model, which is represented
by the horizontal line in the figure. For intensity λPo = 0, the two models are identical. If we increase λPo,
ρ5%,M (0, T ) decreases until it reaches its minimum, and then it grows, as the effects of more frequent jumps
begin to outweigh lower values of σ̃.

Now we will give formulas for the dynamic version of the call and put prices defined in (2) and (3). These for-
mulas are derived only for the empirical VaR and the worst return because we have calculated the conditional
distribution of one order statistic X(i) in Lemma 3.1, not of a linear combination

∑N
i=1 wiX(i).

Theorem 3.5 Suppose that returns {X1, X2, ..., XN} are independent and identically distributed with cu-
mulative distribution function FX(x) under Q. Let X̂(1), . . . , X̂(n) be the order statistics of observed returns

X1, . . . , Xn, and X̃(1), . . . , X̃(N−n) the order statistics of future returns Xn+1, . . . , XN . If the Realized Risk is
defined as a quantile, gλ((Xi)1≤i≤N ) = −X(⌊Nλ⌋), then the dynamic call and put option price processes are
equal to:

cλ(t, T, (Xi)ti≤t) = e−r(T−t)EQ[
(

−X(⌊Nλ⌋) −K
)+

|X1, ..., Xn](20)

= e−r(T−t)

n∧⌊Nλ⌋
∑

k=0∨(⌊Nλ⌋−N+n)

∫

[X̂(k),X̂(k+1))

(−x−K)+FX̃(⌊Nλ⌋−k)
(dx)

+ e−r(T−t)

⌊Nλ⌋
∑

k=1

(−X̂(k) −K)+
(

N − n
⌊Nλ⌋ − k

)

[FX(X̂(k))]
⌊Nλ⌋−k[1 − FX(X̂(k))]

N−n−⌊Nλ⌋+k,

10



Figure 3: Comparison of ρ5%(0, T ) for the Black-Scholes and the Merton model of the daily returns, where T = 6
months and ∆t = 1 day. The horizontal line represents the price of the empirical VaR in the Black-Scholes model
with annual volatility σ = 30% and interest rate r = 4%. The curve displays the dependence of ρ5%(0, T ) on λPo in
the Merton model. Other parameters are set to be: µ = 0, ν = 0.015, r = 4%. Volatility of the diffusion component,
σ̃, changed along with λ in order to preserve the total volatility of 30% :

p

σ̃2 + λPo(ν2 + µ2) = 30%.

pλ(t, T, (Xi)ti≤t) = e−r(T−t)EQ[
(

K +X(⌊Nλ⌋)
)+

|X1, ..., Xn](21)

= e−r(T−t)

n∧⌊Nλ⌋
∑

k=0∨(⌊Nλ⌋−N+n)

∫

[X̂(k),X̂(k+1))

(K + x)+FX̃(⌊Nλ⌋−k)
(dx)

+ e−r(T−t)

⌊Nλ⌋
∑

k=1

(K + X̂(k))
+

(

N − n
⌊Nλ⌋ − k

)

[FX(X̂(k))]
⌊Nλ⌋−k[1 − FX(X̂(k))]

N−n−⌊Nλ⌋+k,

where tN ≤ T < tN+1, tn ≤ t < tn+1, and

FX̃(⌊Nλ⌋−k)
(x) =

N−n
∑

j=⌊Nλ⌋−k

(

N − n
j

)

[FX(x)]j [1 − FX(x)]N−n−j .

