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1 Introduction

This paper aims at uncovering the possible linear or non-linear causality between total energy

supply and economic activity using annual data from the Greek economy spanning the period

between 1960 and 2008. Our analysis is much broader than that of previous studies on the

Greek economy (for reviews see e.g., Dergiades and Tsoulfidis (2011)) as it includes besides

electricity all other energy flows used within the Greek energy system. The characteristic

difference of our study from other previous international ones is the homogenization of energy

inputs in such that to account for their differential efficiencies and in so doing we end up

with an altogether new series of quality adjusted energy consumption known as total useful

energy. Furthermore, our analysis of the causal linkages between economic growth and the

quality adjusted total energy consumption is carried out within a non-linear context.

Four are the outcomes or testing hypotheses of the causality (linear or nonlinear) analysis,

between energy consumption and economic activity: a) the growth hypothesis, b) the conser-

vation hypothesis, c) the neutrality hypothesis and finally d) the feedback hypothesis. Each

of the above mentioned hypotheses implies a different kind of economic policy. In particular,

the first hypothesis is referred to the existence of a unidirectional causality running from the

energy consumption to economic growth, suggesting that disruptions or restrictions in the

smooth supply of energy in the economy will exert a negative impact on economic growth.

On the other hand, non-conservation energy policies are expected to influence positively

economic growth. By contrast, the second hypothesis implies that there is unidirectional

causality running from economic growth to energy consumption. The policy implication of

the conservation hypothesis is that as the economy is not entirely energy dependent, the gov-

ernment may adopt energy conservation policies with minimal effects on economic growth.

The third hypothesis refers to the case, where there is no causality running in either direc-

tion, and, therefore, any policy with respect to the consumption of energy, conservative or

expansive, is expected to have a negligible effect on economic growth. Finally, the fourth

hypothesis suggests a bidirectional causal relationship between energy consumption and eco-
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nomic growth thereby lending support to the view that a mix of taxation and subsidization

policies may exert a positive growth effect in the economy without influencing, at the same

time, the effectiveness of the implemented energy conservation policies. As a consequence,

the empirical findings related to the causality direction, may be extremely useful for the

appraisal of the effectiveness of various energy policies.

The novelty of our study is that it bridge’s a lacuna in the literature by combining non-

linear causality techniques along with the use of a quality-weighted scheme in constructing

the total energy consumption series for the Greek economy. To the extent that we know the

literature there are no previous studies combining non-linear causality techniques along with

the use of a quality-weighted scheme in the construction of the total energy consumption

series. The energy quality adjustment approach adopted in this paper is in accordance with

the influential study of Cleveland et al. (2000), who argued that in ”aggregating different

energy types by their heat units embodies a serious flaw: it ignores qualitative differences

among energy vectors” as well as that ”adjusting energy for quality is important as is consid-

ering the context within energy use is occurring”. This view, for energy quality adjustment,

is further acknowledged and supported by Zachariadis (2007), who argued that such practice

has to be seriously considered in similar empirical applications. Moreover, our methodolog-

ical framework is in line with the conclusion of Ozturk (2010) who noted that ”it should

be understood that research papers using the same methods with the same variables, just

by changing the time period examined, have no more potential to make contribution to the

existing energy-growth literature”. In particular, apart from the usual implementation of the

standard Granger causality test (Granger, 1969); we applied the well known non-parametric

Hiemstra and Jones (1994) test for non-linear causality as well as its recent modification,

proposed by Diks and Panchenko (2006).

In order to aggregate the various heterogeneous sources of energy particular care should

be applied when we accounting for their differential efficiencies. In this sense, we took in

consideration the efficiency adjustments in the energy mix used in the economy over time,

3



since by definition the total useful energy measures the capacity of the various energy flows to

perform useful work. There are many approaches that can be used in order to account energy

for quality, such as for example production side approaches (characterized in the literature

as emergy) or end-use approaches (known as exergy or the price-based approach).1 Ideally,

it would be absolutely desirable to compare the results of our analysis with those that would

be derived had we followed an economically meaningful way to homogenize the energy flows,

that is, through prices. The idea is that prices reflect both preferences and productivities.

The trouble with such an approach is that the data on prices for so many diverse energy

input sources are hard to come by for such a long period of time. Furthermore, prices

in energy markets do not necessarily reflect preferences or productivities simply because

of heavy government regulation of the energy industry. Consequently, prices are fraught

with a number of taxes and restrictions and so they do not reflect only preferences and

productivities. Finally, the use of prices for the purposes of aggregation of various energy

sources to a single one is based on the implicit assumption that the substitutability among

the various fuels is unaffected by the magnitude of the non-fuel inputs used (Cleveland et al.,

2000), a very strong assumption in some cases.2

The remainder of the paper is organized as follows: Section 2 reviews briefly the literature

on the nexus between energy consumption and economic growth. Section 3 continues with

the presentation of the adopted methodological framework. Section 4 discusses basic data

issues and at the same time conducts the necessary preliminary econometric analysis. Section

5 presents and evaluates the results of the causality testing procedure and finally, Section 6

summarizes and draws some broad policy conclusions.

1Cleveland (1992) provides a comprehensive and insightful discussion of the concept of energy quality.
2According to Cleveland (1992) there is no single method of aggregation generally and unequivocally

accepted among researchers, there are pros and cons in each research method.
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2 Review of the Literature

In recent decades there are many studies contributing to the understanding of the nexus

between energy consumption and economic growth. Ozturk (2010) provides a pretty detailed

chronological survey of studies investigating, for a single country or for a group of countries,

the causal relationship between energy consumption and economic growth. Therefore, our

focus concentrates exclusively on relevant and recently published papers, whose results are

conveniently summarized in Table 1 below. We observe that the results of Table 1 are by no

means uniform and they vary across countries in the same level of economic development but

also for the same country in different time periods and econometric methodologies utilized

each time. The lack of uniformity in the results stems, among other things, from the different

estimating methods, sample periods, quality of data and model specifications. Furthermore,

it is worth noting that the results in most of past studies suffer from the assumption of

linearity in the variables involved, while in effect the relations between variables might be

nonlinear in character. Meanwhile, various economic shocks and regime changes, such as

for example those emanating from economic environment, energy policies and variations in

energy price may give rise to such structural changes in energy consumption for the time

period under study rendering the assumption of linearity utterly misleading. Clearly, such

structural changes in energy consumption and economic growth may be described much more

accurately by a non-linear relationship, and therefore the non-linear modelling may be more

suitable to the task at hand (Lee and Chang, 2005). The results of most recent studies are

displayed in Table 1 below.

