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Abstract : A two-step approach for conditional Value at Risk (VaR) estimation is consi-

dered. In the first step, a generalized-quasi-maximum likelihood estimator (gQMLE) is

employed to estimate the volatility parameter, and in the second step the empirical quan-

tile of the residuals serves to estimate the theoretical quantile of the innovations. When the

instrumental density h of the gQMLE is not the Gaussian density utilized in the standard

QMLE, or is not the true distribution of the innovations, both the estimations of the vola-

tility and of the quantile are asymptotically biased. The two errors however counterbalance

each other, and we finally obtain a consistent estimator of the conditional VaR. For a wide

class of GARCH models, we derive the asymptotic distribution of the VaR estimation ba-

sed on gQMLE. We show that the optimal instrumental density h depends neither on the

GARCH parameter nor on the risk level, but only on the distribution of the innovations.

A simple adaptive method based on empirical moments of the residuals makes it possible

to infer an optimal element within a class of potential instrumental densities. Important

asymptotic efficiency gains are achieved by using gQMLE instead of the usual Gaussian

QML when the innovations are heavy-tailed. We extended our approach to Distortion

Risk Measure parameter estimation, where consistency of the gQMLE-based method is

also proved. Numerical illustrations are provided, through simulation experiments and an

application to financial stock indexes.
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1 Introduction

Financial market risk is usually perceived as the exposure to potential losses of

portfolios of risky assets. To assess the risk level, practitioners rest on risk manage-

ment tools, such as the notorious Value-at-Risk (VaR). In the late 1980, financial

firms began the use of VaR, defined as the loss that should not be reached for a

given position over a holding time period and at a certain confidence level.

The VaR is often estimated by a simple quantile of the historical returns. This

practice implicitly assumes that the sequence of the returns is stationary, and ne-

glects the dynamics, in particular this does not account for the existence of clusters

of extreme returns. It is preferable to take into account the information available,

by reasoning on the conditional distribution of the returns (see e.g. McNeil, Frey

and Embrechts (2005) and Kuester, Mittnik and Paolella (2006), who clearly sho-

wed that unconditional models of VaR are outperformed by conditional ones). The

VaR conditional on past observations will be called the conditional VaR 1.

More precisely, at the risk level α ∈ (0, 1), the (conditional) VaR of a sequence

of returns (ǫt) is the opposite of the α-quantile of the conditional distribution :

VaRt(α) = − inf {x : P (ǫt+1 ≤ x | ǫu, u ≤ t) ≥ α} . (1.1)

Assume that the returns follow the general conditionally heteroscedastic model





ǫt = σtηt

σt = σt(θ0) = σ(ǫt−1, ǫt−2, . . . ; θ0)
(1.2)

where (ηt) is a sequence of independent and identically distributed (iid) random

variables, ηt is independent of {ǫu, u < t}, θ0 ∈ R
m is a parameter belonging to

a compact parameter space Θ, and σ : R
∞ × Θ → (0,∞). The variable σ2

t is

generally referred to as the volatility of ǫt. For this GARCH-type volatility model,

we have

VaRt(α) = −σt(θ0)ξα, (1.3)

where ξα is the α-quantile of the distribution Pη of the innovations. Note that the

model (1.2) is not identifiable without a scaling assumption on Pη. The standard

identifiability assumption is Eη2
t = 1, but we do not need to make this assumption

in the present paper.

A simple and widely used example of the form (1.2) is the GARCH(p, q) model

1. Sometimes the conditional VaR refers to another risk measure called the expected

shortfall.
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of Engle (1982) and Bollerslev (1986), defined by





ǫt = σtηt

σ2
t = ω0 +

∑q
i=1 α0iǫ

2
t−i +

∑p
j=1 β0jσ

2
t−j

(1.4)

where ω0 > 0, α0i ≥ 0, β0j ≥ 0. For the GARCH(1,1) model, we have σ2
t =

∑∞
i=1 βi−1

01 (ω0 + α01ǫ
2
t−i), provided β01 < 1.

The most widely used estimator of ARCH-type models is arguably the Gaus-

sian QMLE. The consistency and asymptotic normality (CAN) of this estimator

requires only few regularity assumptions, and the standard identifiability condition

Eη2
t = 1 (see Berkes, Horváth and Kokoszka (2003) and Francq and Zakoïan (2004)

for the case of standard GARCH and ARMA-GARCH models, Mikosch and Strau-

mann (2006), Straumann and Mikosch (2006), Bardet and Wintenberger (2009) for

more general models). In the framework of standard GARCH models, Berkes and

Horváth (2004) introduced generalized non-Gaussian QMLE (gQMLE) and establi-

shed their CAN under alternative identifiability conditions. For the general model

(1.2), Francq and Zakoian (2013) (hereafter FZ) showed that particular gQMLE

lead to convenient one-step predictions of the powers |ǫt|r, r ∈ R. Francq, Lepage

and Zakoian (2011) constructed a two-step procedure based on a particular class

of gQMLE for estimating standard GARCH(p, q) models. Independently, Fan et

al. (2013) proposed, for the same problem, a three-step quasi maximum likelihood

procedure, allowing for the use of a vast class of non-Gaussian likelihood functions.

Francq and Zakoïan (2012) propose a gQMLE which allows for estimating a condi-

tional VaR in one step, and compare this method with the more standard two-step

method which consists in estimating the volatility parameter by Gaussian QMLE

and the quantile of the innovations by the empirical quantile of the residuals.

In the present paper, we extend the above-mentioned conditional VaR two-step

evaluation method by investigating the use of gQMLE’s based on a generic ins-

trumental density h. It is well known that the standard Gaussian QMLE, which is

based on the instrumental density φ(x) = (1/
√

2π)e−x2/2, converges to the volatility

parameter θ0, under mild regularity conditions. Moreover the empirical α-quantile

of the Gaussian QMLE residuals converges to ξα. Section 2.1 shows that, in a very

general framework, the gQMLE converges to some parameter θ∗0 , which depends on

h, Pη and θ0. When h 6= φ or h 6= Pη, we have θ∗0 6= θ0, and the empirical α-quantile

of the gQMLE residuals converges to ξ∗α 6= ξα. The conditional VaR two-step es-

timator is however consistent because σt(θ0)ξα = σt(θ
∗
0)ξ∗α. Section 2.2 studies the

asymptotic distribution of this estimator, for the general model (1.2). Section 3

makes explicit the asymptotic distributions for an extension of the GARCH mo-
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del (1.4). It is shown that the optimal instrumental density, i.e. the function h

which minimizes the asymptotic variance of the VaR estimator, depends neither on

the GARCH parameter θ0 nor on the risk level α, but only on simple characteristics

of Pη. It follows that a simple adaptive method based on empirical moments of the

residuals makes it possible to infer which h is optimal. Section 4 extends some of

the results to conditional Distortion Risk Measures (DRM). The numerical illus-

trations are displayed in Section 5. Section 6 concludes. The proofs are collected in

the Appendix.

2 Estimating the conditional VaR by gQMLE

For the standard volatility models, the following assumption is satisfied.

A1 : There exists a continuous function H such that for any θ ∈ Θ, for any

K > 0, and any sequence (xi)i

Kσ(x1, x2, . . . ; θ) = σ(x1, x2, . . . ; H(θ, K)).

In the case of the GARCH(1,1) model, we have

Kσt(θ) =
√

K2ω + K2α + βσ2
t−1 {H(θ0, K)} = σt {H(θ0, K)}

where H(θ0, K) = (K2ω0, K
2α01, β01)

′. Assumption A1 means that the parametric

form of the volatility is stable by scaling, which is a highly desirable property for

an ARCH model.

In view of (1.3) and A1, when ξα < 0 we have

VaRt(α) = −σt+1(θ0)ξα = σt+1 (θ0,α)

where θ0,α = H (θ0,−ξα) . The parameter θ0,α is called the VaR parameter in

Francq and Zakoian (2012).

In the next section, we show that the gQMLE generally converges to a parameter

θ∗0 such that σt(θ
∗
0) = σ∗σt(θ0), where σ∗ > 0 depends on h and Pη. The residuals

of the gQMLE are thus approximations of ηt/σ∗. Consequently, the gQMLE of the

volatility converges to σ∗σt(θ0) and the empirical quantile of the gQMLE residuals

converges to ξ∗α = ξα/σ∗. The gQMLE of the VaR thus gives a consistent estimator

of VaRt(α) = −σt+1(θ
∗
0)ξ∗α.

2.1 Estimating the volatility parameter

Given observations ǫ1, . . . , ǫn, and arbitrary initial values ǫ̃i for i ≤ 0, let

σ̃t(θ) = σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ; θ).
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This random variable can be seen as a proxy of

σt(θ) = σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ0, ǫ−1, . . . ; θ).

Given an instrumental density h > 0, consider the QML criterion

Q̃n(θ) =
1

n

n∑

t=1

g(ǫt, σ̃t(θ)), g(x, σ) = log
1

σ
h
(x

σ

)
, (2.1)

and the (generalized) QMLE

θ̂∗n = argmax
θ∈Θ

Q̃n(θ).

Throughout the text, starred symbols are used to designate quantities which depend

on the instrumental density h. This estimator is the standard Gaussian QMLE if

h is the standard Gaussian density φ. To establish the CAN of θ̂∗n, we make the

following assumptions.

A2 : (ǫt) is a strictly stationary and ergodic solution of (1.2), and there exists

s > 0 such that E|ǫ1|s < ∞.

