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MODELING AND FORECASTING ELECTRICITY SPOT PRICES:

A FUNCTIONAL DATA PERSPECTIVE

BY DOMINIK LIEBL

Universities of Cologne and Bonn

Classical time series models have serious difficulties in modeling and
forecasting the enormous fluctuations of electricity spot prices. Markov
regime switch models belong to the most often used models in the electric-
ity literature. These models try to capture the fluctuations of electricity spot
prices by using different regimes, each with its own mean and covariance
structure. Usually one regime is dedicated to moderate prices and another is
dedicated to high prices. However, these models show poor performance and
there is no theoretical justification for this kind of classification. The merit or-
der model, the most important micro-economic pricing model for electricity
spot prices, however, suggests a continuum of mean levels with a functional
dependence on electricity demand.

We propose a new statistical perspective on modeling and forecasting
electricity spot prices that accounts for the merit order model. In a first step,
the functional relation between electricity spot prices and electricity demand
is modeled by daily price-demand functions. In a second step, we parameter-
ize the series of daily price-demand functions using a functional factor model.
The power of this new perspective is demonstrated by a forecast study that
compares our functional factor model with two established classical time se-
ries models as well as two alternative functional data models.

1. Introduction. Time series of hourly electricity spot prices have peculiar
properties. They differ substantially from time series of equities and other com-
modities because electricity still cannot be stored efficiently and, therefore, elec-
tricity demand has an untempered effect on the electricity spot price [Knittel and
Roberts (2005)].

The development of models for electricity spot prices was triggered by the lib-
eralization of electricity markets in the early 1990s. Hourly electricity spot prices
are usually considered to be multivariate (24-dimensional) time series since for
each day t the 24 intra-day spot prices are settled simultaneously the day before
[Huisman, Huurman and Mahieu (2007)].

However, classical time series models adopted for electricity spot prices such as
autoregressive, jump diffusion or Markov regime switch models reduce the multi-
variate time series to univariate time series either by taking daily averages of the
24 hourly spot prices [Weron, Bierbrauer and Trück (2004), Kosater and Mosler
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(2006) and Koopman, Ooms and Carnero (2007)] or by considering each hour h

separately [Karakatsani and Bunn (2008)]. These unnatural aggregations and sep-
arations of the data necessarily come with great losses in information.

Our model, a functional factor model (FFM), is not a mere adaption of a classi-
cal time series model but is motivated by the data-generating process of electricity
spot prices itself. Pricing in power markets is explained by the merit order model.
This model assumes that the spot prices at electricity exchanges are based on the
marginal generation costs of the last power plant that is required to cover the de-
mand. The resulting so-called merit order curve reflects the increasing generation
costs of the installed power plants. Often, nuclear and lignite plants cover the min-
imal demand for electricity. Higher demand is mostly served by hard coal and gas
fired power plants.

Due to its importance, the merit order model is referred to as a fundamental
market model [Burger, Graeber and Schindlmayr (2008), Chapter 4]. Essentially,
the consideration of this fundamental model yields to the superior forecast per-
formance of our FFM in comparison to state of the art time series models and
alternative functional data models.

It is important to emphasize that the merit order model is not a static model. The
merit order curve rather depends on the variations of the daily prices for raw ma-
terials, the prices of CO2 certificates, the weather, plant outages and maintenance
schedules of power plants.

The merit order curve is most important for the explanation of electricity spot
prices in the literature on energy economics and justifies our view on the set of
hourly electricity spot prices {yt1, . . . , yt24} of day t . We do not interpret them as
24-dimensional vectors but rather as noisy discretization points of a smooth price-
demand function Xt , which can be formalized as follows:

yth = Xt (uth) + εth,

where uth denotes electricity demand at hour h of day t and εth is assumed to be a
white noise process.

The price-demand function Xt (u) can be seen as the empirical counterpart of
the merit order curve estimated nonparametrically from the N = 24 hourly price-
demand data pairs (yt1, ut1), . . . , (ytN , utN ). Five exemplary estimated price-
demand functions X̂t (u) are shown in the lower panel of Figure 1. Figure 2
visualizes the temporal evolution of the time series of price-demand functions
by showing the univariate time series X̂1(u), . . . , X̂T (u) for a fixed value of
electricity-demand u = 58,000 MW for the whole observed time span of T = 717
work days (Mo.–Fr.) from January 1, 2006 to September 30, 2008.

In order to capture the dynamic component of the price-demand functions, we
assume them to be generated by a functional factor model defined as

Xt (u) =

K
∑

k=1

βtkfk(u),



1564 D. LIEBL

FIG. 1. UPPER PANEL: time series of electricity demand (uth), measured in GW (1 GW

= 1000 MW). MIDDLE PANEL: electricity spot prices (yth). LOWER PANEL: price-demand func-

tions (X̂t ) with noisy discretization points (yt1, ut1), . . . , (ytN , utN ).

FIG. 2. Univariate time series of fitted price-demand functions X̂1(u), . . . , X̂T (u) evaluated at

u = 58,000 MW. Gaps correspond to holidays.
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where the factors or basis functions fk are time constant and the corresponding
scores βtk are allowed to be nonstationary time series.

We do not specify a constant mean function in our FFM, since we allow the
time series of price-demand functions (Xt (u)) to be nonstationary. Consequently,
the classical interpretation of the factors fk as perturbations of the mean does not
apply—as common in the literature on dynamic (functional) factor models; see,
for example, Hays, Shen and Huang (2012).

Note that the five price-demand functions in the lower panel of Figure 1 are ob-
served on different domains. This distinguishes our functional data set from clas-
sical functional data sets, where all functions are observed on a common domain.
We refer to this feature as random domains and its consideration in Sections 4.3
and 4.5 is a central part of our estimation procedure.

We use a two-step estimation procedure. The first step is to estimate the daily
price-demand functions X̂t by cubic spline smoothing for all days t ∈ {1, . . . , T }.
The second step is to determine a K < ∞ dimensional common functional basis
system {f1, . . . , fK} for the estimated price-demand functions X̂1, . . . , X̂T . Given
this system of basis functions, we model the estimated daily price-demand func-
tions by a functional factor model—using the basis functions as common factors.
The fitted discrete hourly electricity spot prices ŷth are then obtained through the
evaluation of the modeled price-demand functions at the corresponding hourly val-
ues of demand for electricity, formally written as ŷth = X̂t (uth).

Functional data analysis (FDA) can share our perspective on electricity spot
prices. A broad overview of many different FDA methods can be found in the
monographs of Ramsay and Silverman (2005) and Ferraty and Vieu (2006). Partic-
ularly, Chapter 8 in Ramsay and Silverman (2005) and the nonparametric methods
for computing the empirical covariance function as proposed in Staniswalis and
Lee (1998), Yao, Müller and Wang (2005), Hall, Müller and Wang (2006) and Li
and Hsing (2010) are important methodological references for this paper.

The application of models from the functional data literature to the electric-
ity market data is not new. For example, there is a vast literature on modeling
and forecasting electricity demand; see, for example, Ferraty and Vieu (2006) and
Antoch et al. (2010). However, modeling and forecasting electricity spot prices is
much more difficult than modeling and forecasting electricity demand. The semi-
functional partial linear model (SFPL) of Vilar, Cao and Aneiros (2012) is one
of the very rare cases in which FDA methods are used to forecast electricity spot
prices.

Two very recent examples of other functional factor models are given by the
functional factor analysis in Liu et al. (2012) and the functional dynamic fac-
tor model (FDFM) in Hays, Shen and Huang (2012). Liu et al. (2012) propose a
new rotation scheme for the functional basis components. Hays, Shen and Huang
(2012) model a time series of yield curves and estimate their model by the EM
algorithm. In contrast to the FDFM of Hays, Shen and Huang (2012), we do not
have to make a priori assumptions on the stochastic properties of the time series



1566 D. LIEBL

of scores in order to estimate our model components. Furthermore, we are able to
model and forecast functional time series observed on random domains.

Very close to the FDFM of Hays, Shen and Huang (2012) is the Dynamic Semi-
parametric Factor Model (DSFM) of Park et al. (2009). As our functional factor
model the DSFM does not need a priori assumptions on the time series of scores.
This and the fact that the DSFM was already successfully applied to electricity
prices [Borak and Weron (2008) and Härdle and Trück (2010)] makes the DSFM
a perfect competitor for our FFM.