A cursory look at Table 1 reveals the country specific empirical results. For example,

starting with the study by Tsani (2010) using data from the Greek economy spanning the

period 1960-2006 and the Toda-Yamamoto causality test finds unidirectional causality run-

ning from the total energy consumption to real GDP, while different causal relationships

are identified at disaggregated levels (not shown in Table 1). The same methodology (the

Toda-Yamamoto test), when applied to the economy of China for the period 1960-2007, gives
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quite opposite results with causality running from real GDP to energy consumption (Zhang

and Cheng, 2009). The same test does not identify any causal relationship in the USA dur-

ing the period 1949-2006 according to Bowden and Payne (2009). Similar are the results

for the Turkish economy (1960-2005) according to Halicioglu (2009), who is using an ARDL

cointegration methodology and a VECM for testing causality. The study by Chiou-Wei et al.

(2008) implements for each of eight Asian economies and the USA the non-linear Hiemstra

and Jones (1994) causality test. More specifically, Chiou-Wei et al. (2008) identify causal-

ity running from energy to real GDP for Taiwan (1954-2006) and Hong Kong (1971-2003).

While, opposite results are derived for Singapore (1971-2003) and Philippines (1971-2003).

Their analysis for Korea (1971-2003), Malaysia (1971-2003), Thailand (1971-2003) and the

United States (1960-2003) showed no causality to any direction and finally, for Indonesia the

results confirmed bidirectional causality.

Hondroyiannis et al. (2002) in their analysis for Greece (1960-1996) implemented the

Johansen cointegration technique and the VECM causality framework as well as Ghali and

El-Sakka (2004) under the same methodology for the Canadian economy (1961-1997), both

found bidirectional causality between energy consumption and GDP. However, when Cleve-

land et al. (2000) employed the standard Granger causality test, in a bivariate as well as in

a multivariate framework, to the US economy (1947-1996) they reached inconclusive results.

In particular, the bivariate causality tests showed no relation between the two variables

even in the case when energy consumption was adjusted for quality. Different and conflict-

ing results were obtained in the multivariate Granger causality tests, where real GDP was

found to Granger cause energy consumption, and when the test was repeated using energy

consumption adjusted for quality, the arrow of causality run the opposite direction.
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Table 1: Brief summary of the recent literature
Source Country Period Methodological Framework Causality inference

Panel A−Country specific studies

Tsani (2010) Greece 1960− 2006 Toda−Yamammoto causality test E → Y

Zhang and Cheng (2009) China 1960− 2007 Toda−Yamammoto causality test Y → E

Bowden and Payne (2009) United States 1949− 2006 Toda−Yamammoto causality test Y = E

Halicioglu (2009) Turkey 1960− 2005 ARDL cointegration, VECM causality Y = E

Chiou−Wei et al. (2008) Taiwan 1954− 2006 Hiemstra−Jones causality test E
∼→ Y

≫ Hong Kong 1971− 2003 Hiemstra−Jones causality test E
∼→ Y

≫ Korea 1971− 2003 Hiemstra−Jones causality test Y
∼
= E

≫ Singapore 1971− 2003 Hiemstra−Jones causality test Y
∼→ E

≫ Indonesia 1971− 2003 Hiemstra−Jones causality test Y
∼↔ E

≫ Malaysia 1971− 2003 Hiemstra−Jones causality test Y
∼
= E

≫ Philippines 1971− 2003 Hiemstra−Jones causality test Y
∼→ E

≫ Thailand 1971− 2003 Hiemstra−Jones causality test Y
∼
= E

≫ United States 1960− 2003 Hiemstra−Jones causality test Y
∼
= E

Ghali and El−Sakka (2004) Canada 1961− 1997 Johansen cointegration, VECM causality Y ↔ E

Hondroyiannis et al. (2002) Greece 1960− 1996 Johansen cointegration, VECM causality Y ↔ E

Cleveland et al. (2000) United States 1947− 1996 Bivariate Granger causality Y = E

≫ United States 1947− 1996 Bivariate Granger causality Y = E
q

≫ United States 1947− 1996 Multivariate Granger causality Y → E

≫ United States 1947− 1996 Multivariate Granger causality E
q → Y

≫ United States 1947− 1996 Johansen cointegration, VECM causality Y → E

Panel B−Group country studies

Huang et al. (2008) Low income group countries (N= 19) 1972− 2002 Panel VAR causality Y = E

≫ Lower middle income group countries (N= 22) 1972− 2002 Panel VAR causality Y → E

≫ Upper middle income group countries (N= 15) 1972− 2002 Panel VAR causality Y → E

≫ High income group countries (N= 26) 1972− 2002 Panel VAR causality Y
−→ E

≫ All countries (N= 82) 1972− 2002 Panel VAR causality E → Y

Narayan and Smyth (2008) G7 countries 1972− 2002 Panel cointegration, Panel causality test E → Y

Notes: The single direction arrow (→) signifies that the causality is running from the left hand side variable to the right hand side variable. The double direction arrow (↔) denotes the
presence of bidirectional causality between the involved variables. The deleted double direction arrow (=) indicates the absence of causality in any direction. The tilde symbol above any kind
of arrow (∼) points out that the identified (or not) causality is non-linear in nature. The exponent q in the energy consumption variable (E) implies that total consumption has been adjusted

for quality differences among alternative energy flows. The minus symbol above an arrow (
−

→) shows that the causality between the involved variables is negative. Finally, N is the number of
countries which are included in each income group.
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No more definitive were the results derived from studies implementing panel analysis.