A3 : For some ω > 0, almost surely, σt(θ) ∈ (ω,∞] for any θ ∈ Θ. Moreover,

for θ1, θ2 ∈ Θ, we have σt(θ1) = σt(θ2) a.s. if and only if θ1 = θ2.

A4 : The function σ → Eg(η0, σ) takes its values in [−∞, +∞) and has a

unique maximum at some point σ∗ ∈ (0,∞).

A5 : The instrumental density h is continuous on R, it is also differentiable,

except possibly in 0, and there exist constants δ ≥ 0 and C0 > 0 such that,

for all u ∈ R \ {0}, |uh′(u)/h(u)| ≤ C0(1 + |u|δ) and E|η0|2δ < ∞.

A6 : There exist a random variable C1 measurable with respect to {ǫu, u < 0}
and a constant ρ ∈ (0, 1) such that supθ∈Θ |σt(θ) − σ̃t(θ)| ≤ C1ρ

t.

Under A1 and A4, define the parameter

θ∗0 = H(θ0, σ∗). (2.2)

A7 : The parameter θ∗0 belongs to the compact parameter space Θ.

A8 : The parameter θ∗0 belongs to the interior
◦

Θ of Θ.

A9 : There exists no non-zero x ∈ R
m such that x′ ∂σt(θ

∗
0)

∂θ = 0, a.s.

A10 : The function θ 7→ σ(x1, x2, . . . ; θ) has continuous second-order deriva-

tives, and

sup
θ∈Θ

∥∥∥∥
∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥∥∥∥+

∥∥∥∥
∂2σt(θ)

∂θ∂θ′
− ∂2σ̃t(θ)

∂θ∂θ′

∥∥∥∥ ≤ C1ρ
t,

where C1 and ρ are as in A6.
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A11 : h is twice continuously differentiable, except possibly at 0, with |u2 (h′(u)/h(u))
′ | ≤

C0(1 + |u|δ) for all u ∈ R \ {0} and E|η0|δ < ∞, where C0 and δ are as in

A5.

A12 : There exists a neighborhood V (θ∗0) of θ∗0 such that

sup
θ∈V (θ∗

0
)

∥∥∥∥
1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥
4

, sup
θ∈V (θ∗

0
)

∥∥∥∥
1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥∥∥∥
2

, sup
θ∈V (θ∗

0
)

∣∣∣∣
σt(θ

∗
0)

σt(θ)

∣∣∣∣
2δ

have finite expectations.

Most of these assumptions are similar to those of Berkes and Horváth (2004) and

FZ.

Remark 2.1 Note that A4 is much less restrictive than the analog assumption in

FZ, which requires a maximum at σ∗ = 1 (see A3 in FZ). Note also that we do

not need any identifiability condition on ηt (such that Eη2
t = 1). We need wea-

ker assumptions because, in our framework, it will only be necessary to define the

volatility up to an unknown multiplicative constant. Actually, A4 is the same as

Assumption 2 made by Fan et al. (2013) for their three-step estimation procedure.

Remark 2.2 In view of (A.7) below, under A5 the parameter σ∗ defined in A4 is

such that

E

{
η0

σ∗

h′

h

(
η0

σ∗

)}
= −1. (2.3)

For the standard GARCH case, several assumptions can be made more explicit.

The true value of the parameter is θ0 = (ω0, α01, . . . , β0p)
′ and the generic element of

Θ is denoted by θ = (ω, α1, . . . , βp)
′. It is well-known that a necessary and sufficient

condition for the existence of a strictly stationary solution to (1.4) is γ < 0, where

γ denotes the top-Lyapunov exponent of the model (see e.g. Francq and Zakoïan

(2004)). Write γ = γ(θ0) to emphasize that γ depends on θ0 (and also on the law

of η1). Let Aθ(z) =
∑q

i=1 αiz
i and Bθ(z) = 1 −∑p

j=1 βjz
j. In that framework the

assumptions A2, A3, A6, A9, A10 and A12 reduce to :

C : γ(θ0) < 0 ; ∀θ ∈ Θ,
∑p

j=1 βj < 1 and ω > ω for some ω > 0 ; |η0| has

a non degenerate distribution ; if p > 0, Aθ0
(z) and Bθ0

(z) have no common

root, Aθ0
(1) 6= 0, and α0q + β0p 6= 0.

The following lemma is similar to results given by Berkes and Horváth (2004) and

FZ.

Lemma 2.1 (Asymptotic behavior of generalized QMLE) If A1-A7 are sa-

tisfied, then

θ̂∗n → θ∗0 , a.s.
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where θ∗0 is defined by (2.2). If, in addition, A8-A12 are satisfied and Eg2(η0, 1) 6=
0 then

√
n
(
θ̂∗n − θ∗0

)
L→ N (0, τhJ−1

∗ )

where

J∗ = 4EDt(θ
∗
0)D′

t(θ
∗
0) and τh =

4Eg2
1(σ

−1
∗ η0, 1)

{
Eg2(σ

−1
∗ η0, 1)

}2 , (2.4)

in which

Dt(θ) =
1

σt(θ)

∂σt(θ)

∂θ
, g1(x, σ) =

∂g(x, σ)

∂σ
and g2(x, σ) =

∂g1(x, σ)

∂σ
.

Example 2.1 (GED instrumental density) Consider the case in which h be-

longs to the class of the Generalized Error Distributions of shape parameter κ > 0,

defined by

hκ(x) =
κ

Γ(1/κ)21+1/κ
e−

|x|κ

2 ,

which will be denoted by GED(κ). We then have, for x 6= 0,

h′

h
(x) = −κ|x|κ

2x
.

In view of (2.3), we obtain

σ∗ =
(κ

2
E|η1|κ

)1/κ

.

By (A.1) and (A.5) given in the proof of Lemma 2.1,

g1

(
η1

σ∗
, 1

)
= −1 +

|η1|κ
E |η1|κ

, g2

(
η1

σ∗
, 1

)
= 1 − (1 + κ)

|η1|κ
E |η1|κ

and

τh := τGED =
4

κ2

(
E |η1|2κ

(E |η1|κ)
2 − 1

)
. (2.5)

To give a more explicit example, assume that we have a standard GARCH(1,1)

with parameter θ0 = (ω0, α0, β0) and ηt ∼ N (0, 1). For this distribution we have

E|η1| =
√

2/π. If we take the double exponential distribution (1/4)e−|x|/2 as ins-

trumental density h, which corresponds to the GED(1) , then θ̂∗n thus converges

to θ∗0 = (2ω0/π, 2α0/π, β0). Moreover the asymptotic variance is obtained with

τh = 2π − 4.

Example 2.2 (Double Generalized Gamma instrumental density)

Now consider a larger class of densities, which contains, in particular, the GED,

the Laplace, the double Weibull, Rayleigh and Maxwell, and the Gaussian distri-

butions. Assume that h follows a double generalized Gamma (dgG) distribution

Γ(b, p, d) with parameters b > 0, p > 0 and d > 0, defined by the density

h(x) = hdgG(x) =
dbp

2Γ(p
d )

|x|p−1e−|bx|d .
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For x 6= 0, we have

x
h′

h
(x) = p − 1 − d|bx|d.

In view of (2.3), we have σ∗ =
(

dbd

p E|η1|d
)1/d

. Thus,

g1

(
η1

σ∗
, 1

)
= p

(
|η1|d

E |η1|d
− 1

)
, g2

(
η1

σ∗
, 1

)
= p

(
1 − (d + 1)

|η1|d

E |η1|d

)
.

We then have

τh = τdgG =
4

d2




E |η1|2d

(
E |η1|d

)2 − 1


 .

Note that τdgG is equal to τGED when κ = d.

Therefore, compared to the GED, the introduction of the more complicated

class of the dgG distributions is useless, because it does not lead to any efficiency

gain.

Example 2.3 (Student instrumental density) Now consider the case where

the instrumental density h is the Student distribution with ν degrees of freedom

h(x) = hν(x) =
Γ
(

ν+1
2

)
√

νπΓ
(

ν
2

)
(

1 +
x2

ν

)− ν+1

2

.

By (A.1) and (A.5), we have

g1(x, σ) =
ν(x − σ)(x + σ)

σ(x2 + νσ2)
, g2(x, σ) = −ν

{
x4 + x2(1 + 3ν)σ2 − νσ4

}

σ2(x2 + νσ2)2
.

In view of (2.3), the parameter σ∗ satisfies

E
η2
1

νσ2
∗ + η2

1

=
1

ν + 1
.

Contrary to what happens in Example 2.1, the parameters σ∗ and τh do not have

simple expressions as a function of ν and of the distribution of η1, but can be

obtained by numerical algorithms.

2.2 Estimating the VaR parameter

For the general volatility model (1.4), we have

VaRt(α) = −σt+1(θ
∗
0)ξ∗α,

where ξ∗α denotes the α-quantile of η∗
t := ηt/σ∗. Note that, when ξ∗α < 0, A1 entails

VaRt(α) = σt+1 (θ0,α) where θ0,α = H (θ∗0 ,−ξ∗α) .
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The parameter θ0,α is called the VaR parameter in Francq and Zakoian (2012).

Note that ξα := σ∗ξ
∗
α is the α-quantile of ηt. Thus we have θ0,α = H (θ∗0 ,−ξ∗α) =

H (θ0,−ξα) .

Let ξ̂∗α,n be the empirical quantile of the residuals η̂∗
t := ǫt/σ̃t(θ̂

∗
n) for t =

1, . . . , n. We now give an intermediate result that will be used to obtain the asymp-

totic distribution of two-step estimators of the VaR parameter.

