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Abstract

Maximum likelihood estimation of dynamic latent variable models requires to solve

integrals that are not analytically tractable. Numerical approximations represent a possi-

ble solution to this problem. We propose to use the Adaptive Gaussian-Hermite (AGH)

numerical quadrature approximation for a class of dynamic latent variable models for time-

series and panel data. These models are based on continuous time-varying latent variables

which follow an autoregressive process of order 1, AR(1). Two examples of such models

are the stochastic volatility models for the analysis of financial time-series and the limited

dependent variable models for the analysis of panel data. A comparison between the perfor-

mance of AGH methods and alternative approximation methods proposed in the literature

is carried out by simulation. Examples on real data are also used to illustrate the proposed

approach.

KEYWORDS: AR(1); categorical longitudinal data; Gaussian-Hermite quadrature; limited
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1 Introduction

Statistical models for the analysis of time-series and panel data often involve continuous time-

varying latent variables. The dynamics of the latent variables is typically modeled by assuming

that these variables follow an autoregressive process of order 1, denoted as usual by AR(1).

In the analysis of financial time-series data, this approach is adopted to study the volatility

of returns that is heteroscedastic and autocorrelated. In particular, the Stochastic Volatility

(SV) model assumes that volatility is a latent variable modeled over time by means of a first-

order autoregressive process (Andersen, 1994; Taylor, 1994), as opposed to ARCH-type models

according to which the present volatility is affected by past observations through a deterministic

function (Bollerslev, 1986).

A different example of data that may be effectively analyzed by means of latent autoregres-

sive models is that of panel data in which repeated observations on the same units are available.

Here the aim of the analysis is to account for the non-observable heterogeneity between indi-

viduals. Within the variety of dynamic models discussed in the literature for panel data we

consider, in particular, Limited Dependent Variable (LDV) models for discrete data, which are

very common in the social sciences (Maddala, 1983).

Both SV and LDV models present some attractive features. They allow to properly capture

the variability present in the data through an autoregressive latent structure and at the same time

they are more parsimonious than other models based on Latent Markov chains (Bartolucci et al.,

2013b). Moreover they admit a common general representation in the non-linear state space

framework. Nevertheless, the estimation procedure of these models presents some computa-

tional difficulties related to the presence of the time-varying latent variables. These variables

have to be integrated out from the likelihood function and an analytical solution for this does

not exist. In the literature different solutions to this problem have been proposed.

As for SV models, a simple and easy method to be implemented is the generalized method of

moments (Taylor, 1986). Harvey et al. (1994) proposed a quasi maximum likelihood approach

based on the Kalman filter that has the advantage of not depending on any distribution of the er-

ror terms. In the Bayesian context the Monte Carlo Markov Chain techniques have been widely

applied. One of the main references is Jacquier et al. (1994). Fridman and Harris (1998) pro-
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posed a direct maximum likelihood estimation of SV models using a non-linear Kalman filter

algorithm. This algorithm is based on expressing the likelihood function as a nested sequence

of uni-dimensional integrals approximated by the Gauss Legendre numerical quadrature. Bar-

tolucci and De Luca (2001, 2003) extended this approach by computing analytical first and

second derivatives of the approximated likelihood. They applied a rectangular quadrature to

approximate the integrals. A non-linear Kalman filter algorithm has been discussed, among the

others, by Tanizaki and Mariano (1998) and Durbin and Koopman (2002) in the general state

space model framework. For the same SV model, Junji and Yoshihiko (2005) proposed a solu-

tion based on the Laplace approximation. All these studies show that the performance of these

approximation methods is highly sensitive to the values of the model parameters.

For LDV models, a numerical integration solution has been proposed by Heiss (2008). He

proposed the use of a non-linear filter algorithm and approximated the uni-dimensional in-

tegrals through the Gauss-Hermite (GH) quadrature. He showed the higher performance of

the estimation based on this quadrature compared with other estimation methods. However,

it is known that the GH based methods guarantee accurate parameter estimates when several

quadrature points are used per each dimension. We also have to consider that, for certain target

functions, instability problems arise in the phase of maximization when the function is approx-

imated through this method.

In this work, we propose to use the Adaptive Gaussian Hermite (AGH) quadrature method

(Naylor and Smith, 1982; Liu and Pierce, 1994) to approximate the uni-dimensional integrals

involved in the non-linear filtering algorithm used for the estimation of SV and LDV models,

when these models are specified within a general state space framework based on an AR(1)

latent process. In the literature, AGH have been compared with other methods in a variety of

random effect and latent variable models (see, among the others, Pinheiro and Bates, 1995;

Rabe-Hesketh et al., 2002; Joe, 2008; Cagnone and Monari, 2013). In all these studies this

numerical method appear to be superior to other quadrature methods, as it requires only few

quadrature points to get accurate estimates, and it does not risk to miss the maximum, as it well

captures the peak of the integrand involved in the likelihood function.

To our knowledge, AGH has not been previously applied for the estimation of dynamic

latent variable models within the state space framework. In order to evaluate its performance
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for this class of models, we perform a wide simulation study under different conditions of

study. In particular, for SV models AGH is compared with alternative numerical approximations

discussed in the literature as well as with the Laplace approximation because it can be viewed as

a particular case of AGH when one quadrature point is used (Pinheiro and Bates, 1995). As for

LDV, AGH quadrature is compared with the classical GH quadrature under different conditions.