The main difference between the FDFM of Hays, Shen and Huang (2012) and
the DSFM of Park et al. (2009) in comparison to our FFM is that the FFM can
deal with functional times series observed on random domains. Furthermore, Park
et al. (2009) use an iterating optimization algorithm to estimate the basis functions
of the DSFM, whereas we standardize the elements of the time series (Xt ) so that
we can robustly estimate the basis functions by functional principal component
analysis. Our estimation procedure is much simpler to implement and faster with
respect to computational time than the Newton–Raphson algorithm suggested in
Park et al. (2009).

The next section is devoted to the introduction of our data set and to a critical
consideration of the stylized facts of electricity spot prices usually claimed in the
electricity literature. In Section 3 we present our functional factor model and in
Section 4 its estimation. An application of the model to real data is presented in
Section 5. Finally, the performance of the functional factor model is demonstrated
by an extensive forecast study in Section 6.

2. Electricity data. We demonstrate our functional factor model by modeling
and forecasting electricity spot prices of the German power market traded at the
European Energy Exchange (EEX) in Leipzig. The German power market is the
biggest power market in Europe in terms of consumption. The wholesale market is
fragmented into an Over The Counter (OTC) market and the EEX. While the OTC
market has a continuous trade, the EEX has a single uniform price auction with a
gate closure for the day ahead market at 12 p.m. the day before physical delivery.
Although three-fourths of the trading volume is settled via bilateral OTC contracts,
the EEX spot price is of fundamental importance as benchmark and reference point
for other markets, such as OTC or forward markets [Grimm, Ockenfels and Zoettl
(2008), Chapter 1].

The data for this analysis stem from three different publicly available sources.
The hourly spot prices of the German electricity market are provided by the Eu-
ropean Energy Exchange (www.eex.com), hourly values of Germany’s gross elec-
tricity demand are provided by the European Network of Transmission System Op-
erators for Electricity (www.entsoe.eu), and German wind power infeed data are
provided by the EEX Transparency Platform (www.transparency.eex.com). The
data set used in our application is provided as part of the supplementary material;
see Liebl (2013).
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In the German electricity market, as in most of the electricity markets in the
world, renewable energy sources are usually provided with purchase guarantees.
Therefore, the hourly values of gross electricity demand are not relevant for the
pricing at the EEX but rather the hourly values of gross demand minus the hourly
electricity infeeds from renewable energy sources. We consider only wind power
infeed data since the influences of other renewable energy sources such as photo-
voltaic and biomass on electricity spot prices are still negligible for the German
electricity market (and their explicit consideration essentially would lead to the
same results).

The data consists of pairs (yth, uth) with yth denoting the electricity spot price
and uth the electricity demand of hour h ∈ {1, . . . ,24} at day t . We define electric-
ity demand uth as the gross electricity demand of hour h and day t minus the wind
power infeed of electricity at the corresponding hour h and day t .

The data set analyzed in this article covers T = 717 work days (Mo.–Fr.) within
the time horizon from January 1, 2006 to September 30, 2008. For the sake of
clarity, only working days are considered in our analysis since for weekends there
are different compositions of the power plant portfolio. The same reasoning ap-
plies to holidays and so-called Brückentage, which are extra days off that bridge
single working days between a bank holiday and the weekend. Therefore, we set
all holidays and Brückentage to NA-values.

As a referee noted, the time span of our data set is peculiar. Starting around Jan-
uary 2007, a price bubble for raw commodities such as coal and gas was formed,
which induced a strong increase in the electricity spot prices. Interestingly, the in-
crease in the electricity spot prices is hardly visible in the original time series as
shown in Figure 6. But it catches the eye in the plot of Figure 2, which shows the
time series of price-demand functions (X̂t (u)|u) evaluated for a certain value of
electricity demand u = 58,000 MW. The reason is that at this relatively high value
of electricity demand usually coal and gas fired power plants cover the demand.

Very few (only 0.5%) of the data pairs (yth, uth) with prices yth > 200
EUR/MWh have to be treated as outliers since they cannot be explained by the
merit order model. Even in exceptional situations the marginal costs of electricity
production do not exceed the value of 200 EUR/MWh. Prices above this threshold
are referred to as price spikes and have to be explained using an additional scarcity
premium [Burger, Graeber and Schindlmayr (2008), Chapter 4]. The analysis of
price spikes is a research topic on its own [Christensen, Hurn and Lindsay (2009)]
and is not within the scope of this paper.

We exclude the outliers for the estimation of our model and denote the amount
of data pairs of day t used for estimation by Nt ≤ N = 24. Nevertheless, we use the
whole data set, including the outliers, in order to assess the forecast performance
of our model in Section 6.

Review: Stylized facts of electricity data. Our functional perspective on elec-
tricity spot prices allows us to review critically the so-called “stylized facts” of
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hourly electricity spot prices (yth). Usually, time series of electricity spot prices
are assumed (i) to have deterministic daily, weekly and yearly seasonal patterns,
(ii) to show price dependent volatilities, and (iii) to be stationary (after controlling
for the seasonal patterns); see Huisman and De Jong (2003), Knittel and Roberts
(2005), Kosater and Mosler (2006), Huisman, Huurman and Mahieu (2007) and
many others.

At first glance these stylized facts seem to be reasonable; see the middle panel
in Figure 1. However, the first two stylized facts, (i) and (ii), are misleading since
both have their origins in the time series of electricity demand: the characteristics
of electricity demand are rather carried over to the time series of electricity spot
prices.

This can be explained by a micro-economic point of view, again using the merit
order model. The merit order curve induces a monotone increasing supply func-
tion for electricity, which implies higher electricity spot prices for higher values of
electricity demand, where electricity demand can be considered as inelastic. Given
this micro-economic point of view, we can regard the daily supply functions for
electricity as diffusers in the transmission from electricity demand uth to the elec-
tricity spot price yth.

Additional diffusion comes from the variations of the daily supply functions
caused by the varying input-costs of, for example, coal and gas. Compare to this
the time series of electricity demand with the time series of electricity spot prices
shown in the upper and middle panels of Figure 1, respectively. The seasonal pat-
terns of electricity spot prices are just a diffused version of the smoother seasonal
patterns of electricity demand.

Price dependent volatility (ii) can be explained by the slope of the merit order
curve, which is increasing with electricity demand. Changes in electricity demand
have greater price effects for greater values of electricity demand and therefore
cause greater volatilities than is the case for lower values of electricity demand.

Stationarity (iii) has to be considered critically, too. Recently, Bosco et al.
(2010) were able to show empirically that electricity spot prices at the EEX have
a unit root. The authors point out that the stationarity assumption might be wrong
in markets that are influenced by price-enhancing sources such as prices for coal
and gas since time series of coal and gas prices are commonly found to be nonsta-
tionary. Our functional factor model allows for nonstationarity in the time series
of price-demand functions (Xt ) and, in fact, tests indicate that the estimated series
of price-demand functions is nonstationary; see Section 5.2.

This short review of electricity spot prices demonstrates that electricity data
are complex with dynamics induced by the variations of the merit order curve
(mainly caused by varying input-costs) and separate additional dynamics induced
by electricity demand. To the best of our knowledge, our functional factor model
is the first model that allows for a separate consideration of these two stochastic
sources. The variations dedicated to the dynamics of the merit order curve are cap-
tured by the price-demand functions and modeled by our functional factor model.
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The problem of modeling and forecasting electricity demand is “out-sourced” and
the statistician can choose powerful specialized models for time series of gross
electricity demand [Antoch et al. (2010)] and time series of wind power [Lau and
McSharry (2010)]. This separation corresponds to the real data generating process.

3. Functional factor model. As mentioned above, electricity spot prices
yt1, . . . , yt24 are actually one-day-ahead future prices since they are settled simul-
taneously at day t − 1. This implies that there is some degree of uncertainty about
the next day world in the electricity spot price yth, which we model nonparametri-
cally as

yth = Xt (uth) + εth.(1)

The error terms εth are assumed to be i.i.d. white noise errors with finite vari-
ance V(εth) = σ 2

ε and each function Xt is assumed to be continuous and square
integrable.

For each function Xt the values of electricity demand uth are only observed
within random sub-domains D(Xt ) = [at , bt ], where [at , bt ] ⊆ [A,B] ⊂ R. The
unobserved univariate time series (at ) and (bt ) are assumed to be time series pro-
cesses with A ≤ at < bt ≤ B and marginal p.d.f.s of at and bt given by fa(za) > 0
and fb(zb) > 0 for all za, zb ∈ [A,B] and t ∈ {1, . . . , T }.

The price-demand functions are relatively homogeneous. All of them look very
similar to the five randomly chosen price-demand functions shown in the lower
panel of Figure 1. The underlying reason for this homogeneity is that, on the
one hand, the merit order curve induces rather simple monotone increasing price-
demand functions. On the other hand, the general portfolio of power plants, which
is reflected by the merit order curve, is changing very slowly and can be consid-
ered as constant over the period of our analysis. We formalize this homogeneity of
the price-demand functions by the assumption that the time series of price-demand
functions (Xt ) is generated by a functional factor model with time constant basis
functions.

