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Abstract 

This paper presents the results of an investigation of the causality issue of income-

emission relationship based on time series econometric techniques of unit root test, co-

integration and related error correction model for a panel data set. Here, the nature of 

causality between per capita CO2 emission (PCCO2) and per capita GDP (PCGDP) has 

been examined using a cross country panel data set covering 88 countries for the period 

1960 - 90. Using the panel unit root test procedure of Im et al. (1997) (IPS), we have 

found that the hypothesis of unit root (i.e., non-stationarity) of the time series of PCGDP 

and PCCO2 can not be rejected for individual country groups. As both the variables are 

found to follow I(1) process, we next have performed the panel data co-integration test 

and finally, we have estimated the ECM (for these country groups for which significant 

income-emission cointegration was obtained) to explore the nature of dynamics implicit 

in the given panel data set. Our findings suggest that there is more or less a bi-directional 

causal relationship between income (PCGDP) and CO2 emission (PCCO2) for Africa, 

Central America, America as a whole, Eastern Europe, Western Europe, Europe as a 

whole and the World as a whole. That means, the movement of the one variable directly 

affects the other variable through a feedback system. Thus, the policy makers should be 

cautious to make proper decision about the control of emission level. 
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1. Introduction 

Coondoo and Dinda (2002) examined the nature of causality between CO2 emission and 

income using a cross-country panel data set covering 88 countries and the time period 

1960-90. Briefly, in that study the presumption of the Environmental Kuznets Curve 

(EKC) hypothesis – viz., that an income to pollution (CO2 emission, more specifically) 

causal relationship holds universally – was examined. However, the results based on the 

Granger causality test (GCT) did not lend much empirical support to that presumption.  

Instead, for individual country groups well-defined and distinctive patterns of causality 

were observed. For example, for the developed country groups of North America and 

Western Europe (and for that matter, East Europe also), causality was found to run from 

emission to income. For Japan, the developing country groups of Central and South 

America and Oceania, on the other hand, causality in the opposite direction was 

observed. Finally, for country groups of both Asia and Africa causality turned out to be 

bi-directional
1
. Interpretation of these observed causality patterns was given in terms of 

inter-temporal changes in the rates of growth of income and emission. This interpretation 

made it clear how shocks in the rate of growth of income or emission might affect each 

other depending on the prevailing nature of causality.  

The GCT has been used in many empirical studies on EKC and related issues
2
. This 

technique alone, however, can detect presence and direction of causality for a pair of 

variables only in a limited sense (viz., in respect of their short run temporal movements). 

The notion of causality between income growth and pollution that underlies the EKC 

                                                           
1 A closer examination of the country-wise data for Asia and Africa revealed that while some countries had causality in 

one direction, others had causality in the opposite direction. Possibly this heterogeneity in the pattern of causality led to 

the observed bi-directional causality at the level of country-groups for these two continents. 
2 See, e.g., Yu and Choi (1985), Cheng (1996), Cheng and Lai (1997) and Yang (2000). 
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hypothesis, on the other hand, is essentially a longer run concept
3
. Thus, further probe 

into the issue of causality using comprehensive econometric tools for exploring presence 

of any long run equilibrium relationship among income and pollution, viz., the co-

integration analysis, may help verify conclusions about causality that we have reached so 

far
4
.  

In this paper, we report the results of an analysis of the relationship between per capita 

GDP (PCGDP) and per capita CO2 emission (PCCO2) obtained by using non-stationary 

panel data techniques to a cross-country panel data set on these variables. For 

convenience of exposition, henceforth we shall call these variables income and emission, 

respectively. To be precise, here we first used the panel data unit root test procedure of 

Im, Pesaran and Shin (1997) (henceforth referred to as IPS) to examine whether the 

observed country-specific time series data on income and emission possessed stochastic 

trend or not. Next, on finding evidences of presence of such trend in the data set, we 

performed the Engle-Granger bivariate cointegration analysis
5
 to examine whether the 

pair of variables was cointegrated (i.e., whether they obeyed any long run equilibrium 

relationship between themselves). Finally, we estimated the Error Correction Model 

(ECM) for those country groups for which income-emission cointegration was obtained 

to explore the nature of dynamics implicit in the panel data set for those country groups.   

 

                                                           
3 See, Coondoo and Dinda (2002) for a discussion on this issue. 
4 There are interesting applications of time series econometric tools like vector autoregression model (VAR) and 

cointegration analysis on environment-related data. See, e.g., Stern (1993, 2000) for studies on causal relationship 

between GDP and energy use for the USA for the period 1947-1990 based on GCT in a VAR set up, single equation 

static co-integration analysis and multivariate dynamic co-integration analysis. See also Cheng (1999) for an 

application of Johansen co-integration test to the data on energy consumption, economic growth, capital and labour for 

the Indian economy. 
5 Johansen’s method of cointegration analysis, which is more comprehensive, could not be used, because we could not 

access software for application of Johansen’s method to panel data set. 
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The paper is organized as follows: section 2 explains the motivation for using 

cointegration analysis on the income-emission data in the present exercise; section 3 

describes the data, presents and discusses the empirical results, section 4 interprets the 

results and section 5 draws some concluding observations. Finally, the methodology of 

unit root test, cointegration analysis and ECM estimation based on panel data that we 

have actually used in the present exercise is briefly explained in the Appendix. 

 

2. Motivation 

To help justify the use of cointegration analysis on the set of cross-country panel data on 

income and emission for examining the nature of causality that may exist between this 

pair of variables, let us consider the following simple theoretical construct. Consider a 

one-good economy for which environment E, understood as a stock variable, affects both 

utility and production level of the representative agent. Let C(t), E(t) and K(t) denote 

consumption, environment and capital stock at time t . Letθ(t) (0<θ(t)<1) portion of 

capital stock be used for commodity production at time t and the remaining (1-θ(t)) 

portion be used for upgrading the environment. Finally, let γ (>0) be the rate of pollution 

(i.e., emission or degradation of environment per unit of output produced). The infinite 

time horizon inter-temporal consumption choice problem for this economy may be 

specified as 

Maximize      (1) ∫
∞

−=
0

))(),(( dttEtCUeW tρ

subject to the accumulation constraints 

)())(),()(()( tCtEtKtftK −= θ&              (2) 
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and   

))(),()(())(),())(1(()( tEtKtftEtKtgtE θγθ −−=&          (3) 

where ρ>0  is the rate of time preference and f(.) and g(.) are the production function and 

the environment upgrading function of the economy. Clearly, the first constraint relates 

to physical capital accumulation while the second relates to net environmental change 

due to production and environmental upgrading. Treating C(t) and θ (t) as control 

variables and K(t) and E(t) as state variables, the optimality condition for the above 

problem turns out to be  

φβα =+
E

E

C

C &&
                                                                                                     (4) 

where 
C

CC

U

CU
=α , 

C

CE

U

EU
=β  and )( ρ

γ
φ +

+
−=

KK

KK

fg

gf
,  being the second 

order partial derivatives of . Note that the above condition suggests that optimal time 

path of C and E should generally be interdependent. This, thus, means a two-way causal 

relationship between income and emission, in general. If, however, 

CECC UU ,

(.)U

)(βα turns out to be 

identically zero, the optimal time path of C (E) will be autonomous and the nature of the 

optimal time path of E (C ) will depend upon what the optimal path of  the other variable 

is.  