The paper is organized as follows. In Section 2 we define the class of models of interest

and, as particular cases, we describe the SV and LDV models. In Section 3 model estimation is

discussed with particular attention to the proposed AGH approximation. Section 4 reports the

results of the simulation study for both SV and LDV models. In Section 5 two applications on

real data are illustrated. The conclusions are given in Section 6.

2 State space specification of dynamic latent variable models

In the time-series context, we let yt be the response variable observed at time t with t =

1, . . . , T . For the case of panel data, in which we observe n sample units at T occasions, we ex-

tend this notation by denoting the response variable for unit i at occasion t by yit, i = 1, . . . , n,

t = 1, . . . , T , and, since in this case covariates are also typically observed, we denote by xit the

vector of the covariates corresponding to yit.

In order to formulate dynamic latent variable models in the state space framework, we start

from the more general case of panel data considering that time-series is a particular case with

n = 1. The proposed formulation is based on the following equations for i = 1, . . . , n and

t = 1, . . . , T :

yit = G(y∗it),

y∗it = h(αit,xit, εit), (1)

αit = m(αi,t−1, ηit), (2)

where y∗it is a continuous unobservable variable underlying yit and G(·) is a parametric function,

the specification of which depends on the nature of the observed variable. Moreover, αit is a

time dependent latent variable and εit and ηit are error terms assumed to be mutually indepen-
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dent. We refer to (1) as measurement equation and to (2) as transition equation of the model.

The former specifies the relationship between the manifest variables and the latent variables;

the latter specifies the dependence of the latent variables over time. When both equations are

linear, we obtain the classical linear state space models and the Kalman filter may be used for

model estimation. If one or both the equations are non-linear, we obtain non-linear state space

models.

In the following we illustrate two particular cases of non-linear state space models: the

Stochastic Volatility (SV) model for analyzing financial time-series (Taylor, 1986) and Limited

Dependent Variable (LDV) models for panel data (Maddala, 1983).

2.1 Stochastic volatility models for financial time-series

SV models are widely used in the analysis of the volatility in financial time-series. They assume

that the volatility is a latent variable following a first-order autoregressive process and, for this

aim, they admit the following non-linear state space representation for t = 1, . . . , T :

yt = exp

(

1

2
αt

)

εt, εt ∼ N(0, 1),

αt = γ + αt−1ρ+ ηt, ηt ∼ N(0, σ2
η).

In this case, G(·) is the identity function since the response variable is continuous. Moreover,

exp(αt) is the volatility level underlying yt; hence, the logarithm of the volatility is assumed to

follow an AR(1) process.

2.2 Limited dependent variable models for panel data

An alternative class of models belonging to the general framework of non-linear state space

models based on equations (1) and (2) are LDV models for the analysis of panel data. Panel

data consist of repeated observations on the same individuals, or more generally statistical units,

over time. In this context, the latent variables are time and unit dependent random intercepts

that allow us to account for the unobserved heterogeneity between subjects. The non-linear
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state space representation of these models is given by

yit = G(y∗it),

y∗it = αit + x′

itβ + εit,

αit = αi,t−1ρ+ ηit, ηit ∼ N(0, σ2
η),

where different distributions may be assumed for the error terms εit.

In LDV models for panel data, the response variable yit is typically discrete so that G(·)
is not the identity function. In the binary case G(y∗it) = I(y∗it > 0), where I is the indicator

function getting

λ[p(yit = 1|αit,xit)] = αit + x′

itβ, i = 1, . . . , n, t = 1, . . . , T,

where λ(·) is the logit function or the inverse standard normal cumulative function, resulting in

a logit model or a probit model, respectively.

If the response variables are ordinal with J categories, we define a set of thresholds τ1 ≤
. . . ≤ τJ−1, such that

G(y∗it) = j ⇔ τj−1 < y∗it ≤ τj, j = 1, . . . , J,

with τ0 = −∞ and τJ = +∞. Different parameterizations can be considered for ordinal

observed variables. A very common one is given by the following proportional odds model for

cumulative probability functions (McCullagh, 1980):

log
p(yit ≤ j|αit,xit)

p(yit > j|αit,xit)
= τj − αit − x′

itβ, i = 1, . . . , n, j = 1, . . . , J − 1, t = 1, . . . , T. (3)
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3 Model estimation

Estimation of the models illustrated above may be carried out by the the maximum likelihood

method, which is based on the maximization of

L(θ) =
n
∏

i=1

f(yi1, . . . , yiT ), (4)

where θ is the vector of all model parameters which affects the manifest joint distribution of the

observed variables. The latter can be expressed as

f(yi1, . . . , yiT ) =

∫

· · ·
∫ T
∏

t=1

fy(yit|αit)fα(αit|αi,t−1)dαit · · · dαi1. (5)

The above expression is based on the conditional independence assumption, according to which

f(yit|yi1, . . . , yi,t−1, αi1, . . . , . . . , αiT ) = f(yit|αit) and on the first-order Markov assumption

on the latent variables, that is fα(αit|yi1, . . . , yi,t−1, αi1, . . . , . . . , αi,t−1) = fα(αit|αi,t−1). No-

tice that fα(αi1|αi0) = fα(αi1). Moreover, the form of the densities fy(yit|αit) and fα(αit|αi,t−1)

depends on how the measurement equation (1) and the transition equation (2) are formulated.