Theorem 2.1 Assume η1 has a density f , continuous at ξα, such as f(ξα) > 0.

Under the assumptions of Lemma 2.1, we have

√
n


 θ̂∗n − θ∗0

ξ̂∗α,n − ξ∗α


 L→ N




0, Σ∗ :=


 Σ∗

11 Σ∗
12

Σ∗
12

′ Σ∗
22







 ,

where

Σ∗
11 = τhJ−1

∗ ,

Σ∗
12 = −

{
ξ∗ατh − 4cα

σ∗f(ξα)Eg2(η∗
0 , 1)

}
J−1
∗ Ω∗,

Σ∗
22 =

τh(ξ∗α)2

4
− 2cαξ∗α

σ∗f(ξα)Eg2(η∗
0 , 1)

+
α(1 − α)

σ2
∗f

2(ξα)
,

with Ω∗ = EDt(θ
∗
0), cα = Cov(1{η∗

t
<ξ∗

α
}, g1(η

∗
t , 1)).

In the case h = φ we retrieve Theorem 4.2 in Francq and Zakoian (2012).

Note that θ̂∗n,α converges to the VaR parameter θ0,α. The star symbol is used

to emphasize that, contrary to the parameter, the estimator depends on h.

The delta method immediately gives the following result.

Corollary 2.1 Under the assumptions of Theorem 2.1 and if H is differentiable

at (θ∗0 ,−ξ∗α), with ξ∗α < 0, we have

√
n
(
θ̂∗n,α − θ0,α

)
L→ N

(
0, G∗Σ

∗G∗
′
)
,

where

G∗ =

[
∂H(θ, K)

∂(θ′, K)

]

(θ∗
0
,−ξ∗

α
)

.

By empirically estimating the asymptotic variance, this corollary makes it possible

to obtain a confidence interval at an asymptotic statistical estimation-risk level α1

for the risk parameter at the market-risk level α. Using again the delta method,

confidence intervals for VaRt(α) = σt+1 (θ0,α) at a given estimation-risk level can be

deduced, exactly as Francq and Zakoian (2012) did for the VaR estimation method

based on the Gaussian QMLE.

The following result shows that the estimator of the VaR parameter is not

sensitive to a scaling of the instrumental density.
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Corollary 2.2 Under the assumptions of Corollary 2.1, and if A1 holds true when

σt is replaced by σ̃t, i.e. if

Kσ̃t(θ) = σ̃t(θ) {H(θ, K)} , (2.6)

then the estimator θ̂∗n,α is not changed if h(x) is replaced by hs(x) = s−1h(s−1x),

for any s > 0.

In the standard GARCH(1,1) case, it is easy to see that (2.6) is satisfied when the

initial value σ̃0(θ) is chosen equal to zero.

3 Application to GARCH models

For particular GARCH models, we now verify the regularity conditions of

Lemma 2.1, and we give a more explicit expression for the asymptotic variance

of Corollary 2.1. We begin with the GARCH(1,1) model, and extend the result for

a much wider class.

3.1 The first-order GARCH model

First begin with the GARCH(1,1) case, under Assumption C. In that case, the

matrix G∗ of Corollary 2.1 is given by

G∗ =




(ξ∗α)2 0 0 −2ξ∗αω∗
0

0 (ξ∗α)
2

0 −2ξ∗αα∗
0

0 0 1 0


 :=


 A∗ −2ξ∗α




ω∗
0

α∗
0

0





 .

Note also that, for any θ∗0 = (ω∗
0 , α∗

0, β
∗
0) ∈ Θ, we have

(ω∗
0 , α∗

0, 0)
∂σ2

t (θ∗0)

∂θ
= ω∗

0 + α∗
0ǫ

2
t−1 + β∗

0

{
(ω∗

0 , α∗
0, 0)

∂σ2
t−1(θ

∗
0)

∂θ

}

=
∞∑

i=0

β∗i
0

{
ω∗

0 + α∗
0ǫ

2
t−i

}
= σ2

t (θ∗0).

It follows that

1

σt(θ∗0)

∂σt(θ
∗
0)

∂θ′




ω∗
0

α∗
0

0


 =

1

2
a.s.,

and thus

Ω′
∗




ω∗
0

α∗
0

0


 =

1

2
, J∗




ω∗
0

α∗
0

0


 = 2Ω∗, J−1

∗ Ω∗ =
1

2




ω∗
0

α∗
0

0


 , Ω′

∗J
−1
∗ Ω∗ =

1

4
.

10



The second equality of the previous line shows that

Var

(
1

σ2
t (θ∗0)

∂σ2
t (θ∗0)

∂θ

)
= J∗ − 4Ω∗Ω

′
∗ = J∗(J

−1
∗ − Ψ∗)J∗,

where

Ψ∗ =




ω∗
0

α∗
0

0



(

ω∗
0 α∗

0 0
)

=




ω∗
0
2 ω∗

0α∗
0 0

ω∗
0α∗

0 α∗2
0 0

0 0 0


 .

Under A9, which is implied by the identifiability condition in Assumption C, the

matrix Var
(

1
σ2

t
(θ∗

0
)

∂σ2
t
(θ∗

0)
∂θ

)
is positive definite. It follows that

J−1
∗ − Ψ∗ is positive definite. (3.1)

Moreover we have

G∗Σ
∗G∗

′ = τhA∗J
−1
∗ A∗ +

(
4(ξ∗α)2α(1 − α)

σ2
∗f

2(ξα)
− τh(ξ∗α)4

)
Ψ∗

= τhA∗(J
−1
∗ − Ψ∗)A∗ +

4(ξ∗α)2α(1 − α)

σ2
∗f

2(ξα)
Ψ∗.

For the last equality we used that A∗Ψ∗A∗ = (ξ∗α)4Ψ∗.

Now we introduce analogs of the starred symbols, which are independent of the

instrumental density h, using the matrix transformation

M∗ =




1
σ2
∗
I2 02

0′2 1


 .

We thus define A = M−1
∗ A∗ and Ψ = M∗Ψ∗M∗ = σ∗

−4Ψ∗. Note also that

θ0 = M∗θ
∗
0 , Dt(θ

∗
0) = M∗Dt(θ0) and J∗ = M∗JM∗.

With this notation, we have

G∗Σ
∗G∗

′ = τhA(J−1 − Ψ)A +
4ξ2

αα(1 − α)

f2(ξα)
Ψ. (3.2)

The instrumental density h1 is said to be more efficient than h2, which is denoted

by h1 ≻ h2, if the difference of the asymptotic variances given by (3.2) is positive

definite. In the asymptotic variance, only τh depends on h. In view of (3.1), this

shows that h1 ≻ h2 if and only if τh1
< τh2

.

3.2 The Asymmetric Power GARCH model

Ding, Granger and Engle (1993) introduced the so-called Asymmetric Power

GARCH (APARCH) models, which include the standard GARCH of Bollerslev

(1991), the TARCH of Zakoian (1994), the GJR of Glosten, Jagannathan and
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Runkle (1993) and many other popular specifications of the volatility. Letting

x+ = max(x, 0) and x− = min(x, 0), the model is defined by





ǫt = σtηt

σδ
t = ω0 +

∑q
i=1 α0i+(ǫ+t−i)

δ + α0i−(−ǫ−t−i)
δ +

∑p
j=1 β0jσ

δ
t−j

(3.3)

where the coefficients satisfy α0i+ ≥ 0, α0i− ≥ 0, β0j ≥ 0, ω0 > 0 and δ > 0. The

standard GARCH is obtained with δ = 2 and α0i− = α0i+. When α0i− > α0i+, a

negative return has a higher impact on the future volatility than a positive return

of the same magnitude, which is a well-documented stylized fact that is called

"leverage effect".

Hamadeh and Zakoïan (2011) showed that the power parameter δ is not easily

estimated. We therefore consider that δ is fixed. In many applications, δ = 1 (as

in the TARCH) or δ = 2 (as in the GJR model). As in Assumption C, let γ(θ0)

be the top-Lyapunov exponent associated with (3.3). Hamadeh and Zakoïan (2011)

showed the CAN of the Gaussian QMLE of θ0 = (ω0, α01+, . . . , α0q−, β01, . . . , β0p)
′

under the assumption :

D : γ(θ0) < 0 ; θ0 belongs to the interior of Θ ; there exists ω > 0 such

that, ∀θ ∈ Θ, ω > ω and
∑p

j=1 βj < 1 ; the support of the distribution of η1

contains at least 3 points ; P [ηt > 0] ∈ (0, 1) ; if p > 0, Bθ0
(z) has no common

root with Aθ0+(z) = 1 − ∑q
i=1 α0i+zi and Aθ0−(z) = 1 − ∑q

i=1 α0i−zi ;

Aθ0+(1) + Aθ0−(1) 6= 0 and α0q,+ + α0q,− + β0p 6= 0 (with the notation

α00,+ = α00,− = β00 = 1)

and under the identifiability condition Eη2
1 = 1 (that we do not assume in our

framework).

The following theorem extends the results obtained in the previous section.

