Endogenous Capital Market
Imperfection, Informal Interest Rate
Determination and International Factor
mobility in a General Equilibrium Model

Sarbajit Chaudhuri and Manash Ranjan Gupta

Dept. of Economics, University of Calcutta, India, Economic
Research Unit, Indian Statistical Institute (Calcutta)

2. November 2013

Online at http://mpra.ub.uni-muenchen.de/51157/
Endogenous Capital Market Imperfection, Informal Interest Rate Determination and International Factor mobility in a General Equilibrium Model

Sarbajit Chaudhuri
Dept. of Economics, University of Calcutta, India.
E-mail: sarbajitch@yahoo.com

Manash Ranjan Gupta
Economic Research Unit, Indian Statistical Institute (Calcutta), India.
E-mail: manashgupta@isical.ac.in

Address for communication: Dr. Sarbajit Chaudhuri, 384/1, M.B. Road, Nimta, Belgharia, Kolkata 700049, India. Tel: 91-33-2557-5082 (O), (0)9830530963 (M); Fax: 91-33-2844-1490 (P).

This version: 02 November, 2013

Abstract: This paper makes a pioneering attempt to provide a theory of determination of interest rate in the informal credit market in a less developed economy in terms of a three-sector static deterministic general equilibrium model. There are two informal sectors which obtain production loans from a monopolistic moneylender and employ labour from the informal labour market. On the other hand, the formal sector employs labour at an institutionally fixed wage rate and takes loans from the competitive formal credit market. We show that an inflow of foreign capital and/or an emigration of labour raises (lowers) the informal (formal) interest rate but lowers the competitive wage rate in the informal labour market when the informal manufacturing sector is more capital-intensive vis-à-vis the informal agricultural sector. International factor mobility, therefore, raises the degrees of distortions in both the factor markets in this case.

Keywords: Informal credit, formal credit, moneylender, foreign capital, emigration, general equilibrium.

JEL classification: D42; F21, F22; O17.
Endogenous Capital Market Imperfection, Informal Interest Rate Determination and International Factor Mobility in a General Equilibrium Model

1. Introduction

There exists financial dualism in less developed countries (LDCs) like India, Pakistan, Bangladesh, etc. with two different credit markets – formal credit market consisting of banks, co-operatives etc. and informal credit market consisting of professional moneylenders, traders, landlords etc. The formal credit market is competitive and supplies credit to the organized production sectors of the economy at relatively low rates of interest. On the contrary, the informal credit market is characterized by high degrees of imperfection and is found to be the major source of credit to the unorganized production sectors like agriculture, urban informal sectors etc. Professional moneylenders, having local monopolistic power, charge exorbitantly high rates of interest\(^1\) to their borrowers.

The theoretical literature dealing with the interaction between the formal credit market and informal credit market consists of two groups. Contributions like Chaudhuri and Gupta (1996), Gupta and Chaudhuri (1997), and Chaudhuri (1998, 2001, 2004) analyze interaction between the two credit markets in the presence of corruption in the loan delivery system in the formal credit market. Rent-seeking behaviour of the formal lender lowers the availability of formal credit and thus a demand for informal credit is created. On the other hand, works like Bose (1998), Hoff and Stiglitz (1996), Floro and Roy (1997), Jain (1999) and Chaudhuri and Ghosh Dastidar (2011a, b) consider vertical linkages between the two credit markets. Here informal sector lenders act as financial intermediaries between the formal credit agency and the final borrowers of credit. However, models belonging to this literature are built in static one period partial equilibrium framework and deal with a pure agrarian economy. Hence these models neither can focus on the simultaneous determination of all factor prices nor can analyse

\(^1\) The informal interest rate could be as high as 40 per cent or even 120 per cent per annum. See Basu (1998) and Bedbak (1986) in this context.
the effects of various exogenous changes taking place in the different non-agricultural sectors of the economy.

A complete static one period deterministic general equilibrium model incorporating the interaction between these two credit markets as well as the interdependence between the urban development and the rural development is found in Gupta (1997). This model provides a framework to analyze the effect of various urban development policies on the relative development of these two credit markets. However, Gupta (1997) assumes informal capital to be mobile between the urban informal manufacturing sector and the informal rural sector and keeps formal capital to be specific to the formal manufacturing sector. The formal manufacturing sector in that model faces a fixed high wage; but the wage rate is flexible in the two informal sectors. Furthermore, the two capital markets in that model are completely disintegrated and there is no scope for formal credit to flow into the informal credit market. Also the informal credit market is assumed to be competitive in that model while there are several theoretical and empirical works emphasizing the imperfection in this credit market. Credit transaction is often interlinked with other transactions like output transactions and labour transactions. Professional moneylenders have local monopoly power. Lenders have imperfect information about their borrowers. Also the literature does not comprise of any general equilibrium models that provide a theory of determination of the informal interest rate

2 This treatment of dichotomy between the formal-informal credit markets is also available in Chaudhuri (2003) which studies the welfare consequences of different liberalized economic policies in a small open economy setting.