Let us next search for a long run equilibrium relationship between income (C) and 

emission (E), underlying the above optimization problem. To do so, consider the steady 

state solution where  i.e., the situation where the environmental stock reaches 

a stable level. Now, implies  

0== μ&&E

0=E&

),(),)1(( EKfEKg θγθ =−                                                                                       (5) 
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i.e., the rate of environmental degrading due to production must equal the rate of 

environmental upgrading. Clearly, eq.(5) defines a relationship between K and E – say,   

0),(1 =EKh ,                                                                                                             (6) 

for given θ . Next, let at the steady state , a constant. This implies σ=K&

σθ =−CEKf ),( 0),,(2 =⇒ CEKh ,                                                                    (7) 

for given θ . Combining eq.s (6) and (7), we obtain what may be called a long run 

equilibrium relationship between C and E, say, 

0),(3 =ECh , or equivalently, )(ChE = ,                                                               (8) 

which may be recognized as the long run relationship between income (C) and 

environment (E).  

It should now be straightforward to use the above theoretical construct to rationalize 

cointegration analysis of a bivariate time series/panel data set on income and emission, as 

we have done in the present paper. Let { } denote time series of observed 

consumption and environment variable, where  and - 

being corresponding (unobserved) optimal values and 

**, tt EC

Cttt CC ε+=*

Ettt EE ε+=*

tt EC ,  

EtCt εε , being random disturbances. 

In case the observed data set is consistent with optimization, and should differ from 

the corresponding optimal values only by stationary random disturbances (i.e., 

*

tC
*

tE

Ctε and 

Etε should be stationary random variables). Also, and , being consistent with 

optimization, should be cointegrated as they must obey eq. (8), but for stationary 

deviations.  

*

tC
*

tE

Granger causality between C and E, which is essentially a short run notion, is often 

examined with the help of the ECM as a part of the cointegration analysis. When time 
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series and are non-stationary and are integrated of order one (i.e., the 

corresponding time series of first differences are stationary) and the variables are 

cointegrated, they admit the Granger representation

*

tC
*

tE

6
 and the ECM can be expressed as 

                                        (9)  ∑ ∑
= =

−−−− +−−Δ+Δ=Δ
m

i

m

i

CtttCitCiitCit ChEECC
1 1

*

1

*

1

*** ))(( νηγβ

or, equivalently as 

                                                    (10) ∑ ∑
= =

−−−− +−−Δ+Δ=Δ
m

i

m

i

EtttEitEiitEit ChEECE
1 1

*

1

*

1

*** ))(( νηγβ

where Ctν and Etν are pure white noise random disturbances and CEiCiEiCi ηγγββ ,,,,  and 

Eη are the parameters of the ECM. Note that , which is called the error 

correction term, is a measure of the extent by which the observed values in time t-1 

deviate from the long run equilibrium relationship. Since the variables are cointegrated, 

any such deviation at time t-1 should induce changes in the values of the variables in the 

next time point in an attempt to force the variables back to the long run equilibrium 

relationship. The coefficients 

))(( *

1

*

1 −− − tt ChE

Cη  and Eη  of the error correction term in the two equations 

(which measure the rate of this adjustment process) are therefore called the adjustment 

parameters and are expected to be positive.  The parameters Ciγ ’s in eq. (9) and Eiβ ’s in 

eq. (10) determine the nature of causality between C and E. More specifically, if 0≠Ciγ  

for at least one and ),1( mii = 0=Eiβ for all ),1( mii = , then E  is said to Granger cause 

C. On the other hand, if 0=Ciγ  for all ),1( mii = and 0≠Eiβ  for at least one , 

then C is said to Granger cause E. In case 

),1( mii =

0≠Ciγ and 0≠Eiβ  for at least one ,  ),1( mii =

                                                           
6 See Hamilton (1994) for details. 
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the causality between C and E is defined to be bi-directional. Finally, when 0=Ciγ  and 

0=Eiβ  for all , Granger causality between C and E is said to be absent),1( mii = 7
. The 

absence of Granger Causality for cointegrated variables requires the additional condition 

that the speed of adjustment coefficient be equal to zero. In this set up, statistical 

significance of the estimated adjustment parameters Cη  and Eη should help qualify 

further the nature of causality relationship between C and E. Thus, for example, if 

:0H 0=Eiβ for all , ),1( mii = Eη =0 is not rejected and at the same time :0H 0=Ciγ  for 

all , ),1( mii = Cη =0 is rejected, one should interpret such a result as corresponding to a 

situation in which the time path of  C is autonomously determined and that of E  being 

caused by C. Other possible results may be interpreted in a similar manner ( see Glasure 

and Lee (1997) and also Asafu-Adjaye (2000) for details).  

 

3. Data Description and Results 

 As mentioned at the outset, for the present exercise we have used cross-country panel 

data on PCGDP (measured in terms of PPP in 1985 US dollar) compiled by Summers 

and Heston (viz., the RGDPCH series of Penn World Table (Mark 5.6)). Corresponding 

panel data set on PCCO2 (measured in metric tons) was obtained from the web site of 

Carbon Dioxide Analysis Information Center (CDAIC), Oak Ridge National Laboratory 

of the U. S. A.  Combining these two data sets, we compiled a bivariate panel data set of 

annual observations on income and emission covering 88 countries and the time period 

from 1960 to 1990 (for a detailed data description, see Coondoo and Dinda (2002)). For  

                                                           
7 For the specific null hypotheses that are tested to detect the nature of causality in the ECM set up, see Section A.3 of 

the Appendix. 
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the purpose of the exercise, we grouped the countries into 12 country groups. Table 1 

shows the composition of these country groups. The empirical exercise has been done 

separately for each of these country groups based on the bivariate panel data sets for the 

individual country groups
8
.  