Theorem 3.1 Consider the APARCH(p, q) model (3.3) under Assumption D. As-

sume η1 has a density f , continuous at ξα < 0, such as f(ξα) > 0. If the instru-

mental density h satisfies A4, A5, A7, A8 and A11, then the two-step estimator

of the VaR parameter at the confidence level α ∈ (0, 1) satisfies

√
n
{
θ̂∗n,α − H (θ∗0 ,−ξ∗α)

]
L→ N

(
0, G∗Σ

∗G∗
′
)
,

where, for ξ > 0,

H (ω, α1+, . . . , αq−, β1, . . . , βp, ξ) =
(
ξδω, ξδα1+, . . . , ξδαq−, β1, . . . , βp

)

and

G∗Σ
∗G∗

′ = τhA(J−1 − Ψ)A +
4ξ2

αα(1 − α)

f2(ξα)
Ψ,

12



where θ
′

0 = (ω0, α01+, . . . , α0q−, 0, . . . , 0),

A = diag
{
(−ξα)δI2q+1, Ip

}
, Ψ = θ0θ

′

0, J = 4ED1(θ0)D
′
1(θ0).

For the instrumental densities h1 and h2 , we have h1 ≻ h2 if and only if τh1
< τh2

.

Remark 3.1 (On the optimal instrumental density) This theorem shows that

an instrumental density h with the smallest value of τh is optimal. It is worth no-

ting that the knowledge of the distribution of η1, up to some (unknown) scaling

constant, is sufficient to determine if h is optimal within the class of the two-step

estimators introduced in this paper. In particular the optimality of h : 1) does not

depend on θ∗0 , or even on the volatility model ; 2) does not depend on α.

Francq and Zakoïan (2013) compared the two-step estimator based on φ with a

one step estimator. As in 1), the ranking of the two estimators is the same regardless

of the model. However the relative efficiency of their two methods varies with α.

Note also that the optimal instrumental density for estimating the VaR parame-

ter is the same as that obtained by Fan et al. (2013) for their three-step estimator

of the volatility parameter.

3.3 Optimal choice of the instrumental density

In view of Theorem 3.1, the optimal h (within a given class of instrumental

densities satisfying the assumptions of the theorem) has the smallest τh. We first

give an example of density h for which τh is a function of moments of η1 that can

be empirically estimated. We then give an example in which τh is not explicit, but

can however be easily estimated.

3.3.1 GED instrumental distribution

Consider the case in which h is the GED(κ) distribution of Example 2.1. The

value κ0 of κ which minimizes (2.5) is considered as optimal. An empirical estimator

of κ0 can then be obtained as follows. Let η̂t = ǫt/σ̃t(θ̂n), t = 1, . . . , n, be the

residuals obtained from a first-step estimation procedure, which is consistent but

not necessarily optimal, for example the Gaussian QMLE. An estimator of the

parameter κ0 for the optimal instrumental density is defined by

κ̂ = arg min
κ∈K

1

κ2

(
µ̂2κ

µ̂2
κ

− 1

)
, µ̂r =

1

n

n∑

t=1

|η̂t|r,

where K is a bounded interval containing κ0. Note that it is important to minimize

over a bounded interval because, by Lemma 3.1 in Francq et al. (2011), for any

13



fixed n, we have
1

κ2

(
µ̂2κ

µ̂2
κ

− 1

)
→ 0, as κ → ∞.

3.3.2 Student instrumental distribution

As in Example 2.3, let us take the Student distribution with ν degrees of freedom

as instrumental density h. The parameters σ∗ and τh can be estimated as follows.

Let η̂1, . . . , η̂n be the residuals of a first-step estimation procedure. Let C and S be

compact subsets of ]0,∞[. For any value of ν ∈ C, σ∗ can be estimated by

σ̂∗ = argmax
σ∈S

n∑

t=1

g(η̂t, σ).

An estimator of the optimal value of ν is then obtained as

ν̂ = argmin
ν∈C

n−1
∑n

t=1 g2
1

(
σ̂−1
∗ η̂t, 1

)
{
n−1

∑n
t=1 g2

(
σ̂−1
∗ η̂t, 1

)}2 . (3.4)

3.4 Suboptimality of the naive adaptive approach

Assume a parametric form hκ(x), κ ∈ K for the instrumental density. We know

that the optimal instrumental density is the (unknown) distribution f of η1, or

equivalently any scaled version σ−1f(x/σ), σ > 0, of this density (see Corollary 2.2).

If some scaled version of f belongs to the chosen class of parametric instrumental

densities, i.e. if f(x) = σ−1
0 hκ0

(x/σ0) for some κ0 ∈ K and some σ0 > 0, then

the optimal instrumental density can be found by the (quasi-)maximum likelihood

procedure

(κ̂, σ̂) = arg max
(κ,σ)∈K×(0,∞)

n∑

t=1

log σ−1hκ(η̂t/σ),

where η̂t = ǫt/σ̃t(θ̂n), t = 1, . . . , n, are the residuals obtained from a Gaussian

QMLE, or any other consistent first-step estimation procedure. Even if f does not

belong to the class of densities, the procedure makes sense and converges, under

general regularity conditions (see White 1982), to a minimizer of a Kullback-Leibler

divergence, solution to

(κ∗, σ∗) = arg max
(κ,σ)∈K×(0,∞)

E log σ−1hκ(η1/σ).

For example, consider the class of the Generalized Error Distributions of shape

parameter κ > 0, defined by

hκ(x) =
κ

Γ(1/κ)21+1/κ
e−

|x|κ

2 ,

which will be denoted by GED(κ). We then have,

σ∗ =

(
κ∗E|η1|κ

∗

2

)1/κ∗

,

14



where

κ∗ = arg max
κ∈K

log

(
κ

Γ(1/κ)21+1/κ

)
− 1

κ

{
log

(
κE|η1|κ

2

)
+ 1

}
.

Let τ0 be the optimal value of τh when h belongs to the class of the GED(κ)

instrumental densities. In view of (2.5), we have

τ0 =
4

κ2
0

(
E |η1|2κ0

(E |η1|κ0)
2 − 1

)
, κ0 = argmin

κ

4

κ2

(
E |η1|2κ

(E |η1|κ)
2 − 1

)
.

Let τ∗ be the value of τh when h is the GED(κ∗). This τ∗ is optimal (i.e. minimal)

when the density f of η1 is a rescaled GED, and in this case we have τ∗ = τ0. In ge-

neral, there is no guarantee that τ∗ be optimal in the class of the GED instrumental

density, i.e. that τ∗ = τ0.

4 Extension to other conditional risk measures

VaR is used by academics to define more sophisticated risk measures and VaR

constitutes a powerful tool for professional risk managers, but it has been criticized

for giving a too limited view of the actual risk level. In particular, VaR says nothing

on what happens when losses exceed VaR. The expected shortfall (ES) is a popular

alternative risk measure which circumvents this problem by measuring the average

loss in the case of losses exceeding VaR. Another argument often given against VaR

is that it does not satisfy the subadditivity property (see e.g. Artzner, Delbaen,

Eber and Heath (1999), Wirch and Hardy (1999)). That means that the VaR of an

average of risky assets can be larger than the average of the VaR of the individual

assets. 2

ES satisfies the subadditivity property and constitues a leading example of

the wide class of the Distortion Risk Measures (DRM) (see Wang (2000) and the

references therein). Assuming that E|η1| < ∞, the function u 7→ VaRt(u) is a.s.

integrable, and a conditional DRM is defined by

DRMt =

∫ 1

0

VaRt(u)dG(u), (4.1)

2. That the risk of an average must be less than the average of the risks is however

questionable. The usual central limit theorem (CLT) leads us to think that the answer

should be positive, but this is not the case when considering generalized CLT’s for variables

without second order moments. Indeed, the risk of an average of iid Cauchy variables is

the risk of a single Cauchy variable. More generally, an average of iid alpha-stable random

variables with tail index smaller than 1 remains alpha-stable, but its scale increases, and

thus the average should have a larger risk.
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where G is a cumulative distribution function (cdf) on [0, 1] that is called the

distortion function. The DRM can be interpreted as a weighted sum of VaR’s,

where the weights are the increases of the distortion function. ES is obtained with

G(u) = (u/α)1[0,α[(u) + 1[α,∞[(u). Other examples of DRM are the proportional

hazard DRM, obtained with G(u) = ur, and the exponential DRM, obtained with

G(u) = (1 − eru)/(1 − er), r > 0. Assuming
∫ 1

0
ξudG(u) < 0, under A1 we have

DRMt = −σ(ǫt−1, ǫt−2, . . . ; θ0)

∫ 1

0

ξudG(u) = σ(ǫt−1, ǫt−2, . . . ; θ0,G),

where

θ0,G = H

(
θ0,−

∫ 1

0

ξudG(u)

)

can be called the conditional DRM risk parameter. A natural estimator of that

parameter is

θ̂∗n,G = H

(
θ̂∗n,−

∫ 1

0

ξ̂∗n,udG(u)

)
.

Theorem 4.1 (Consistency of the DRM conditional parameter estimator)

If A1-A7 are satisfied, E|η1| < ∞,
∫ 1

0
ξudG(u) < 0, and the cdf Fη of η1 is inver-

tible on (0, 1), then, as n → ∞,

θ̂∗n,G → θ0,G a.s.

For estimating the conditional VaR, −σ(ǫt−1, ǫt−2, . . . ; θ0)ξu, the optimal instru-

mental density h does not depend on u (see Remark 3.1). For estimating the weigh-

ted VaR, DRMt = −σ(ǫt−1, ǫt−2, . . . ; θ0)
∫ 1

0 ξudG(u), it is natural to chose the same

optimal instrumental density h, which minimizes τh, at least in the APARCH case

(see Theorem 3.1).