Given this assumption, every price-demand function Xt can be modeled by the
same set of K < ∞ (unobserved) basis functions f1, . . . , fk, . . . , fK with fk ∈

L2[A,B], which span the K-dimensional functional space HK ⊂ L2[A,B] such
that we can write

Xt (u) =

K
∑

k=1

βtkfk(u) for all u ∈ [at , bt ],(2)

where the common basis functions fk as well as the scores βtk are unobserved
and have to be determined from the data. We use the usual orthonormal identifi-
cation restrictions for the basis functions, which require that

∫ B
A f 2

k (u) du = 1 and
∫ B
A fk(u)fl(u) du = 0 for all k < l ∈ {1, . . . ,K}.
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The K real time series (βt1), . . . , (βtK) are defined as

⎛

⎜

⎝

βt1
...

βtK

⎞

⎟

⎠
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∫ bt

at

f 2
1 · · ·

∫ bt

at

f1fK

...
. . .

...
∫ bt

at

f1f2 · · ·

∫ bt

at

f 2
K

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1 ⎛

⎜

⎜

⎜

⎜

⎜

⎝

∫ bt

at

f1Xt

...
∫ bt

at

fKXt

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3)

and are allowed to be arbitrary nonstationary processes. Note that for at = A and
bt = B the definition of the scores βtk corresponds to the classical definition, given
by βtk =

∫ B
A Xt (u)fk(u) du.

In the following section we propose an estimation algorithm for the functional
factor model.

4. Estimation procedure. As outlined in Sections 1 and 2, we do not observe
the series (Xt ) directly but have to estimate each price-demand function Xt from
the corresponding data pairs (yt1, ut1), . . . , (ytNt , utNt ). After this initial estima-
tion step, which is discussed in Section 4.1, we show in Section 4.2 how to deter-
mine an orthonormal K-dimensional basis system {f1, . . . , fK} for the classical
functional data case when all price-demand functions X1, . . . ,XT are observed on
the deterministic domain D(Xt ) = [A,B]. In Section 4.3 we generalize the de-
termination of the orthonormal K-dimensional basis system {f1, . . . , fK} to our
case, where the price-demand functions Xt are observed only on random domains
D(Xt ) = [at , bt ]. Finally, we define our estimator {f̂1, . . . , f̂K} in Section 4.4.

As usual for (functional) factor models, the set of factors {f1, . . . , fK} in (2) is
only determined up to orthonormal rotations. Furthermore, the determination of an
orthonormal K-dimensional basis system {f̂1, . . . , f̂K} for a given series (X̂t ) is,
in the first instance, a mere algebraic problem. But it is also a statistical estimation
problem in the sense that ĤK , with ĤK = span(f̂1, . . . , f̂K), is a consistent esti-
mator of the theoretical counterpart HK . The crucial assumption is that Xt comes
from the FFM (2). Consistency of the estimation follows from the consistency of
the single nonparametric estimators X̂t (u), which converge in probability against
Xt (u) as Nt → ∞ for all u ∈ [at , bt ] and all t ∈ {1, . . . , T } [Benedetti (1977)].
Below in Section 4.5 we consider this issue in more detail.

4.1. Estimation of the price-demand functions Xt . The estimation of the func-
tions Xt from the data pairs (yt1, ut1), . . . , (ytNt , utNt ) is done by minimizing

d(X |t) =

Nt
∑

h=1

(

yth − X (uth)
)2

+ b

∫ bt

at

(

D2
X (u)

)2
du(4)

over all twice continuously differentiable functions X , where D2X denotes the
2nd derivative of X and b > 0 is a preselected smoothing parameter. Spline theory
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assures that any solution X̂t of the minimization problem (4) can be expanded
by a natural spline basis [de Boor (2001)]. Therefore, we can use the expansion
X (u) = c′φ(t), where φ is the (Nt + 2)-vector of natural spline basis functions
of degree 3 and c is the (Nt + 2)-vector of coefficients over which equation (4) is
minimized. This procedure is usually denoted as cubic spline smoothing and the
interested reader is referred to the monographs of de Boor (2001) and Ramsay and
Silverman (2005).

An important issue that remains to be discussed is the selection of the smoothing
parameter b. Usually, the optimal smoothing parameter bopt is chosen by (general-
ized) cross-validation such that the trade-off between bias and variance of the es-
timate X̂t is optimized asymptotically with respect to the mean integrated squared
error (MISE) criterion. However, our aim is not an optimal single estimate X̂t but
rather an optimal estimation of the basis system {f1, . . . , fK} for which we can
use the information of all price-demand functions X1, . . . ,XT .

Consequently, we do not have to optimize the MISEs of the single estimators
X̂t but those of their weighted averages f̂1, . . . , f̂K . In this case an undersmooth-
ing parameter

¯
bK < bopt has to be chosen. This was discussed for the first time

in Benko, Härdle and Kneip (2009). The underlying reason is that the estima-
tors f̂1, . . . , f̂K essentially are weighted averages over all X̂1, . . . , X̂T . Averaging
reduces the overall variance and therefore opens the possibility for a further re-
duction in the MISEs of the estimators f̂1, . . . , f̂K by a further reduction of the
bias-component through choosing

¯
bK < bopt in the minimization of (4). Benko,

Härdle and Kneip (2009) propose to approximate an optimal undersmoothing pa-
rameter

¯
bK by minimizing the following cross-validation criterion:

CV(bK) =

T
∑

t=1

Nt
∑

i=1

{

yth −

K
∑

k=1

γ̂tkf̂k,−t (uth)

}

,(5)

over 0 ≤ bK ≤ ∞, where γ̂tk are the OLS estimators of β̂tk and f̂k,−t denote the
estimators of ftk based on the data pairs (ysh, ush) with s ∈ {1, . . . , t − 1, t +

1, . . . , T }. We denote the estimators of Xt based on an undersmoothing parameter

¯
bK by X̃1, . . . , X̃T and those based on bopt by X̂1, . . . , X̂T .

As can be seen in (5), an optimal undersmoothing parameter
¯
bK depends on the

dimension K . The problem of choosing K can be seen as a model selection prob-
lem, which generally can be solved using information criteria. For our application
in Section 5 we use the simple cumulative variance criterion as well as the AIC
type criterion proposed in Yao, Müller and Wang (2005).

4.2. Estimation of the basis system {f1, . . . , fT }. Our estimation procedure
uses the property that any orthonormal basis system {f1, . . . , fK} of the series
(Xt ) has to fulfill the minimization problem

T
∑

t=1

∥

∥

∥

∥

∥

Xt −

K
∑

k=1

βtkfk

∥

∥

∥

∥

∥

2

2

= min
BK

T
∑

t=1

min
γt1,...,γtK∈R

∥

∥

∥

∥

∥

Xt −

K
∑

k=1

γtkgk

∥

∥

∥

∥

∥

2

2

(6)
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over all possible K-dimensional orthonormal basis systems BK = {g1, . . . , gK},
where g1, . . . , gK ∈ L2[A,B] and ‖ · ‖2 denotes the functional L2 norm ‖x‖2 =
√

∫ B
A x2(u) du for any x ∈ L2[A,B]. This property is a direct consequence of the

FFM (2).
The minimization problem (6) can be used to define an estimator for a basis

system {f1, . . . , fK}. We would only have to replace the unobserved functions
Xt with their undersmoothed estimators X̃t and try to find a basis system that
minimizes the right-hand side (rhs) of (6) using functional principal component
analysis (FPCA).

Before we present the analytic solution we adjust the minimization problem (6).
This adjustment yields a robustification, which is needed since we allow the K

time series (βt1), . . . , (βtK) to be nonstationary processes. The nonstationarity of
the scores (βt1), . . . , (βtK) implies that different functions Xt and Xs can be of
very different orders of magnitude, that is, ‖Xt‖2 ≪ ‖Xs‖2. In such cases, the
squared L2-norm on the rhs of (6) sets an overproportional weight on functions
with great orders of magnitude, and a functional principal component estimator
based on (6) would be distorted toward those functions Xs that have great orders
of magnitude ‖Xs‖2.

If we were only interested in the determination of some set of basis functions
{f1, . . . , fK} that spans the same space HK as the set of functions {X1, . . . ,XT },
we would not have to care about functions Xs with great orders of magnitude
‖Xs‖. However, if we are interested in the interpretation of the basis functions fk ,
we want them to be representative for all functions X1, . . . ,XT .