3 Capital means working capital borrowed from the capital market.

starting from the behaviour of the informal sector lender in an imperfectly competitive credit market. An informal lender borrows funds from the formal credit market and relends it to the informal borrowers; and in the process maximizes net interest income. So a part of the formal credit enters into the informal credit market; and hence two credit markets are not completely disintegrated. The limitations in the model of Gupta (1997) justify the need for further research in this area introducing imperfection in the informal credit market as well as integration between the formal and the informal credit markets.

The present paper develops a static general equilibrium model of a small open economy consisting of three sectors - a formal, an informal and a rural (agricultural). The informal sector produces a non-traded intermediate good for the formal sector while the other two sectors produce two internationally traded final commodities. The formal credit market that supplies capital to the formal sector is assumed to be competitive like Gupta (1997). However, we introduce imperfection in the informal credit market that supplies capital to the informal and rural sector producers. The informal lender is a price maker in the informal credit market. Also the two credit markets are not disintegrated and capital can flow from one market to the other because the informal lender obtains capital from the formal credit market. In Gupta (1997), the supply of capital to the informal sector is perfectly inelastic. Any inflow of foreign capital necessarily goes to the urban formal sector in Gupta (1997)\(^6\) while in the present model it may flow into both credit markets. In Gupta (1997), labour moves from the rural sector to the informal sector following the Harris-Todaro (1970) migration mechanism. However, in the present model, labour is perfectly mobile.

The present analysis derives some interesting results that are new in the theoretical literature on informal credit market. An inflow of foreign capital, given the endowment of labour, unambiguously raises both the price of the informal sector’s product and the informal interest rate but lowers the formal interest rate as well as the wage rate in the informal labour market. Similar results are obtained when an emigration of labour takes place given the capital endowment of the economy. So either the foreign capital inflow or

\(^6\) Chaudhuri (2003) model also shares the same limitation.
the emigration of labour aggravates the extent of formal-informal wage gap as well as the interest rate gap between the two credit markets. So, degrees of distortions in both the factor markets are increased following inflows of foreign capital and/or emigration of labour.

The paper is organized as follows. The model is described in section 2. Subsection 2.1 analyzes the behaviour of the monopolistic lender who is the only source of capital in the informal credit market. Subsection 2.2 describes the equational structure of the general equilibrium model. Section 3 presents the comparative static effects with respect to changes in capital and labour endowments. Finally, concluding remarks are made in section 4.

