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Abstract 
 

We adopt the framework of Schumpeterian creative destruction formalized by Aghion et 

al. (2009) to analyze the impact of foreign entry on the productivity growth of domestic 

firms.  In the face of foreign entry, domestic firms exhibit heterogeneous patterns of 

growth depending on their technological distance from foreign firms.  Domestic firms 

with smaller technological distance from their foreign counterparts tend to experience 

faster productivity growth, while firms with larger technological distance tend to lag 

further behind.  We test this hypothesis using a unique firm-level data of Chinese 

manufacturing.  Our empirical results confirm that foreign entry indeed generates strong 

heterogeneous growth patterns among domestic firms.   
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1. Introduction 
 

The impact of foreign direct investment (FDI) on domestic firms is often thought to be 

homogeneous, at least as so modeled.  On the positive side, theories predict that domestic 

firms will benefit from the interactions with foreign firms through channels such as 

technology spillover.  On the negative side, academics and policy makers alike, ever 

since Alexander Hamilton, time and time again, have warned the potential damages that 

foreign competition could have inflicted upon domestic industries and advocated 

industrial policies should be in place to protect domestic firms.1  Yet, the debate so far 

has not taken firm heterogeneity into consideration.  Inspired by the earlier works of 

Aghion et al. (2004, 2005b, 2009), we show in this paper that the impact of FDI on 

domestic firms is far more complicated than previously thought.  Depending on the 

technological distance between domestic and foreign firms, the entry of foreign firms 

could generate a divergent or heterogeneous impact on the growth of domestic firms.  

Our research is ultimately motivated by Joseph Schumpeter’s idea of “creative 

destruction”.  In his book “Capitalism, Socialism, and Democracy” (1942), Schumpeter 

famously wrote:  

                                                 
1 One of the most recent examples is Larry Summers’ expression of his suspicion about 

the benefits of globalization on Financial Times (April 27. 2008).  He wrote, “I suspect 

that the policy debate in the US, and probably in some other countries as well, will need 

to confront a deeper and broader issue: the gnawing suspicion of many that the very 

object of internationalist economic policy – the growing prosperity of the global economy 

– may not be in their interests”.  
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The fundamental impulse that sets and keeps the capitalist engine in motion comes 

from the new consumers’ goods, the new methods of production or transportation, the 

new markets….The process of industrial mutations…that incessantly revolutionizes 

the economic structure from within, incessantly destroying the old one, incessantly 

creating a new one.  The process of Creative Destruction is the essential fact about 

capitalism.  

 
Schumpeter’s idea hinges on his recognition of firms’ heterogeneous behavior in their 

competition for survival, which follows similarly to Darwinism.  National economy 

moves ahead through the dynamism generated by the so-called creative destruction, 

where more productive firms (often newer ones) constantly replace less productive (often 

older) ones.  Aghion and Howitt (1992) constructed a formal model of innovation to 

capture the essence of this process.  In Aghion and Howitt (1998), they refined their early 

argument by pointing out that it is too simple to assume incumbents will automatically 

surrender and be replaced; facing new competition, incumbents will fight for survival; 

and the likelihood of survival depends on the outcome of the competition.  As such, new 

entrants’ impact on incumbents is likely to be heterogeneous; and an important source of 

such heterogeneity is firm’s technological distance to their new competitors.  Aghion et 

al. (2009) empirically tested the relationship between heterogeneity and the divergent 

innovation and growth pattern generated by new entry using the UK manufacturing data, 

and the results seemed to have confirmed the hypothesis.   

Our research is another attempt to use real-world data to test Schumpeter’s theory of 

creative destruction.  We are especially interested in finding out how foreign entry could 

potentially change the growth dynamics of domestic firms in a host country of FDI.  We 
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define the heterogeneity of domestic firms in terms of their relative technological 

distance from their foreign counterparts.2  We hypothesize that the heterogeneity will in 

turn determine firms’ behavior in response to foreign competition:  Firms with relatively 

more advanced technology choose to compete neck-to-neck with foreign firms, while 

firms with relatively backward technology suffer a “discouragement effect” and lag 

further behind.  