A general solution to this problem is to replace the price-demand functions Xt in
(6) with their standardized counterparts X∗

t = Xt/‖Xt‖, which have equal orders
of magnitude ‖X∗

t ‖ = 1 for all t ∈ {1, . . . , T }. Using this replacement yields the
following new minimization problem:

T
∑

t=1

∥

∥

∥

∥

∥

X∗
t −

K
∑

k=1

β∗
tkf

∗
k

∥

∥

∥

∥

∥

2

2

= min
BK

T
∑

t=1

min
γt1,...,γtK∈R

∥

∥

∥

∥

∥

X∗
t −

K
∑

k=1

γtkgk

∥

∥

∥

∥

∥

2

2

.(7)

Solving equation (7) by FPCA generally will yield different basis functions f ∗
k

than solving (6). However, both minimization problems (6) and (7) are equivalent
in the sense that both sets of basis functions {f ∗

1 , . . . , f ∗
K} and {f1, . . . , fK} are

equivalent up to orthonormal rotations and therefore span the same space HK .
The standardization yields to a simple base change, which can be seen by the fact
that the original price-demand functions Xt can be written in terms of the basis
functions f ∗

k as Xt =
∑K

k=1(‖Xt‖ · β∗
tk)f

∗
k .

The standardization of all price-demand functions Xt in the minimization prob-
lem (7) allows us to establish a nondistorted estimator {f̂1, . . . , f̂K} that represents
all price-demand functions equally well. This approach is similar to robust estima-
tion procedures proposed by Locantore et al. (1999) and Gervini (2008) but differs
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conceptually insofar as we do not consider any functional observation Xt as an
outlier.

We construct our estimator {f̂1, . . . , f̂K} from the analytic solution of the min-
imization problem (7). The solutions of the inner minimization problem with re-
spect to the scores γtk are given by least squares theory, and we can write

T
∑

t=1

∥

∥

∥

∥

∥

X∗
t −

K
∑

k=1

β∗
tkf

∗
k

∥

∥

∥

∥

∥

2

2

= min
BK

T
∑

t=1

∥

∥X∗
t − P

g
KX∗

t

∥

∥

2
2,(8)

where P
g
K , defined as P

g
KX∗

t =
∑K

k=1(
∫ B
A X∗

t (v)gk(v) dv)gk , is a linear projection
operator that projects the standardized price-demand functions X∗

t into the sub-
space of L2[A,B] spanned by the orthonormal basis system BK = {g1, . . . , gK}.

It is well known that a solution of the minimization problem (8) with respect
to all K-dimensional orthonormal basis systems BK can be determined by FPCA.
This so-called “best basis property” of the empirical eigenfunctions eT ,1, . . . , eT ,K

is of central importance for this paper; see Section 8.2.3 in Ramsay and Silverman
(2005), among others. Note that the eigenvalues λT ,k with k ∈ {1, . . . ,K} may be
of multiplicity L > 1; in this case eT ,k ∈ Ek with Ek = span(eT k,1, . . . , eT k,L).

A solution of (8) is given by the set of eigenfunctions {eT ,1, . . . , eT ,K} that
belong to the first K greatest eigenvalues λT ,1 > λT ,2 > · · · > λT ,K > 0 of the
empirical covariance operator ŴT defined as

(ŴT x)(u) =

∫ B

A
γT (u, v)x(v) dv for all x ∈ L2[A,B],(9)

where the empirical covariance function γT (u, v) is defined as a local linear sur-
face smoother in (10). We use this nonparametric version of γT (u, v), since it can
be applied to the classical case of deterministic domains Dt (Xt ) = [A,B] as well
as to the case of random domains Dt (Xt ) = [at , bt ] discussed in the following Sec-
tion 4.3. Contrary to this, the classical textbook definition of γT (u, v) cannot be
applied to the case of random domains.1

4.3. Random domains D(Xt ) = [at , bt ]. From a computational perspective,
functional data observed on random domains cause problems similar to sparsely
observed functional data. For the latter case there is already a broad stream of
literature based on the papers of Staniswalis and Lee (1998), Yao, Müller and
Wang (2005), Hall, Müller and Wang (2006) and Li and Hsing (2010).

We follow Yao, Müller and Wang (2005) and compute the covariance function
γT by local linear surface smoothing. Here, γT (u, v) = βT ,0 and βT ,0 is determined

1The classical definition is given by γT (u, v) = T −1 ∑T
t=1 Xt (u)Xt (v).



1574 D. LIEBL

by minimizing

T
∑

t=1

Nt
∑

i,j=1

κ2

(

(ut i − u)

bγ

,
(utj − v)

bγ

)

(10)
×

{

X∗
t (ut i)X

∗
t (utj ) − f

(

βT , (u, v), (ut i, utj )
)}2

over βT = (βT ,0, βT ,11, βT ,12)
′ ∈ R

3, where f (βT , (u, v), (ut i, utj )) = βT ,0 +

βT ,11(u − ut i) + βT ,12(v − utj ), ut i are the observed values of electricity demand,
bγ is the smoothing parameter that can be determined, for instance, by (general-
ized) cross-validation, and κ2 : R2 → R is a two-dimensional kernel function such
as the multiplicative kernel κ2(x1, x2) = κ(x1)κ(x2) with κ being a standard uni-
variate kernel such as the Epanechnikov kernel. See Yao, Müller and Wang (2005)
and Fan and Gijbels (1996) for further details.

4.4. The estimator {f̂1, . . . , f̂K}. Given the analytic solution of the minimiza-
tion problem (8), we can now define the estimator {f̂1, . . . , f̂K}. The only thing that
we have to do is to replace the standardized price-demand functions X∗

t in (10) by

their undersmoothed and standardized estimators X̃∗
t , where X̃∗

t = X̃t/‖X̂t‖2.
Note that we scale the undersmoothed estimator X̃t with the L2 norm of the es-

timator X̂t , which is optimally smoothed with respect to the single observation Xt .
Undersmoothing of the price-demand functions is always important if the target
quantity, such as the covariance function γT (u, v), consists of an average over all
functions. The approximation of the norm ‖Xt‖ does not involve averages over all
functions, such that we are better off to use the norm of the classically smoothed
curves ‖X̂t‖.

Let us denote the estimator of the empirical covariance operator ŴT by Ŵ̂T ,
defined as

(Ŵ̂T x)(u) =

∫ B

A
γ̂T (u, v)x(v) dv for all x ∈ L2[A,B],(11)

where γ̂T (u, v) is determined by minimizing equation (10) after replacing X∗
t =

Xt/‖Xt‖ by X̃∗
t = X̃t/‖X̂t‖2. Accordingly, we denote the first K ordered eigen-

values and the corresponding eigenfunctions of Ŵ̂T by λ̂T ,1 > · · · > λ̂T ,K and
êT ,1, . . . , êT ,K .

The estimator {f̂1, . . . , f̂K} is then defined as any orthonormal rotation of the or-
thonormal basis system {êT ,1, . . . , êT ,K} determined by (8). The trivial case would
be to use the empirical eigenfunctions êT ,1, . . . , êT ,K directly as basis functions
such that f̂k = êT ,k for all k ∈ {1, . . . ,K}. It is generally left to the statistician to
choose an appropriate orthonormal rotation scheme, which facilitates the interpre-
tation. In our application we use the well-known VARIMAX-rotation.
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Following our assumptions on the data generating process in (2), we use the
basis system {f̂1, . . . , f̂K} in order to re-estimate the functions X1, . . . ,XT by

X̂
f
t =

K
∑

k=1

β̂tkf̂k,(12)

where the parameters β̂tk are defined according to (3). This is a crucial step of the
estimation procedure. Given that our model assumption in (2) is true, the original
single cubic smoothing splines estimates X̂t will be much less efficient estimators

of the price-demand functions Xt than the estimators X̂
f
t since the latter use the

information of the whole data set.

4.5. A note on convergence. Assume that we are able to observe the (unob-
servable) set of functions {X1, . . . ,XT } as defined in (2) but with deterministic do-
mains D(Xt ) = [A,B]. In this case the K empirical eigenfunctions eT ,1, . . . , eT ,K

can be determined from the empirical covariance operator ŴT as defined in (9)
based on the classical definition of the empirical covariance function γT (u, v) =

K−1 ∑K
k=1 Xtk (u)Xtk (v). Actually, only a subset of at least K linear independent

functions, say, Xt1, . . . ,XtK , would suffice to determine the K empirical eigen-
functions eT ,1, . . . , eT ,K .