Furthermore, when the distribution of Xi is continuous with probability density function fX(x), we can write:

cλ(t, T, (Xi)ti≤t) = e−r(T−t)

n∧(⌊Nλ⌋−1)
∑

k=0∨(⌊Nλ⌋−N+n)

∫

(X̂(k),X̂(k+1))

(−x−K)+fX̃(⌊Nλ⌋−k)
(x)dx

+ e−r(T−t)

⌊Nλ⌋
∑

k=1

(−X̂(k) −K)+
(

N − n
⌊Nλ⌋ − k

)

[FX(X̂(k))]
⌊Nλ⌋−k[1 − FX(X̂(k))]

N−n−⌊Nλ⌋+k,

11



pλ(t, T, (Xi)ti≤t) = e−r(T−t)

n∧(⌊Nλ⌋−1)
∑

k=0∨(⌊Nλ⌋−N+n)

∫

(X̂(k),X̂(k+1))

(K + x)+fX̃(⌊Nλ⌋−k)
(x)dx

+ e−r(T−t)

⌊Nλ⌋
∑

k=1

(K + X̂(k))
+

(

N − n
⌊Nλ⌋ − k

)

[FX(X̂(k))]
⌊Nλ⌋−k[1 − FX(X̂(k))]

N−n−⌊Nλ⌋+k,

where:

fX̃(⌊Nλ⌋−k)
(x) =

(N − n)!

(⌊Nλ⌋ − k − 1)!(N − n− ⌊Nλ⌋ + k)!
fX(x)[FX(x)]⌊Nλ⌋−k−1[1 − FX(x)]N−n−⌊Nλ⌋+k.

A path of the process c5%(t, T, (Xi)ti≤t), where T = 6 months and ∆t = 1 day, is shown in Figure 4. In this
example, ⌊Nλ⌋ = 6, therefore c5%(t, T, (Xi)ti≤t) is the price of the sixth worst excess loss (−X(6) −K)+.

Figure 4: Evolution of c5%(t, T, (Xi)ti≤t), where T = 6 months, ∆t= one day, and K = 0.0155. The pikes represent
excess losses: (−Xi − K)+. The daily returns, X, are assumed to follow the Black-Scholes model with interest rate
r = 4%, and annual volatility σ = 15%.

4 Convergence Theorems

Let us discuss the convergence of a Tradeable Measure of Risk, ρ(0, T ), if we let the time of maturity T → ∞.
The number of future returns increases and the expected discrete payoff, EQ [g((Xi)0<i≤N )] , approaches the
continuous payoff of which g((Xi)0<i≤N ) is an estimate. The continuous payoff is in fact the Weighted VaR
(see Appendix A). We define the λ−quantile of a distribution with cumulative distribution function FX(x)
as:

(22) qλ(X) = sup{x : FX(x) < λ}, 0 < λ < 1.

We see from (31) in Appendix A that the VaR is simply defined as the negative value of the above λ−quantile
function:

V aRλ(X) = −qλ(X) = inf{m |P(X +m ≤ 0) < λ },

where X has distribution FX(x).

12



Theorem 4.1 Suppose that returns {X1, . . . , XN} have a continuous and increasing cumulative distribution
function FX(x).

(i) If g((Xi)0<i≤N ) = −X(⌊Nλ⌋), for some λ ∈ (0, 1), and
∫ 1

0
V aRλ(X)dλ is finite, then:

erT ρ(0, T ) −→ V aRλ(X) as T → ∞.(23)

(ii) Let ψ(λ) be a nonnegative and continuous function on [0, 1], such that
∫ 1

0
ψ(λ)dλ = 1 and

∫ 1

0
V aRλ(X)ψ(λ)dλ is finite. If g((Xi)0<i≤N ) = −

∑N
i=1 wiX(i) and the weights are given as:

wi =
1

sNN
ψ

(

i− 1

N − 1

)

for i = 1, . . . , N, where sN =
1

N

N
∑

i=1

ψ

(

i− 1

N − 1

)

,

then:

erT ρ(0, T ) −→

∫ 1

0

V aRλ(X)ψ(λ)dλ as T → ∞.(24)

Proof.

(i) If g is defined as the empirical VaR, then (see (17)):

erT ρ(0, T ) = −EQ
[

X(⌊Nλ⌋)
]

= −

∫ 1

0

F−1
X (y)

N !