Table 2 presents the country-group-specific results of unit root test for logarithm of 

PCGDP and logarithm of PCCO2 (i.e., income and emission respectively, in our 

terminology) based on the IPS method. In each case the test was done twice – viz., once 

assuming presence of a deterministic time trend in the data generating process and again 

without making such an assumption. The results show that at 5 per cent level of 

significance the null hypothesis of unit root cannot be rejected in any of the cases, except 

for income for Eastern Europe when presence of a deterministic time trend in the data 

generating process is not assumed
9
. One may thus conclude that the country group-

specific time series of both the variables under consideration are by and large non-

stationary. A repetition of the same test on the first-differenced data set showed rejection 

of the null hypothesis of unit root in all the cases. It thus indicates that the country-

specific time series of both income and emission were integrated of order 1(i.e., they 

were I(1), symbolically).  

In the next step, we examined whether or not for individual country groups the null 

hypothesis that income and emission were not cointegrated might be rejected. As 

                                                           
8 It may be pointed out here that the states/regions covered by the erstwhile U S S R  have been left out from  this 

exercise as  past data for these states/regions are not available. It should be noted that countries falling into the same 

group are more or less in a similar state of economic development. 
9 In this case the test turned out to be marginally significant at the 5 per cent level in the without time trend case and 

was non-significant in the with time trend case. Such a result may be possible only if an increasing  (decreasing) 

deterministic time trend gets canceled with a decreasing (increasing) stochastic time trend. 
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explained in the Appendix, the bivariate Engle-Granger methodology of cointegration
10

 

and the IPS unit root test procedure was used for this examination. The results of this test 

are presented in Table 3. Following the Engle-Granger convention, for each country 

group we tested cointegration twice, viz., once treating income as the dependent variable 

and emission as the independent variable and again interchanging the dependent-

independent status of these two variables. The entries under the column heading income 

(emission) are the computed IPS t-statistic values for the cointegration unit root test 

when income (emission) was taken as the dependent variable. Here also in each case the 

cointegration test
11

 was done twice – viz., once assuming presence of a deterministic time 

trend in the residuals of the cointegrating regression equation and again without making 

such an assumption. In Table 3 country group-specific values of these four test statistics 

are presented.  

Table 3 may be summarized as follows: The results of cointegration appear to be 

sensitive to whether or not presence of deterministic time trend in the ’s (i.e., the 

regression residuals defined in relation (A3) of the Appendix) is assumed. When ’s 

were assumed not to contain any deterministic time trend, in most of the cases the result 

of cointegration was observed to depend upon whether income or emission was taken as 

the dependent variable. Exceptions were Central America, America as a whole and 

Eastern Europe. In all these cases the hypothesis of cointegration was not rejected 

irrespective of whether income or emission was used as the dependent variable. On the 

other hand, when presence of deterministic time trend in ’s was assumed, the 

ite

ite

ite

                                                           
10 In Engle and Granger's (1987) original definition, cointregation refers to a linear relationship between non-stationary 

variables. Holtz Eakin and selden (1995) show the evidence suggesting a linear relationship between per capita income 

and CO2 emission. We also observe the monotonic relationship between income and emission. 
11 That is, the unit root test of the residuals of the estimated long run relationship between yit and xit. 
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cointegration results obtained by treating income as the dependent variable mostly agreed 

with the corresponding results obtained by treating emission as the dependent variable
12

. 

Thus in this case irrespective of whether emission or income was taken as the dependent 

variable, the null hypothesis of cointegration was not rejected (equivalently, the null 

hypothesis of unit root of ’s was rejected) for Africa, Western Europe, Europe and the 

World. In other words, for these country groups time series of income and emission 

seemed to obey a long run equilibrium relationship. For North America, South America, 

Asia, Asia excluding Japan and Oceania, on the other hand, the null hypothesis of 

cointegration was rejected (i.e., the null hypothesis of unit root of ’s was not rejected). 

For the remaining country groups (viz., Central America, America and Eastern Europe) 

the null hypothesis of cointegration was not rejected when emission had been taken as the 

dependent variable, but it was rejected when income had been taken as the dependent 

variable. 

ite

ite

Next, using the country group-specific panel data, we estimated the alternative versions 

of the ECM  - viz., equation (A5) and (A6) of the Appendix, which we referred to as 

models I and II, respectively. This estimation was done only for those country groups for 

which the null hypothesis of cointegration was not rejected (viz., Africa, Central 

America, America as a whole, Eastern Europe, Western Europe, Europe as a whole and 

the World). In each case the ECM was estimated using three different econometric 

specifications of the panel data regression equation – viz., ordinary least squares (OLS), 

                                                           
12 It is well known that in case of the Engle-Granger methodology the result of the cointegration test may be sensitive 

to the choice of the dependent variable of the cointegration regression in case of not large enough samples. The power 

of the unit root test, on the other hand, may also depend on whether or not a deterministic trend is present in the data 

generating process and has been incorporated in the regression model used to test unit root. Sometimes it is suggested 

that when the regression model estimated for testing unit root contains a deterministic trend component and the test 

rejects the null hypothesis of presence of a unit root, that is a sufficient indication of absence of an unit root (see, 

Enders (1995) pp. 254-258). 
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fixed effects (FE) model and random effects (RE) model
13

. In our exercise the FE model 

turned out to be the appropriate choice for almost all the country groups. The country 

group-specific estimates of the regression coefficients of the two versions of the fixed 

effects ECM (viz., models I and II) are presented in Table 4.  

It may be noted that the estimated adjustment parameters (i.e., the coefficient of the EC 

term) in Table 4 are all statistically significant with the expected negative sign (in all 

cases except for Western Europe when emission is taken as the dependent variable). 

Since in all these cases income and emission are cointegrated, such a result is only to be 

expected. This is because of the following reason: as the pair of variables is cointegrated, 

over a long period of time they tend to move in unison. This means that if moves over 

time always trying to be on the long run equilibrium relationship.  

As is well known, the ECM tries to explain the observed short run variations of the 

dependable variable in terms of variations of the lagged value of the dependent variable 

and the other explanatory variable of the model. Following the explanation given in 

Section 2 and the Appendix, the nature of Granger causality between the variables under 

study underlying the given data set may be examined by testing null hypotheses 

specifying relevant parametric restrictions on the estimated ECM (See Table 6a).  