5 Numerical illustrations

We first consider a theoretical framework in which the distribution of ηt is as-

sumed to be known. Considering two classes of instrumental densities, the GED(κ)

and the Student Stν distributions, we determined the best instrumental densities

within each class, and we compared them with the standard Gaussian density in

term of asymptotic relative efficiency. In the second subsection, Monte Carlo ex-

periments are used to compare the finite sample performance of the different VaR

estimation procedures. The last subsection proposes illustrations on financial series.
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5.1 Theoretical comparison of the asymptotic efficiencies

Assume that η1 follows the double generalized Gamma distribution Γ(b, p, d)

considered in Example 2.2. We then have E|η1|r = b−rΓ((p+r)/d)/Γ(p/d). In view

of (2.5), the minimal value of τh, which is obtained when h ∼ Γ(b, p, d), is given by

τopt =
4

pd
.

With the standard approach based on the Gaussian QMLE, we have

τφ =




E |η1|4(
E |η1|2

)2 − 1


 =

(
Γ
(

p
d

)
Γ
(

p+4
d

)
{
Γ
(

p+2
d

)}2 − 1

)
.

The asymptotic relative efficiency (ARE) of the generalized QMLE based on the

instrumental density h with respect to the standard Gaussian QMLE can be mea-

sured by the ratio

ARE =
τφ

τh
.

In view of (2.5), the method based on the instrumental density GED(κ) is optimal

(i.e. τGED(κ) = τopt) when κ = d. Figure 1 shows that, even if the instrumental den-

sities GED(d) and Γ(b, p, d) are asymptotically equivalent, they can be surprisingly

different.

Figure 2 shows that the GED instrumental density can be much more efficient

than the Gaussian one (indeed its ARE is much greater than 1 when d is small).

The ARE reaches 1 for d = κ = 2. This was expected because the GED(2) and

Γ(
√

1/2, 1, 2) distributions both coincide with the standard Gaussian distribution.

This figure also displays the ARE of the best Student instrumental density with

respect to the Gaussian distribution. Even if the Student is generally not optimal

when ηt ∼ Γ(b, p, d), it can also be much more efficient than the gaussian.

5.2 Simulation experiments

In the previous section, the selection of the optimal instrumental density, GED

or Student, is accomplished by assuming that the distribution of ηt is known, which

is obviously unrealistic in practice. In this section, we first study if the selection

of the optimal procedures can be satisfactorily done by using the estimated resi-

duals. We thus simulate N = 100 independent trajectories of size n = 1, 000 of a
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Figure 1 – Density Γ(1, 2, d) for d = 0.7, d = 1.35 and d = 2 (left panel) and

density GED(κ) for κ = 0.7, κ = 1.35 and κ = 2 (right panel). The asymptotic

distribution of the generalized QMLE based on Γ(b, p, d) is the same as that based

on GED(κ) when κ = d.
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Figure 2 – ARE of the generalized QMLE based on the optimal GED (dotted

line), or based on the optimal Student instrumental density (full line), with respect

to the Gaussian QMLE, when ηt ∼ Γ(1, 2, d) and d varies from d = 0.7 to d = 2.
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GARCH(1,1) model with θ0 = (0.02, 0.002, 0.8) and ηt ∼ Γ(1, 2, d), where d takes

20 values between d = 0.7 and d = 2, as in Figure 2. For each simulation and each

value of d, the parameter τφ is estimated by

τ̂φ =
µ̂4

µ̂2
2

− 1, µ̂r =
1

n

n∑

t=1

η̂r
t , η̂t =

ǫt

σ̃t(θ̂)
,

where θ̂ denotes the Gaussian QMLE. We then obtain an estimate of the optimal

value of τGED by taking the minimum of

4

κ2

(
µ̂2κ

µ̂2
κ

− 1

)

over κ ∈ [0.1, 5]. An estimate of the optimal value of τSt is similarly obtained from

(3.4). The curves of Figure 3 correspond to the average estimated ARE’s over the

N replications. The curves have very similar shapes to those of Figure 2, and lead

to the same ranking of the estimation methods. This shows that one can actually

select the asymptotically optimal method by choosing the method which minimizes

the estimated value of τ computed from the residuals.

Table 1 compares the actual accuracies of the different methods for estimating

the VaR parameter at the 5% risk level. For clarity reasons, the results are only given

for the 4 values of d ∈ {0.7, 0.97, 1.66, 2}. The columns "mean" and "median" give

the average and the median of the absolute value of the N estimation errors. The

column RMSE gives the root mean square error of estimation. As expected from the

asymptotic results (see Figure 2), the estimators based on the GED and Student

instrumental densities are always very close, and they are much more efficient than

the usual two-step estimator based on the Gaussian QMLE when the density of ηt is

far from the Gaussian (i.e. when d = 0.7 or d = 0.97), whereas all the estimators are

equivalent when d is close to 2 (which corresponds to the Gaussian case). Table 2

shows that, as expected from the theory, the ranking of the method is the same for

the risk level of 1%.

5.3 Application to daily stock indices

We now consider the estimation of the VaR parameter for daily returns of 7

world stock market indices : CAC, DAX, FTSE, Nikkei, SMI (Swiss Market Index),

SP500 and TSX (Toronto Stock Exchange). The data set comes from Yahoo Finance

and covers the period from early January 1990 to the end of June 2013, when these
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Table 1 – Distribution of the estimation errors for the 5%-VaR parameter of a

GARCH(1,1) model with ηt ∼ Γ(1, 2, d), using the standard Gaussian QMLE, the

generalized QMLE based on the optimal GED instrumental density, or that based

on the Student density. The smallest errors are displayed in bold.

Gaussian-QMLE GED-QMLE Student-QMLE

VaR parameter ω

d median mean RMSE median mean RMSE median mean RMSE

0.7 0.956 2.306 4.147 0.814 1.349 2.673 0.847 1.582 3.278

0.97 1.344 1.108 1.226 0.234 0.440 0.625 0.613 0.694 0.848

1.66 0.041 0.085 0.121 0.045 0.091 0.125 0.042 0.088 0.122

2 0.025 0.053 0.076 0.027 0.053 0.075 0.027 0.054 0.077

VaR parameter α

d median mean RMSE median mean RMSE median mean RMSE

0.7 0.062 0.079 0.105 0.060 0.072 0.094 0.053 0.068 0.092

0.97 0.034 0.049 0.065 0.034 0.037 0.053 0.034 0.045 0.060

1.66 0.006 0.029 0.048 0.006 0.029 0.049 0.006 0.028 0.048

2 0.005 0.026 0.044 0.005 0.026 0.045 0.005 0.026 0.045

VaR parameter β

d median mean RMSE median mean RMSE median mean RMSE

0.7 0.071 0.142 0.243 0.057 0.087 0.154 0.054 0.102 0.193

0.97 0.800 0.622 0.683 0.134 0.251 0.350 0.350 0.390 0.475

1.66 0.126 0.268 0.381 0.133 0.286 0.395 0.133 0.278 0.387

2 0.112 0.235 0.338 0.115 0.235 0.334 0.116 0.238 0.342
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Figure 3 – As figure 2, but the ARE’s are estimated from the residuals of a

GARCH(1,1) with innovations ηt ∼ Γ(1, 2, d).

Table 2 – As Table 2, but for the 1% risk level.

Gaussian-QMLE GED-QMLE Student-QMLE

VaR parameter ω

d median mean RMSE median mean RMSE median mean RMSE

0.7 2.557 6.076 11.025 2.14 3.562 6.433 2.218 4.301 8.407

0.97 3.033 2.534 2.818 0.519 1.017 1.458 1.464 1.577 1.929

1.66 0.074 0.151 0.212 0.08 0.163 0.223 0.080 0.159 0.218

2 0.042 0.091 0.132 0.044 0.091 0.131 0.045 0.092 0.134

VaR parameter α

d median mean RMSE median mean RMSE median mean RMSE

0.7 0.163 0.225 0.297 0.168 0.198 0.258 0.143 0.187 0.253

0.97 0.077 0.111 0.148 0.077 0.084 0.119 0.077 0.102 0.138

1.66 0.012 0.051 0.086 0.012 0.051 0.087 0.012 0.05 0.085

2 0.008 0.044 0.075 0.008 0.044 0.076 0.008 0.044 0.076

VaR parameter β

d median mean RMSE median mean RMSE median mean RMSE

0.7 0.071 0.142 0.243 0.057 0.087 0.154 0.054 0.102 0.193

0.97 0.800 0.622 0.683 0.134 0.251 0.35 0.350 0.390 0.475

1.66 0.126 0.268 0.381 0.133 0.286 0.395 0.133 0.278 0.387

2 0.112 0.235 0.338 0.115 0.235 0.334 0.116 0.238 0.342
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historical data exist. The number of observations varies from 5721 (for the DAX)

to 5934 (for FTSE).

For each series of log-returns ǫt, we estimated the VaR parameter θ0,α of

GARCH(1, 1) models. Tables 3 and 4 report the estimated VaR parameters, their

related standard deviations and the estimated τh’s for three different instrumental

densities h, namely the Gaussian, Student(ν) and GED(κ) distributions. For the

last two instrumental densities, we chose the parameters ν and κ which minimize

the τh’s that are estimated from the QMLE residuals (as explained in Section 5.2).

The estimated values of the τh’s are thus the same for α = 5% and α = 1%, which

is in concordance with the asymptotic theory, since the τh’s do not depend on α,

nor on the volatility parameter θ0. Recall that the most accurate estimator is that

with the smallest τh. Therefore, the estimators based on the GED and Student dis-

tributions should be much more accurate than that based on the Gaussian density.