(⌊Nλ⌋ − 1)!(N − ⌊Nλ⌋)!
y⌊Nλ⌋−1(1 − y)N−⌊Nλ⌋dy

=

∫ 1

0

V aRy(X)I{y∈(ε,1−ε)}dFB(⌊Nλ⌋,N−⌊Nλ⌋+1)(y)

+

∫ 1

0

V aRy(X)I{y/∈(ε,1−ε)}
1

B(⌊Nλ⌋ , N − ⌊Nλ⌋ + 1)
y⌊Nλ⌋−1(1 − y)N−⌊Nλ⌋dy,

where tN ≤ T < tN+1 (thus, T → ∞ is equivalent to N → ∞). In the above formula, we choose
ε ∈ (0, 1), so that λ ∈ (ε, 1−ε). In this proof, FB(⌊Nλ⌋,N−⌊Nλ⌋+1)(y) denotes the cumulative distribution
function of a Beta distribution with parameters ⌊Nλ⌋ and N − ⌊Nλ⌋ + 1.
A sequence of random variables, which have Beta distributions with parameters ⌊Nλ⌋ and N−⌊Nλ⌋+1,
converges in distribution to λ, as N → ∞. Hence, FB(⌊Nλ⌋,N−⌊Nλ⌋+1)(y) converges weakly to I(0,λ)(y).
Since V aRy(X)I{y∈(ε,1−ε)} is bounded and λ ∈ (ε, 1 − ε), we have:

lim
N→∞

∫ 1

0

V aRy(X)I{y∈(ε,1−ε)}dFB(⌊Nλ⌋,N−⌊Nλ⌋+1)(y) =

∫ 1

0

V aRy(X)I{y∈(ε,1−ε)}dI(0,λ)(y)

= V aRλ(X).

To complete the proof, we need to show:

lim
N→∞

∫ 1

0

V aRy(X)I{y/∈(ε,1−ε)}
1

B(⌊Nλ⌋ , N − ⌊Nλ⌋ + 1)
y⌊Nλ⌋−1(1 − y)N−⌊Nλ⌋dy = 0.(25)

This follows from the fact that

I{y/∈(ε,1−ε)}
1

B(⌊Nλ⌋ , N − ⌊Nλ⌋ + 1)
y⌊Nλ⌋−1(1 − y)N−⌊Nλ⌋

are tails of Beta density functions with parameters ⌊Nλ⌋ and N−⌊Nλ⌋+1. As N → ∞, these functions

converge to zero uniformly on {y /∈ (ε, 1−ε)}. Moreover,
∫ 1

0
V aRy(X)dy is assumed to be finite. Hence,

the bounded convergence theorem implies result (25).
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(ii) We can write the initial price of a forward on Weighted Average of Ordered Returns as follows (see
Lemma 3.3):

erT ρ(0, T ) = −EQ

[

N
∑

i=1

wiX(i)

]

= −

N
∑

i=1

wiE
Q
[

X(i)

]

= −
N
∑

i=1

wi

∫ 1

0

F−1
X (λ)

N !

(i− 1)!(N − i)!
λi−1(1 − λ)N−idλ

=

∫ 1

0

[

−F−1
X (λ)

]

N
∑

i=1

wi
N !

(i− 1)!(N − i)!
λi−1(1 − λ)N−idλ

=

∫ 1

0

V aRλ(X)
N
∑

i=1

1

sNN
ψ

(

i− 1

N − 1

)

N !