 

4. Interpretation of Results 

In Table 4 the country group/continent-specific FE estimates of the pair of ECM 

equations (i.e., equations (A5) and (A6) of Appendix) based on panel data have been  

                                                           
13 OLS is known to be generally inefficient for panel data regression estimation. Choice between FE and RE depends 

upon whether or not the null hypothesis for αα =iH :
0

,,...,2,1 Ni = is rejected, where denotes the intercept 

for the ith

iα
   unit. FE is chosen if H0 is not rejected. 
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reproduced. We shall now attempt to explain the results of Table 4 from the point of view 

of causality
14

 due to short run fluctuations along with long run equilibrium relationship. 

As is well known, the Error Correction Model (ECM) depicts the short-run dynamics of 

the variables of a system when their variables deviate from equilibrium relation(s) 

governing their long run movements.  

The dependent variables of equation (A5) and (A6) of Appendix are  and  measuring 

growth rate

tr
*

tr

15
 of income and emission, respectively. So, in general, we may write 

equation (A5) as  and equation (A6) 

as , where EC is error correction term, and 

are white noise error terms with zero expectations. As we have already, seen, the 

estimated coefficient of the EC term in Table 4 are all statistically significant with an 

expected negative sign (in all cases except for Western Europe, in which significant (viz., 

at 10%) level is low, when emission is taken as the dependent variable). Now, for a 

specific country group these equations take specific form depending on the statistical 

significance of the individual parameters of the above pair of equations. We discuss these 

cases below and also examine their implications for short run movement from the point 

of view of causality.  

tty

T

j

jtj

T

i

itit uECrrr 11

1

*

1

1

1

1211

+++= −
=

−
=

− ∑∑ ηβα

ttx

T

j

jtj

T

i

itit uECrrr 21

1

*

2

1

2

*
2221

+++= −
=

−
=

− ∑∑ ηβα tu1

tu2

Consider first the case of Africa for which not all the estimated parameters are 

significant. Thus, we have ttyttt uECrrr 112211 +−+= −−− ηαα , 0,, 21 >yηαα  and 

                                                           
14 It should be noted that in our earlier study, (See Coondoo and Dinda 2002) in which, we find the causal relationship 

between income and emission using Granger Causality Technique which remain same in this study in short run but 

differ in long run. 
15  and . tt rPCGDPY =Δ=Δ )log( *)2log( tt rPCCOX =Δ=Δ
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ttxttt uECrrr 21

*

33

*

11

* +−−−= −−− ηββ ; 0,, 31 >xηββ .    Thus,  and  follow auto-

regressive processes and are autonomous in short run, although a statistically significant 

long run relationship exists between them.  

tr
*

tr

For Central America and America as a whole, we have ttytt uECrr 1111 +−= −− ηα  and 

; ttxtttt uECrrrr 21

*

22

*

1111

* +−−−= −−−− ηββα ,1α 0,, 21 >xηββ . Here, , following a first 

order auto-regressive process, is clearly autonomous. On the other hand,  significantly 

depends upon both  and its own past values. Thus, we have a case of income to 

emission causality in the short run.  

tr

*

tr

1−tr

Next, let us consider the cases of Western Europe. We have 

 ttyttttt uECrrrrr 11

*

22

*

112211 +−−+−= −−−−− ηββαα ,, 21 αα 0,, 31 >yηββ  and 

 (coefficient of EC term is significant at 10% level). These results 

suggest that the rate of growth of emission has reached a stage of stationarity maintaining 

a long run equilibrium relationship with the rate of growth of income, but in short run  

significantly depends on both its own past value and . This implies that any shock in 

 will cause a corresponding shock in . Hence, we have a very specific kind of 

emission to income reverse causality for Western Europe.  

ttxt uECr 21

* +−= −η

tr

*

1−tr

*

1−tr tr

Finally, we have  ttytttt uECrrrr 11

*

223211 +−−+= −−−− ηβαα 0,,, 221 >yηβαα  for Eastern 

Europe and ; ttyttttt uECrrrrr 11

*

22

*

112211 +−−+−= −−−−− ηββαα 0,,,, 2121 >yηββαα  for 

Europe as a whole; and  for both. Thus, here the growth rate of 

emission is stationary with a long run equilibrium relationship. Growth rate of income, 

being dependent on the growth rate of

ttxt uECr 21

* +−= −η

 emission, is also stationary but any shock in 
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emission growth rate  would cause a fluctuation in the income growth rate. Hence, in 

this case also there is reverse causality from emission to income. However, in these cases 

the emission to income causality is supplemented by an additional autoregressive effect 

of income growth. This means that a sudden drop in the emission rate will cause not only 

a corresponding immediate negative shock in the income growth rate, the effect will 

linger due to the significant autoregressive element that governs the income growth rate.  

*

tr

Now, let us see the long run income-emission relationship (as given by the estimated 

cointegrating vector, viz., (1, -b0, -b1)) and also the speed of adjustment (η ) for different 

country groups. As is well known, the cointegrating vectors of different groups give long 

run relationship between income and emission for individual country groups. The 

cointegrating vectors
16

 for Africa, Central America, America as a whole, Eastern Europe, 

Western Europe, Europe as a whole and the World as a whole are presented in Table5. 

The parameters η y and η x in Table 6b are interpreted as the speed of adjustment 

coefficients which measure the speed at which the values of yt and xt come back to long 

run equilibrium levels, once they deviate from the long run equilibrium relationship. 

These parameters are of particular interest in that they have important implications for the 

dynamics of the system. As indicated above, the adjustment coefficients (i.e., the 

coefficient associated with the EC term) show that if any deviation from the long run 

equilibrium occurs in one period, how much error is corrected by that variable in the next 

period. The negative sign of the estimated speed of adjustment coefficients are in accord  

                                                           
16 A pair of co-integrating vectors has been reported in Table 5 for individual country group by changing 

the status of dependent and independent variables. Standard normalization process slightly differs in these 

cases because of the presence of country effects or some other fluctuations, although both the variable are 

cointegrated for individual country groups. 
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with convergence toward long run equilibrium. The larger the value of η , stronger is the 

response of the variable to the previous period’s deviation from long run equilibrium, if 

any. Here we have found that η  is large for Africa (26.3%) and Central America (18.6%) 

and is small for Western Europe (2.8%). This implies that in the case of Western Europe 

any deviation from long run equilibrium of the value of yt and xt requires much longer 

time to restore equilibrium. Since all the η ’s are statistically significant for all country 

groups in both the models, any change in one variable is expected to affect the other 

variable through a feedback system. This implies more or less a bi-directional causal 

relationship between income and emission for all the country groups. It should be noted 

that if we ignore the EC term, the results of Granger causality in our earlier study (See, 

Coondoo and Dinda 2002) remain same in this case also. Considering the EC term, which 

is statistically significant and interpreted as a source of causality in the long run sense, the 

ECM results differ from that of our earlier results.  In ECM, we find both long run 

relations with short run fluctuations. So, the results of ECM are qualitatively different 

from that of Granger causality.  