Typically, computation and maximization of the likelihood (4) do not admit an analytical

solution. An effective way to solve this problem is to apply non-linear filter techniques that

allow us to formulate the multidimensional integral involved in expression (5) into a sequence

of uni-dimensional integrals using the rules of conditioning as follows:

f(yi1, . . . , yiT ) = f(yi1)
T
∏

t=2

f(yit|yi1, . . . , yi,t−1),

where

f(yi1) =

∫

fy(yi1|αi1)fα(αi1)dαi1

and

f(yit|yi1, . . . , yi,t−1) =

∫

fy(yit|αit)f(αit|y1, . . . , yi,t−1)dαit. (6)
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The density f(αit|yi1, . . . , yi,t−1) in expression (6) can be obtained as follows:

f(αit|yi1, . . . , yit) =
fy(yit|αit)f(αit|yi1, . . . , yi,t−1)

f(yit|yi1, . . . , yi,t−1)
, (7)

where

f(αit|yi1, . . . , yi,t−1) =

∫

fα(αit|αi,t−1)f(αi,t−1|yi1, . . . , yi,t−1)dαi,t−1, (8)

The filtering algorithm consists of evaluating recursively formulas (6), (7), and (8).

Formulas (6) and (8) involve uni-dimensional integrals that cannot be computed analytically

and hence have to be approximated. A widely used method is represented by the Gauss-Hermite

(GH) quadrature that allows to evaluate numerically all the integrals of the form

∫

e−z2f(z)dz ≃
q
∑

k=1

wkf(zk),

where zk are the zeros of the Hermite orthogonal polynomial Hk, wk are the correspondent

weights, and q is number of quadrature points (Davis and Rabinowitz, 1975). The approxima-

tion is exact if f(z) is a polynomial of degree equal to 2q − 1.

In order to apply the GH to the integral in (6), we rewrite it in the following form

f(yit|yi1, . . . , yi,t−1) =

∫

fy(yit|αit)f(αt|yi1, . . . , yi,t−1)fα(αit)

fα(αit)
dαit, (9)

where fα(·) is the marginal distribution of αit and it is a normal density distribution with mean

µ and variance σ2 whose expressions depend on the adopted model. For SV models we have

µ = γ/(1− ρ) and σ2 = σ2
η/(1− ρ2); for LDV models we have µ = 0 and σ2 = σ2

η/(1− ρ2).

Denoting with g(αit) = f(αit|yi1, . . . , yit−1)/fα(αit) and integrating over the standardized α̃ =

1
σ
(α− µ), we obtain

f(yit|yi1, . . . , yi,t−1) =
1√
2π

∫

fy(yit|σα̃it + µ)g(σα̃it + µ) exp(−α̃it
2/2)dα̃it

≃
q
∑

k=1

fy(yit|σz∗k + µ)g(σz∗k + µ)w∗

k, (10)

where z∗k =
√
2zk and w∗

k = (1/
√
π)wk. The same approximation can be applied to solve
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integral (8).

3.1 Adaptive Gauss-Hermite quadrature

An improved version of the GH approximation is given by the Adaptive Gauss Hermite (AGH)

quadrature rule introduced in the Bayesian context with the aim of efficiently computing poste-

rior densities if they are approximately normal (Naylor and Smith, 1982). It essentially consists

of adjusting the GH quadrature locations with the mean and the variance of the posterior den-

sity, so that the nodes are more concentrated around the peak of the function to be integrand and

a better approximation of this function results in comparison with the classical GH.

For the particular class of models defined in Section 2, the AGH quadrature is obtained by

multiplying and dividing the integral in (9) by the normal density φ(α̃it, µ̃it, σ̃it). We have that

f(yit|yi1, . . . , yi,t−1) =
1√
2π

∫

fy(yit|σα̃it + µ)g(σα̃it + µ) exp(−α̃it
2/2)

φ(α̃it, µ̃it, σ̃it)
φ(α̃it, µ̃it, σ̃it)dα̃it

(11)

such that, transforming the α̃it’s to standardized latent variables, the integral (11) is approxi-

mated as follows

f(yit|yi1, . . . , yi,t−1) ≃ σ̃it

q
∑

k=1

fy(yit|σνitk + µ)g(σνitk + µ) exp(−ν2
itk/2)

exp(−z∗2k /2)
w∗

k, (12)

where νitk = σ̃itz
∗

k + µ̃it.

Two different procedures can be used to estimate µ̃it and σ̃it. The first one consists of

approximating µ̃it with the mode of the integrand and σ̃it with the standard deviation of the

integrand at the mode (Liu and Pierce, 1994; Pinheiro and Bates, 1995; Schilling and Bock,

2005). The advantage of this approach lies on the fact that the quadrature points are not involved

in these computations. On the other hand, this method is very computationally demanding since

it requires numerical optimization routines. Moreover, when parameter estimates are obtained

by using iterative algorithms as in this case, the first two moments have to be computed at each

step of the algorithm that, for this reason, can be rather slow. An alternative method consists of

computing the posterior mean and standard deviation (Naylor and Smith, 1982; Rabe-Hesketh

et al., 2005). Although this method requires the use of quadrature points themselves, it is more
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robust to fat tailed distributions and it is faster when a sequential scheme is used. For these

reasons we adopt the second procedure.