(i− 1)!(N − i)!
λi−1(1 − λ)N−idλ

=

∫ 1

0

V aRλ(X)
1

sM+1

M
∑

k=0

ψ

(

k

M

)(

M
k

)

λk(1 − λ)M−kdλ,

where tN ≤ T < tN+1, M = N − 1, and k = i− 1. Term

M
∑

k=0

ψ

(

k

M

)(

M
k

)

λk(1 − λ)M−k

is a Bernstein polynomial of λ, which converges uniformly to the function ψ as M → ∞. {sM+1}
∞
M=0 is

a sequence of Riemann sums which converges to
∫ 1

0
ψ(λ)dλ = 1 as M → ∞. Thus, the entire integrand

converges uniformly to V aRλ(X)ψ(λ), which is assumed to be an integrable function. As a result:

lim
T→∞

erT ρ(0, T ) =

∫ 1

0

V aRλ(X) lim
M→∞

1

sM+1

M
∑

k=0

ψ

(

k

M

)(

M
k

)

λk(1 − λ)M−kdλ

=

∫ 1

0

V aRλ(X)ψ(λ)dλ.

⋄

Another important feature of a Tradeable Measure of Risk is that er(T−t)ρ(t, T, (Xi)ti≤t) becomes a better
estimate of payoff g((Xi)0<i≤N ) as t converges to the time of maturity T. This observation is stated and
proved in the following theorem.

Theorem 4.2 Suppose that {X1, X2, ..., XN} are independent and identically distributed random variables
with finite variance. Then:

EQ
[

er(T−t)ρ(t, T, (Xi)ti≤t) − g((Xi)0<i≤N )
]2

,(26)

where g((Xi)0<i≤N ) = −
∑N

i=1 wiX(i), is a nonincreasing function of t.

Proof. Conditional expectation EQ[.|X1, . . . , Xn] will be denoted by EQ
n [.] in this proof. Note that if

tn ≤ t < tn+1, then er(T−t)ρ(t, T, (Xi)ti≤t) = −EQ
n

[

∑N
i=1 wiX(i)

]

. The following inequality proves claim
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(26):

EQ

[

−EQ
n

[

N
∑

i=1

wiX(i)

]

+

N
∑

i=1

wiX(i)

]2

= EQ

[

−EQ
n

[

N
∑

i=1

wiX(i)

]

+ E
Q
n+1

[

N
∑

i=1

wiX(i)

]]2

+EQ

[

−E
Q
n+1

[

N
∑

i=1

wiX(i)

]

+

N
∑

i=1

wiX(i)

]2

≥ EQ

[

−E
Q
n+1

[

N
∑

i=1

wiX(i)

]

+

N
∑

i=1

wiX(i)

]2

.

⋄

5 Tradeable Measure of Risk as a Dynamic Risk Measure

In Section 3, we studied the properties of Tradeable Measure of Risk ρ(t, T, (Xi)ti≤t) as the forward price
process on Weighted Average of Ordered Returns. That section addressed the “tradeable” part of the title of
this paper. In this section, we will discuss the “measure of risk” part. In fact, as t changes, the definition of the
conditional expectation in (5) makes Tradeable Measure of Risk, ρ(t, T, (Xi)ti≤t), particularly suited to serve
as a dynamic measure of risk. In fact, the adoption of the option pricing approach implies its discounted
value is naturally a martingale. Representation theorems for Dynamic Risk Measures that satisfy either
coherent or convex principles have been proven in Artzner et al. [4], Riedel [18], Cheridito et al. [6], Frittelli
and Scandolo [12], Klöppel and Schweizer [15], and Weber [22]. We will focus on listing some usual desirable
properties of a Dynamic Risk Measure in Definition 5.1 and stating the properties which ρ(t, T, (Xi)ti≤t)
satisfies in Theorem 5.2. For some of the properties, we will need to assume that the weights are decreasing:
w1 ≥ . . . ≥ wN .

Definition 5.1 (Coherence, Relevance, and Time Consistency) Suppose Xt and Yt are stochastic
processes for t ∈ [0, T ], and ρ(t, T,X) and ρ(t, T, Y ) are dynamic risk measures on Xt and Yt. We de-
fine the following axioms for ρ:

1. Monotonicity: Xt ≤ Yt for all t ∈ [0, T ] implies ρ(t, T,X) ≥ ρ(t, T, Y ) for all t ∈ [0, T ].

2. Subadditivity: ρ(t, T,X + Y ) ≤ ρ(t, T,X) + ρ(t, T, Y ) for all t ∈ [0, T ].

3. Positive Homogeneity: ρ(t, T, λX) = λρ(t, T,X) for any real number λ ≥ 0 and for all t ∈ [0, T ].

4. Predictable Translation Invariance: fix t ∈ [0, T ], ρ(t, T,X+Z) = ρ(t, T,X)−Z for any Ft-measurable
random variable Z.