For a comprehensive study, we should address the issue of cross sectional dependence. 

For example CO2 must be easily transmitted from one country to the other through trade. 

We assume that the openness of an economy can provide the evidence of cross sectional 

dependence. Degree of openness of an economy may also influence the nature of income-

emission causality. To be specific, a highly open economy, because of its easy access to 

fuel through international trade, may not face the fuel supply constraint and hence 

continue to have the income to emission causality problem.  
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The openness measure is defined as a ratio of (export+import) to GDP at current 

international prices. The measure of openness is given in the Penn World Table for 

individual country for each year. Using this data we examine the income-emission 

relation for all the country -groups. Our empirical findings suggest that openness
17

 reduce 

CO2 emission in Western Europe and Europe as a whole, where as it increases emission 

in Africa, Central America (See, Hettige et al. 1992). So, there is a clear evidence that 

developed countries import the pollution -intensive products which are exported by 

developing or under developed countries (See also, Agras and Chapman 1999).  

 

5. Conclusion  

The basic objective of this study was to examine the nature of causality between income 

and CO2 emission using a cross-country panel data set. This paper presents the results of 

investigation of the causality issue based on time series econometric techniques of unit 

root test, co-integration and related error correction model estimation. Using country-

group specific panel data on income and emission, we have found that for seven country 

groups (viz., Africa, Central America, America as a whole, Eastern Europe, Western 

Europe, Europe as a whole and World as a whole) income and emission are cointegrated. 

Thus, for these country groups over a long period of time income and emission tend to 

move in unison. Examination of causality based on estimated Engle-Granger error 

correction model gives pattern of causality which are some time quite different from 

those given by the standard Granger Causality Test. Here we find that bi-directional 

causality between income and emissions exist for more or less all the country groups. 

                                                           
17 Hettige et al. (1992) find that toxic intensity decreases with openness of the economy, but the growth rate of the toxic 

intensity of manufacturing increased in the poorest countries. 
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Thus, any change in one variable is expected to affect the other variable through a 

feedback system.  

Let us enumerate the limitations of the present study. A comprehensive analysis of 

income-emission relationship would necessarily call for an examination of the effects of 

such determinants as the type of fuel used, the sectoral composition of income/GDP, 

available technology and the price of fuel, among other things. We hope to undertake a 

follow up study looking into this aspect of the problem. Further, any meaningful policy 

discussion for control of global emission should require a careful examination of the 

cross-country distributional patterns of global income and corresponding aggregate 

emission and their changes over time, keeping in mind the nature of causality that is 

operative in individual cases. Such a study should be next on our research agenda. 
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Appendix 

Econometric Methods used 

As already mentioned, in this exercise we have examined whether income-emission data 

for different country groups were cointegrated using the Engle-Granger bivariate 

cointegration analysis framework and estimated ECM for country groups for which 

cointegration was observed to be significant, using econometric techniques appropriate 

for a panel data set
18

. The econometric exercise involved three steps. In the first step, the 

unit roots test was performed to ascertain whether or not the time series of the variables 

(i.e., natural logarithm of PCGDP and PCCO2, henceforth denoted by  and , 

respectively) contained stochastic trend. In the second step, cointegration of income and 

emission was examined. Finally, in the third step, the ECM was estimated for those 

country groups for which cointegration of income and emission had been found.  

ty tx

In the first step the IPS panel data unit root test procedure was used to test presence of 

unit root in the time series data sets for individual country groups. The same procedure 

was also used in the second step while performing the Engle-Granger bivariate 

cointegration analysis. Finally, the ECM in the third step was estimated by using panel 

data regression technique. In what follows, we describe briefly the econometric 

procedures that we have used in the three steps of the present exercise.  

A.1 IPS Unit Root Test 

For a balanced panel data set ( )TtNiyit ,...,2,1;,...,2,1, == , where i and t denote cross-

sectional unit and time, respectively; Im et al. considered the following linear regression 

set up for developing their panel unit root test 

                                                           
18 As is well known, the ECM is a comprehensive linear regression equation specification which  provides a 

description of the possible nature of interdependence of the short run movements of a pair of co-integrated 

variable keeping in view the  fact that they bear a long run equilibrium relationship. 
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Here γitz′  denotes the deterministic component of  which may be zero, a common 

constant intercept, a time-invariant fixed effect 

ity

iμ  or a fixed effect that varies both across 

i and over t and itε ’s are white noise equation disturbance terms. Note that in (A1) the 

autoregressive parameter iρ  is allowed to vary across units19. The null hypothesis for the 

IPS unit root test is H0: 1=iρ  for all i and the corresponding alternative hypothesis is H1: 

<i 1ρ  for at least one i. As iρ  is allowed to vary across i, the IPS test procedure is based 

on the average of the unit-specific unit root test statistics. Specifically, this test uses the 

average of the unit-specific Augmented Dickey Fuller (ADF) test statistics, which has 

been called the t-bar statistic. This is as given below:  
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i
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t
N

t
1

1
ρ ,  

i
tρ  being the t-statistic for testing  H0 : 1=iρ  in (1). It is shown that, given N, as ,∞→T  

i
tρ weak  cly onverges to =iTt  

∫

∫

0

2

1

iz
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W

dWW

, where 

                                                          

1

0

iz  denotes a Brownian motionW
20

. 

Assuming iTt ’s to be independent and identically distributed with finite mean and 

variance, the IPS test statistic is derived as  

 
 12 Quah (1994) considered equation (A1) without the second and third terms as the model for his panel unit root  test.  

Levin and Lin (1993) considered a more general model to allow for fixed effects, individual deterministic trends and 

heterogeneous serially correlated errors. In fact, they considered equation (A1)  without the second term as their model 

specification. They, however, assumed the units to be iid    (0, )   and also
2

εσ ρρ =i for all i. Here H0: 1=ρ  

against H1: 1<ρ . Levin and Lin’s test is thus   restrictive as it  requires iρ  to be the same for all i.  