In more detail, the computation of µ̃it and σ̃it is iteratively obtained as follows:

1. Choose starting values µ̃
(0)
it = 0 and σ̃

(0)
it = 1 so that ν

(0)
ik = z∗k.

2. Compute the log-likelihood for the l-th iteration

logL(l)(θ) = log
n
∏

i=1

f (l)(yi1, . . . , yiT )

≃ log

[

n
∏

i=1

(

T
∏

t=1

σ̃
(l−1)
it

q
∑

k=1

fy(yit|σν(l−1)
itk + µ)g(σν

(l−1)
itk + µ) exp(−(ν

(l−1)
itk )2/2)

exp(−z∗2k /2)
w∗

k

)]

,

with g(σνitk + µ) = 1 for t = 1.

3. Update each node ν
(l)
itk by computing the posterior mean and standard deviation as follows

µ̃
(l)
it = σ̃

(l−1)
it

q
∑

k=1

ν
(l−1)
itk fy(yit|σν(l−1)

itk + µ)g(σν
(l−1)
itk + µ) exp(−(ν

(l−1)
itk )2/2)

f (l)(yit|yi1, . . . , yit−1) exp(−z∗2k /2)
w∗

k

σ̃
(l)
it =

√

√

√

√σ̃
(l−1)
it

q
∑

k=1

(ν
(l−1)
itk )2fy(yit|σν(l−1)

itk + µ)g(σν
(l−1)
itk + µ) exp(−(ν

(l−1)
itk )2/2)

f (l)(yit|yi1, . . . , yit−1) exp(−z∗2k /2)
w∗

k − (µ̃
(l)
it )

2

Steps 2 and 3 are repeated until convergence. Parameter estimation is obtained using a

quasi-Newton method. Thus the estimation algorithm consists in alternating one step of the

quasi-Newton procedure to update parameter estimates and the iterative scheme proposed above

to update the nodes of the adaptive numerical quadrature.

4 Simulation study

We carried out two simulation studies in order to evaluate the performance of AGH in LDV and

SV models. In both cases the results are compared with other approximation methods discussed

in the literature.
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4.1 Simulation study for the LDV model

The LDV model considered in this simulation study is the proportional odds model illustrated

above. For this model, the performance of AGH is compared with the classical GH approxima-

tion respectively for increasing values of the correlation parameter ρ = (0.5, 0.90, 0.95), differ-

ent combinations of time points (T = 5, 10), and sample sizes (n = 500, 1000). Five categories

for the ordinal responses are chosen and the thresholds are fixed equal to τ1 = −1.65, τ2 =

−0.5, τ3 = 0.5, τ4 = 1.65. The remaining parameters β and ση are fixed to 1. One covariate is

generated from a stationary AR(1) with autocorrelation parameter equal to 0.5. The quadrature

points chosen for AGH are q = 15, 21 and for GH are q = 21, 51. Under each simulation

scenario, 500 samples were generated and the model parameters were estimated on the basis of

the two approximation methods.

The comparison between the two different numerical approximations is assessed in terms of

both accuracy of estimates and computational performance of the algorithms. For T = 5 and

n = 500 the results are reported in Table 1.

[Table 1 about here.]

For ρ = 0.5, under both GH and AGH approximation the algorithm converges properly in

almost all the samples (%cv). Moreover, the average number of function evaluations (nr feval)

is quite similar for both the methods. As for the rmse of the estimates, the best performances are

obtained with GH51 and AGH21 that produce very close results for all the parameters estimates.

In more detail, in terms of bias AGH21 is always better than GH51, in terms of rmse adaptive

is better than the classical quadrature for β and ση and slightly worse for the autocorrelation

parameter. Thus, with less than half quadrature points than those used with GH51, AGH21

produces very accurate estimates. Moreover, differently from GH, AGH is not affected by the

choice of starting values. Nevertheless, the average computational time (av time in seconds)

to convergence of the latter approximation is about three times that of the former, making GH

preferable in this case. This is due to the iterative routine required for the computation of

the posterior means and standard deviations at each iteration of the algorithm. However, it is

possible to improve the speed of convergence of AGH by using a pseudo version of the AGH

that consists in updating the quadrature nodes for each sample unit with the posterior means
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and standard deviations only at the first step of the algorithm, implying a consistently reduction

of the computation time. This method was proposed by Rizopoulus (2012) for a class of linear

mixed effect models for longitudinal data. The author showed that, for the class of models they

considered, PseudoAGH produces accurate parameter estimates when proper starting values

are used. Here we chose starting values by means of a multi-start strategy. The results of the

PseudoAGH with q = 21 are reported in the last column of Table 1. We observe that the rmse

of ρ is the same as AGH21, whereas the rmse of the other parameter estimates are higher than

the rmse obtained with AGH21. On the other hand, the computational time of PseudoAGH is

noticeably lower than the standard AGH (the ratio is about 1 to 4 and in same cases about 1 to

5) and slightly lower than GH51.

In the cases of ρ = 0.90 and ρ = 0.95, the superiority of the adaptive procedure is un-

doubted. Indeed GH does not produce convergent solutions in all the generated samples because

of instability problems. On the contrary, AGH performs very well even with q = 15, being the

rmse of all the estimates equal to those obtained for q = 21. Moreover, in this case Pseu-

doAGH presents the same rmse of all the parameter estimates than both AGH15 and AGH21

and, as before, reveals superior in terms of computational time. Thus, for high values of the

autocorrelation parameters, PseudoAGH reveals the best method.