2. The Model

We consider a small open developing economy with three production sectors: one formal sector and two informal sectors. One of the two informal sectors (sector 1) produces an internationally traded commodity, X_1, whose price, P_1, is internationally given. However, the other informal sector (sector 2) produces a non-traded intermediate good, X_2, for the formal sector. The formal sector produces an internationally traded manufacturing commodity, X_3. Labour is homogeneous and measured in labour time unit. Capital is also homogeneous and is measured in terms of machine hour. Capital and labour are the two primary inputs in each of these three sectors. Factor prices and the price of the non-traded good are measured in terms of a traded good. Markets other than the formal sector labour market and the informal sector credit market are perfectly competitive. The representative firm in each of these three sectors maximizes profit. Factor endowments are given exogenously. Labour and capital move freely across different sectors. There are imperfections in the market for labour in the formal sector. Workers in sector 3 are unionized and they receive a high fixed wage, W^*, while their counterparts in the two
informal sectors earn only a flexible competitive wage, W with $W^* > W$.\footnote{Firms in the formal sector face unionized labour market. One of the most important roles of the labour unions is to bargain with their respective employers in respect of the betterment of the working conditions. Through offer of negotiation, threat of strike, actual strike etc. the trade unions exert pressure on the employers (firms) in order to secure higher wages, reduced hours of work, share in profits and other benefits. Organized workers in large firms leave no stones unturned so as to reap wages higher than their reservation wage i.e. the informal sector wage. See Bhalotra (2002) and Chaudhuri and Mukhopadhyay (2009) in this context.} Workers first try to get employment in the formal sector as it offers a high wage. Those who are not successful are automatically absorbed in the two informal sectors owing to complete flexibility of the informal wage rate, W. The two informal sectors do not have any access to the formal capital market where the rate of return to capital is denoted by r; and hence are compelled to fall back upon the informal credit market, monopolized by a moneylender, where and the interest rate is denoted by R. The per-unit requirement of the intermediate input in sector 3 is assumed to be technologically fixed.\footnote{It rules out the possibility of substitution between the non-traded intermediate good and other factors of production in sector 3. Although this is a simplifying assumption, it is not totally unrealistic. In industries like shoe making and garments, large formal sector firms farm out their production to the small informal sector firms under the system of subcontracting. So the production is done in the informal sector firms while labeling, packaging and marketing are done by the formal sector firms. One pair of shoes produced in the informal sector does not change in quantity when it is marketed by the formal sector as a final commodity. Thus there remains a fixed proportion between the use of the intermediate good and the quantity of the final commodity produced and marketed by the formal sector. See Chaudhuri and Mukhopadhyay (2009) in this context.} Sector 1 and sector 2 together form a Heckscher-Ohlin sub-system (HOSS) because both informal capital and labour are perfectly mobile between these two sectors.\footnote{Even though the non-traded input-output ratio (a_{23}) in sector 3 is technologically given, labour and capital are substitutes and the production function displays the constant returns to scale property in these two inputs.} Sector 2 uses capital more intensively vis-à-vis sector 1. However, sector 3 is the most capital-intensive sector in the economy. Production functions in all the three sectors exhibit constant returns to scale.
scale11 with positive and diminishing marginal productivity to each factor. Owing to our small open economy assumption, prices of both the final goods are given internationally in the sense that these are determined in the international market and are parameters to a small open economy. However, as sector 2 produces a non-traded intermediate good, its price, P_2, is determined domestically by equating its supply to demand in the home market. Finally, we assume that labour and capital are imperfectly substitutes to each other in all the sectors.

2.1 The moneylender’s behaviour

The moneylender, being the only source of informal credit, enjoys monopoly power in the informal credit market. He borrows funds from the formal credit market at the interest rate, r, and lends it to the informal sector producers at the interest rate, R. The aggregate demand for informal credit of the moneylender, denoted B, is given by

$$B = a_{K_1}(W, R)X_1 + a_{K_2}(W, R)X_2,$$

where a_{K_j} and X_j are the capital-output ratio and output level in the jth sector for $j = 1, 2$. W and R stand for the informal wage rate and the informal interest rate, respectively. We assume production functions in all the sectors to satisfy all the standard neo-classical properties including constant returns to scale; and the representative firm maximizes profit being price-takers in the factor markets. So the input-output coefficients are functions of W and r. The level of demand for informal loan, B, is measured in terms of commodity 1 which is the unit of account here.

The moneylender’s net interest income is assumed to be fully refunded; and hence the risk of default is ignored for the sake of simplicity12. It is given by

11 See footnotes 8 and 9 in this context.

12 Bottomley (1975), Bhaduri (1977), Basu (1984) etc. emphasize the problem of lender’s risk in the informal credit market. If there is a risk of default, the expected net interest income should be considered and attitude towards risk aversion also becomes important. We ignore this realistic problem because we consider a deterministic competitive equilibrium framework and; such a deterministic framework is often used to analyze the problem of less developed economies.
\[Y_M = (R - r)B = (R - r)[a_{k1}(W, R)X_1 + a_{k2}(W, R)X_2]. \]

(2)

The monopolist moneylender maximizes his net interest income through a choice of \(R \). He has no control over \(W \) and \(r \); and these variables are treated as parameters in his maximization process. The first-order condition of maximization of net interest income is given by

\[
\left(\frac{dY_M}{dR} \right) = a_{k1}X_1[(1 - S_{k1}^L) + \frac{r}{R}S_{k1}^L] + a_{k2}X_2[(1 - S_{k2}^L) + \frac{r}{R}S_{k2}^L] = 0. \]

(3)

This implies that the change in net interest income of the moneylender (with respect to the informal interest rate, \(R \)) must be zero in equilibrium.

Here \(Y_M \) is a concave function of \(R \) because

\[
\left(\frac{d^2Y_m}{dR^2} \right) = -\frac{2}{R}[S_{k1}^L a_{k1}X_1 + S_{k2}^L a_{k2}X_2] + (R - r)[(\frac{\partial^2 a_{k1}}{\partial R^2})X_1 + (\frac{\partial^2 a_{k2}}{\partial R^2})X_2] < 0.
\]

Here \(S_{ij}^k = (\frac{\partial a_{ij}^k}{\partial w_k}, \frac{w_k}{a_{ij}^k}) \) is the elasticity of the \(i \)th factor-output coefficient \((a_{ij}) \) in the \(j \)th sector \((j = 1, 2) \) with respect to the \(k \)th factor price \((w_k for k = L, K) \). \(S_{k1}^L \) and \(S_{k2}^L \) are positive but \(\frac{\partial^2 a_{k1}}{\partial R^2} \) and \(\frac{\partial^2 a_{k2}}{\partial R^2} \) are negative. So \(\frac{d^2Y_m}{dR^2} < 0 \) and hence \(Y_m \) is a concave function of \(R \).