This not surprising because the Student and GED laws can have thicker tails than

the normal distribution, and the financial series are known to have Leptokurtic

conditional distributions. Thus, we addressed the issue of Leptokurticity through

the use of Student and GED distributions. Over the 7 indices, it is clear to note

that θ̂∗n,α based on the GED and Student distributions are quite similar, with al-

ways a slight advantage (i.e. a smaller estimated τh) for the Student. The same

conclusion can be drawn by looking at the estimated standard deviations, which

are almost equal for the GED and Student distributions, and are clearly larger for

the Gaussian instrumental density.

6 Conclusion

To conclude, we first summarize the outputs of the paper. We have considered a

general volatility model with an unknown volatility parameter θ0, and an unknown

distribution Pη for the iid noise. We did not make any identifiability assumption,

such as Eη2
t = 1, and we considered a generalized QMLE based on an arbitrary

instrumental density h. We are thus in a misspecified framework, where the volatility

parameter is not well identified and the instrumental density is not the density of

Pη in general. We have shown that, under mild regularity conditions, the gQMLE

converges however to some "pseudo-true" value θ∗0 which depends on θ0 and on

some scale parameter depending on Pη and h.

Simply noting that, for any reasonable ARCH-type model, the ratio σt(θ
∗
0)/σt(θ0)

is constant, the conditional VaR at the level α can be obtained by multiplying σt(θ
∗
0)
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Table 3 – Comparison of estimators of the 5% level VaR parameter for 7 daily

stock market returns. The estimated standard deviation are displayed in brackets.

Index h ω5% α5% β5% τh

CAC φ 0.091 (0.021) 0.247 (0.030) 0.899 (0.011) 3.711

GED 0.071 (0.015) 0.221 (0.024) 0.912 (0.008) 2.699

St 0.065 (0.014) 0.220 (0.023) 0.914 (0.008) 2.537

DAX φ 0.089 (0.026) 0.231 (0.041) 0.902 (0.016) 7.707

GED 0.048 (0.011) 0.225 (0.024) 0.914 (0.008) 2.952

St 0.045 (0.011) 0.230 (0.023) 0.913 (0.008) 2.676

FTSE φ 0.037 (0.008) 0.243 (0.025) 0.906 (0.009) 2.780

GED 0.035 (0.007) 0.230 (0.023) 0.911 (0.008) 2.513

St 0.033 (0.007) 0.231 (0.023) 0.911 (0.008) 2.454

Nikkei φ 0.153 (0.031) 0.286 (0.034) 0.878 (0.013) 3.517

GED 0.110 (0.022) 0.249 (0.026) 0.897 (0.010) 2.803

St 0.103 (0.020) 0.246 (0.025) 0.900 (0.009) 2.659

SMI φ 0.137 (0.033) 0.353 (0.058) 0.845 (0.023) 7.429

GED 0.076 (0.014) 0.319 (0.033) 0.877 (0.011) 2.908

St 0.073 (0.013) 0.321 (0.032) 0.878 (0.010) 2.659

SP500 φ 0.028 (0.007) 0.204 (0.024) 0.918 (0.009) 3.777

GED 0.020 (0.005) 0.192 (0.020) 0.926 (0.007) 2.997

St 0.019 (0.005) 0.188 (0.019) 0.928 (0.007) 2.890

TSX φ 0.021 (0.006) 0.230 (0.028) 0.914 (0.010) 4.347

GED 0.016 (0.004) 0.204 (0.021) 0.924 (0.007) 2.887

St 0.017 (0.004) 0.207 (0.021) 0.923 (0.007) 2.735
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Table 4 – As Table 4, but for the risk level 1%.

Index h ω1% α1% β1% τh

CAC φ 0.198 (0.045) 0.537 (0.067) 0.899 (0.011) 3.711

GED 0.153 (0.032) 0.478 (0.053) 0.912 (0.008) 2.699

St 0.140 (0.030) 0.474 (0.050) 0.914 (0.008) 2.537

DAX φ 0.203 (0.059) 0.525 (0.093) 0.902 (0.016) 7.707

GED 0.112 (0.026) 0.526 (0.057) 0.914 (0.008) 2.952

St 0.107 (0.024) 0.540 (0.056) 0.913 (0.008) 2.676

FTSE φ 0.084 (0.018) 0.550 (0.061) 0.906 (0.009) 2.780

GED 0.079 (0.017) 0.523 (0.057) 0.911 (0.008) 2.513

St 0.076 (0.016) 0.528 (0.057) 0.911 (0.008) 2.454

Nikkei φ 0.332 (0.068) 0.622 (0.076) 0.878 (0.013) 3.517

GED 0.234 (0.047) 0.528 (0.058) 0.897 (0.010) 2.803

St 0.221 (0.044) 0.527 (0.056) 0.900 (0.009) 2.659

SMI φ 0.316 (0.077) 0.814 (0.137) 0.845 (0.023) 7.429

GED 0.174 (0.032) 0.726 (0.079) 0.877 (0.011) 2.908

St 0.165 (0.030) 0.729 (0.075) 0.878 (0.010) 2.659

SP500 φ 0.070 (0.017) 0.506 (0.061) 0.918 (0.009) 3.777

GED 0.048 (0.012) 0.462 (0.05) 0.926 (0.007) 2.997

St 0.047 (0.012) 0.455 (0.049) 0.928 (0.007) 2.890

TSX φ 0.056 (0.015) 0.602 (0.083) 0.914 (0.01) 4.347

GED 0.043 (0.011) 0.541 (0.064) 0.924 (0.007) 2.887

St 0.044 (0.011) 0.546 (0.064) 0.923 (0.007) 2.735
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by the α-quantile of η∗
t = ǫt/σt(θ

∗). This shows that the natural two-step method

leads to a consistent estimation of the VaR, even the instrumental density h does

not coincide with Pη. The result extends to the Expected Shortfall and to other

DRM. The asymptotic and finite-sample accuracy of the method however depends

on θ0, h and Pη. We have shown that, for a large class of standard GARCH models,

the optimal choice of h only depends on Pη and can be estimated easily. It is shown

that, compared to the usual two-step method based on the Gaussian QMLE, im-

portant efficiency gains can be achieved by appropriately choosing the instrumental

density.

Future extensions of this work could be the following. Firstly, it could be inter-

esting to extend Corollary 2.1 in the case of a DRM parameter. Such a result could

be used to obtain confidence intervals for DRM that would integrate the estimation

risk. This extension is however far from being trivial because it should involve the

limit distribution of the random function
√

n
(
θ̂∗n,α − θ0,α

)
where α varies in [0, 1].

Another potential extension would be to consider conditional risk measures for a

time horizon larger than 1. Existing techniques are based on scenario simulations.

The question of interest would be to determine whether such simulation techniques

are more efficient at any horizon when they are based on models estimated by an

optimal gQMLE than when they are based on the Gaussian QMLE.
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A Proofs

A.1 Proof of Lemma 2.1

The proof is similar to that of Theorem 2.1 in FZ. It rests on the following

intermediate results :

i) lim
n→∞

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)| = 0 , a.s.

ii) if θ 6= θ∗0 , Eg(ǫ1, σ1(θ)) < Eg(ǫ1, σ1(θ
∗
0)) ,

iii) any θ 6= θ∗0 has a neighborhood V (θ) such that

lim sup
n→∞

sup
θ∗∈V (θ)

Q̃n(θ∗) < lim sup
n→∞

Q̃n(θ∗0) , a.s.

where

Qn(θ) =
1

n

n∑

t=1

g(ǫt, σt(θ)),

iv) lim
n→∞

√
n sup

θ∈V (θ∗
0
)

∥∥∥∥
∂

∂θ
Qn(θ) − ∂

∂θ
Q̃n(θ)

∥∥∥∥ = 0 , in probability,

for some neighborhood V (θ∗0) of θ∗0,

v) J∗ invertible and
∂2

∂θ∂θ′
Qn(θ∗) → Eg2(σ

−1
∗ η0, 1)

4
J∗ , in probability,

for any θ∗ between θ̂∗n and θ∗0,

vi)
√

n
∂

∂θ
Qn(θ∗0)

L→ N
(

0,
Eg2

1(σ
−1
∗ η0, 1)

4
J∗

)
.

We begin to show i). First note that a Taylor expansion and A5 show

that

g(ǫt, σ̃t(θ)) − g(ǫt, σt(θ)) = g1(ǫt, σ
∗
t (θ)) {σ̃t(θ) − σt(θ)}

where

g1(ǫ, σ) = − 1

σ

{
1 +

ǫ

σ

h′

h

( ǫ

σ

)
1ǫ 6=0

}
(A.1)

and σ∗
t (θ) is between σ̃t(θ) and σt(θ). Using A3 and A5, we then have almost

surely

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)| ≤ C1n
−1

n∑

t=1

sup
θ∈Θ

|g1(ǫt, σ
∗
t (θ))|ρt

≤ C1

nω

n∑

t=1

ρt

{
1 + C0

(
1 +

∣∣∣∣
ǫt

ω

∣∣∣∣
δ
)}

.
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The Markov inequality and A2 entail

∞∑

t=1

P(ρt|ǫt|δ > ε) ≤
∞∑

t=1

ρst/δ
E|ǫt|s
εs

< ∞ (A.2)

and thus the proof of i) is completed by the Borel-Cantelli lemma.

To prove ii), first note that by A2

g(ǫt, σt(θ)) = g

(
ηt,

σt(θ)

σt(θ0)

)
− log σt(θ0).