Thus, in Huang et al. (2008) study of panel VAR causality their results for the period 1972-

2002 and 19 low income group countries showed no causality to either direction, whereas

for the 37 countries in the middle income group causality was from the real GDP to energy

consumption. The results for the 26 high income group countries revealed, once again,

causality running from real GDP to energy consumption with the difference that the sign

of causality was negative. When the authors combined all 82 countries to a single test the

results yielded causality running from energy to real GDP. The same result was derived by

Narayan and Smyth (2008) in their study for the G7 countries for the period 1972-2002.

3 Methodology

3.1 The standard Granger causality test

The standard Granger (1969) causality test identifies the existence of a possible causal rela-

tionship between two variables. Within a VAR framework the null hypothesis of no causality

is tested via the significant contribution that past values of one variable can offer in predicting

current values of another variable. Illustration of the details related to the implementation

of the standard Granger causality test, apart from the seminal articles of Granger (1969)

and Sims (1972), can be found in several studies in the literature (see for example Chiou-Wei

et al. (2008), inter alia). In cases where cointegration is verified in the levels of the involved

variables, then the VAR equations are augmented with the inclusion of the error correction

term. In such case, the causality testing procedure takes place within the VECM framework

(Engle and Granger, 1987).
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3.2 A non-linear causality testing

The standard Granger causality testing procedure is inappropriate to detect the presence

of a non-linear causal relationship between two series. As Baek and Brock (1992) have

pointed out, the power of the tests conducted within a linear framework is lower compared

to those conducted within a non-linear alternative. To circumvent the limitations of the

linear framework our attention shifts to the two modified versions of the Baek and Brock

(1992) testing procedure proposed by Hiemstra and Jones (1994) and Diks and Panchenko

(2006).3

3.2.1 Testing for non-linear dependence

Before testing for non-linear causality it is of great importance to confirm the presence of non-

linearity in the series at hand. In particular, in our effort to identify potential deviations from

the assumption of independence, the BDS test is being applied as suggested by Brock et al.

(1996). The BDS test can be implemented to the residuals derived from the delinearization of

the series (e.g. residuals computed from a VAR specification), in order to ascertain whether

or not these residuals are i.i.d. (independent and identically distributed). To this end, it

should be established, for any given pair of observations, that the probability of their distance

being less than or equal to θ (a randomly selected small positive number), remains constant.

The BDS test, given for example the κ-dimensional Zt series, identifies among all the

available sample sets of a pre-selected length, those sets that satisfy the θ condition, through

the use of the following correlation integral:

Ĉκ,n (θ) =
2

(n− κ+ 1)(n− κ)

n−κ+1
∑

s=1

n−κ+1
∑

t=s+1

κ−1
∏

j=0

I
(

Zκ
t+j, Z

κ
s+j

)

(1)

where, the indicator function I
(

Zκ
t+j, Z

κ
s+j

)

takes on the value of 1 if ‖Zκ
t , Z

κ
s ‖ ≤ θ and 0

3It goes without saying that this section is based on Hiemstra and Jones (1994) and Diks and Panchenko
(2006).
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otherwise, ‖Zκ
t , Z

κ
s ‖ denotes the Euclidean distance between Zκ

t and Zκ
s .

In order to test the assumption of independence, Brock et al. (1996) showed that the B

Statistic defined as

B =
(√

n− κ+ 1
) Ĉκ,n (θ)− Ĉ1,n−κ+1(θ)

κ

Sκ,n (θ)

D→ N(0, 1) (2)

follows the standard normal distribution. Where, Sκ,n (θ) is the standard deviation estimator.

3.2.2 The Hiemstra and Jones test

The Hiemstra and Jones (1994) test restates the null hypothesis used by Baek and Brock

(1992) in terms of joint distributions. In particular, for two strictly stationary and weakly

dependent time series, Gt and Et, consider the subsequent definitions: let Zκ
t to be the κ-

length lead vector of Gt, E
le
t the le-length lag vector of Et and finally, G

lg
t the lg-length lag

vector of Gt, with le, lg ≥ 1. Given that the null hypothesis is actually a proposition about

the invariant distribution of the (le+ lg +κ)-dimensional vector Xt = (Ele
t ,G

lg
t ,Z

κ
t ), the time

subscript is dropped. It is also assumed, as a common empirical practise, that κ is equal to

1 and in the interest of brevity and clarity of presentation, we set le = lg = 1. Therefore,

given all the pre-mentioned definitions and assumptions, the null hypothesis of no causality

should satisfy the following condition:

fE,G,Z (e, g, z)

fE,G (e, g)
=

fG,Z (g, z)

fG (g)
(3a)

or,

fE,G,Z (e, g, z)

fG (g)
=

fE,G (e, g)

fG (g)

fG,Z (g, z)

fG (g)
(3b)

Hiemstra and Jones (1994) argued that for a randomly selected small positive value of

θ, the non-Granger cause condition shown in equation (3.a), implies the following ratios of
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joint probabilities:

CE,G,Z (θ)

CE,G (θ)
=

CG,Z (θ)

CG (θ)
(4a)

or,

CE,G,Z (θ)

CG (θ)
=

CG,Z (θ)

CG (θ)

CE,G (θ)

CG (θ)
(4b)

where, CW (θ), with W any arbitrary multivariate vector taking on values in R
dW , denotes

the probability of identifying two independent realizations of the W vector within a distance

which is smaller than or equal to θ. The above illustrated ratios of the CW (θ) correlations

integrals are in fact measures of divergence between the two sides of the (3.a) equality. The

general formula for the CW (θ) correlation integral is given as follows:

CW (θ) = P [‖W1 −W2‖ ≤ θ] ,W1,W2 indpen. ∼ W

=
∫ ∫

I (‖s1 − s2‖ ≤ θ)fN (s1) fN (s2) ds1ds2

(5)

where, P [•] denotes the probability function, ‖•‖ is the maximum norm, which for

the n-dimensional vector W = {W1,W2, ...,Wn}T is defined as ‖W‖ = supn
i=1 |Wi|,

I (‖s1 − s2‖ ≤ θ) is, as previously, the indicator function which takes on the value of 1,

if ‖s1 − s2‖ ≤ θ and 0 otherwise.