In this case, the determination of the basis system {eT ,1, . . . , eT ,K} is a mere
algebraic problem. Furthermore, the space HK spanned by the basis system
{eT ,1, . . . , eT ,K} does not depend on the data. By the definition in (2), two sets
of functions {X1, . . . ,XT } and {X1, . . . ,XT ′} span the same space HK for all
T ′ ≥ T ≥ K , such that also the corresponding basis systems {eT ,1, . . . , eT ,K} and
{eT ′,1, . . . , eT ′,K} span the same space HK .

Note that we do not observe the functions Xt but the noisy discretization points
yth = Xt (uth) + εth. Starting with the first scenario of deterministic domains
D(Xt ) = [A,B], the determination of the estimated basis system {êT ,1, . . . , êT ,K}

can be done from the estimated empirical covariance operator Ŵ̂T defined in (11).
Again, this on its own is a mere algebraic problem but it yields to our consistency
argument.

The estimated eigenfunction êT k can be written as a continuous function of
X̂1, . . . , X̂T , say, êT k = gk(X̂1, . . . , X̂T ). By the continuous mapping theorem,
êT k = gk(X̂1, . . . , X̂T ) converges to eT k = gk(X1, . . . ,XT ) as X̂t (u) → Xt (u),
for example, in probability as Nt → ∞ for all u ∈ [A,B] and t ∈ {1, . . . , T }

with T ≥ K . We additionally have to assume that all involved smoothing pa-
rameters go against zero appropriately fast such that N

¯
bK → ∞, Nbopt → ∞,

and NT bγ → ∞ [Benedetti (1977)]. Eigenfunctions ek are determined up to sign
changes and it is assumed that the correct signs are chosen.

In this sense we can state that ĤK = span(êT ,1, . . . , êT ,K) converges to HK =

span(eT ,1, . . . , eT ,K), which is all we can achieve for (functional) factor models,
since the single factors fk remain unidentifiable.
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Finally, it only remains to consider the scenario of random domains D(Xt ) =

[at , bt ]. Also, in this case any two points (u, v) ∈ [A,B] have to be covered by
at least K price-demand functions, which are fulfilled asymptotically. By our as-
sumptions the time series (at ) and (bt ) are processes with A ≤ at < bt ≤ B and
the marginal p.d.f.s of at and bt are given by fa(za) > 0 and fb(zb) > 0 for all
za, zb ∈ [A,B] and t ∈ {1, . . . , T }. This yields that

Pr
(

at ∈ [A,A + ε]
)

> 0 and Pr
(

bt ∈ [B − ε,B]
)

> 0 for any ε > 0,

such that for T → ∞ with probability one, there are sub-series (as) and (bs) of
(at ) and (bt ) for which the boundary points A and B are accumulation points.
From this it follows that as T → ∞ we can find always more than K functions Xt

that cover the points u, v ∈ [A,B].
To conclude, consistency of our estimation procedure relies on our model as-

sumptions in (1) and (2) and is driven by the consistency of the first step estimators
of the price-demand functions Xt (u).

5. Application. In this section we apply our estimation procedure of the FFM
described in Section 4 to the data set described in Section 2. In Section 5.1 we show
how to interpret the factors and demonstrate an exemplary analysis of the scores
and in Section 5.2 we validate the crucial model assumptions.

A drawback of the cross-validation criterion in (5) is that it depends on the un-
known dimension K . Therefore, first, we determine optimal undersmoothing pa-
rameters

¯
bK for several values of K and, second, choose the dimension K , which

minimizes the AIC of Yao, Müller and Wang (2005).
The AIC type criterion indicates an optimal dimension of K = 2 (AIC values

in Table 1 are shown as differences from the lowest AIC value). These first two
basis functions are able to explain 99.95% of the variance. The minimization of
the cross-validation criterion (5) for K = 2 yields an undersmoothing parameter of

¯
b2 that is only two-tenths of the usual cross-validation smoothing parameter bopt;
see Table 1.

Based on the undersmoothed and scaled estimators X̃∗
t = X̃t/‖X̂t‖, we compute

the estimator γ̂T of the empirical covariance function γT by local linear surface

TABLE 1
Undersmoothing parameters

¯
bK (shown as fractions of the

usual cross-validation smoothing parameter bopt), AIC

values (shown as differences from the lowest AIC value) and

cumulative variances for the dimensions K ∈ {1,2,3}

K
¯
bK/bopt AIC Cum. var.

1 0.1 596.4 92.62%
2 0.2 0 99.95%
3 0.3 52.9 99.97%
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FIG. 3. LEFT PANEL: Empirical covariance function γ̂T . RIGHT PANEL: VARIMAX rotated basis

functions f̂1 (solid line) and f̂2 (dashed line), scaled by the average scores
¯̂
β·1 and

¯̂
β·2, respectively.

smoothing, as explained in Section 4.4. The result is shown in the left panel of
Figure 3. The plot of the estimator γ̂T shows clearly that the sample variance of the
standardized price-demand functions X̃∗

t increases monotonically with electricity
demand.

The estimators of the first two empirical eigenfunctions êT ,1 and êT ,2 are de-
termined from the eigendecomposition of a discretized version of the estimated
empirical covariance function γ̂T using an equidistant grid of n × n discretization
points of the plane [A,B]2. The estimation of the smooth eigenfunctions by dis-
cretizing the smooth covariance function is common in the FDA literature; see, for
example, Rice and Silverman (1991).

In order to find an appropriate number n of discretization points, there is the
following trade-off, which has to be considered: on the one hand, n must be small
enough that the algorithm to compute the eigendecomposition runs stable. On the
other hand, n must be great enough that the n × n-matrix of discretization points
forms a good approximation to the covariance function. The choice of n = 50
appears to be appropriate for our application. As a robustness check we also tried
values of n ranging from 20 to 70, which yield nearly identical results.

We rotate the basis system of the estimated eigenfunctions {êT ,1, êT ,2} by the
VARIMAX-criterion in order to get interpretable basis functions f̂1 and f̂2. The
two rotated basis functions f̂1 and f̂2 explain 58.63% and 41.32% of the total
sample variance of the price-demand functions X̂t .

It is convenient to choose an appropriate scaling of the graphs of the basis func-
tions f̂1 and f̂2 in order to plot them with a reasonable order of magnitude. We

scale the graphs by their corresponding average scores ¯̂
β·i = T −1 ∑T

t=1 β̂t i for
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FIG. 4. Time series of the first scores (β̂t1) (solid line) and second scores (β̂t2) (dashed line). The

vertical red line separates the initial learning sample from the initial forecasting sample. Gaps in the

time series correspond to holidays.

i ∈ {1,2}. In the right panel of Figure 3 the graph of f̂1
¯̂
β·1 is plotted as a solid

line, whereas the graph of f̂2
¯̂
β·2 is plotted as a dashed line.

Given the basis system {f̂1, f̂2}, we re-estimate the functions X1, . . . ,XT by
(12) such that

X̂
f
t = β̂t1f̂1 + β̂t2f̂2.

To simplify the notation, we write X̂t = X̂
f
t from now on. The coefficients β̂t1

and β̂t2 are determined by OLS regressions of X̂t simultaneously on f̂1 and f̂2

after discretizing the functions at the Nt observed values of electricity demand
ut1, . . . , utNt . The time series of the scores are shown in Figure 4.

5.1. Interpretation of the factors and exemplary analysis of the scores. Re-
member that we do not use a mean function in our FFM. Consequently, the clas-
sical interpretation of the factors f̂k as perturbations of the mean does not apply.
A reasonable interpretation of the estimated factors f̂1 and f̂2 can be derived from
the classical micro-economic point of view on electricity spot prices; see also the
discussion in Section 2.

This point of view allows us to interpret the price-demand functions X̂t (u) =

β̂t1f̂1(u) + β̂t2f̂2(u) as daily empirical merit order curves or empirical supply

functions, where the shape of the curves X̂t is determined by the factors f̂1 and
f̂2 and the scores β̂t1 and β̂t2. For example, steep empirical supply functions have
high score ratios β̂t1/β̂t2 and vice versa. Since steep supply functions are asso-
ciated with high prices, we could interpret the first factor f̂1 as the high-price
component and the second factor f̂2 as the moderate-price component. In general,
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FIG. 5. p-values of Granger-causality tests of whether the time-varying steepness of the price-de-

mand functions [quantified as time series of score ratios (β̂t1/β̂t2)] is Granger-caused by past values

of the time series of extreme temperatures.

any interpretation of the factors has to be done with caution since they are only
identified up to orthonormal rotations.

Particularly, the scores β̂t1 and β̂t2 are useful for a further analysis of the dy-
namics of the empirical supply functions. For example, researchers or risk analysts,
who wish to predict days with high electricity prices, could try to predict days with
steep empirical supply functions X̂t .