In order to better understand the behavior of GH and AGH under different values of ρ, the

integrand reported in formula (6) is represented in Figure 1, for an ordinal response variable

in a given time point, in the cases of ρ = 0.5 (upper pictures) and ρ = 0.95 (lower pictures),

together with the GH and AGH nodes and weights for q = 21. In the case of ρ = 0.5, the

integrand has a smooth shape and both methods approximate it very well. When ρ = 0.95, the

integrand has a very sharped peak and only AGH properly captures it.

[Figure 1 about here.]

The simulation results for T = 10 and n = 500 are reported in Table 2. As expected, in

general the rmse of the estimates improve compared with those obtained in the previous sce-

nario. As for GH, convergent solutions are obtained only for ρ = 0.5, whereas AGH performs

well for all the values of the autocorrelation parameter even if the computational time is quite

heavy. Also in this case, PseudoAGH seems to be the best compromise between GH and AGH,
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particularly in the case of high values of ρ where, as before, the accuracy of the parameter esti-

mates results similar and in same cases even better than the standard adaptive quadrature. The

reduction in the computational time results of the same magnitude as in the previous scenarios.

[Table 2 about here.]

The case of T = 5 and n = 1000 (Table 3) is the only one in which we get convergent

solutions under GH also for high values of ρ.

[Table 3 about here.]

However, for ρ = 0.90, even if GH51 performs similarly to AGH21 in terms of rmse, we

can observe that %cv is 74% versus a percentage equal to 98% generated sample in which the

algorithm properly converges under AGH21 and to %100 under PseudoAGH21. Moreover, as in

all the previous cases, the latter results to be the fastest. We can observe the same behavior of

the different approximation methods also for ρ = 0.95. In particular, in this case GH produces

a %cv equal only to 36%.

4.2 Simulation study for the SV model

The design of the study considered for the SV model is based on the same setting considered

by Jacquier et al. (1994) and widely used in the literature for evaluating the performance of

different approximation methods. Here the results obtained with the AGH approximation are

compared with those obtained by Fridman and Harris (1998), who used the Gauss-Legendre

quadrature approximation (GLQ), by Bartolucci and De Luca (2001), who proposed a rectan-

gular type quadrature method (RQ), and by Junji and Yoshihiko (2005), who used the Laplace

approximation (LA). The Laplace approximation is considered since it can be viewed as a par-

ticular case of AGH when one quadrature point is chosen (Pinheiro and Bates, 1995).

The parameter values of the generating model were chosen so that different values of the

squared Coefficient of Variation of the volatility, CV = exp(σ2
η/(1 − ρ2)) − 1, result. In more

detail, the most relevant parameter ρ is fixed to 0.90, 0.95 and 0.98, that are values based on

the empirical evidence. The other parameter values are consequently determined so that CV

assumes the values 0.1, 1, or 10, producing nine different scenarios. In each simulated scenario,
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we let T = 500 and used 500 Monte Carlo replications; for AGH we adopted q = 21 quadrature

points.

The mean of the parameter estimates and the root mean square error (rmse) in brackets for

SV models with different combinations of the parameters are reported in Table 4.

[Table 4 about here.]

The Table is grouped according to the values of the CV. We observe that in the case of

CV = 10 all the methods perform quite similarly in terms of rmse. Only in the case of ρ = 0.98,

GLQ produces better rmse than the other approximations. However, as the CV decreases, all

the methods deteriorate sensibly apart from AGH that produces rmse always with the same

small magnitude. The superiority of the proposed method is particularly noticeable in the case

of CV = 0.1 for the parameters γ and ρ. In terms of bias, for most of the parameter values

AGH gives better or similar results than the other methods.

In the table, the average computational time (in seconds) of AGH is also showed for all the

scenarios. We observe that in all the cases the algorithm reaches convergence in few seconds.

We cannot compare the computational performance of the proposed method with that of the

other approximation methods since for the latter we do not have this information.

5 Real data analysis

In the following, we illustrate the proposed approach by two applications in the context of panel

data analysis and in that of time-series data.

5.1 Application of limited dependent variable models to Self-reported health

status

We consider panel data deriving from the Health and Retirement Study (HRS) 1 conducted by

the University of Michigan with the aim of studying retirement and health among elderly people

1The RAND HRS Data file is an easy to use longitudinal data set based on the HRS data. It was devel-

oped at RAND with funding from the National Institute on Aging and the Social Security Administration. See

http://www.rand.org/labor/aging/dataprod.html for more details.

14



in the United States over time. These data are referred to a sample of n = 7, 074 individuals

who were asked at T = 8 time occasions (from 1992 to 2006 every two years) to report the self-

rated health status (SHR) by answering to the question “Would you say your health is excellent,

very good, good, fair, or poor?”, that is an ordinal response variable with five categories. Also

the covariates gender, race (“white”, “non white”), education (“high school”, “some college”,

“college and above”), and age measured at each time point are available. Some descriptive

statistics for the distributions of the covariates are reported in Table 5, whereas Table 6 reports

the conditional sample distribution of SHRt given the previous response SHRt−1.

[Table 5 about here.]

[Table 6 about here.]