To assess statistically the validity of the non-causality condition in equation (4.a), Hiem-

stra and Jones (1994) utilized sample estimators for the approximation of the correlations

integrals presented in (5). These estimators have the following form:

ĈW,n (θ) =
2

n(n− 1)

∑

i<j

∑

IWij (6)

Based on the above estimator, the two ratios of correlation integrals presented in equation
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(4.a) can be substituted by their respective sample estimators adjusting equation (6) accord-

ingly. As a result, for given values of κ, le, lg and θ, the ratio difference of the correlation

integrals estimators T, is proved by Hiemstra and Jones (1994) that follows the normal

distribution.

T =

[

ĈE,G,Z (θ, n)

ĈE,G (θ, n)
− ĈG,Z (θ, n)

ĈG (θ, n)

]

∼ N

(

0,
1√
n
σ2 (κ, le, lg, θ)

)

(7)

3.2.3 The Diks and Panchenko modification

The major shortcoming of the Hiemstra and Jones (1994) test is that over-rejects, in certain

situations, the null hypothesis when this is actually true. Diks and Panchenko (2006) argued

that the observed over-rejection of the null hypothesis comes from the assumption made by

Hiemstra and Jones (1994), that equation (3.a) implies equation (4.a). As a result, Diks and

Panchenko (2006) made an effort to remedy this inconsistency by introducing a modified

Statistic and in so doing the null hypothesis can be restated as follows:

q ≡ E [fE,G,Z (E,G,Z) fG (G)− fE,G (E,G) fG,Z (G,Z)] = 0 (8)

and the proposed estimator for q is:

Tn (θn) =
(2θ)−dE−2dG−dZ

n (n− 1) (n− 2)

∑

i

[

∑

k,k 6=ij

∑

j 6=i

(

IEGZ
ik IGij − IEG

ik IGZ
ij

)

]

(9)

where, IXij = I (‖Xi −Xj‖ ≤ θ), with I(•) to be the indicator function and θn the bandwidth

which depends on the sample size. The vector X is defined as previously.

Hence, if we denote as f̂X (Xi) the local density estimator of the vector X at Xi, that is:
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f̂X (Xi) = (2θn)
−dX (n− 1)−1

∑

j,j 6=i

IXij (10)

Then, the Tn (θn) Statistic can be expressed in the following compact form:

Tn (θn) =
(n− 1)

n (n− 2)

∑

i

(

f̂E,G,Z (Ei, Gi, Zi) f̂G (Gi)− f̂E,G (Ei, Gi) f̂G,Z (Gi, Zi)
)

(11)

Diks and Panchenko (2006) showed that if θn = Cn−β with
(

C > 0, 1
4
< β < 1

3

)

, then the

distribution of the Tn (θn) Statistic converges to the standard normal:

√
n
(Tn (θn)− q)

Sn

D→N(0, 1) (12)

where, Sn is the asymptotic variance estimator of Tn (•). Overall, through the implemen-

tation of the Statistic illustrated in equation (12), the risk of over-rejecting, the null of no

causality, is reduced, and therefore the major drawback of the (Hiemstra and Jones, 1994)

non-linear hypothesis testing procedure is taken care of.

4 Data sources and preliminary analysis

4.1 Data sources

This study makes use of annual time series data for the economy of Greece, covering the

period from 1960 to 2008. The length of the period under study is determined by the

availability of the data. The variables at hand are the real gross domestic product (2000=100)

and the quality adjusted total energy consumption (in tonnes of oil equivalent). The data on
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GDP come from the World Development Indicators (WDI) databank of the World Bank;4

while the energy consumption variable has been constructed utilizing detailed raw data from

the energy balances statistics of the International Energy Agency (IEA)5 and the Greek

National Energy Information System.6

As it has been already pointed out, most empirical studies in the field simply aggregate

the alternative energy flows according to their respective heat units.7 The problem with

the method of simple aggregation in terms of heat units is that it may give rise to serious

biases when one does not account for qualitative differences among different energy sources

and furthermore downplays the importance of the technological progress in the processes

and the devices used for energy transformation. As a consequence, our focus lies on the

construction of the total useful energy series, where qualitative differences among different

energy flows are accounted for. Technological progress, as this can be expressed by efficiency,

affects not only the extraction of various energy forms but also the practices associated with

the intermediate conversion and transfer. Replacement investments along with technological

improvement in the processes and the equipment, affect the quantitative and the qualitative

characteristics of the final used energy.

In this work, the effects of the technological progress together with changes in the compo-

sition of the energy mix are taken into account in the estimation of the total useful energy, in

terms of tons of oil equivalent, for the Greek energy system. Total useful energy is equal to

the final energy (energy supplied to a process or equipment) minus the conversion loses. Our

calculations are based on efficiency factors taking into account all the possible combinations

that may arise between final energy forms and end-uses. Additionally, in order to increase

the accuracy of our estimations of the total useful energy series, the Greek energy system

has been divided in 12 sectors.8 In each sector, the transformation from one energy form

4See http://databank.worldbank.org
5See http://www.iea.org
6See http://www.ypan.gr
7Among the few exceptions are included the studies by Berndt (1996), Stern (1993) and Patterson (1996).
8The 12 sectors of the Greek energy system are the following: primary energy production, net imports,

bunkers, transformations, energy sector, industrial sector, transportation (air, land, sea and rail), agricultural
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to another is characterized by a specific efficiency factor that depends not only on time but

also on the energy form used and the technology employed. As a result, the total useful

energy use (U ) for the Greek energy system and for a given period, it can be approximated

through the following formula:

U =
k

∑

i=1

l
∑

j=1

π
∑

λ=1

Fi,j,λQj,λ (13)

where, i denotes the sector, j is the energy form, λ is the transformation technology, (F )

is the final energy and finally, (Q) is the quality factor as this can be depicted through

efficiency. For the entire Greek energy system, the final total useful energy series, for a

given period, is constructed by aggregating the useful energy used by the following sectors of

the economy: energy, industrial, agricultural, commercial, residential and transportation.9

Figures 1 and 2 below illustrate the two key variables of the study, the total useful energy

of the Greek economy in tonnes of oil equivalent10 and the gross domestic product (GDP)

in constant prices (2000=100), for the period 1960-2008.

Figure 1: Total Useful Energy Figure 2: Real Gross Domestic Product

sector, commercial sector, residential sector, non energy uses and finally all other.
9A more detailed discussion about the construction of the total useful energy series is provided in the

appendix.
10The total useful energy time series, for the Greek energy system, are available upon request.
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4.2 Preliminary analysis

In order to identify the exact order of integration of the variables involved in our study,

we implement a set of unit root and stationarity tests. More specifically, we apply the

Augmented Dickey-Fuller (ADF) test, with and without a trend as well as the Generalized

Least Squares detrending Dickey-Fuller (GLS-DF) test, with and without a trend as well.

The rationale for the use of the GLS-DF test is rooted on the fact that it improves the power

of the well established in the literature ADF test (Elliott et al., 1996). Panels A and B in

Table 2 below, display the results of the unit root tests for the two variables of our study.

Clearly, both variables appear to be integrated of order one, regardless of the inclusion of

the time trend, provided that in every case, we fail to reject the null hypothesis in the levels.

At the same time, the opposite is true, when the same tests are reapplied not this time in

the levels of the series but in their first differences.

Table 2: ADF and GLS-DF unit root tests.
Panel A−ADF test

Level First Difference
Variable no-trend trend no-trend trend

t−Stat.(k) t−Stat.(k) t−Stat.(k) t−Stat.(k)
Y −1.47(0) −1.67(3) −4.61(0)∗∗∗ −4.74(0)∗∗∗

E −0.16(0) −2.14(0) −6.84(0)∗∗∗ −6.74(0)∗∗∗

Panel B−GLS−DF test

Y 0.68(3) −2.00(3) −4.65(0)∗∗∗ −4.80(0)∗∗∗

E 2.07(0) −2.09(0) −6.44(0)∗∗∗ −6.72(0)∗∗∗

Notes: ADF stands for the Augmented Dickey-Fuller test. GLS-DF stands for the Generalized Least
Squares detrending Dickey-Fuller test, k represents the selected lag-length. A practical concern was the
selection of the appropriate lag-length for the auxiliary regression since an extensive lag-length leads to
loss of power, while at the same time a limited lag-length gives rise to serial correlation rendering our test
biased; therefore, the lag-length for the ADF test as well as for the GLS-DF test was selected based on
the Schwarz information criterion with kmin = 0 and kmax = 10.To determine the maximum lag-length
(kmax), we implemented Schwert’s principle (Schwert, 1989), that is, kmax = 12(n/100)0.25, with n to
be the sample size. Finally, ∗, ∗∗ and ∗ ∗ ∗ denote rejection of the null hypothesis at the 10%, 5% and 1%
significance level, respectively.
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In addition to the above unit root tests, we implement two stationarity tests which are

the standard KPSS test and the six different types of the non-parametric Bierens-Guo test

(Bierens and Guo, 1993). The chief advantage of the Bierens-Guo tests is the substantial

gain in the asymptotic power, attributed to the fact that the approximation of the error

variance does not involve the implementation of the Newey-West estimator as is the case

with other stationary tests (Gaffeo et al., 2005). The results presented in Panels A and B

of Table 3, suggest that the order of integration implied from the stationarity tests is the

same with that derived from the unit root tests. We can, therefore, safely treat both of our

investigated series as I(1) variables.

Table 3: KPSS and Bierens-Guo (type 1 to type 6) stationarity tests

Panel A-KPSS test

Level First Difference
Variable no-trend trend no-trend trend

LM -Statistic LM -Statistic LM -Statistic LM -Statistic
Y 0.89∗∗∗ 0.28∗∗∗ 0.25 0.18
E 0.90∗∗∗ 0.24∗∗∗ 0.06 0.06

Panel B -Bierens-Guo tests

Variable (level) Variable (First Difference)
Y E Y E Y E Y E

Type1 37.43∗∗ 30.99∗∗ − − 1.51 1.24 − −
Type2 48.50∗∗ 48.99∗∗ − − 1.51 1.24 − −
Type3 93.26∗∗∗ 67.23∗∗∗ − − 1.54 1.25 − −
Type4 31.45∗∗ 98.72∗∗∗ − − 1.53 1.25 − −
Type5 − − 38.69∗∗ 31.87∗∗ − − 0.82 0.18
Type6 − − 11.85∗ 9.56∗ − − 2.03 0.86

Notes: KPSS stands for the Kwiatkowski et al. (1992) stationarity test. The bandwidth for the KPSS test was
chosen according to the Newey-West selection procedure, while the spectral estimation method used is the Bartlett
kernel. Bierens and Guo stationarity tests (Bierens and Guo, 1993) type 1 to type 4 test the null hypothesis of a
stationarity, while type 5 and 6 test the null hypothesis of a stationarity around a time trend. Finally, ∗, ∗∗ and
∗ ∗ ∗ denote rejection of the null hypothesis at the 10%, 5% and 1% significance level, respectively.