From equation (3) we have\(^ {13}\)

\[
\frac{a_{k1}X_1(1 + S_{k1}^L) + a_{k2}X_2(1 + S_{k2}^L)}{a_{k1}X_1(1 - S_{k1}^L) + a_{k2}X_2(1 - S_{k2}^L)} = -\frac{2R - r}{r} < 0. \]

(3.1)

So from equation (3.1) it follows that either

\[a_{k1}X_1(1 - S_{k1}^L) + a_{k2}X_2(1 - S_{k2}^L) < 0; \]

or,

\[
\begin{align*}
1 &\leq S_{k1}^L \quad \text{and} \quad 1 \leq S_{k2}^L, \\
\end{align*} \]

\(^{13}\) See Appendix I for derivation of equation (3.1).
with at least one being a strict inequality.

2.2 The general equilibrium analysis

The price sub-system of this general equilibrium model is represented by the following set of equations:

\[W_{l1} + R_{k1} = 1; \]
(4)

\[W_{l2} + R_{k2} = P_2; \]
(5)

and,

\[W^* a_{l3} + r_{k2} + P_2 a_{23} = P_3. \]
(6)

where \(P_j \) stands for the relative price of the \(j \)th good for \(j = 2, 3 \) (measured in terms of commodity 1); and, \(a_{23} \) stands for the per unit requirement of the intermediate good in sector 3. Each of these three equations represents the competitive equilibrium condition in the corresponding product market. The left-hand side of each of these three equations represents average cost; and, under constant returns to scale technology, average cost is same as marginal cost. Competitive equilibrium is attained when price is equal to marginal cost.

The quantity sub-system of the general equilibrium model is described by the following set of equations.

\[a_{l1} X_1 + a_{l2} X_2 + a_{l3} X_3 = L; \]
(7)

\[a_{k1} X_1 + a_{k2} X_2 + a_{k3} X_3 = K_D + K_F = K; \]
(8)

and,

\[a_{23} X_3 = X_2. \]
(9)

The left-hand side of equation (7) (equation (8)) represents the level of demand for labour (capital). Equations (7) and (8) are the full-employment conditions for labour and capital, respectively. This full-employment in factor markets is ensured by perfect flexibility of factor prices. \(a_{23} X_3 \) represents the level of demand for the intermediate good. Equation (9) represents the demand-supply equality condition in this non-traded intermediate good.
market. Perfect flexibility of the price of the non-traded good ensures this equality in equilibrium. The capital stock of the economy consists of both domestic capital \((K_D)\) and foreign capital \((K_F)\) which are perfect substitutes.\(^{14}\) Equation (3) is the first-order condition of maximization of the net interest income of the moneylender.

The general equilibrium set-up consists of seven endogenous variables, \(W, R, r, P_2, X_1, X_2,\) and \(X_3,\) and exactly the same number of independent equations, namely equation (3) and equations (4) – (9). The solution mechanism is the following. \(W\) and \(R\) are determined from equations (4) and (5) as functions of \(P_2.\) Then \(r, X_1, X_2,\) and \(X_3\) are determined from equations (3), (6), (7) and (8) simultaneously as functions of \(P_2.\) Finally, \(P_2\) is solved from equation (9).

3. Comparative statics

Here we examine the effects of an inflow of foreign capital and/or of an emigration of labour on factor prices. The conventional wisdom as obtained from competitive equilibrium analysis made by Grinols (1991), Chandra and Khan (1993), Gupta (1997) etc. suggests that an inflow of foreign capital must lead to an expansion of the formal sector and draw labour from the informal sectors resulting in an increase in the informal sector wage rate. The formal and informal interest rates should go down as the supply of capital is increased given its demand. On the other hand, an emigration of labour lowers the availability of labour in the source country and should raise the informal sector wage. The labour-intensive informal sectors are expected to contract for scarcity of labour and release capital to the formal sector leading to an expansion of the latter. The interest rate in the informal sector should go down while the formal interest rate should go up. We are going to show that these results are not so straightforward in this model for two reasons:

\(^{14}\) It may be mentioned that this assumption has been widely used in the theoretical literature on trade and development. See Gupta (1994, 1997), Khan (1982), Chandra and Khan (1993), Chaudhuri (2003, 2005), Chaudhuri and Mukhopadhyay (2009), Chaudhuri et al. (2006) among others.
(i) there is monopoly in the informal credit market; and, (ii) there is a non-traded intermediate good produced by sector 2 having a complementary relationship with the product produced by the formal sector (sector 3). This complementary relationship has been considered by Marjit (2003), Chaudhuri (2003), Chaudhuri and Mukhopadhyay (2009, 2014) and Chaudhuri et al. (2006).