The contribution of our research is two-fold.  First, it extends the framework of 

Schumpeterian “creative destruction” formalized by Aghion et al. (2009) to a setting of a 

large developing country: China.  It is still an open question whether foreign entry 

generates a similar growth pattern in a transitional country, which is still on its path 

toward a more market-oriented economy.  Second, we apply firm heterogeneity to the 

debate on FDI’s impact on domestic firms.  We argue in this paper that the analysis of the 

impact of FDI should take a new direction by taking firm heterogeneity into account.  In 

gauging FDI’s impact on domestic firms, we should pay more attention to the dynamic 

competitive environment that foreign competition helps to generate.  Empirical studies on 

the impact of FDI, especially those on developing economies, yielded quite mixed 

results.  As Dani Rodrik (1999) remarks, “Today's policy literature is filled with 

extravagant claims about positive spillovers from FDI but the evidence is sobering."   It 

won’t take a genius to figure out a scenario where the positive spillover effect can be 

partially or fully offset by the so-called “market-stealing” effect (see for example, Aitken 

and Harrison, 2002).  This is plausible especially when there exists a large technological 

                                                 
2 Unlike Aghion et al. (2009), where they measured technological distance at industry 

level, we measure heterogeneity at the firm level. 
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gap between firms in developed countries and that in developing countries.  Because the 

impact of FDI could go both ways, it is not surprising that past empirical research tended 

to find mixed (if not confusing) results.  On the one hand, the research by Blomström 

(1986) on Mexico, Javorcik (2004) on Lithuania, and Hu and Jefferson (2002) on China 

showed evidence of positive impacts of FDI on domestic firms; On the other hand, the 

analysis of Haddad and Harrison (1993) on Morocco, Aitken and Harrison (1999) on 

Venezuela, Djankov and Hoekrnan (2000) on the Czech Republic, and Konings (2001) 

on Bulgaria, Romania and Poland cast doubt on the positive spillovers.  One common 

feature of the past research is that they failed to recognize the heterogeneity among 

domestic firms.  And domestic firms were uniformly treated as a homogeneous group.  

Such homogeneous treatment of domestic firms directly contributed to the confusing 

results in the FDI literature.  In our view, including firm heterogeneity into our analysis 

captures the impact of foreign entry in a much more dynamic fashion, i.e., whether 

foreign competition can help a host country to generate a healthy competitive 

environment, which will benefit the country’s economic growth in the long run.    

The data for our empirical work is the firm-level data of Chinese Large and Medium 

Enterprises (LME) from 1995 to 2004, from Chinese National Bureau of Statistics.  

China’s case is especially interesting for the following two reasons.  First, it is one of the 

world’s largest recipients of FDI.3  Figure 1 shows FDI inflows into China from 1982 to 

2009.   China’s FDI boom started around 1993, and FDI inflows have hovered around US 

$40-50 billion per year during our sample period, 1995-2004.  Second, China’s growth in 

                                                 
3 World Investment Report 2006 ranks China as the third largest FDI recipient after the 

UK and the U.S.  Source: http://www.unctad.org/en/docs/wir2006_en.pdf 
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the past 30 years has been nothing short of spectacle.  It can be argued that this growth 

was, to a large extent, due to China’s re-opening up to the rest of the world, especially its 

remarkable openness to foreign direct investments.  To put things into perspective, by 

growing at a rate of 10% per year, China essentially doubles the living standards of its 

people in roughly every 8 years. This is one of the greatest achievements in the economic 

development of human history.  As such, understanding the internal growth dynamics of 

this large open economy is of particular interest to many people, including economists 

and policy makers.  

 
[Figure 1 here] 

 

Here is a preview of our empirical results: we show with overwhelming evidence that 

foreign entry’s impact on domestic firms is indeed heterogeneous, depending on domestic 

firm’s technological distance with their foreign competitors.  Foreign entry tends to 

generate a divergent growth pattern, in terms of TFP growth.  Firms with larger 

technological gap tend to experience a much slower productivity growth than the firms 

with a smaller technological gap.  This divergent growth pattern is robust to various 

estimation specifications.  Even for domestic state-owned (or controlled) firms, such 

heterogeneous growth pattern is also well alive.  