Finally, to rule out the case of false identification of the order of integration, we tested

for the existence of unit roots in the series at hand allowing this time for the presence of one

structural break. As is well known, failure to account for a possible structural break may

give rise to the so-called Perron phenomenon or the converse Perron phenomenon (Leybourne

et al., 1998). For this reason, we implemented the Zivot and Andrews (1992) unit root test

17



(ZA, hereafter) which permits endogenous identification of a possible structural break in

the data. The rationale of the ZA unit root test is similar to the well known tests that

have been proposed by Banerjee et al. (1992) and Perron (1997). Under the null hypothesis

the ZA test assumes the presence of a unit root, while the alternative hypothesis suggests

stationarity around a structural break, which takes place at an unknown time. The results

of the three alternative specifications of the ZA test, that is i) break in intercept (model A),

ii) break in trend (model B) and iii) break in intercept and trend (model C ), are analytically

illustrated in Table 4. Clearly, for all models (A, B and C ), the ZA test fails to reject the

null hypothesis of a unit root, at all the conventional significance levels. Overall, the ZA test

results corroborate the findings of the unit root and stationarity tests.

Table 4: Zivot-Andrews unit root test (with one structural Break).

modelA modelB modelC
Variable

t-Stat.(k)break t-Stat.(k)break t-Stat.(k)break
Y −2.23(3)2001 −2.74(3)1998 −2.57(3)1992
E −3.51(0)1996 −2.27(0)1986 −3.31(0)1980

Notes: The critical values for model A at the 1%, 5% and 10% significance level are −5.34,
−4.93 and −4.58, respectively. The critical values for model B for the same significance levels
are −4.80, −4.42 and −4.11, respectively. Finally, the respective critical values for model C
(for the same significance levels) are −5.57, −5.08 and −4.82. All the above mentioned critical
values are asymptotic and can be traced in Zivot and Andrews (1992). Finally, k represents
the selected lag-length, based on the Akaike Information Criterion, which is followed by the
chosen break date.

Another issue related to the non-linear causality testing procedure is the presence of coin-

tegration. In cases where a long-run relationship exists the use of the vector-error correction

model (VECM) is of utmost importance to confer the occurrence of causality in the standard

VAR system (Engle and Granger, 1987). In order to examine the existence of a long-run

relationship we implement the Johansen (1995) cointegration approach. The cointegration

rank test results for the Trace Statistic along with the associated 5% critical values and the

related p-value are showed in Table 5. The results do not reject, at any conventional sig-

nificance level, the null hypothesis of zero cointegrating relationships. Hence, the Johansen

cointegration approach, based on the Trace test, does not indicate the presence of a long-run

relationship.

18



Table 5: The Johansen cointegration test.

Null hypothesis Alternative Trace Statistic 5% critical value p-value

r= 0 r= 1 12.61 15.49 0.13
r≤ 1 r= 2 0.12 3.84 0.73

Notes: The analysis is based on a VAR with a constant term and one lag for the endogenous variables.
Similar is the cointegration inference when the Max-Eigen Statistic is used. Tests for serial correlation show
no signs of misspecification.

5 Empirical results

Having completed our preliminary econometric analysis, we continue with the investigation

of the presence of a linear causal relationship between the total useful energy series and

economic growth we implement the standard Granger causality test (Granger, 1969). The

standard Granger causality testing procedure given the lack of a cointegration relationship11

necessitates the estimation of an unrestricted VAR model with the involved variables trans-

formed in their fist differences. In order to ascertain the existence of a linear causality,

running for example from energy to economic growth, our interest turns on the F -Statistic,

which is obtained after testing the joint significance of the lagged energy values in explaining

the current level of economic growth. The results in Table 6 show that total useful energy

Granger causes economic growth at the 0.05 level of significance (F=6.480). However, based

on the relevant value of the F -Statistic (F=0.654), no significant causality has been ascer-

tained for the opposite direction. Overall, linear causality testing provides evidence in favor

of a unidirectional causality running from energy to economic activity. In other words, and

within a linear causality framework the results lend overwhelming support to the growth

hypothesis and are consistent with the findings of Tsani (2010).

As the focus of our analysis is on the identification of a non-linear causality, we implement

a simple non-linear dependence test, widely known as the BDS test, proposed by Brock et al.

(1996). The BDS test assesses the validity of the i.i.d. assumption on the delinearized time

series data. The delinearization of the series takes place within a standard bivariate VAR

11This implies that the Granger causality testing procedure may be performed without the need to
estimate the associated error-correction specification.
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Table 6: The standard Granger causality test.

Null Hypothesis examined VAR lag length F−Statistic p−value

Y does not Granger cause E 1.000 0.654 0.422
E does not Granger cause Y 1.000 6.480∗∗ 0.014

Notes: ∗, ∗∗ and ∗ ∗ ∗ denote rejection of the null hypothesis at the 10%, 5% and 1% significance level,
respectively. The VAR lag order was selected on the basis of the Akaike information criterion. The
selected VAR lag order is equal to one. Summary of the causality inference: E → Y and Y 9 E.

framework. Table 7 below displays the BDS testing results corresponding to the residuals

(for the energy equation) that come from an unrestricted VAR specification. Clearly, and

irrespectively of the implemented dimension, the i.i.d. assumption is rejected even at the

0.01 significance level. Such a result signifies that non-linear causality testing procedures are

those that are suitable to our case.

Table 7: The BDS test.
Dimension BDS−Statistic Std. error Z−Statistic p−value

2 0.048 0.011 4.401∗∗∗ 0.000
3 0.084 0.017 4.715∗∗∗ 0.000
4 0.117 0.021 5.450∗∗∗ 0.000
5 0.128 0.023 5.647∗∗∗ 0.000
6 0.135 0.022 6.040∗∗∗ 0.000

Notes: ∗, ∗∗ and ∗ ∗ ∗ denote rejection of the i.i.d. assumption at the 10%, 5% and 1% signif-
icance level, respectively. The VAR lag-order was selected based on the Akaike information
criterion. The selected VAR lag-order is equal to one.