Days with steep supply functions represent market situations with capacity con-
straints, that is, situations in which power plants with high generation costs are
needed to supply the demanded amount of electricity. There are several causes for
capacity constraints, such as extreme temperatures or power plant outages.

In fact, the time-varying steepness of the empirical supply functions [quanti-
fied as time series of score ratios (β̂t1/β̂t2)] is Granger-caused by the time se-
ries of extreme temperatures (defined as absolute temperature deviations from
the mean temperature), where the temperature data is available from the German
Weather Service (www.dwd.de). Figure 5 shows the p-values of the corresponding
Granger-causality tests [Granger (1969)].

5.2. Validation of the model assumptions. The overall in-sample data fit of
the estimated spot prices ŷth = X̂t (uth), measured by the R2-parameter, is given
by R2 = 0.92 and indicates a good model fit. Nevertheless, our implicit stability
assumption in (2) that Xt ∈ HK for all t ∈ {1, . . . , T }, that is, that all functions Xt

are elements of the same space HK , may be seen as critical.
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In our context it is impossible to validate the stability assumption by statistical
tests such as in Benko, Härdle and Kneip (2009) since we do not assume that the
time series of the scores (βt1) and (βt2) are stationary. However, we can compare
different basis systems estimated from subsets of the data with each other. The
stability assumption can be seen as supported if all of these subset-basis functions
span the same space ĤK .

We define half-yearly data-subsets 6-1, 6-2, 7-1, 7-2 and one nine-month data-
subset 8-1 by choosing according to subsets of the index set {1, . . . , T } and inves-

tigate the R2-parameters from subset regressions—such as, for example, ê
(6-1)
1 (u)

simultaneously on ê
(6-2)
1 (u) and ê

(6-2)
2 (u). This assesses whether the eigenfunc-

tion ê
(6-1)
1 can be seen as an element of the space spanned by the basis system

{ê
(6-2)
1 , ê

(6-2)
2 }.

The results are given in Table 2 and clearly support our assumption that Xt ∈

HK for all t ∈ {1, . . . , T }. The R2-values with respect to the first eigenfunctions

ê
(6-1)
1 , ê

(6-2)
1 , . . . , ê

(8-1)
1 and êT ,1 are all greater than or equal to 0.99. Also, the R2-

values with respect to the second eigenfunctions ê
(6-1)
2 , ê

(6-2)
2 , . . . , ê

(8-1)
2 and êT ,2

indicate no clear violation of our model assumption.
The R2-values with respect to the second eigenfunctions are systematically

smaller than those with respect to the first eigenfunctions, since the first order bias
term of an estimated eigenfunction is inversely related to the pairwise distances of
its eigenvalue to all other eigenvalues; see Benko, Härdle and Kneip (2009), The-
orem 2(iii). By construction, these distances are greatest for the first eigenvalue.

Finally, we test for (non-)stationarity of the time series of the scores (β̂t1) and
(β̂t2) using the usual testing procedures such as the KPSS-tests for stationarity
and ADF-tests for nonstationarity (with a 5%-significance level for all tests). The
results allow us to assume that the time series of the scores (β̂t1) and (β̂t2) are

TABLE 2
Descriptive validation of the assumption that Xt ∈ HK for all t ∈ {1, . . . , T }. The list elements are

R2-values, which stem from subset regressions of, for example, the eigenfunction ê
(6-1)
1 on the

eigenfunctions {ê
(6-2)
1 , ê

(6-2)
2 } in the upper left case with R2 = 0.99

ê
(6-1)
1

ê
(6-1)
2

ê
(6-2)
1

ê
(6-2)
2

ê
(7-1)
1

ê
(7-1)
2

ê
(7-2)
1

ê
(7-2)
2

ê
(8-1)
1

ê
(8-1)
2

{ê
(6-1)
1 , ê

(6-1)
2 } — — 0.99 0.95 1.00 0.96 1.00 0.89 1.00 0.99

{ê
(6-2)
1 , ê

(6-2)
2 } 0.99 0.95 — — 0.99 0.83 1.00 0.98 1.00 0.95

{ê
(7-1)
1 , ê

(7-1)
2 } 1.00 0.96 0.99 0.83 — — 1.00 0.78 1.00 0.95

{ê
(7-2)
1 , ê

(7-2)
2 } 1.00 0.89 1.00 0.98 1.00 0.78 — — 1.00 0.89

{ê
(8-1)
1 , ê

(8-1)
2 } 1.00 0.99 1.00 0.95 1.00 0.95 1.00 0.89 — —

{êT 1, êT 2} 1.00 0.99 1.00 0.96 1.00 0.95 1.00 0.90 1.00 0.99
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nonstationary. Detailed reports are not shown for reasons of space but can be re-
produced using the R-Code provided as part of the supplementary material; see
Liebl (2013).

This section demonstrates a very good and stable in-sample fit of our FFM. Of
course, this cannot guarantee a good out-of-sample performance.

6. Forecasting. For our forecasting study we divide the data set into a learn-
ing sample of days t ∈ {1, . . . , TL} and a forecasting sample of days t ∈ {TL +

1, . . . , T }, where the initial TL + 1 corresponds to January 1, 2008 and T to
September 30, 2008. The learning sample is used to estimate the parameters and
the forecasting sample is used to assess the forecast performance. We enlarge the
learning sample after each ℓ days ahead forecast by one day. For ℓ ∈ {1, . . . ,20}

days ahead forecasts this leads to T −TL −(ℓ−1) = 717−521−(ℓ−1) = 197−ℓ

work days that can be used to assess the forecast performance of our model.
Figure 6 shows the whole data set of 717 · 24 = 17,208 hourly electricity spot

prices along with the indicated time spans of the initial learning and forecasting
sample. Gaps in the time series correspond to holidays. At least from a visual
perspective, the learning sample and the forecasting sample are of comparable
complexity.

In the following Section 6.1 we discuss forecasting of electricity spot prices
using the FFM. In Section 6.2 we formally introduce four competing forecasting
models (two classical and two FDA models), and in Section 6.3 we compare their
predictive performance.

As noted above for the FFM, the two competing FDA models also use learn-
ing data with electricity spot prices below 200 EUR/MWh only. In contrast, the

FIG. 6. The whole data set of 17,208 hourly electricity spot prices. The vertical red line separates

the initial learning sample from the initial forecasting sample. Gaps in the time series correspond to

holidays.
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forecasting sample retains all data, including those with spot prices above 200
EUR/MWh. Advanced outlier forecast procedures, which might yield better pre-
dictive performances, are beyond the scope of this paper.

6.1. Forecasting with the FFM. The computation of the ℓ days ahead forecast
ŷTL,h(ℓ) ∈ R of the electricity spot price yTL+ℓ,h given the information set of the
learning sample, say, ITL

, involves the computation of the conditional expecta-
tion of a nonlinearly transformed random variable, namely, E[fk(uTL+ℓ,h)|ITL

].

We approximate the latter using the naive plug-in predictor f̂k(ûTL,h(ℓ)), where
ûTL,h(ℓ) = E[uTL+ℓ,h|ITL

]. This yields to

ŷTL,h(ℓ) = β̂TL,1(ℓ)f̂1
(

ûTL,h(ℓ)
)

+ β̂TL,2(ℓ)f̂2
(

ûTL,h(ℓ)
)

,(13)

where β̂TL,1(ℓ), β̂TL,2(ℓ) and ûTL,h(ℓ) are the ℓ days ahead forecasts of the scores
β̂TL+ℓ,1, β̂TL+ℓ,2 and of the electricity demand value uTL+ℓ,h.

The naive plug-in predictor f̂k(ûTL,h(ℓ)) is a rather simple approximation of
the conditional expectation E[fk(uTL+ℓ,h)|ITL

]. Here, it performs very well be-
cause the basis functions are relatively smooth. In the case of more complex basis
functions, it might be necessary to improve the approximation using higher order
Taylor expansions of f̂k around ûTL,h(ℓ).

We use the following univariate SARIMA(0,1,6) × (0,1,1)5-models to fore-
cast the time series of the scores (β̂t i) with i ∈ {1,2}:

(1 − B)
(

1 − B5)

β̂t i =

(

1 +

6
∑

l=1

δilB
l

)

(

1 + δS
i B5)

ωt i,(14)

where B is the back shift operator. In order to ensure that the SARIMA models
(14) are not sample dependent, we select them from a set of reasonable alternative
SARIMA models, where all of them are confirmed by the usual diagnostics on the
residuals. Each of the confirmed models is applied to different subsets of the learn-
ing sample and the final model selection is done by the AIC.2 As usual, the ℓ days
ahead forecasts β̂TL,1(ℓ) and β̂TL,2(ℓ) are given by the conditional expectations of
β̂TL+ℓ,1 and β̂TL+ℓ,2 given the data from the learning sample; see, for example,
Brockwell and Davis (1991).