The rest of the paper is organized as follows. In the next section, we formulate our 

empirical model.  This is followed by the description of our data in section three, and 

analysis of the empirical results in section four.  The final section concludes.  
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2. Empirical Model 

To test the effect of foreign entry on productivity growth of domestic incumbent 

firms, we operate in the same direction as Aghion et al. (2009).  The main difference 

between our empirical model and theirs is that we adopt stricter measurement of 

heterogeneity, i.e., we measure heterogeneity at firm level instead of industry level.  This 

is illustrated in equation (3).  

We test our hypothesis using the following estimation equation: 

 

1 3 1_ * _
ijt jt ijt jt ijt

gTFP FE Tech Dist FE Tech Dist                 

'

ijt j t i ijt
X u        ,       (1)    

               

where i indexes the Chinese domestic firms that are without foreign investments, j 

indexes 3-digit industries in China’s manufacturing sector, and t represents the year from 

1995 to 2004.  Productivity at the firm level is measured by total factor productivity, or 

TFP.  Growth of TFP is simply 1ln( ) ln( )
ijt ijt ijt

gTFP TFP TFP   .  On the right hand side 

of equation, 
jt

FE  represents foreign entry rate at SIC 3-digit industry level, j; 

1_
ijt

Tech Dist   measures technological distance between average TFP of foreign firms in 

industry j, and TFP of individual domestic firms in the same industry.  We lag 

technological distance by one year to capture the initial technological gap before entry 

year t.4  Finally, to capture the heterogeneous effect of foreign entry on domestic firms, as 

                                                 
4 We chose not to use deeper lags as it will significantly reduce our observations in the 

regression.  
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in Aghion et al. (2009), we include an interaction term between foreign entry rate and 

relative technological distance, i.e., 1* _
jt ijt

FE Tech Dist  .  We also include controls for 

industry effects,
j

 , time effects, 
t
 , and firm fixed effects,

i
u .  We will discuss the 

rationale for each of these effects in Section 4, when we discuss our empirical results.  

Finally, we include '
X s as a list of additional control variables. Again, we will explain 

why we pick these control variables in Section 4.  

Now some more details about how we measure our key variables.  We measure the 

foreign entry rate using the following formula:  

 

1

1

,( _ 1) 1,( _ 1)1 1

11

jt jt

jt

M M

ijt D FJV ijt D FJVi i
jt N

ijti

L L
FE

L





   




 


,                                  (2) 

 

where L stands for labor employment; 
jt

N is the total number of firms in the 3-digit 

industry j, in year t; 
jt

M is the total number of foreign invested firms (where D_FJV=1), 

including both foreign wholly owned (F) and foreign-domestic joint ventures (JV), in the 

same industry.  In words, we measure foreign entry rate in industry j by the employment 

change of foreign-invested firms relative to the total labor employment of all firms in the 

same industry, with domestic firms included.  We use employment change, instead of 

actual investments, to capture the entry rate, because the data on investments tend to be 

very jumpy and noisy.  Another advantage of our measure of foreign entry is that it not 

only captures the change from the new entry, but also picks up the change from the 

expansion of the existing foreign invested firms.  
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Technological distance, our key variable to capture firm-level heterogeneity, is 

measured by the difference of total factor productivity between average foreign firms in 

industry j, and individual domestic firms, i, in the same 3-digit industry: 

 

_ ln( ) ln( )
jt ijt

F D

ijtTech Dist TFP TFP  ,             (3) 

 

where F and D denotes foreign and domestic firms, respectively.  Note that the first term 

in equation (2) is the average TFP of foreign invested firms in industry-year, jt, while the 

second term is the TFP of individual domestic firm, i, in industry-year, jt.  This is where 

we differ from Aghion et al. (2009), in which they measured technological distance at the 

industry level only, i.e., both terms of productivity are indexed at j.  We think our 

measure captures firm heterogeneity more accurately.  