We observe that the sample is mainly composed by females (58.1%), white individuals

(82.9%) with an average age at the first observed time point equal to 54.8 years. As for the level

of education, 60.9% of the interviewed subjects declared to have a high-school diploma, 19.7%

of them a college degree, and 19.4% a higher title. The variable education has been recoded in

the following way: 1 for “high school”, 2 for “some college”, and 3 for “college and above”.

The high percentage of people (more than %50 percent for all the categories) that respond

to the same category at time t − 1 and at time t indicates that SHR is highly correlated over

time. Previous analyses on HRS data (Heiss, 2008) showed that the proportional odds model

illustrated above with time dependent random intercepts following a stationary AR(1) well cap-

tures the SHR correlation pattern over time. More recently, Bartolucci et al. (2013a) analyzed

the HRS data assuming a more flexible model based on a mixture of AR(1) models for the latent

process. They approximated the integrals with a rectangular quadrature method. Since here the

aim is to evaluate the performance of the AGH discussed above, we fitted the proportional odds

model with a standard stationary AR(1).

In Table 7 we report the results of model estimation under AGH21 and PseudoAGH21 ap-

proximations.

[Table 7 about here.]
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We can notice that in this example where the sample size is quite large, the computational

time of PseudoAGH21 is noticeably lower than that of AGH21. The parameter estimates are

quite similarly under both methods and in both cases all of them are significant apart from

the coefficient of the covariate gender. It is worth noting that the autocorrelation parameter

estimate is higher than 0.95 indicating a high persistent latent process over time. This result is

in agreement with the previous analyses on the HRS data (Heiss, 2008; Bartolucci et al., 2013a).

5.2 Application of stochastic volatility models to daily exchange rates

To illustrate the application of the method to SV models, we use a data set analyzed by Har-

vey et al. (1994) and later by several other authors. The data consist of a time-series of daily

pound/dollar exchange rates from the period October 1st, 1981 to June 28th, 1985. The series

of interest is the logarithm of n = 945 daily returns (Figure 2).

[Figure 2 about here.]

For these data, we fitted the standard SV model illustrated above and an SV model with

error terms εit following a t-Student distribution with unknown degrees of freedom ν. This

choice is motivated by the fact that many financial time-series exhibit densities with fatter tails

than the Gaussian distribution. AGH with q = 21 quadrature points is used for approximating

the integrals involved in the likelihood of both model. The results of parameters estimates are

reported in Table 8.

[Table 8 about here.]

Under both models ρ has a high and significant value, indicating a highly persistent volatility

process. The higher value of the log-likelihood obtained under the normal assumption (-921.610

for the SV normal model versus -922.289 for the SV t-Student model) suggests that there is no

improvement assuming t-Student distributed errors.

The similarity between the two specifications for the error terms can be also seen by ex-

amining the estimated filtered volatilities obtained for each model. Figure 3 shows the plot of

the estimated filtered volatilities for each time point of the t-Student distribution (y-axis) versus
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the normal distribution (x-axis). We observe that there is a substantial agreement in terms of

estimated volatility between the two specifications.

[Figure 3 about here.]

6 Conclusions

In this work we proposed the Adaptive Gauss Hermite (AGH) quadrature for approximating

the integrals involved in the likelihood of a class of dynamic latent variable models based on a

latent process following an autoregressive process of order 1, AR(1). In particular, we focused

on Stochastic Volatility (SV) models for the analysis of financial time-series and on Limited

Dependent Variable (LDV) models for panel data. Both models can be formalized in a non-

linear state space framework and maximum likelihood estimation can be obtained by mean of a

non-linear filtering algorithm.

The main advantage of AGH compared with other numerical approximation methods is that

it better captures the peak of the integrand in those cases in which it appears very sharp, using

fewer quadrature points than other methods. This is due to the fact that the nodes of AGH are

scaled and translated at each step of the algorithm with the posterior mean and the posterior

standard deviation of the latent variables given the manifest variables.

The good behavior of AGH has been highlighted by means of simulation studies. For SV

models we found that the advantages of AGH with respect to other quadrature methods are

particularly evident in terms of parameter accuracy for those values of the model parameters

that give low coefficients of variation of the volatility. For LDV models, we found that the

performance of AGH is related to the value of the autocorrelation parameter ρ. For high values

of ρ, parameter estimates are very accurate under AGH even with q = 15 quadrature points,

whereas GH produces convergent solutions only in few cases when the sample size is large.

On the other hand, for ρ = 0.5, AGH gives results very similar to the classical GH but with

a higher computational cost. To solve this problem, we considered a pseudo version of AGH

that consists in updating the nodes of the quadrature only at the first step of the algorithm. We

found a very good performance of this method in terms of both computational burden of the

algorithm and parameter accuracy in almost all the scenarios considered. However, differently
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from AGH, the performance of PseudoAGH is dependent on the choice of the starting values.

The potential of the proposed method has been showed also with an application to two real

data sets, the first one referred to an American longitudinal survey on the health condition of

the elderly population, the second one to a time-series of daily pound/dollar exchange rates in a

given period of time. In both examples, the latent variables showed high values of autocorrela-

tion, values for which the adaptive quadrature presents the best performance compared with the

other approximations. The high persistency of the latent variable is typical of SV models but it

is also plausible in panel data for the underlying process of time dependent response variables,

as for the health status considered here.
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Figure 1: Performance of the two approximations for ρ = 0.5 (first row) and ρ = 0.95 (second

row).
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Figure 2: Log-daily difference of the pound-dollar exchange rate from October 1st, 1981 to

June 28th, 1985.
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Figure 3: Filtered estimated volatilities obtained assuming the Normal distribution (x-axis) and

the t-Student distribution (y-axis) for the error terms for the daily exchange rates dataset.
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Table 1: Estimated mean and rmse (in brackets) for the LDV model parameters under GH and

AGH for T = 5, n = 500; results based on 500 replications.