To carry out a causality testing within a non-linear context, the analysis proceeds with the

implementation of two non-linear in nature causality tests. The first and the most commonly

used test for this purpose is the non-parametric Hiemstra and Jones (1994) test, while the

second and not so frequently used but nevertheless important test is the one proposed by Diks

and Panchenko (2006). The major advantage of the Diks and Panchenko (2006) test over

the Hiemstra and Jones (1994) one is that it corrects for the observed severe over-rejection

of the null hypothesis, when this is actually true.

The hypothesis testing for the detection of non-linear causal linkages between the vari-

ables at hand is carried out in two sequential steps. In the first step both non-linear causality

tests are applied directly on the raw differenced series, while in the second step both non-
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Table 8: Non-parametric causality tests.

GDP → Total useful energy Total useful energy→GDP
lx=ly

H.J.(p−value) D.P.(p−value) H.J.(p−value) D.P.(p−value)

Panel A:Without filtering

1 1.42∗(0.07) 1.46∗(0.07) 1.46∗ (0.07) 1.49∗ (0.07)
2 1.17 (0.12) 1.16 (0.12) 1.65∗∗(0.04) 1.38∗ (0.08)
3 0.03 (0.48) 0.19 (0.42) 1.99∗∗(0.02) 1.81∗∗(0.03)
4 0.25 (0.40) 0.33 (0.37) 1.97∗∗(0.02) 1.41∗ (0.08)
5 1.29∗(0.09) 1.33∗(0.09) 1.90∗∗(0.02) 1.71∗∗(0.04)

Panel B :With VAR filtering

1 1.43 (0.08) 1.50∗(0.06) 1.54∗ (0.06) 1.72∗∗(0.04)
2 1.01 (0.16) 1.23 (0.11) 1.29∗ (0.09) 1.04 (0.15)
3 −0.73 (0.77) −0.25 (0.60) 1.62∗ (0.05) 1.39∗ (0.08)
4 −0.03 (0.51) 0.18 (0.42) 1.61∗ (0.05) 1.22 (0.11)
5 0.77 (0.22) 1.16 (0.12) 1.74∗∗(0.03) 1.67∗∗(0.05)

Notes: ∗, ∗∗ and ∗ ∗ ∗ denote rejection of the null hypothesis at the 10%, 5% and 1% significance level, re-
spectively. The VAR lag-order was selected based on the Akaike information criterion. The selected VAR
lag-order is equal to one. H.J. refers to Hiemstra and Jones (1994) test while D.P. refers to the Diks and
Panchenko (2006) test. Summary of the causality inference: E → Y and Y 9 E.

linear causality tests are repeated on the delinearized raw differenced series. As was the case

with the BDS test the delinearization process takes place within a bivariate VAR model.

This second step is considered of essential importance in order to ensure that any identi-

fied causality is solely non-linear in nature. The detailed results from the first step of the

non-parametric causality tests are displayed in panel A of Table 8, whereas in panel B are dis-

played the results from the second step. Starting from the raw differenced series, we observe

that the null hypothesis of no non-linear causality running from economic growth to total

useful energy is rarely rejected for both implemented tests (the results are displayed in the

first two columns in Panel A). Actually both tests provide fully matched results, according

to which sporadic rejections of the null hypothesis occurs only for the first and the fifth lag

length and not in a lower than the 0.1 level of significance. Turning now to the delinearized

series, and under the same null hypothesis, presented in the first two columns in Panel B,

the previously identified evidence of causality which has been characterized as sporadic now

seems to have been spirited away. More specifically, the null hypothesis is rejected at the 0.1
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significance level only for the Diks and Panchenko (2006) test and exclusively for the first lag

length. Overall, the observed rejections of the null hypothesis, no matter whether the time

series data are delinearized or not, do not lend support to the hypothesis of a systematic

and consistent causal relationship.

Examining the null hypothesis of the opposite direction now, no non-linear causality is

running from total useful energy to economic growth, there is sufficient statistical evidence in

favor of rejecting the null hypothesis. In particular, regarding the raw differenced series the

Hiemstra and Jones (1994) test rejects consistently the null hypothesis at the 0.05 significance

level for the various selected lag-lengths, with the only exception to be the first lag-length,

where the rejection arises at the 0.1 significance level (see the third column in Panel A). In

similar fashion, the Diks and Panchenko (2006) test systematically rejects the null hypothesis

but not always at the 0.05 significance level as the Hiemstra and Jones (1994) test does.

Specifically, the null hypothesis is rejected at the 0.05 significance level for the third and the

fifth lag while the rejection level rises at the 0.1 when the lag-length was set equal to 1, 2

and 4 (see the fourth column in Panel A). Finally, for the delinearized series and under the

same null hypothesis, the two non-linear and non-parametric causality tests provide adequate

evidence towards the rejection of the null hypothesis. The third column in panel B shows

that the Hiemstra and Jones (1994) test rejects consistently the null hypothesis at the 0.1

significance level for the different implemented lag-lengths, with the only exception to occur

in the final lag, where the rejection is at the 0.05 significance level. Similar is the causality

inference when the Diks and Panchenko (2006) test is performed. Despite the removal of any

linear component for both series, the null hypothesis is still rejected at the 0.05 significance

level, when the lag-lengths were set equal to 1, and 5, while the rejection level rises at the

0.1 when the lag-length was equal to 3. The only two

cases where we fail to reject the null hypothesis for the conventional significance levels

are when the lag-lengths took on the values 2 and 4. On the whole, based on the empirical

results provided by the standard Granger causality test and the two non-linear and non
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parametric causality tests which are presented in Tables 6 and 8, it can be argued that for

the case of Greece there is reasonable statistical evidence to support the growth hypothesis.