To compute firm-level TFP, we use the following formula derived from the Solow-

type production function:  

 

  
ijt

ijt

ijt ijt

VA
TFP

K L
    ,         (4) 

where VA is value-added, K is net value of fixed assets after deprecation, and L is labor 

employment, with α, β being output elasticity of capital and labor, respectively.  We first 

assume production function to be constant return to scale, i.e., α+β=1.  So α, β are 

estimated from the following estimation equation:  

 

(1 )
ijt ijt ijt t i ijt

va k l a         ,        (5) 
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where va, k and l are log transformation of VA, K and L; 
t
 is time effect, 

i
a  is firm fixed 

effect and 
ijt
 is i.i.d. error term.   

To check the robustness of our results, we also compute an alternative measure of 

TFP, called TFP2, in which we relax our previous assumption of constant return to scale, 

and allow capital-output elasticity,  ,  and labor-output elasticity,  , to be separately 

estimated in the following equation: 

 

ijt ijt ijt t i ijt
va k l a              (6) 

 

Again, 
t
 is time effect, 

i
a  is firm fixed effect and 

ijt
 is i.i.d. error term.   

Now back to equation (1).  Foreign entry rate, 
jt

FE , technological distance, 

1_
ijt

Tech Dist  , and their interaction, 1* _
jt ijt

FE Tech Dist  , are the key variables, which 

we focus on throughout our empirical analysis.  Our priori expectations for these three 

key variables are as follows.  Concerning the sign of foreign entry, because the results 

from the past empirical research were quite mixed, we expect the sign of entry coefficient 

could be either positive or negative.  For technological distance, we expect to see a strong 

positive coefficient as the advantage of backwardness suggests that firms with initial 

lower productivity level should have the capacity to raise efficiency faster than their more 

productive counterparts.  The sign of the interactive term is of our major interest in 

testing our hypothesis.  If our hypothesis is empirically valid, we expect to see a negative 

sign.  A negative sign indicates that foreign entry has a divergent effect on domestic 

firms: when technological distances between domestic and foreign firms increases, 
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foreign entry tends to produce a negative impact on the productivity growth of domestic 

firms; When technological distance decrease, i.e., when domestic firms are relatively 

advanced, foreign entry tends to produce a positive effect on the productivity growth of 

domestic firms.  

 

3. Data 

The data for this research are drawn from the Industrial Survey of Large and Medium 

Size Enterprises (LME) conducted by China’s National Bureau of Statistical (NBS).  This 

is a mandatory survey and coverage is comprehensive for China’s industrial sector.  Our 

own calculation indicates that in 2002, the total output of the firms in LME accounts for 

60% of China’s total industrial output.   

We construct an unbalanced panel of manufacturing firms from 1995 to 2004.  We 

started with roughly 170,000 observations for a period of ten years.  Since we only focus 

on foreign entry’s impact on domestic firms, we dropped roughly 50,000 non-domestic 

observations and we are left with a total of 120,000 observations before doing further 

data cleaning.  After eliminating outliers for our key regression variables, we end up with 

a panel of roughly 85,000 observations, across ten years.  Finally, our calculation of 

growth rates and lag variables further reduce our observation to about 60,000.   

To show the overall picture of foreign invested firms in China, we calculate the share 

of foreign firms in China’s manufacturing sector in terms their employment, output and 

sales in Table 1.  

 

[Table 1 here] 
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As joint ventures have always been a big part of China’s FDI inflows, we define foreign-

invested firms broadly to include both foreign wholly-owned and joint ventures.  As 

shown in the table, foreign invested firms have played a huge role in China.  In 2004, 

they accounted for 42% of total labor force in manufacturing, 41% of total output in 

terms of value-added, and 49% of total sales.  Our calculation shows direct evidence that 

China’s remarkable openness to foreign direct investments is a major difference in its 

comparison to other East Asia economies, such as Japan and South Korea.   This fact also 

makes our study of foreign entry’s impact on Chinese firms highly relevant.  