Differentiating both sides of equations (4) – (6) we obtain

\[\theta_{L1} \dot{W} + \theta_{K1} \dot{R} = 0 ; \]
\[\theta_{L2} \dot{W} + \theta_{K2} \dot{R} = \dot{P}_2 ; \text{ and,} \]
\[\theta_{K2} \dot{x} + \theta_{P3} \dot{P}_2 = \dot{P}_3 . \]

Here “\(^{\hat{}} \) means proportional change e.g. \(\dot{x} = \frac{dx}{x} \).

Similarly, total differentials of equations (7) – (9) yield the following equations.

\[\lambda_{L1} \dot{x}_1 + \lambda_{L2} \dot{x}_2 + \lambda_{L3} \dot{x}_3 = \dot{L} ; \]
\[\lambda_{K1} \dot{x}_1 + \lambda_{K2} \dot{x}_2 + \lambda_{K3} \dot{x}_3 = \dot{K} ; \text{ and,} \]
\[\dot{x}_2 = \dot{x}_3 . \]

Solving equations (4.1) and (5.1) we find

\[\dot{W} = -\left(\frac{\theta_{K1}}{\theta} \right) \dot{P}_2 ; \]
and,

\[\dot{R} = \left(\frac{\theta_{L1}}{\theta} \right) \dot{P}_2 . \]

Here \(\theta_{ij} \) is the distributive share of the \(i \) th factor in the \(j \) th sector e.g. \(\theta_{K2} = \frac{Ra_{K2}}{P_2} \). \(\lambda_j \) is the share of the \(i \) th factor allocated to the \(j \) th sector. We assume that

\[|\theta| = (\theta_{L1} \theta_{K2} - \theta_{L2} \theta_{K1}) > 0 . \]

This implies that the non-traded intermediate good-producing

\[^{15} \text{This is so because } a_{23} \text{ is a constant.} \]
informal sector (sector 2) is more capital-intensiv e than the traded good-producing informal sector (sector 1) in both physical and value sense.

Differentiating both sides of equations (3), (6.1), (7.1) and (8.1), simplifying and arranging them in a matrix notation, we have\(^{16}\)

\[
\begin{bmatrix}
\theta_{K3} & 0 & 0 & 0 \\
A_2 & A_1 & -A_1 & 0 \\
\lambda_{L3}S_{K3}^L & \lambda_{L1} & \lambda_{L2} & \lambda_{L3}
\end{bmatrix}
\begin{bmatrix}
\hat{r} \\
\hat{X}_1 \\
\hat{X}_2 \\
\hat{X}_3
\end{bmatrix}
=
\begin{bmatrix}
-\theta_{L3}\hat{P}_2 \\
A_3\hat{P}_2 \\
(L - A_4\hat{P}_2)
\end{bmatrix};
\]

(12)

where, \(A_i = a_{k1}X_1[(1 - S_{K1}^L) + \frac{R}{R}S_{K1}^L] = -a_{k2}X_2[(1 - S_{K2}^L) + \frac{R}{R}S_{K2}^L]; \)

\(A_2 = (\frac{r}{R})(S_{K1}^L/a_{k1}X_1 + S_{K2}^L/a_{k2}X_2) > 0; \)

\(A_3 = (\frac{1}{\theta})(\theta_{K1}[a_{k1}X_1S_{K1}^L + a_{k2}X_2S_{K2}^L + (R - r)W(\frac{\partial^2 a_{k1}}{\partial R^2}X_1 + \frac{\partial^2 a_{k2}}{\partial R^2}X_2)]
\]

\(+ \theta_{L1}[2(a_{k1}X_1S_{K1}^L + a_{k2}X_2S_{K2}^L) - (R - r)R(\frac{\partial^2 a_{k1}}{\partial R^2}X_1 + \frac{\partial^2 a_{k2}}{\partial R^2}X_2)]) > 0; \)

\(A_4 = (\frac{\lambda_{L1}S_{K1}^L + \lambda_{L2}S_{K2}^L}{\theta}) > 0; \)

\(A_5 = (\frac{\lambda_{K1}S_{K1}^L + \lambda_{K2}S_{K2}^L}{\theta}) > 0; \)

Solving the set of equations given by (12) we obtain the following expressions.