A first visual impression of the forecast performance is given in Figure 7, which
compares the 24 hourly spot prices yth with the 1 day ahead forecast of the price-
demand function Xt . The 1 day ahead forecast of the price-demand function Xt is
defined as

X̂TL
(ℓ) = β̂TL,1(ℓ)f̂1 + β̂TL,2(ℓ)f̂2 ∈ L2[A,B].(15)

2The interested reader is referred to the R-Code provided as part of the supplementary material;
see Liebl (2013).
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FIG. 7. A comparison of the 24 hourly electricity spot prices yth (circles) and the 1 day ahead fore-

cast of the price-demand function Xt (dashed line) of January 25, 2008. The 95% forecast interval

is plotted as a gray shaded band.

Additionally, a 95% forecast interval is plotted as a gray shaded band. The forecast
interval is computed on the basis of the 95% forecast intervals of the SARIMA
forecasts β̂TL,1(ℓ) and β̂TL,2(ℓ) and has to be interpreted as a conditional forecast

interval given the realizations f̂1 and f̂2.
In order to be able to forecast the hourly electricity spot prices yth, we also have

to forecast the hourly values of electricity demand uth; see equation (13). Given
our definition of electricity demand in Section 2, a ℓ days ahead forecast of elec-
tricity demand uTL,h(ℓ) involves forecasting gross demand for electricity as well
as wind power infeed data. The statistician has to choose appropriate models—one
for gross electricity demand such as that proposed in Antoch et al. (2010) and an-
other for wind power such as that proposed in Lau and McSharry (2010). For the
sake of simplicity, we use the two reference cases of a “persistence” and an “ideal”
forecast of electricity demand:

persistence The persistence (or “no-change”) forecast û
persi
TL,h(ℓ) is given by the

last value of electricity demand that is still within the learning sample, that is,

û
persi
TL,h(ℓ) = uTL,h.

ideal The ideal forecast is given by uTL+ℓ,h itself, that is, ûideal
TL,h(ℓ) = uTL+ℓ,h.

This yields a range for possible electricity demand forecasts with bounds that can
be easily interpreted.

A first visual comparison of the observed hourly electricity spot prices yTL+1,h

with their 1 day ahead forecasts ŷTL,h(1) is given in Figure 8. The left panel



1584 D. LIEBL

FIG. 8. LEFT PANEL: comparison of the spot prices yth (circles) and the 1 day ahead forecasts

ŷTL,h(ℓ) (dashed line) of January 25, 2008 based on ideal demand forecasts. RIGHT PANEL: com-

parison of the spot prices yth (circles) and the 1 day ahead forecasts ŷTL,h(ℓ) (dashed line) of

January 25, 2008 based on persistence demand forecasts. BOTH PANELS: the 95% forecast intervals

are plotted as gray shaded bands.

demonstrates the ideal forecast case and shows the spot prices yth (circles) and
their 1 day ahead forecasts ŷTL,h(1) (dotted line) based on the electricity demand
forecasts ûideal

TL,h(1). The right panel demonstrates the persistence case and shows
the spot prices yth (circles) and their 1 day ahead forecasts ŷTL,h(1) (dotted line)

based on the electricity demand forecasts û
persi
TL,h(1). The 95% forecast intervals are

plotted as gray shaded bands. The forecast interval shown in the right panel is much
broader than that shown in the left panel. This is because the forecasted electricity
spot prices based on the persistence electricity demand forecasts are too high, and
higher electricity spot prices have broader 95% forecast intervals; see Figure 7.

6.2. Competing forecast models. In this section we introduce the four com-
peting forecast models (two classical and two FDA models). The two classical
models, referred to as AR and MR models, are archetypal representatives of the
classical approaches in the literature on forecasting electricity spot prices; see, for
example, Kosater and Mosler (2006). The AR model is an autoregressive model
and the MR model is the Markov regime switch model for electricity spot prices
proposed by Huisman and De Jong (2003).

The two FDA models are the above-discussed DSFM model of Park et al. (2009)
and the semi-functional partial linear (SFPL) model of Vilar, Cao and Aneiros
(2012). Both of these FDA models have been successfully applied to forecast elec-
tricity spot prices [Härdle and Trück (2010) and Vilar, Cao and Aneiros (2012)]
and are expected to be more challenging competitors for our FFM than the two
classical models.
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Before the formal introduction of the four alternative forecast models, we need
some unifying notation. The problem is that the two classical models, AR and MR,
are designed to forecast only daily aggregated peakload and baseload spot prices
defined as

yP
t = log

(

1

12

20
∑

h=9

yth

)

and yB
t = log

(

1

24

24
∑

h=1

yth

)

.

In contrast to this, the three FDA models are designed to forecast the hourly

electricity spot prices yth. Therefore, we define the forecasts of the peakload-
aggregates ŷP

TL
(ℓ|Model) and baseload-aggregates yB

TL
(ℓ|Model) of the FDA

models as

ŷP
TL

(ℓ|Model) = log

(

1

12

20
∑

h=9

ŷTL,h(ℓ|Model)

)

and

ŷB
TL

(ℓ|Model) = log

(

1

24

24
∑

h=1

ŷTL,h(ℓ|Model)

)

,

where ŷTL,h(ℓ|Model) is the ℓ days ahead hourly electricity spot price forecast
of the Model ∈ {FFM,DSFM,SFPL}. By Jensen’s inequality, these definitions
yield aggregated forecasts of the FDA models, which tend to be too high, that
is, E[yA

TL+ℓ|ITL
] ≤ ŷA

TL
(ℓ|Model) with A ∈ {P,B}. Therefore, the RMSEs of the

FDA models shown in Figure 9 tend to be inflated and can be interpreted as being
conservative.

In the following we formally introduce the four competing forecast models.
Further details can be found in Kosater and Mosler (2006), Park et al. (2009) and
Vilar, Cao and Aneiros (2012).

AR. The first benchmark model is the classical AR(1) model with an additive
constant drift component and a time-varying deterministic component. The AR
model can be defined as

yA
t = dA + gA

t + αyA
t−1 + ωA

t , ωA
t ∼ N

(

0, σ 2
ωA

)

,(16)

where A ∈ {P,B} refers to the type of aggregation (peakload or baseload), dA is
the constant drift parameter, and gA

t captures daily, weekly and yearly determinis-
tic effects of the peakload and baseload prices, respectively.

MR. The second benchmark model is the Markov regime switch model pro-
posed by Huisman and De Jong (2003). The MR model extends the AR model (16)
and distinguishes between two different regimes RA

t ∈ {M,S}, where M denotes
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the regime of moderate prices and S denotes the regime of price spikes. The MR
model can be defined as

yA
M,t = dA + αAyA

M,t−1 + ωA
M,t ,

(17)
yA
S,t = μA

S + ωA
S,t ,

where A ∈ {P,B} refers to the type of aggregation (peakload or baseload), ωA
M,t ∼

N (0, σ 2
MA) and ωA

S,t ∼ N (0, σ 2
SA). The conditional probabilities of the transitions

from one regime to another given the regime at t − 1 are captured by the transition
matrix

(

P
(

RA
t = M|RA

t−1 = M
)

P
(

RA
t = M|RA

t−1 = S
)

P
(

RA
t = S|RA

t−1 = M
)

P
(

RA
t = S|RA

t−1 = S
)

)

=

(

q 1 − p

1 − p p

)

and have to be estimated, too.

DSFM. The third model, the DSFM of Park et al. (2009), is a functional factor
model, which is very similar to our FFM. Its application to electricity spot prices,
as suggested by Härdle and Trück (2010), differs from our application, since it
models the hourly spot prices yth based on the classical time series point of view on
electricity spot prices. That is, Härdle and Trück model and forecast nonparametric
price-hour functions, say, χt (h), and thereby fail to consider the merit order model.
The DSFM can be written as

yth = χt (h) + ωth, h ∈ {1, . . . ,24},(18)

with χt ∈ L2[1,24] defined as

χt (h) = f DSFM
0 (h) +

L
∑

l=1

βDSFM
t l f DSFM

l (h),

where f DSFM
0 (h) is a nonparametric mean function, f DSFM

l (h) are nonparametric
functional factors, βDSFM

t l are the univariate scores, and ωth is a Gaussian white
noise process.