5. Relevance: fix u ∈ [0, T ], if Xs(ω) = −ǫIA(ω)I[u,T ](s) for some A ∈ Fu where Q(A) > 0, and all ǫ > 0,
then ρ(t, T,X) > 0 for all t ∈ [0, u).

6. Time Consistency: e−rsρ(s, T,X) = EQ [e−rtρ(t, T,X)|Fs] for 0 ≤ s ≤ t ≤ T .

Properties 1-4 are axioms of Coherent Measures of Risk; Relevance is related to the no-arbitrage principle;
Time Consistency makes it convenient to implement dynamic programming methods.

Theorem 5.2 (Coherence, Relevance, and Time Consistency) Let ρ(t, T, (Xi)ti≤t) be a Tradeable
Measure of Risk defined by

(27) ρ(t, T, (Xi)ti≤t) = e−r(T−t)EQ[g((Xi)1≤i≤N )|Ft]
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with

(28) g((Xi)1≤i≤N ) = −
N
∑

i=1

wiX(i), w1 ≥ w2 ≥ ... ≥ wN ≥ 0 and
N
∑

i=1

wi = 1.

Then ρ(t, T, (Xi)ti≤t) satisfies the axioms of Monotonicity, Subadditivity, Positive homogeneity, Predictable
Translation Invariance, Relevance, and Time Consistency.

Proof. The results are straightforward consequences of the definition of ρ(t, T, (Xi)ti≤t) as the conditional
expectation of weighted order statistics. The assumption about decreasing weights is a sufficient condition
for axioms of Relevance, and Subadditivity (the proof can be found in Heyde et al. [13]). We choose to show
only Relevance here (according to item 5 in Definition 5.1, X ≤ 0):

ρ(t, T, (Xi)ti≤t) = e−r(T−t)EQ[g((Xi)1≤i≤N )|Ft] = −e−r(T−t)
N
∑

i=1

wiE
Q[X(i)|Ft]

≥ −e−r(T−t)w1EQ[X(1)|Ft] = e−r(T−t)w1ǫQ(A) > 0.

⋄

Note that ρ(t, T, (Xi)ti≤t) satisfies all the properties mentioned in Definition 5.1.

6 Conclusion

The idea of this paper is to introduce tradeable financial contracts which can serve both as risk measures, as
well as a means to transfer financial risk. One can view such contracts as financial insurance. In particular,
we introduce option contracts to be traded on specific measures of risk to provide market participants (banks,
financial, and non-financial companies) a way to manage their risk through financial markets.

The call option on Weighted Average of Ordered Returns g((Xi)1≤i≤N ) can be considered a risk management
tool which reduces a holder’s exposure to the market risk associated with a position in asset X. In practice,
trading on behalf of an investor or a financial institution may be subject to limit L on the risk exposure:

ρ(t, T, (Xi)ti≤t) ≤ L.(29)

Rules of financial institutions contain measures which need to be taken whenever the risk exposure exceeds
the limit. Increasing capital reserves or closing out the position are examples of such measure. However, the
Tradable Measure of Risk allows for a reduction to exposure in a different way: by entering a long position
in a call option c on the Realized Risk with strike price K, such that:

ρX(t, T, (Xi)ti≤t) − c(t, T, (Xi)ti≤t) ≤ L.(30)