 
20   Brownian motion is also called Wiener Process (see, Hamilton (1994), ch-17,   p-478). 
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So far as the actual test procedure is concerned, IPS provide table of estimates of 

)1:;( 0 iHtE iiT ∀=ρ  and  corresponding )1:;var( 0 iHt iiT ∀=ρ for different values of T 

and p computed by stochastic simulation for two versions of the ADF(p) regression–viz., 

 for the without time trend case and 

 for the with time trend case. Given these and the 

computed value of 

∑
=

−− +Δ++=Δ
p

j

jtjtt erroryyy
1

1 γβα
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j
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t for the given panel data,  is calculated using (A2). The table of 

corresponding critical values for the given values of N and T and various levels of 

significance are provided in Im et al (1997).  

IPSt

A.2 Co-integration Test for Panel data 

Given a set of panel data on (K+1) variables ,,1,, Kjxy j =  the single equation IPS 

cointegration test proceeds as follows: First, the linear regression equation 

 is estimated separately for i =1, 2,…, N  individual units and the 

regression residuals          

∑
=

+=
K

j

jitjiit errorxy
1

β

                          ,∑
=

−=
K

j

jitjiitit xye
1

β̂ TtNi ,...,2,1;,...,2,1 ==                                        (A3) 

are obtained, where ’s denote the estimated parameters of the regression equation for 

the ith unit. These estimated linear regression equations may be taken as estimate of the 

jiβ̂
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long run equilibrium relationship between y and the x’s, in case the variables turn out to 

be cointegrated
21

. Next, for each i the following ADF(p) equation is estimated:  

itpit

p

j

jitijitit vzeee +′+Δ+= ∑
=

−− γθλ
1

1                                                 (A4) 

where γitz′  is same as defined for equation (1) above and itpν  is the equation disturbance 

term assumed to be a white noise. Here also one may consider two alternative 

specifications of equation (A4) - viz., one without a time trend and another with a time 

trend. The IPS methodology of cointegration
22

 test for the set of variables under 

consideration thus involves the test of unit root for the regression residuals { }- i.e., the 

null hypothesis H

ite

0: 1=λ (i.e., no cointegration) is tested against the alternative 

hypothesis H1: 1<λ  (i.e., cointegration). In our empirical exercise, we have performed 

the cointegration test twice, viz., once treating logarithm of PCGDP (i.e., y) as the 

dependent variable and logarithm of PCCO2 (i.e., x) as the independent variable and 

again reversing the status of these variables.  

A.3 Estimation of ECM from Panel data 

Once the pair of variables ( yx, ) has been found to be cointegrated, the next step in the 

Engle – Granger methodology is to model the short run variations of the variables. This is 

done by estimating the ECM. For a bivariate case as the present one, the ECM, which is 

implied by the well known Granger Representation Theorem (see Hamilton (1994), 

Ch.19, pp. 581-582), is expressed as either of the following linear regression equations:  

                                                           
21   It may be noted that when the variables are cointegrated, the true relationship underlying this linear regression 

equation is a long run equilibrium relationship between y and the x’s. Kao, Chiang and Chen (1999) pointed out that for 

a set of cointegrated variables the use of OLS to estimate this long run equilibrium relationship from the given set of 

panel data will  give  biased  results in a finite sample and recommended the use of Dynamic OLS (DOLS) for 

minimisation of  such bias. See Kao and Chiang (1998) for the definition of DOLS. 

 
22 Panel data cointegration test is also performed by Kao (1999),  McCoskey and Kao (1998). 
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Here  denotes the difference operator; Δ 2,1,, =mlTlm  denotes the number of lagged 

values of and that affect the current value of these differenced variables; iyΔ ixΔ ,μ α , β  

and η  denote regression parameters; 2,1, =lulit  are the equation disturbance terms (that 

should be white noises when the ECM has been adequately specified); and finally, 

and ititit xyECY 10
ˆˆ φφ −−= ititit yxECX 10 ˆˆ ϕϕ −−=  are the error correction terms 

(hereafter refereed to as EC terms) measuring deviation of from the 

corresponding long run equilibrium value, given .

)( itit xy

)( itit yx
23

  The parameters yxη and 

xyη in equations (A5) and (A6) are called the adjustment parameters. They are expected 

to have negative values
24

. In this set up the nature of Granger causality is determined as 

follows:  

(1) if 01 =jβ for all j and 0=yxη , x may be said not to Granger cause y;  

(2) if 02 =jα  for all j and 0=xyη , y may be said not to Granger cause x;  

(3) if (1) holds but (2) does not, Granger causality may be said to be unidirectional from y to x;  

                                                           
23 Note that here ititit xy 110 εφφ ++= and ititit yx 210 εϕϕ ++= are alternative representations of the 

(population) long run equilibrium relationship between y and x, where ε ’s are the stationary error terms. As y and x 

are cointegrated, by the definition of cointegration for some constants, ititit xy εωωω =++ 210 , where itε is a 

stationary error term and ),,( 210 ωωωω = is the non- normalized cointegrating vector. Thus, by normalizing 

ω one may write the long run equilibrium relationship for (y,x) in  either form as shown above. 

 
24 This is for the following reason. If, for example, for some i,t, it means that the realized value of   y01 >−itECY i 

exceeded the corresponding long run equilibrium level at t-1, given xit .   Now since yi and xi are cointegrated, once a 

positive deviation from the long run equilibrium level takes place, the actual value must try to move in the opposite 

direction in subsequent time points in an attempt to restore the long run equilibrium and hence the negative sign of  

and . yxη xyη
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(4) Conversely, if (1) does not hold but (2) does, Granger causality may be said to be 

unidirectional  

      from x to y; 

(5) if both (1) and (2) do not hold, Granger causality between x and y may be said to be bi- 

     directional; and finally 

(6) if both (1) and (2) hold, Granger causality between x and y may be said to be absent (see  

      Enders (1995), Glasure and Lee (1997) and Asafu-Adjaye (2000) for details).  

 

In the present exercise, equations (A5) and (A6) (henceforth referred to as model I and 

model II, respectively) were estimated separately for each country group, using the panel 

data set for the country group. Country group-specific inference about the nature of 

Granger causality between x and y were then drawn by performing appropriate test of 

hypothesis for the relevant parameters of model I and II, as laid down above. For 

example, to test the null hypothesis that x does not Granger cause y, one should perform 

an F-test for the null hypothesis ,,...,2,1,0: 1210 TjH j ==β 0=yxη , using model I.  

Similarly, to test the null hypothesis that y does not Granger cause x, an F-test for the 

null hypothesis 0,,...,2,1,0: 2220 === xyj TjH ηα  using model II will be required. Given 

the results of these two basic F-tests, the remaining null hypotheses (3)- (6) laid down 

above can be tested. 
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Table 1. Continent-wise list of country groups and countries covered 

Continent Country Group Countries Covered 

Africa Africa Algeria, Cameroon, Cape Verde Island, Central African 

Republic, Comoros, Congo, Egypt, Gabon, Gambia, Ghana, 

Guinea, Guinea Bissau, Kenya, Madagascar, Mali, 

Mauritania, Mauritius, Morocco, Mozambique, Nigeria, 

Senegal, South Africa, Togo, Tunisia, Uganda, Zimbabwe. 