Foreign entry rate is one of the key variables in our estimation.  It is defined in 

equation (2) in section 2.  To get an overall picture of foreign entry rate, in Figure 2, we 

plot the average foreign entry rate during 1995-2004 for every 2-digit manufacturing 

industry.  We find that the highest foreign entry, on average, were in industries such as 

sports goods, leather products, furniture, telecom and computer, plastics and apparel.  

This is in general in line with our expectations.  The average entry rate across all 

manufacturing industries in 1995-2004 period was around 7.3%.   Also note that the 

lowest foreign entry rate appears to be in the following industries: tobacco, ferrous 

metals, non-ferrous metals and chemicals.  

 

[Figure 2 here] 

 

Technological distance, _
ijt

Tech Dist , is another key variable in our estimation. As 

defined by equation (3), it is measured by the average TFP of foreign firms relative to the 

TFP of individual domestic firms in the same 3-digit industry, j.  In Figure 3, we plot a 
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histogram of technological distance.  From the histogram, we see that close to 96% of 

observations has a technological distance that is greater than zero.  This came as no 

surprise since most foreign invested firms tend to enjoy an advantage in their technology.  

 

[Figure 3 here] 

 

Table 3 provides the summary statistics for the variables used in our regressions.  The 

average TFP growth of Chinese domestic firms during 1995-2004 is between 2.5% and 

3.3%.5  The average foreign entry rate at 3-digit industry level is around 2.5%.  The 

average foreign entry rate is 2.5%, with a standard deviation of 15.4%.  The average 

technological distance between foreign firms (industry average) and domestic firms is 

1.67, which implies the average TFP for foreign invested firms is about 5.5 times of the 

TFP level of domestic firms.  

 

[Table 2 here] 

 

 

4. Empirical Results and Discussions 

4.1.   Benchmark Results 

Our baseline regression results are presented in Table 3.  In column (1), we first run a 

simple pooled OLS regression with the three key explanatory variables: foreign entry, 

technological distance, and their interactive term.  The coefficient on technological 

distance is positive and significant, and the positive sign indicates that firms further from 

                                                 
5 We calculated two alternative measures of TFP, as described in equation (4) and (5).  
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the technology frontier benefit most from knowledge spillover, as also evidenced in 

Griffith et al. (2004).  Another possibility is that it simply reflects the “catch-up effect”: 

firms further from technological frontier grow faster because their starting point is low.  

The coefficient on the interaction term is negative and statistically significant at 1% level, 

which sends us an early signal that foreign entry’s effect on domestic firm’ TFP growth 

may depend on their technological distance with foreign firms.  However, for this simple 

specification, the coefficient on foreign entry is barely significant, with p-value≈0.13, 

nonetheless the sign is positive. 

 

[Table 3 here] 

 

In column (2), we run pooled OLS regression including 3-digit level industry 

dummies.  As argued in Aitken and Harrison (1999), foreign entry itself may depend on 

industry characteristics. This is a potential source of endogeneity and may bias our 

estimates.  For example, if foreign firms strategically choose to enter a less productive 

industry, our estimate for the impact of foreign entry on TFP growth may be biased 

downward.  To avoid this problem, we add in industry dummies to control for industry-

specific effects. After controlling for industry effects, all the coefficients now become 

statistically significant.  In particular, the coefficient on foreign entry becomes highly 

significant and the sign remains positive.  Our first run of the simplest specifications in 

column (1) and (2) offers us an early indicator that the story of “creative destruction” 

may indeed be well alive in Chinese manufacturing industries. 
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In column (3) and (4), we further test our hypothesis with firm fixed effects.  The 

rationale for using fixed effects panel regression is that our firm-level regressors, i.e., 

technological distance and its interaction with entry rate, may be correlated with other 

time-invariant firm-level characteristics that we did capture in the regression.  If this is 

the case, our estimators will again be biased.  To verify that using fixed effects is 

justified, we first run Hausman test on fixed effect in comparison to random effect.6  The 