True value GH21 GH51 AGH15 AGH21 PseudoAGH21

ρ = 0.5 0.478 (0.17) 0.487 (0.18) 0.487 (0.18) 0.492 (0.19) 0.493 (0.19)

β = 1 1.109 (0.35) 1.094 (0.28) 1.118 (0.40) 1.087 (0.25) 1.100 (0.34)

ση = 1 1.271 (0.86) 1.238 (0.72) 1.287 (0.97) 1.216 (0.67) 1.244 (0.84)

%cv 92 95 99 100 100

nr feval 48 48 41 41 40

av time (sec) 11.14 40.36 78.36 125.54 32.26

ρ = 0.90 - - 0.871 (0.05) 0.884(0.05) 0.882 (0.05)

β = 1 - - 1.016 (0.05) 1.011(0.05) 1.012 (0.05)

ση = 1 - - 1.045 (0.10) 1.028(0.11) 1.030 (0.10)

%cv - - 100 100 100

nr feval - - 28 35 31

av time (sec) - - 64.91 129.56 22.68

ρ = 0.95 - - 0.898 (0.06) 0.917(0.05) 0.914 (0.03)

β = 1 - - 1.025 (0.05) 1.015(0.05) 1.019 (0.05)

ση = 1 - - 1.074 (0.11) 1.050(0.10) 1.053 (0.10)

%cv - - 100 100 100

nr feval - - 27 32 28

av time (sec) - - 65.4 100.18 19.14
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Table 2: Estimated mean and rmse (in brackets) for the LDV model parameters under GH and

AGH, T = 10, n = 500; results based on 500 replications.

True value GH21 GH51 AGH15 AGH21 PseudoAGH21

ρ = 0.5 0.455 (0.10) 0.481 (0.10) 0.490 (0.10) 0.490 (0.10) 0.490 (0.10)

β = 1 1.044 (0.11) 1.028 (0.11) 1.025 (0.14) 1.023 (0.10) 1.025 (0.13)

ση = 1 1.137 (0.31) 1.081 (0.30) 1.070 (0.35) 1.065 (0.29) 1.070 (0.34)

%cv 61 81 100 100 100

nr feval 63 53 56 56 56

av time (sec) 24.43 80.12 227.48 288.38 73.23

ρ = 0.90 - - 0.892 (0.02) 0.898(0.02) 0.898 (0.02)

β = 1 - - 1.003 (0.03) 1.001(0.03) 1.001 (0.03)

ση = 1 - - 1.011 (0.06) 1.001(0.06) 1.002 (0.06)

%cv - - 97 98 100

nr feval - - 37 36 36

av time (sec) - - 137.64 188.03 37.91

True value GH21 GH51 AGH15 AGH21 PseudoAGH21

ρ = 0.95 - - 0.923 (0.03) 0.938 (0.02) 0.935 (0.04)

β = 1 - - 1.013 (0.04) 1.007 (0.04) 1.010 (0.03)

ση = 1 - - 1.034 (0.15) 1.017 (0.08) 1.030 (0.06)

%cv - - 99 97 100

nr feval - - 36 36 39

av time(sec) - - 164.71 278.73 52.23
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Table 3: Estimated mean and rmse (in brackets) for the LDV model parameters under GH and

AGH for T = 5, n = 1000; results based on 500 replications.

True value GH21 GH51 AGH15 AGH21 PseudoAGH21

ρ = 0.5 0.478 (0.14) 0.482 (0.14) 0.487 (0.14) 0.486 (0.15) 0.488 (0.14)

β = 1 1.064 (0.19) 1.058 (0.17) 1.058 (0.23) 1.053 (0.16) 1.057 (0.23)

ση = 1 1.170 (0.52) 1.150 (0.48) 1.147 (0.58) 1.138 (0.46) 1.145 (0.58)

%cv 77 92 100 100 100

nr feval 50 55 58 57 57

av time(sec) 24.46 83.27 191.66 309.6 72.99

ρ = 0.90 0.828 (0.08) 0.876 (0.04) 0.875 (0.04) 0.888 (0.04) 0.887 (0.04)

β = 1 1.030 (0.05) 1.013 (0.04) 1.013 (0.04) 1.008 (0.03) 1.009 (0.03)

ση = 1 1.099 (0.12) 1.038 (0.08) 1.036 (0.07) 1.020 (0.08) 1.021 (0.07)

%cv 18 74 96 98 100

nr feval 55 50 49 50 50

av time(sec) 19.36 70.84 167.64 312.05 59.84

ρ = 0.95 - 0.902 (0.05) 0.901 (0.05) 0.923 (0.04) 0.918 (0.04)

β = 1 - 1.021 (0.04) 1.022 (0.04) 1.015 (0.05) 1.016 (0.03)

ση = 1 - 1.067 (0.09) 1.068 (0.12) 1.036 (0.10) 1.046 (0.07)

%cv - 36 98 100 100

nr feval - 50 44 48 46

av time(sec) - 72.49 192.63 269.41 62.11
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Table 4: Comparison between different approximation methods in terms of the estimated means

and rmse of the SV model parameters.