 North America Canada and USA  

America Central America Costa Rica, Dominican Republic, El Salvador, Guatemala, 

Honduras, Jamaica, Mexico, Nicaragua, Panama, Trinidad & 

Tobago.  

 South America Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, 

Paraguay, Peru, Uruguay, Venezuela. 

Asia Japan Japan. 

 Asia (excluding Japan) China, Hong Kong, India, Indonesia, Iran, Israel, Jordan, 

Korea Republic, Philippines, Singapore, Sri Lank, Syria, 

Thailand.  

 East Europe Austria, Czechoslovakia, Finland, Greece, Turkey, 

Yugoslavia. 

Europe Western Europe Belgium, Cyprus, Denmark, France, West Germany, Iceland, 

Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, 

Spain, Sweden, Switzerland, U.K. 

Oceania Oceania Australia, Fiji, New Zealand, Papua Guinea. 
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Table 2. Results of Panel Unit Root Test : IPS t statistic by Country Group 

Country  Group With Time Trend Without Time Trend 

 t-bar For Critical Value t-bar For Critical Value 

 income emission (5% level) income emission (5% level) 

Africa 

North America 

Central America 

South America 

America 

Japan 

Asia(excl. Japan) 

Asia  

East Europe 

West Europe 

Europe 

Oceania 

World 

-0.289 

-0.330 

2.109 

1.912 

2.611 

NA 

-0.734 

-0.842 

3.238 

-0.701 

1.093 

-0.250 

1.306 

-0.376

0.486

1.025

0.980

1.498

NA

-0.250

-0.307

1.308

-0.605

0.167

-0.488

0.402

-2.45

-2.94

-2.60

-2.60

-2.47

-2.56

-2.54

-2.74

-2.52

-2.47

-2.84

-2.32

2.469

0.296

-0.038

1.210

0.880

NA

6.068

5.757

-0.592

3.283

2.491

0.949

5.526

0.664

-1.384

-0.302

0.949

0.019

NA

2.351

2.075

-2.123

0.022

-1.090

0.293

0.715

-1.82 

-2.30 

-1.99 

-1.99 

-1.84 

 

-1.94 

-1.92 

-2.12 

-1.89 

-1.84 

-2.21 

-1.68 

Note: 1. Im et al (1997) give Tables of critical values of their Panel unit root test statistic for selected  

              combinations of  N and T values. The critical values shown in the present Table have been derived    

              from the original Tables by interpolation whereever required. 

         2.  NA denotes not available. For Japan, a single country, the panel unit root test was not applicable.   

      Hence no result is shown against Japan. 

 

 

Table 3. Results of Cointegration Test : IPS t statistic by Country Group 

Country 

Group  

  without  time trend critical 

 value  

         with time trend critical   

  value 

  income    emission      income   emission   

Africa -0.880 -2.571*** -1.82 -2.643*** -4.180*** -2.45 

North 

America 

-0.608   -2.182 -2.30 -1.665 -0.567 -2.94 

Central 

America 

-2.015* -2.263*** -1.99 0.905 -2.524* -2.60 

South 

America 

-0.846  -1.091 -1.99 -1.384 -2.123 -2.60 

America -2.112** -2.919*** -1.84 -0.825 -3.304*** -2.47 

Japan NA NA  NA NA  

Asia(excl. Jap) 3.428  -0.054 -1.94 -1.862 -1.543 -2.56 

Asia 3.052   -0.398 -1.92 -1.879 -1.513 -2.54 

East Europe -2.089* -3.523*** -2.12 -2.237 -4.649*** -2.74 

West Europe 0.572 -2.484*** -1.89 -3.088*** -3.935*** -2.52 

Europe -0.603 -3.958*** -1.84 -3.802*** -5.784*** -2.47 

Oceania -0.363   -0.978 -2.21 -0.922 -1.520 -2.84 

World -0.696 -5.203*** -1.68 -4.697*** -7.744*** -2.32 

  Note: “*”, “**” and “***” denote the significance level at 10%, 5% and 1%, respectively. 

   Critical values shown correspond to the 5% level of significance. NA denotes  

                                  “Not Applicable”. 
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Table 4. Estimated parameters of the ECM for country groups for which cointegration 

hypothesis was not rejected 

 
Country group     Estimated coefficient of the explanatory variable (Δ log) 

 Model income_1 income _2 income_3 emission_1 emission_2 emission_3    EC         

   term 

Africa     I (3) 0.10 0.10 -0.07 0.00 -0.00 -0.02 -0.09

  (2.59) (2.56) (-1.79) (0.02) (-0.25) (-1.92) (-4.77)

    II (3) 0.05 0.21 -0.18 -0.20 -0.08 -0.17 -0.26

  (0.31) (1.31) (-1.12) (-4.59) (-1.72) (-4.12) (-7.95)

Central America I(2) 0.192 0.019 - 0.004 0.016 - -0.0906

  (2.993) (0.3)  (0.18) (0.8)  (-2.62)

 II(2) 0.782 0.152 - -0.4 -0.281 - -0.186

  (4.11) (0.81)  (-5.97) (-4.7)  (-3.42)

America I(2) 0.229 -0.02 - 0.012 0.011 - -0.059

  (5.31) (-0.45)  (0.7) (0.68)  (-3.16)

 II(2) 0.666 0.191 - -0.36 -0.238 - -0.091

  (6.09) (1.71)  (-8.14) (-5.76)  (-3.28)

Eastern Europe I(3) 0.172 -0.056 0.205 0.052 -0.138 -0.018 -0.083

  (2.18) (-0.72) (2.7) (1.09) (-2.98) (-0.37) (-4.58)

 II(2) 0.029 0.145 - 0.014 -0.018 - -0.132

  (0.22) (1.11)  (0.19) (-0.24)  (-4.85)

Western Europe     I (2)  0.24 -0.18 - 0.04 -0.04 - -0.03

  (4.85) (-3.62)  (1.97) (-2.12)  (-3.33)

    II (2) 0.16 0.08 - 0.05 -0.07 - -0.03

  (1.12) (0.59)  (0.98) (-1.23)  (-1.74)

Europe     I (3) 0.23 -0.13 0.08 0.04 -0.06 -0.02 -0.04

  (5.26) (-2.92) (1.81) (2.32) (-3.30) (-0.76) (-4.89)

    II (2) 0.12 0.11 - 0.07 -0.04 - -0.07

  (1.10) (1.06)  (1.52) (-0.97)  (-4.00)

World     I (3) 0.12 0.03 -0.03 0.02 -0.00 -0.01 -0.04

  (5.45) (1.55) (-1.47) (1.9) (-0.12) (-1.66) (-5.33)

    II (3) 0.26 0.27 -0.02 -0.22 -0.09 -0.12 -0.17

  (3.54) (3.76) (-0.32) (-9.40) (-4.06) (-5.44) (-11.12)

Note: 1. Figure in brackets in the “model” column indicates the optimum number of lagged variables used 

as regressors in the ECM as determined for the given data set. 