\(\hat{r} = -\left(\frac{\theta_{L3}}{\theta_{K3}}\right)\hat{P}_2; \)

(14)

\(\hat{X}_1 = (\frac{\hat{P}_2}{\Delta})[(\theta_{K3}A_3 + \theta_{L3}A_2)(\lambda_{L2}\lambda_{K3} - \lambda_{L3}\lambda_{K2}) + A_1(\theta_{L3}\lambda_{L3}\lambda_{K3}S_{K3}^L + S_{K3}^L)]
\]

\(-\theta_{K3}(\lambda_{K3}A_4 + \lambda_{L3}A_5)] - (\frac{\theta_{K3}A_1\lambda_{L3}}{\Delta})\hat{K} + (\frac{\theta_{K3}A_1\lambda_{K3}}{\Delta})\hat{L}; \)

(15)

\(^{16}\) The derivations of the set of equations (12) are available from the authors on request.
\[\hat{X}_2 = -\left(\frac{\hat{P}_2}{\Delta} \right) \{ \theta_{k_3} A_1 (A_i \lambda_{k_3} + A_3 \lambda_{l_3}) + \theta_{k_3} A_3 (\lambda_{l_1} \lambda_{k_3} - \lambda_{l_3} \lambda_{k_1}) + \theta_{k_3} A_1 (\lambda_{l_1} \lambda_{k_3} - \lambda_{l_3} \lambda_{k_1}) \} \]

\[+ \theta_{k_3} A_1 (\lambda_{l_1} \lambda_{k_3} - \lambda_{l_3} \lambda_{k_1}) - A_1 \lambda_{l_3} \lambda_{k_3} (S_{l_3}^K + S_{k_3}^I) \} \]

\[+ \left(\frac{\theta_{k_3} A_1}{\Delta} \right) \hat{L} - \left(\frac{\theta_{k_3} A_1}{\Delta} \right) \hat{K} ; \]

and,

\[\hat{X}_3 = \left(\frac{\hat{P}_2}{\Delta} \right) \{ A_3 (\lambda_{l_3} + \lambda_{l_2}) + A_4 (\lambda_{k_3} + \lambda_{k_2}) \} + \theta_{k_3} A_1 (\lambda_{l_1} \lambda_{k_2} - \lambda_{l_2} \lambda_{k_1}) \]

\[+ \theta_{k_3} A_1 (\lambda_{l_1} \lambda_{k_2} - \lambda_{l_2} \lambda_{k_1}) - A_1 \lambda_{l_3} (\lambda_{k_1} + \lambda_{k_2}) S_{l_3}^K - A_1 \lambda_{k_3} (\lambda_{l_1} + \lambda_{l_2}) S_{k_3}^I \} \]

\[+ \left(\frac{\theta_{k_3} A_1}{\Delta} \right) (\lambda_{l_1} + \lambda_{l_2}) \hat{K} - \left(\frac{\theta_{k_3} A_1}{\Delta} \right) (\lambda_{k_1} + \lambda_{k_2}) \hat{L} . \]

(17)

Here \(\Delta \) is the determinant of the coefficient matrix given in (12). Here

\[\Delta = \theta_{k_3} A_1 [(\lambda_{l_2} \lambda_{k_3} - \lambda_{l_3} \lambda_{k_2}) + (\lambda_{l_1} \lambda_{k_3} - \lambda_{l_3} \lambda_{k_1})] \]

(18.1)

By assumption, sector 3 is the most capital-intensive sector. Hence \(\lambda_{l_2} \lambda_{k_3} > \lambda_{l_3} \lambda_{k_2} \) and \(\lambda_{l_1} \lambda_{k_3} > \lambda_{l_3} \lambda_{k_1} \). It can be shown that a necessary condition for having a normal (positive) price-supply response in sector 2 is that \(A_1 < 0 \). If \(A_1 < 0 \) from (18.1) we can write

\[\Delta = \theta_{k_3} A_1 [(\lambda_{l_2} \lambda_{k_3} - \lambda_{l_3} \lambda_{k_2}) + (\lambda_{l_1} \lambda_{k_3} - \lambda_{l_3} \lambda_{k_1})] < 0 \]

(18.2)

As sector 2 produces an internationally non-traded intermediate good and as the product price is perfectly flexible, then its market must clear domestically. For the equilibrium in the intermediate good market to be Walrasian stable, it requires that

\[D = \left(\frac{\hat{X}_1}{\hat{P}_2} \right) - \left(\frac{\hat{X}_2}{\hat{P}_2} \right) < 0. \]