Moreover, by A1 and (2.2), we have

σt(θ
∗
0)

σt(θ0)
= σ∗,

where σ∗ is defined in A4. In view of A3-A4, we thus have

E{g(ǫ1, σ1(θ)) − g(ǫ1, σ1(θ
∗
0))} = E

{
g

(
ηt,

σt(θ)

σt(θ0)

)
− g(ηt, σ∗)

}
≤ 0,

with equality if and only if θ = θ∗0, which shows ii).

We now turn to the proof of iii). For any θ ∈ Θ and any positive integer

k, let Vk(θ) be the open ball with center θ and radius 1/k. We have,

lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Q̃n(θ∗)

≤ lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Qn(θ∗) + lim sup
n→∞

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)|

≤ lim sup
n→∞

n−1
n∑

t=1

sup
θ∗∈Vk(θ)∩Θ

g(ǫt, σt(θ
∗)) a.s.

where the second inequality comes from i). Note that since h is integrable

and continuous, h is bounded by some constant C. It follows, by A3, that

E sup
θ∗∈Vk(θ)∩Θ

g(ǫt, σt(θ
∗)) < log

1

ω
+ log C < ∞. (A.3)

Using A2 and an ergodic theorem for stationary and ergodic processes (Xt)

such that E(Xt) exists in R ∪ {−∞} (see Billingsley, 1995, p. 284 and 495),

it follows that

lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Q̃n(θ∗) ≤ EXt,k(θ), Xt,k(θ) = sup
θ∗∈Vk(θ)∩Θ

g(ǫt, σt(θ
∗)) .

When k tends to infinity, the sequence {Xt,k(θ)}k decreases to Xt(θ) =

g(ǫt, σt(θ)). Thus {X−
t,k(θ)}k increases to X−

t (θ). By the Beppo-Levi theorem,
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EX−
t,k(θ) ↑ Eθ0

X−
t (θ) when k ↑ +∞. By (A.3), the fact that the sequence

{X+
t,k(θ)}k is decreasing, and the Lebesgue theorem, EX+

t,k(θ) ↓ EX+
t (θ)

when k ↑ +∞. Thus we have shown that EXt,k converges to E{Xt(θ)} when

k → ∞. By ii), iii) is proved.

The consistency is a consequence of A7, a standard compactness argu-

ment and of the intermediate results i)-iii).

Now we prove iv). We have

∂

∂θ
Qn(θ) =

1

n

n∑

t=1

g1(ǫt, σt(θ))
∂σt(θ)

∂θ
,

∂

∂θ
Q̃n(θ) =

1

n

n∑

t=1

g1(ǫt, σ̃t(θ))
∂σ̃t(θ)

∂θ
.

It follows that

sup
θ∈V (θ∗

0
)

√
n

∥∥∥∥
∂

∂θ
Qn(θ) − ∂

∂θ
Q̃n(θ)

∥∥∥∥

≤ sup
θ∈V (θ∗

0
)

1√
n

n∑

t=1

|g1(ǫt, σt(θ)) − g1(ǫt, σ̃t(θ))|
∥∥∥∥

∂σt(θ)

∂θ

∥∥∥∥

+ sup
θ∈V (θ∗

0
)

1√
n

n∑

t=1

|g1(ǫt, σ̃t(θ))|
∥∥∥∥

∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥∥∥∥ . (A.4)

In view of A5 and A10, the last term is bounded by

C1√
nω

n∑

t=1

ρt

{
1 + C0

(
1 +

∣∣∣∣
ǫt

ω

∣∣∣∣
δ
)}

,

which is a.s. an O(1/
√

n) by arguments used to show i). Thus it remains

to show that the first term on the right-hand side of the inequality (A.4)

converges also to zero a.s. as n tends to infinity. Noting that

g2(x, σ) :=
∂g1(x, σ)

∂σ
=

1

σ2

[
1 +

x

σ

{
2
h′

h
+

x

σ

(
h′

h

)′}(x

σ

)
1x 6=0

]
, (A.5)

and using A5, A6 and A11, this term is bounded by

C1√
nω

n∑

t=1

|g2(ǫt, σ
∗
t )|ρt

∥∥∥∥
∂σt(θ)

∂θ

∥∥∥∥

≤ C1√
nω

n∑

t=1

ρt

{
1 + 3C0

(
1 +

∣∣∣∣
ǫt

ω

∣∣∣∣
δ
)}

sup
θ∈V (θ∗

0
)

∥∥∥∥
1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥ (A.6)

where σ∗
t = σ∗

t (θ) is between σ̃t(θ) and σt(θ). Using the Cauchy-Schwarz

inequality, A12, and already given arguments, it can be show that the right-

hand side of (A.6) is a.s. equal to O(1/
√

n). It follows that the right-hand

side of (A.4) tends to zero, which completes the proof of iv).
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Now we establish v). The invertibility of J∗ follows from A9. Using A5

and A11, we have
∥∥∥∥

∂2g(ǫt, σt(θ))

∂θ∂θ′

∥∥∥∥ =

∥∥∥∥g2(ǫt, σt(θ))
∂σt(θ)

∂θ

∂σt(θ)

∂θ′
+ g1(ǫt, σt(θ))

∂2σt(θ)

∂θ∂θ′

∥∥∥∥

≤
{

1 + 3C0

(
1 +

∣∣∣∣
ηt

σ∗

∣∣∣∣
δ ∣∣∣∣

σt(θ
∗
0)

σt(θ)

∣∣∣∣
δ
)}(∥∥∥∥

1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥∥∥∥

+

∥∥∥∥
1

σ2
t (θ)

∂σt(θ)

∂θ

∂σt(θ)

∂θ′

∥∥∥∥
)

.

Hence

E sup
θ∈V (θ∗

0
)

∥∥∥∥
∂2g(ǫt, σt(θ))

∂θ∂θ′

∥∥∥∥ < ∞

by the Hölder inequality, A5 and A12. The ergodic theorem then implies

that

lim
n→∞

sup
θ∈V (θ∗

0
)

∥∥∥∥
∂2Qn(θ)

∂θ∂θ′
− ∂2Qn(θ∗0)

∂θ∂θ′

∥∥∥∥

≤ E sup
θ∈V (θ∗

0
)

∥∥∥∥
∂2g(ǫt, σt(θ))

∂θ∂θ′
− ∂2g(ǫt, σt(θ

∗
0))

∂θ∂θ′

∥∥∥∥ a.s.

By the dominated convergence theorem, the last expectation tends to zero

when the neighborhood V (θ∗0) tends to the singleton {θ∗0}. The consistency

of θ̂∗n thus entails

lim
n→∞

∣∣∣∣
∂2Qn(θ∗)

∂θ∂θ′
− ∂2Qn(θ∗0)

∂θ∂θ′

∣∣∣∣ = 0, a.s.

Now, note that by A4, A5 and the dominated convergence theorem

Eg1(η0, σ∗) = 0, and thus Eg1(σ
−1
∗ η0, 1) = 0. (A.7)

Moreover, we have

g1 {ǫt, σt(θ
∗
0)} = g1 {σt(θ0)ηt, σ∗σt(θ0)} = σ−1

t (θ∗0)g1(σ
−1
∗ ηt, 1).

It follows that

Eg1 {ǫt, σt(θ
∗
0)}

∂2σt(θ
∗
0)

∂θ∂θ′
= 0.

Similarly, in view of (A.5), g2(ǫt, σt(θ
∗
0)) = σ−2

t (θ∗0)g2(σ
−1
∗ ηt, 1). We also have

∂σ2
t (θ)/∂θ = 2σt(θ)∂σt(θ)/∂θ. By the ergodic theorem, we then have

lim
n→∞

∂2Qn(θ∗0)
∂θ∂θ′

=
Eg2(σ

−1
∗ η0, 1)

4
J∗, a.s.
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and v) is established.

To prove vi) it suffices to note that, using arguments used to show v),

√
n

∂

∂θ
Qn(θ∗0) =

1√
n

n∑

t=1

g1

(
σ−1
∗ ηt, 1

) 1

2σ2
t (θ∗0)

∂σ2
t (θ

∗
0)

∂θ
(A.8)

and to apply a CLT for square integrable stationary martingale differences

(see Billingsley (1961)).

Now, from A8 and the consistency of θ̂∗n, a Taylor expansion shows that

for n large enough

0 =
√

n
∂

∂θ
Qn(θ̂∗n) +

√
n

∂

∂θ
Q̃n(θ̂∗n) −√

n
∂

∂θ
Qn(θ̂∗n)

=
√

n
∂

∂θ
Qn(θ∗0) +

∂2

∂θ∂θ′
Qn(θ∗)

√
n(θ̂∗n − θ∗0)

+
√

n

(
∂

∂θ
Q̃n(θ̂∗n) − ∂

∂θ
Qn(θ̂∗n)

)
,

where θ∗ is between θ̂∗n and θ∗0. Applying iv) and v) we obtain

√
n(θ̂∗n − θ∗0) =

−4

Eg2

(
σ−1
∗ ηt, 1

)J−1
∗

√
n

∂

∂θ
Qn(θ∗0) + oP (1). (A.9)

and the proof of the asymptotic normality comes from vi). ✷

A.2 Proof of Theorem 2.1

Following Koenker (2006), we have

ξ̂∗α,n = arg min
z∈R

n∑

t=1

ρα(η̂∗t − z),

where ρα(u) = u(α − 1u<0). Thus

√
n(ξ̂∗α,n − ξ∗α) = arg min

z∈R

On(z)

where

On(z) =

n∑

t=1

ρα

(
η̂∗t − ξ∗α − z√

n

)
−

n∑

t=1

ρα(η∗t − ξ∗α).