Park et al. suggest selecting the number of factors L by the proportion of ex-
plained variation. We choose the factor dimension L̂ = 2, since this factor dimen-
sion yields the same proportion of explained variation as the factor dimension
K̂ = 2 for our FFM.

Given the estimates of the time-invariant model components, f̂ DSFM
0 (h),

f̂ DSFM
l (h) and L̂, forecasting of the daily price-hour functions χt (h) can be done

by forecasting the estimated univariate time series of scores. As for our FFM, we
use SARIMA models to forecast the univariate time series (β̂DSFM

t1 ) and (β̂DSFM
t2 ),

where the model selection procedure for the SARIMA models is the same as for
our FFM.
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SFPL. The fourth model, the SFPL model of Vilar, Cao and Aneiros (2012),
is a very recent functional data model, which was exclusively designed for fore-
casting electricity spot prices. The SFPL has the nice property of allowing us to
include the values of electricity demand uth as additional co-variables. Vilar, Cao
and Aneiros use dummy variables for work days and holidays as additional co-
variates, which we do not have to do since we consider only work days. Note that,
like the DSFM, the SFPL model uses price-hour functions χt (h) and therefore
does not consider the merit order model. The definition of the SFPL is given in the
following:

yt+ℓ,h = αuth + m
(

χt (h)
)

+ ωth,(19)

where m :L2[1,24] → R is a function that maps the price-hour function χt to a
real value and ωth is a Gaussian white noise process.

Forecasting electricity spot prices yth with the SFPL model can be easily done
using the R package fda.usc of Febrero-Bande and Oviedo de la Fuente (2012).
However, in order to compute the forecasts ŷTL,h(ℓ|SFPL) of the electricity spot
prices yTL+ℓ,h, we also need forecasts of the electricity demand values uTL+ℓ,h.
We cope with this problem as suggested above for our FFM by using a persistence
forecast and an ideal forecast.

6.3. Evaluation of forecast performances. The two plots of Figure 9 show the
values of the RMSEs for the ℓ ∈ {1, . . . ,20} days ahead forecasts of the peak-
load prices (left panel) and the baseload prices (right panel). The two gray shaded

FIG. 9. Root mean squared errors of the FFM (solid lines) and the alternative models, DSFM

(short-dashed lines), SFPL (dotted lines), AR (dash-dotted lines) and MR (long-dashed lines) for

peakload prices yP
t (left panel) and baseload prices yB

t (right panel). The gray shaded regions for

the FFM and the SFPL model are lower bounded based on the ideal demand forecast, and upper

bounded based on the persistence forecast.
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regions in each plot show the possible RMSE values of the FFM (solid line bor-
ders) and the SFPL model (dotted line borders). The lower bounds of the regions
are based on the ideal electricity demand forecast ûideal

TL,h(ℓ). The upper bounds are

based on the persistence forecast of electricity demand û
persi
TL,h(ℓ).

The poor performance of the two classical time series models, AR and MR, in
comparison to the three FDA models, FFM, DSFM and SFPL, can be explained
by the different approaches to model the aggregated peakload and baseload prices.
The two classical models try to forecast the aggregated prices directly, whereas the
three FDA models try to forecast the hourly electricity spot prices; aggregation is
done afterward.

The superior performance of our FFM in comparison to the other two FDA
models, DSFM and SFPL, can be explained by the FFMs explicit consideration
of the merit order model. Both models, the DSFM and the SFPL, work with daily
price-hour functions χt (h), which are based on a rather simple transfer of the clas-
sical time series point of view to a functional data point of view. By contrast, the
FFM works with daily price-demand functions Xt (u), which are based on the merit
order model, the most important model for explaining electricity spot prices; see
our discussion in Section 1. Finally, the DSFM generally performs better than the
SFPL model. This might be explained by the fact that the SFPL model of Vilar,
Cao and Aneiros (2012) is an autoregressive model of order one. Vilar, Cao and
Aneiros do not discuss the possibility of extending the order structure of their
SFPL model.

The above study of the RMSEs only gives us insights into the forecast per-
formances with respect to point forecasts. In order to complement the forecast
comparisons, we also consider interval forecasts. In this regard, the interval score,
proposed by Gneiting and Raftery (2007), is a very informative statistic. The inter-
val score can be defined as

Sint
α (h, ℓ) = (b̂u − b̂l) +

2

α
(b̂l − yTL+ℓ,h)I{yTL+ℓ,h < b̂l}

+
2

α
(yTL+ℓ,h − b̂u)I{yTL+ℓ,h > b̂u},

where b̂u = b̂u,TL,h(ℓ) and b̂l = b̂l,TL,h(ℓ) are the lower and upper bounds of the
(1 − α)% forecast interval for the electricity spot price yTL+ℓ,h. The interval score

punishes a broad prediction interval (b̂u − b̂l) and adds an additional punishment
if the actual observation yTL+ℓ,h is not within the prediction interval. In general,
a lower interval score is a better one.

Unfortunately, we cannot compute the interval scores for all five models. For
example, Vilar, Cao and Aneiros (2012) do not propose any prediction intervals
for the SFPL model. Furthermore, while it is easy to compute forecast intervals of
the FFM and the DSFM for hourly sport prices, it is not trivial to compute them
for the aggregated (peakload and baseload) prices.
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FIG. 10. Mean and trimmed mean values of the interval scores Sint
α (h, ℓ), pooled for all hours

h ∈ {1, . . . ,24}. A low interval score stands for precise predictions with narrow prediction intervals.
The dashed line corresponds to the interval scores of the DSFM of Park et al. (2009). The gray

shaded regions for the FFM are lower bounded based on the ideal demand forecast, and upper

bounded based on the persistence forecast.

Therefore, we focus on the hourly forecasts of electricity spot prices of the FFM
and DSFM models. For both models, the 95% forecast intervals can be computed
on the basis of the 95% forecast intervals of the SARIMA forecasts given the
estimated factors.

Due to the enlargement of the learning sample after each ℓ days ahead forecast
by one day and due to pooling all hours h ∈ {1, . . . ,24}, we have for each ℓ days
ahead forecast 24 · (197 − ℓ) interval scores Sint

α (h, ℓ) in order to compare the ℓ

days ahead forecast performances of our FFM and the DSFM. In Figure 10 we
present the (trimmed) mean values of these pooled interval scores Sint

α (h, ℓ) with
α = 0.05 for each ℓ ∈ {1, . . . ,20}. The 5% trimmed mean values are used, since
for both models there are some extreme values of the interval score (due to the
outliers in the forecast sample), which distort the mean values.

Figure 10 clearly confirms the good forecast performance of the FFM. Besides
some technical issues, the main conceptual difference between the DSFM and our
FFM is that the DSFM works with daily price-hour functions χt (h), whereas our
FFM works with daily price-demand functions Xt (u), which are suggested by the
merit order model. This demonstrates that the consideration of the merit order
model yields better point forecasts as well as better interval forecasts.

7. Conclusion. In this paper we suggest interpreting hourly electricity spot
prices as noisy discretization points of smooth price-demand functions. This func-
tional data perspective on electricity spot prices is motivated as well as theoret-
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ically underpinned by the merit order model—the most important pricing model
for electricity spot prices.

We propose a functional factor model in order to model and forecast the non-
stationary time series of price-demand functions and discuss a two-step estimation
procedure. In the first step we estimate the single price-demand functions from the
noisy discretization points. In the second step we robustly estimate from these a
finite set of common basis functions. The careful consideration of the merit order
model yields a very parsimonious functional factor model with only two common
basis functions, which together explain over 99% of the total sample variation of
the price-demand functions.

Our approach allows us to separate the total variations of electricity spot prices
into one part caused by the variations of the merit order curves (mainly variations
of input-costs) and another part caused by the variations of electricity demand.
The first part is modeled by our FFM and the second part can be modeled by
specialized methods proposed in the literature. We decided to keep the model par-
simonious; nevertheless, it is easily possible to include the input cost for resources
(coal, gas, etc.) into our FFM. Researchers are invited to extend the FFM for these
co-variables.

The presentation of our functional factor model is concluded by a real data ap-
plication and a forecast study which compares our FFM with four alternative time
series models that have been proposed in the electricity literature. The real data
application demonstrates the use of the functional factor model and a possible in-
terpretation of the unobserved common basis functions. The forecast study clearly
confirms the power of our functional factor model and the use of price-demand
functions as underlying structures of electricity spot prices in general.
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SUPPLEMENTARY MATERIAL

R-codes and data set (DOI: 10.1214/13-AOAS652SUPP; .zip). In this supple-
ment we provide a zip file containing the R-Codes and the data set used to model
and forecast electricity spot prices by the functional factor model as described in
this paper.
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