This is available from the authors on request
Here D represents the rate of change in the excess demand for the intermediate good; and, it must be negative to satisfy the stability of equilibrium. Using equations (16) and (17) and simplifying the stability condition, we must have

$$D = \frac{1}{\Delta} \left[\theta_{k3} A_k (A_k + A_L) + \theta_{k3} A_k + \theta_{33} A_2 \right] \left[\lambda_{l1} (\lambda_{k2} + \lambda_{k3}) - \lambda_{k1} (\lambda_{l2} + \lambda_{l3}) \right] - \theta_{33} A_2 (\lambda_{l3} S_{l3}^k + \lambda_{k3} S_{l3}^L) < 0. \quad (19)$$

In equilibrium the demand for the non-traded intermediate good must equal its supply. Totally differentiating both sides of equation (9) one obtains

$$\hat{X}_3 = \hat{X}_2. \quad (20)$$

Using equations (16), (17) and (20) we have

$$\hat{P}_2 = -\left(\frac{\theta_{k3} A_k}{\Delta D} \right) \hat{K} \quad \text{when} \quad \hat{L} = 0; \quad (21)$$

and,

$$\hat{P}_2 = \left(\frac{\theta_{k3} A_k}{\Delta D} \right) \hat{L} \quad \text{when} \quad \hat{K} = 0. \quad (22)$$

Substituting the expression for Δ from equation (18.2) in equations (21) and (22), we find the following expressions.

$$\left(\frac{\hat{P}_2}{\hat{K}} \right) = - \left[\frac{1}{D \left((\lambda_{l2} - \lambda_{k3} - \lambda_{l1} - \lambda_{k2}) + (\lambda_{l1} - \lambda_{k3} - \lambda_{l1} - \lambda_{k2}) \right)} \right]; \quad (23)$$

and,

$$\left(\frac{\hat{P}_2}{\hat{L}} \right) = \left[\frac{1}{D \left((\lambda_{l2} - \lambda_{k3} - \lambda_{l1} - \lambda_{k2}) + (\lambda_{l1} - \lambda_{k3} - \lambda_{l1} - \lambda_{k2}) \right)} \right]. \quad (24)$$

Here $\left(\frac{\hat{P}_2}{\hat{K}} \right) > 0$ and $\left(\frac{\hat{P}_2}{\hat{L}} \right) < 0$ because $D < 0, \lambda_{l2} - \lambda_{k3} > \lambda_{l1} - \lambda_{k2}$ and, $\lambda_{l1} - \lambda_{k3} > \lambda_{l1} - \lambda_{k1}$. Equations (23) and (24) help us to establish the following proposition.

18 Interested readers may derive equation (19) of their own or can request for proofs from the authors on request.
Proposition 1: An increase in the capital (labour) endowment, given the labour (capital) endowment, unambiguously raises (lowers) the price of the non-traded intermediate good.

Here an inflow of foreign capital leads to an expansion of the capital stock while an emigration of labour from the source country lowers its labour endowment. The intuitive explanations of Proposition 1 are fairly straightforward. The production structure here is an indecomposable one. Therefore factor prices depend on both commodity prices and factor endowments. Sector 1 and sector 2 together form a Heckscher-Ohlin subsystem (HOSS) as they use the same two inputs. Besides, there is a perfect complementary relationship between products of sector 2 and sector 3. From equations (15) – (17) we find that any change in a factor endowment affects the output composition through a Rybczynski effect and through a change in the price of the non-traded intermediate good, P_2. The latter produces a Stolper-Samuelson effect and a subsequent Rybczynski type effect in the HOSS which in turn produces an indirect impact on the output composition of the different sectors. An increase in capital endowment leads to an expansion of the most capital-intensive sector (sector 3) and contraction of both the informal sectors. In equations (15) – (17), these changes are captured by the terms containing \hat{K}. As sector 3 expands, the demand for the non-traded intermediate good produced by sector 2 rises while its supply falls. This unambiguously raises the price of the non-traded good, P_2. On the contrary, if the labour endowment rises (falls) sector 3, being the least labour-intensive sector, contracts (expands) while the two informal sectors expand (contract). The demand for the non-traded input goes down (up) while its supply goes up (down). Consequently, P_2 falls (rises) unequivocally.