          2. For each country group and model the first row of 3rd to 9th column gives the estimated 

coefficients. The corresponding figures in brackets in the next row of these columns are the corresponding 

t-ratios.   
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Table 5: Country group-specific Estimated Co-integrating relationship. 

                    (   and itit xbby 10 += itit ybbx
′+′= 10 ) 

Country Group Dependent variable Y Dependent variable X

 -b0 -b1 -b0
' -b1

'

Africa 

 

Central America 

 

America 

 

Eastern Europe 

 

Western Europe 

 

Europe 

 

World 

-7.88 

(.0262) 

-8.39 

(.0231) 

-8.53 

(.0112) 

-8.33 

(.0393) 

-8.71 

(.0206) 

-8.58 

(.0205) 

-8.46 

(.00898) 

-0.36 

(.00927) 

-0.46 

(.0149) 

-0.54 

(.00779) 

-0.36 

(.046) 

-0.45 

(.0214) 

-0.48 

(.022) 

-0.55 

(.00476) 

15.076 

(.3214) 

14.13 

(.4209) 

14.0 

(.192) 

5.59 

(.7477) 

8.78 

(.4539) 

7.02 

(.3483) 

12.96 

(.1049) 

-1.80 

(.0459) 

-1.65 

(.0535) 

-1.63 

(.0237) 

-0.697 

(.0884) 

-1.05 

(.0502) 

-0.86 

(.0392) 

-1.51 

(.0131) 

Note: Figures in parentheses are standard errors. All the estimated coefficients are statistically significant. 

 

Table 6a: Computed F values for test of parametric restriction on  

the ECM relating to the GCT 

  

Country Group Model (lag)     OLS 

regression 

     FE 

regression 

     RE 

regression 

Africa 

 

Central America 

 

America 

 

Eastern Europe 

 

Western Europe 

 

Europe 

 

World 

I(3) 

II(3) 

I(2) 

II(2) 

I(2) 

II(2) 

I(3) 

II(2) 

I(2) 

II(2) 

I(3) 

II(2) 

I (3) 

II(3) 

      2.11 

4.70**

      1.30 

16.67**

     1.40 

29.15**

       3.33* 

      2.52 

5.01**

     1.73 

6.15**

     2.99 

4.50**

24.96**

    1.35 

    1.07 

    0.35 

9.07**

    0.36 

21.50**

      3.80* 

    0.68 

4.62**

    0.96 

6.20**

   1.37 

2.82**

9.53**

    1.45 

    1.37 

    0.86 

13.34** 

    0.71 

24.82** 

     3.32* 

   1.75 

8.22** 

4.76** 

6.05** 

    1.83 

3.47** 

15.46** 

                          Notes:  1.  Models I and II relate to the ECM equations (A5) and (A6) of the Appendix. 

                                          2.  Figures in parentheses give the order of the ECM regression equation in 

                                          terms of the maximum order of lag of variables appearing as regressors. 

                               3.  For model I and II the computed F value relates to the null  hypothesis  

                                              for all j and and  for all j and , respectively. 01 =jβ 0=yxη 02 =jα 0=xyη

4. F- values marked by * and **  are significant at 5 and 1 per cent level,  

       respectively. 

 

 

 31



 

 

          Table 6b: Estimated values of error correction term for different models in panel data. 

 

Country Group Model Pooled(OLS) Fixed Effect Random Effect 

Africa 

 

 

 

Central America 

 

 

 

South America 

 

 

 

America 

 

 

 

East Europe 

 

 

 

West Europe 

 

 

 

Europe 

 

 

 

World 

I 

 

II 

 

I 

 

II 

 

I 

 

II 

 

I 

 

II 

 

I 

 

II 

 

I 

 

II 

 

I 

 

II 

 

I 

 

II 

-0.019 

(-2.27)** 

-0.054 

(-3.24)*** 

-0.012 

(-0.92) 

-0.022 

(-1.08) 

-0.031 

(-1.88) 

-0.025 

(-1.43) 

-0.015 

(-1.63) 

-0.02 

(-1.51) 

-0.008 

(-1.44) 

-0.026 

(-3.48)*** 

-0.002 

(-0.93) 

-0.027 

(-2.98)*** 

-0.011 

(-3.05)*** 

-0.027 

(-4.4)*** 

-0.012 

(-3.71)*** 

-0.028 

(-4.26)*** 

-0.087 

(-4.77)*** 

-0.263 

(-7.95)*** 

-0.091 

(-2.62)*** 

-0.186 

(-3.42)*** 

-0.076 

(-2.68)*** 

-0.073 

(-2.36)** 

-0.059 

(-3.16)*** 

-0.091 

(-3.28)*** 

-0.083 

(-4.58)*** 

-0.132 

(-4.85)*** 

-0.028 

(-3.33)*** 

-0.034 

(-1.74)* 

-0.042 

(-4.89)*** 

-0.069 

(-3.99)*** 

-0.038 

(-5.33)*** 

-0.166 

(-11.12)*** 

-0.027 

(-2.7)*** 

-0.125 

(-5.36)*** 

-0.015 

(-1.06) 

-0.033 

(-1.37) 

-0.033 

(-1.93) 

-0.032 

(-1.63) 

-0.016 

(-1.7) 

-0.025 

(-1.71) 

-0.023 

(-2.45)** 

-0.043 

(-3.43)*** 

-0.022 

(-3.63)*** 

-0.029 

(-2.57)** 

-0.012 

(-3.13)*** 

-0.03 

(-4.16)*** 

-0.015 

(-3.94)*** 

-0.056 

(-6.38)*** 

Note: Figures in parentheses are t-ratios.  Estimated coefficients significant at 1%, 5% and 10%  

          level are  marked with `***', ** and `*'  , respectively . NA denotes Not Applicable. 
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