Hausman test clearly rejects the null that the fixed-effect estimator is similar to random-

effect estimator.  Column (3) shows our estimation results with fixed effects, and column 

(4) shows the same regression but with industry effects included.  Both results are very 

similar. All three key variables remain the same sign and statistically significant.  In 

particular, the coefficient on the interactive term between foreign entry and technological 

distance remains negative and significant.  As mentioned previously, this interactive term 

is designed to capture the impact of foreign entry on productivity growth conditional on 

the technological gap.  The significant and negative coefficient directly supports our 

hypothesis that domestic firms exhibit a divergent growth patterns in response to foreign 

entry – in the face of foreign entry, when technological distance increases (i.e., with 

larger technological distance), the TFP growth for domestic firms decreases.   

Finally, in column (5), we include time (year) effects in addition to industry effects 

and firm fixed-effects. Including time effects helps us to control for macro environment 

and other common time trends that could potentially drive firm’s productivity growth.  

Combined with firm level fixed effects and industry effects, this is the strictest test for 

                                                 
6 Hausman test strongly rejects the null that two estimators are not systematic different, 

with chi-square being 6198.3 and p-value <0.01%.  



 15

our hypothesis.  Again, the coefficient estimates of all three key variables are highly 

significant and stay the same sign.   

 

4.2.   Robustness Check 

In this section we test the robustness of our previous estimation results.  We first 

include a more robust error structure; then we add in additional control variables.  Next, 

we adopt an alternative measure of TFP to check if our previous regression results are 

sensitive to different TFP measures.  Finally, we narrow down our sample of domestic 

firms to state-owned-enterprises (or SOEs) only.  In our LME dataset, over 50% of 

domestic firms are SOEs.  Given the fact that the SOE’s restructuring has played a vital 

role in China’s transition to the market economy, we are interested in finding out whether 

foreign direct investments also helped to generate a similar dynamism among the 

supposedly less market-oriented domestic firms.   

We report the results for our robustness checks in Table 4.  In column (1), we use a 

robust error structure to re-estimate our regression in column (5) of Table 3.  Not 

surprisingly, the standard errors in column (1) are larger, yet all the coefficients still 

remain highly significant.  For simplicity, in the regressions to follow, from column (2) to 

(6), we only report the results with the robust error structure. 

 

[Table 4 here] 

 

In column (2), we include two additional control variables: firm size and industry 

concentration ratio.  Firm size is measured by labor employment, in natural logarithm. 
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Industry concentration ratio is measured by the ratio of the sales of the top five firms of 

the 3-digit industry, to the total sales of all firms, in the same industry. We include these 

two variables because past research shows that firm size and industry-level competition 

also affect firm’s TFP growth.  As reported in column (2), the coefficient on firm size is 

negative and statistically significant.  This indicates that smaller firms tend to enjoy 

higher TFP growth than larger firms.  The coefficient on industry concentration is also 

negative and highly significant.  We take this to mean that higher level of industry 

monopoly (or lower level of industry competition) is detrimental to firm’s productivity 

growth.7   

In column (3) and (4), we use an alternative measure for firm level TFP and re-run 

our previous regressions.  Column (3) includes only the three key variables with firm 

fixed effects, industry effects and time effects.  Column (4) includes firm size and 

industry concentration as additional control variables.  The results barely budged, 

indicating our estimation results are robust to different measurement of total factor 

productivity.  

Finally, in column (5) and (6), we focus on foreign entry’s impact on China’s SOEs 

only.  Among 58,000 observations of domestic firms in our regression, around 34,000 

observations are SOEs, close to 60%.  We chose to define SOEs in a broader sense.  