Using equations (10), (11), (14), (23) and (24) we obtain effects of changes in K and L on factor prices. These effects are described as follows.

$$\frac{\hat{W}}{K} = -\frac{\theta_{K1}}{|\theta|} \frac{\hat{P}_2}{K} < 0;$$

(25)
\[\frac{\hat{R}}{K} = \left(\frac{\theta_{L \bar{K}}}{\theta} \right) \left(\frac{\hat{P}_K}{\hat{K}} \right) > 0 ; \]

(26)

\[\frac{\hat{r}}{K} = -\left(\frac{\theta_{K \bar{K}}}{\theta} \right) \left(\frac{\hat{P}_K}{\hat{K}} \right) < 0 ; \]

(27)

\[\frac{\hat{W}}{L} = -\left(\frac{\theta_{L \bar{K}}}{\theta} \right) \left(\frac{\hat{P}_L}{\hat{L}} \right) > 0 ; \]

(28)

\[\frac{\hat{R}}{L} = \left(\frac{\theta_{L \bar{K}}}{\theta} \right) \left(\frac{\hat{P}_L}{\hat{L}} \right) < 0 ; \]

(29)

and,

\[\frac{\hat{r}}{L} = -\left(\frac{\theta_{K \bar{K}}}{\theta} \right) \left(\frac{\hat{P}_L}{\hat{L}} \right) > 0 . \]

(30)

\[\theta > 0 , \text{ by assumption; and, any } \theta_i > 0 , \text{ by definition. Equations (23) and (24) give us the} \] expressions and mathematical signs of \(\left(\frac{\hat{P}_K}{\hat{K}} \right) \) and \(\left(\frac{\hat{P}_L}{\hat{L}} \right) \). Thus we can sign the above-mentioned six expressions. All these results can be summarized in terms of the following proposition.

Proposition 2: An increase (a decrease) in the endowment of capital (labour) given the endowment of the other factor, leads to (i) an increase in the informal interest rate; (ii) a decrease in the formal interest rate; and, (ii) a fall in the informal wage rate.

Proposition 2 can be intuitively explained as follows. An increase in the capital endowment raises the price of the non-traded intermediate good, \(P_2 \). This produces a Stolper-Samuelson effect in the HOSS raising the informal interest rate \(R \) and lowering the informal sector wage \(W \) as the intermediate good-producing informal sector (sector 2) is assumed to be more capital-intensive than the agricultural good producing informal sector (sector 1). The formal interest rate, \(r \), must fall so as to satisfy the zero-profit condition in sector 3.\(^{19}\)

\(^{19}\) See equation (6).
downward pressure on the formal interest rate in this sector. The effects of a change in the labour endowment on factor prices can easily be explained following the reverse mechanism.

4. Concluding remarks

In this paper we have developed a three-sector static general equilibrium model of a small open economy with distortions in the labour market as well as in the capital market. The informal capital market is different from the formal capital market in the sense that the latter being competitive in nature supplies capital to the formal sector firms while the former being monopolistic in nature provides funds to the informal and rural sector producers. We, however, do not consider the Harris-Todaro (1970) type rural-urban migration and unemployment of labour.

We obtain a few interesting results. If the intermediate good producing informal sector is more capital-intensive than the agricultural good producing informal sector, an increase in the capital stock and/or a decrease in labour endowment would lower the wage rate in the informal labour market as well as the interest rate in the formal credit market but raises the interest rate in the informal capital market. Thus degrees of distortion in both the factor markets are aggravated in this case. This result is different from that we obtain in Gupta (1997) model where an increase in the capital stock and/or a decrease in labour endowment raises the informal wage rate and lowers the interest rate in the informal credit market when there is Harris-Todaro (1970) type induced migration and the labour sending rural sector is more capital-intensive than the labour receiving urban informal sector. No unambiguous results on factor prices in the informal sector can be obtained in Gupta (1997) when the urban informal sector is more capital-intensive than the rural sector. Moreover, there is a major difference in the mechanism of working between these two models. In Gupta (1997), changes in factor endowments affect factor prices through the Harris-Todaro migration equilibrium condition, but in the present model, corresponding effects are generated through movement in the price of the non-traded good.
Finally, there are some restrictive assumptions embodied in the present analysis. There is no induced migration and unemployment which are two salient features of an LDC. Also the labour input is homogeneous and there is no distinction between workers with respect to their skills. Also some of the essential characteristics of the informal credit market like interlinkages with other markets are missing. Besides, the informal credit market is fragmented oligopolistic in nature and there is a segment in the credit market where informal lenders compete with each other20. Future research in this area should address these issues.

References:

20 See Basu and Bell (1991), Mishra (1994) and Basu (1998) in this context.

Meenakshi Rajeeve (eds.), Essays in honor of Professors Amitabha Bose and Dipankar Dasgupta, OUP, Calcutta.