Finally, we would like to draw an analogy between our idea of trading contracts on Realized Risk and trading
emissions. According to the cap and trade rules for emissions, each company has a limit on the amount of a
pollutant, but can exceed it by buying “extra emissions” from another company which does not use its entire
limit. As a result, emissions are priced as any other goods and services. One can think of risk in a similar
way: risk is analogous to emissions, where high levels are considered bad, while low levels are considered
good. There are financial institutions (such as banks and funds) which comply with certain limits on risk. If
there was a market for risk, an institution could take a riskier position in an asset than it is allowed, buying
the financial insurance contract on the excess risk, and let the seller manage the risk in a more efficient way,
probably through diversification. The regulator entity would play a natural role in keeping the risk market
liquid, and in turn the price of risk observed directly from the market could provide useful information about
the health of the economy and serve as an input for monetary or regulatory policy purpose.
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A Realized Risk Measure Based on Weighted VaR

In this Section, we will assume that Realized Risk g((Xi)1≤i≤N ) is given by Weighted Average of Ordered
Returns with decreasing weights: w1 ≥ . . . ≥ wN . Let us relate formula (4) for g to Weighted VaR, noting
that the former is the discrete approximation of the latter. Weighted VaR (see Wang et al. [21], Föllmer
and Schied [11], Cherny [7]) is in fact a probabilistically distorted Conditional VaR (see Acerbi et al. [1],
Rockafellar and Uryasev [19]), and it is the only possible form of law-invariant, comonotonic, convex risk
measures on L∞ on an atomless probability space (see Kusuoka [16]). V aRλ(X) is by definition the negative
value of the λ-quantile of a random variable X defined in (22):

(31) V aRλ(X) = −qX(λ) = inf{m |P(X +m ≤ 0) < λ }.

Averaging VaR, we get Conditional VaR:

CV aRλ(X) =
1

λ

∫ λ

0

V aRγ(X)dγ, for λ ∈ (0, 1].

Suppose µ is a probability measure on (0, 1] and the probability space (Ω,F ,P) is atomless. Weighted VaR
is a distortion of Conditional VaR by probability measure µ:

WV aRµ(X) =

∫

(0,1]

CV aRγ(X)µ(dγ).

We can define CV aR0(X) = −essinf X to extend the definition of µ on the closed interval [0, 1]. However, the
essinf X will be captured if µ assigns positive probability on the point 0. In case X is unbounded below, this
point will overweight the rest of the distribution of X. Therefore, we avoid this situation here by excluding
point 0. Fubini’s theorem gives:

(32) WV aRµ(X) =

∫ 1

0

V aRγ(X)ψ(γ)dγ, where ψ(γ) =

∫

(γ,1]

1

α
µ(dα).

It is obvious that ψ(γ) is a decreasing, right-continuous function. If we define ν(λ) =
∫ λ

0
ψ(γ)dγ, then ν(λ)

is increasing and concave with ν(0) = 0 and ν(1) = 1. Thus ν(λ) can be viewed as a distribution function
with density function ψ(γ). The discrete approximation of the WV aRµ(X) from N statistical observations
becomes our payoff function (4) with decreasing weights:

g((Xi)1≤i≤N ) = −
N
∑

i=1

wiX(i), where w1 ≥ w2 ≥ ... ≥ wN ≥ 0 and
N
∑

i=1

wi = 1.

The convergence from the discrete to the continuous case is given in Theorem 4.1. For additional justification
from an axiomatic approach in finite probability space see Heyde et al. [13].
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[11] Föllmer, H., A. Schied (2004): Stochastic finance - an introduction in discrete time, 2nd Edition,
Walter de Gruyter, Studies in Mathematics, 27.

[12] Frittelli, M., G. Scandolo (2006): “Risk measures and capital requirements for processes,” Math-
ematical Finance, 16, 589–612.

[13] Heyde, C. C., S. G. Kou, X. H. Peng (2006): “What is a good risk measure: bridging the gaps
between data, coherent risk measure, and isurance risk measure,” preprint, Columbia University.

[14] Jarrow, R. (2002): “Put option premiums and coherent risk measures,” Mathematical Finance, 12,
135–142.
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