6 Conclusions

This article has examined the linear and non-linear causal linkages between total useful en-

ergy use and economic growth in the Greek economy. Given that energy flows comprise

various and distinct qualities, our study makes an effort to account for these qualitative

differences and in so doing to provide bias free energy time series data which are appro-

priate for the statistical investigation. Another novelty of our study is the adoption of a

non-parametric and non-linear econometric framework in order to assess the causal linkage

between economic growth and energy consumption. In particular, apart from the implemen-

tation of the standard Granger causality test (Granger, 1969); we applied the well known

non-parametric Hiemstra and Jones (1994) test for non-linear causality as well as its re-

cent modification, proposed by Diks and Panchenko (2006). Our final results for the Greek

economy imply that there is reasonable statistical evidence to support the existence of a uni-

directional causal relationship which occurs from energy consumption to economic growth.

With respect to policy implications, our non-linear causality tests yielded results sug-

gesting that energy is a limiting factor to economic growth and the later is what is needed

for a depression-ridden country such as Greece at this time, with the unemployment rate

well above 18 percent threatening the cohesion of the entire Greek society. For example,

sudden supply disruptions (e.g. due to dilapidated and insufficient public infrastructure) or

increases in fuel prices (due to heavy taxation) for the purposes of maximization of govern-

ment revenues may retard the current and damage the potential for future economic growth.

Although our empirical findings lend overwhelming support to the growth hypothesis, never-

theless extreme caution should be applied in using these results to propose concrete economic

policy measures to conserving energy. On the other hand, our findings should not be inter-
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preted to mean that they necessarily oppose to all energy conservation policies, but rather to

argue that well designed and carefully targeted energy conservation policies are expected to

promote rather than to harm economic growth. For instance, lower energy use due to lower

energy intensity because of a shift from heavy industry to high quality services could stimu-

late overall economic growth. It goes without saying that the right mix of energy inputs is of

extreme importance in the design of an effective energy policy as the environmental concerns

and also the penalties imposed from the violations of the Kyoto protocol (ratified by Greece

in 2002) become increasingly important. Therefore, the shift to more efficient and, at the

same time, less polluting energy forms is definitely a viable policy towards economic growth.

Such growing concerns can be better served, when one combines qualitative adjusted data

for the total energy consumption and quantifies the various parameters of the investigation

with more advanced and reliable econometric techniques.
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Appendix

Figure 3 below illustrates the topology of the Greek energy system which has been used in

order to construct the time series of the total useful energy. The aggregate energy quantities

(primary, final and useful) of the network refer for illustrative purposes only, to the last

year of our study (2008). In the presented network all the different efficiencies associated

with the transformation of the various energy forms into useful energy (e.g. heat, lighting,

utilities or movement) have been considered. More specifically, after taking into account the

primary energy production, the amount of net imports and finally, the contribution of the

bunkers, energy enters into the Greek energy system (38.78 Mtoe) into various forms.The

transformation of various energy forms into final useful energy goes through distinct stages.

In the first stage, called refining-conversion stage, a fragment of the various primary energy

24



forms is transformed into secondary energy (e.g. heat, electricity or oil derivatives).12 At

the second stage and via the network’s distribution channels the secondary energy reaches as

final energy (23.59 Mtoe) to the various segments of the economy for consumption. Finally,

in the third stage, each economic segment, according to its end-use activities, utilizes a

variety of equipment in order to convert final energy into useful energy (13.50 Mtoe).

Within the third stage, the relevant to the case efficient factors are utilized in order to

approximate the amount of total useful energy for a given year. Therefore, the energy quality

is delineated in terms of actual useful work. In order to extent the time series data of the total

useful energy for the entire sample, the same process has been re-applied for every single year

of the sample. By way of an example, let us focus on the agricultural segment for the entire

sample period, where the following are the main sources of energy: electricity, lignite, petrol,

diesel and heavy oil. From 1969 onwards, all transportations for agricultural purposes have

been set aside and the transformed energy is restricted to pumping for irrigation purposes.

Average efficiency for internal combustion engines running on petrol has been assumed to lie

within the range of 30 to 32 percent, on diesel or heavy oil in the range of 40 to 42 percent

and finally, for the electric engines the average efficiency is assumed to remain constant at 90

percent. Apart from engine efficiency, pumping efficiency has also been taken into account

(average efficiency 78 to 80 percent). For the whole period under investigation the estimated

efficiency in the agricultural sector ranges, depending on the year, between 28 to 41 percent.

For the electricity consumption, the assumption which has been made for each economic

sector is that it mainly serves the following three load types: thermal loads, lighting loads

and loads related to other utilities. The share of each load varies depending on the economic

sector and the time period. The last stage of Figure 3 portrays the total useful energy of

each sector of the economy and summing them up we end up with a figure of the total useful

energy measured in Mtoe for the Greek economy in each of the 48 years of study.

12Among the produced oil derivatives, diesel and heavy petroleum are also inputs used for the production
of heat and electricity.
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Figure 3: The Greek energy system
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Most empirical studies concentrate on the use of primary energy, that is the energy

prior to its transformation to other end-use energy forms, and in doing so disregard the

qualitative differences among the various energy flows during the aggregation process. In

short, these studies may suffer from aggregation bias, because as we find in our study of the

Greek energy data the divergence between total primary energy and total useful energy is

substantial. Figure 4 illustrates the overall efficiency of the Greek energy system defined by

the ratio of the total useful energy to the total primary energy. We observe that the evolution

of energy efficiency in Greece displays three distinct phases. The first phase, starting from

1964 and ending in 1974, is characterized by a rapidly rising trend and signifies the process

of electrification of the country (along with the inherent improved conversion rates). The

next two decades show a falling tendency efficiency which can be attributed to the growth

of the transportation sector and the resulting increase in the use of diesel and petrol. This

decrease has been reinforced by the greater share of lignite in the production of electricity.

Finally, the integration of the natural gas in the Greek energy system by the mid 1990’s

resulted to the mild increase in the overall efficiency level at the 35 percent.

Figure 4: Efficiency of the Greek energy system
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