A Taylor expansion around θ∗0 and A3, A6 yield

η̂∗t = η∗t − η∗t D
′
t(θ̂

∗
n − θ∗0) +

1

2
(θ̂∗n − θ∗0)

′ ∂
2ηt(θ

∗)
∂θ∂θ′

(θ̂∗n − θ∗0) + η∗t O(ρt)
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where Dt = Dt(θ
∗
0) and θ∗ is between θ̂∗n and θ∗0. Using (2.1), we thus have

On(z) =

n∑

t=1

ρα

(
η∗t − ξ∗α − η∗t D

′
t(θ̂

∗
n − θ∗0) −

z√
n

+ oP (n−1/2) + OP (ρt)

)

−ρα(η∗t − ξ∗α).

Using the identity

ρα(u − v) − ρα(u) = −v(α − 1{u<0}) +

∫ v

0

{
1{u≤s} − 1{u<0}

}
ds

for u 6= 0 (see Equation (A.3) in Koenker and Xiao, 2006), we then obtain

On(z) = zXn + Yn + Zn(z) + Wn(z)

where

Xn =
1√
n

n∑

t=1

(1{η∗
t <ξ∗α} − α), Yn =

1√
n

n∑

t=1

Rt,n(1{η∗
t <ξ∗α} − α),

Zn(z) =

n∑

t=1

∫ z/
√

n

0
(1{η∗

t ≤ξ∗α+s} − 1{η∗
t <ξ∗α})ds,

Wn(z) =

n∑

t=1

∫ (z+Rt,n)/
√

n

z/
√

n
(1{η∗

t ≤ξ∗α+s} − 1{η∗
t <ξ∗α})ds

with Rt,n = η∗t D
′
t

√
n(θ̂∗n − θ∗0) + oP (1) +

√
nOP (ρt).

By the change of variable w = s−z/
√

n, we have Wn(z) =
∑2

i=1 W
(i)
n (z)

in which W
(i)
n (z) =

∑n
t=1 W

(i)
n,t where

W
(1)
n,t =

∫ Rt,n/
√

n

0
(1{η∗

t −ξ∗α−z/
√

n≤w} − 1{η∗
t −ξ∗α−z/

√
n<0})dw,

W
(2)
n,t =

∫ Rt,n/
√

n

0

(
1{η∗

t −ξ∗α−z/
√

n<0} − 1{η∗
t −ξ∗α}<0

)
dw.

Note that the integrand in W
(2)
n,t does not depend on w. Therefore, we

have

W
(2)
n,t =

{
η∗t D

′
t(θ̂

∗
n − θ∗0) + oP (n−1/2) + OP (ρt)

}
1{η∗

t −ξ∗α∈[0,z/
√

n)}

when z ≥ 0, and

W
(2)
n,t = −

{
η∗t D

′
t(θ̂

∗
n − θ∗0) + oP (n−1/2) + OP (ρt)

}
1{η∗

t −ξ∗α∈(z/
√

n,0)}

when z < 0.

34



First consider the case z ≥ 0. Note that

n∑

t=1

W
(2)
n,t =

(
1√
n

n∑

t=1

η∗t 1{η∗
t −ξ∗α∈[0,z/

√
n)}D

′
t

)
√

n(θ̂∗n − θ∗0)

+oP (n−1/2)

n∑

t=1

1{η∗
t −ξ∗α∈[0,z/

√
n)}

+OP (1)
n∑

t=1

ρt
1{η∗

t −ξ∗α∈[0,z/
√

n)}. (A.10)

The term
∑n

t=1 1{η∗
t −ξ∗α∈[0,z/

√
n)} = OP (

√
n) because its expectation is O(

√
n)

and its variance is O(
√

n). It follows that the second term on the right-

hand side of (A.10) tends to zero in probability. By the same arguments,

we show that the third term has the same behavior. Now, noting that

ξ∗αf∗(ξ∗α) = ξαf(ξα) when f∗ is the density of η∗1 = η1/σ∗, we have

E(η∗t 1{η∗
t −ξ∗α∈[0,z/

√
n)} =

∫ z/
√

n

0
(x + ξ∗α)f∗(x + ξ∗α)dx

= ξαf(ξα)
z√
n

+ o(1/
√

n).

Thus, in view of the independence of η∗t and Dt, we have

E

(
1√
n

n∑

t=1

η∗t 1{η∗
t −ξ∗α∈[0,z/

√
n)}D

′
t

)
= zξαf(ξα)Ω′

∗ + o(1).

By similar computations we find

Var

(
1√
n

n∑

t=1

η∗t 1{η∗
t −ξ∗α∈[0,z/

√
n)}D

′
t

)
= o(1).

It follows that

n∑

t=1

W
(2)
n,t = zξαf(ξα)Ω′

∗
√

n(θ̂∗n − θ∗0) + o(1) a.s.

The same equality holds for z ≤ 0.

We now denote by Et−1X the expectation of some variable X conditional

on {θ̂∗n − θ∗0, (ηu : u < t)}. We have, by the change of variable w = η∗t v,

Et−1W
(1)
n,t =

∫ D′
t(θ̂

∗
n−θ∗

0
)+o(n−1/2)

0
Et−1(η

∗
t 1

∗
{η∗

t ∈(ξ∗α+z/
√

n,(ξ∗α+z/
√

n)(1−v)−1)})dv

=
(ξ∗α)2

2
f∗

n,t(ξ
∗
α)(θ̂∗n − θ∗0)

′DtD
′
t(θ̂

∗
n − θ∗0) + o(n−1) a.s.

where f∗
n,t denotes the density of η∗t conditional on {θ̂∗n−θ∗0, (ηu : u < t)} and

o(n−1) is a function of (θ̂∗n − θ∗0) and the past values of η∗t . By the arguments
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used for X
(2)
n,t it can therefore be shown that W

(1)
n (z) converges in distribution

to a random variable which does not depend on z. Note also that Yn can be

subtracted from the objective function On(z) because it does not depend on

z. Moreover Zn(z) → z2

2 f∗(ξ∗α) in probability as n → ∞. Finally,

Õn(z) := On(z)−Yn =
z2

2
f∗(ξ∗α)+ z{Xn + ξ∗αf(ξα)Ω′

∗
√

n(θ̂∗n − θ∗0)}+OP (1).

Since the process Õn(·) has convex sample paths, the convexity Lemmas of

Knight (1989) and Pollard (1991) show that Õn converges weakly to some

convex process. By Lemma 2.2 in Davis et al. (1992), we can conclude that

√
n(ξ̂∗α,n − ξ∗α) = −ξ∗αΩ′

∗
√

n(θ̂∗n − θ∗0)

− 1

f∗(ξ∗α)

1√
n

n∑

t=1

(1{η∗
t <ξ∗α} − α) + oP (1).

In view of (A.8) and (A.9), we have

√
n(θ̂∗n − θ∗0) =

−4

Eg2 (η∗0 , 1)
J−1
∗

1√
n

n∑

t=1

g1(η
∗
t , 1)Dt(θ

∗
0) + oP (1).

By the CLT for martingale differences, we get

Sn :=
1√
n

n∑

t=1


 g1(η

∗
t , 1)Dt(θ

∗
0)

1{η∗
t <ξ∗α} − α


 L→ N



0,




Eg2

1
(η∗

1
,1)

4 J∗ cαΩ∗

cαΩ′
∗ α(1 − α)






 .

The result follows from

√
n


 θ̂∗n − θ∗0

ξ̂∗α,n − ξ∗α


 =




−4
Eg2(η∗

0
,1)

J−1
∗ 0m

4ξ∗α
Eg2(η∗

0
,1)

Ω′
∗J

−1
∗

−1
f∗(ξ∗α)


Sn,

using the relation Ω′
∗J

−1
∗ Ω∗ = 1/4 by Remark 3.1 in FZ. ✷

A.3 Proof of Corollary 2.2

In view of (2.1), when h is replaced by hs, then θ̂∗n is replaced by θ̂
(s)
n

such that θ̂∗n = H(θ̂
(s)
n , s). It is then clear that σ̃t(θ̂

∗
n) and η∗t are replaced

by respectively σ̃t(θ̂
∗
n,s) = s−1σ̃t(θ̂

∗
n) and sη∗t , and thus the VaR estimator is

unchanged. ✷

36



A.4 Proof of Theorem 4.1

If G is the cdf of a discrete distribution, that puts the masses p1, . . . , pk

at the points 0 < α1 < . . . < αk < 1, then

∫ 1

0
ξudG(u) =

k∑

i=1

ξαipi and
∫ 1

0
ξ̂∗n,udG(u) =

k∑

i=1

ξ̂∗n,αi
pi.

By Basset and Koenker (1986), ξ̂∗n,αi
→ ξαi a.s. for i = 1, . . . , k, and the

result follows from Lemma 2.1 in the discrete case.

For a general distortion function G and for all ε > 0, one can define

discrete distributions G1 and G2 such that

∫ 1

0
ξudG1(u) ≤

∫ 1

0
ξudG(u) ≤

∫ 1

0
ξudG2(u)

and ∣∣∣∣
∫ 1

0
ξudG1(u) −

∫ 1

0
ξudG2(u)

∣∣∣∣ < ε.

The conclusion then follows from the consistency in the discrete case. ✷
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