CV=10 γ ρ ση γ ρ ση γ ρ ση

TRUE -0.821 0.90 0.675 -0.411 0.95 0.484 -0.164 0.98 0.308

GLQ -0.896 0.890 0.685 -0.505 0.940 0.495 -0.100 0.986 0.320

(0.28) (0.03) (0.08) (0.18) (0.02) (0.07) (0.08) (0.01) (0.05)

RQ -0.859 0.895 0.694 -0.472 0.943 0.503 -0.275 0.967 0.343

(0.25) (0.03) (0.08) (0.18) (0.02) (0.07) (0.18) (0.02) (0.07)

LA -0.905 0.880 0.727 -0.510 0.931 0.534 -0.259 0.965 0.343

(0.28) (0.04) (0.10) (0.23) (0.03) (0.09) (0.18) (0.02) (0.07)

AGH -0.613 0.925 0.725 -0.509 0.938 0.527 -0.276 0.966 0.358

(0.23) (0.03) (0.15) (0.16) (0.02) (0.08) (0.19) (0.02) (0.08)

av time(sec) 17.97 12.34 14.86

CV=1.0 γ ρ ση γ ρ ση γ ρ ση

TRUE -0.736 0.90 0.363 -0.368 0.95 0.26 -0.147 0.98 0.166

GLQ -0.870 0.880 0.370 -0.510 0.930 0.280 -0.090 0.987 0.180

(0.43) (0.05) (0.08) (0.31) (0.04) (0.07) (0.06) (0.02) (0.04)

RQ -0.812 0.890 0.375 -0.492 0.933 0.278 -0.308 0.958 0.214

(0.45) (0.06) (0.09) (0.29) (0.04) (0.07) (0.25) (0.03) (0.08)

LA -0.926 0.872 0.422 -0.526 0.927 0.303 -0.278 0.961 0.200

(0.42) (0.06) (0.11) (0.39) (0.05) (0.10) (0.25) (0.03) (0.07)

AGH -0.572 0.922 0.359 -0.475 0.935 0.293 -0.341 0.953 0.213

(0.17) (0.02) (0.04) (0.21) (0.03) (0.08) (0.26) (0.03) (0.07)

av time(sec) 13.85 11.59 17.83

CV=0.1 γ ρ ση γ ρ ση γ ρ ση

TRUE -0.706 0.90 0.135 -0.353 0.95 0.096 -0.141 0.98 0.061

GLQ -1.360 0.810 0.160 -0.810 0.886 0.120 -0.537 0.924 0.088

(1.72) (0.24) (0.12) (1.15) (0.16) (0.09) (1.13) (0.16) (0.09)

RQ 0.944 0.873 0.159 -0.796 0.888 0.148 -0.515 0.927 0.122

(1.24) (0.17) (0.10) (0.77) (0.11) (0.10) (0.94) (0.13) (0.11)

LA -1.227 0.827 0.178 -0.763 0.892 0.133 -0.489 0.93 0.099

(1.55) (0.22) (0.14) (1.16) (0.16) (0.12) (0.98) (0.14) (0.11)

AGH -0.521 0.926 0.137 -0.455 0.935 0.098 -0.568 0.920 0.131

(0.21) (0.03) (0.08) (0.18) (0.03) (0.08) (0.52) (0.07) (0.10)

av time(sec) 17.02 20.03 18.77
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Table 5: Summary statistics for the covariates in the HRS dataset; n = 7074.

Variable Mean Stdev

Gender (female) 0.581 0.490

Race (nonwhite) 0.171 0.377

Education

(high school) 0.609 0.488

(college degree) 0.197 0.398

(college +) 0.194 0.395

Age92 54.80 5.460

Table 6: Conditional distribution of SHRt given SHRt−1 for the HRS dataset; n = 7074.

poor fair good very good excellent

poor 54.5 34.1 8.4 2.5 0.7

fair 12.8 51.0 27.4 7.2 1.6

good 2.5 16.5 53.3 23.6 4.1

very good 0.8 4.7 25.9 55.6 13.0

excellent 0.4 1.9 10.6 33.7 53.4

Table 7: Estimates of the parameters of the LDV model adopted for the analysis of the HRS

dataset (standard errors in brackets).

AGH PseudoAGH

β̂1 female -0.147 (0.074) -0.099 (0.073)

β̂2 non white -1.509 (0.096) -1.394 (0.091)

β̂3 education 1.182 (0.046) 1.141 (0.047)

β̂4 age -0.109 (0.003) -0.089 (0.003)

ρ̂ 0.953 (0.018) 0.955 (0.015)

σ̂ 3.121 (0.036) 2.860 (0.034)

Log-lik -63591.17 -63595.50

Time (sec) 9612.34 2588.60
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Table 8: Estimates of the parameters of SV model adopted of the analysis of the daily exchange

rates using AGH21 (with standard errors in brackets).

Model

SV Normal SV t-Student

γ -0.0906 (0.009) -0.0914 (0.011)

ρ 0.9093 (0.011) 0.9091 (0.010)

σ2
η 0.3034 (0.002) 0.2831 (0.031)

ν - 22.020 (11.923)

Log-lik -921.610 -922.289

Time (sec) 29.73 34.79
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