                                                 
7 Aghion et al., in their 2005QJE paper, showed empirically that there exists an inverted-

U relationship between level of competition and innovation activities. We test if a similar 

relationship exists between competition and TFP growth. This relationship was 

confirmed in our data and the results are reported in Table 5.  We discuss in details the 

results in section 4.3.  
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Specifically, we not only include domestic firms that are officially registered as state-

owned, but also those firms with the state as the majority owner or shareholder.  The 

latter includes those domestic firms that are essentially controlled by the state, although 

there are officially listed as non-SOEs.  This type of SOEs could take the form of 

cooperatives, joint-stock companies or shareholding companies.  Due to such large 

percentage of SOEs in our sample, we think it would be interesting to find out whether 

SOEs behave in a similar fashion as domestic firms in general, i.e., whether they respond 

to foreign entry based on their technological gap with foreign competitors.  For this 

purpose, we run a separate group of regressions with SOEs only.  We report our 

regression results in column (5) and (6) in Table 4.  Compared to the results in column 

(1) and (2), the coefficient on foreign entry becomes more positive (bigger) and the 

coefficient on the interactive term becomes more negative (bigger in absolute value).  

The change in the size of the two coefficients seems to suggest that the effect of foreign 

competition on the productivity growth of SOEs is actually more pronounced than 

domestic firms as a whole.  This result is very interesting.  It suggests that foreign entry 

seems to have helped Chinese SOEs to select out the winners and losers, expediting the 

cleansing process of the less productive firms.  

 

4.3.   Competition and Productivity Growth 

In this section, we extend our previous estimation results further by testing how 

industry-level competition affects firm’s productivity growth.  Aghion et al. (2005) 

showed competition and innovation activities exhibit an inverted-U relationship.  The 

relation says that more competition is good for innovation, but only to a certain level.  
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When there is too much competition, firms lose their incentives to innovate as they are 

unable to extract monopoly benefits from innovation.   Does such relationship exist 

between competition and TFP growth in Chinese manufacturing industries?   We test if 

such relationship exists by first creating a measure of industry-level competition.  

Previously, we had industry concentration ratio, which is essentially a measure of 

industry monopoly.  To measure industry competition, we simply invert this ratio.  To 

capture the curvature of the inverted-U relationship, we also include a square term of the 

competition measure.  Our estimation results are reported in Table 5.  

Column (1) and (2) show the results with industry concentration ratio; column (3) and 

(4) reports the results with competition.  Note again that our competition variable is just 

the inverse of the industry concentration ratio.  As shown in column (4), our results 

confirmed such relationship yet again: The coefficient on competition is positive and 

statistically significant, and the coefficient on competition-squared is negative and highly 

significant. As innovation is a big driver of firm’s TFP growth, it’s not surprising to find 

a similar relationship between competition and TFP growth.  To interpret this, firms tend 

to have higher productivity growth as the industry competition level increases (the first 

derivative), but with higher and higher competition level (the second derivative), the rate 

of TFP growth increases at a slower pace; and when the competition reaches a certain 

level, the productivity growth may even decline.  

 

5. Conclusion 

In the paper, we test Schumpeterian “creative destruction” in a setting of a large 

developing country, using a large firm level dataset on Chinese large and medium-size 
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enterprises.  Our empirical analysis strongly supports our hypothesis that foreign entry 

tends to produce a divergent growth pattern amongst domestic incumbents.  This 

heterogeneous growth pattern depends on firm’s technological distance from their foreign 

competitors.  Our results are robust to various econometric specifications, alternative 

measures of productivity growth, and different sample size.  

Our research invites future work on new avenues of the impact of foreign entry.  We 

show that there exists a much more complicated relationship between foreign and 

domestic firms than previously thought.  The interactions induced by foreign entry create 

a “desirable” economic dynamism within FDI-host country.  It is true that foreign 

competition generates both winners and losers, but in the long run, the restructuring 

spurred by the creative destruction process helps to nurture a healthy competitive 

environment.  We find this is true even for a transitional economy that is still burdened 

with many relatively less inefficient state-owned enterprises.  We end with a quote from 

economist Edmund Phelps,8 “(The) dynamism that the economic model possesses is a 

crucial determinant of the country's economic performance: where there is more 

entrepreneurial activity - and thus more innovation, […] - there are more jobs to fill, and 

those added jobs are relatively engaging and fulfilling. Participation rises accordingly and 

productivity climbs to a higher path.” 

                                                 
8 Source: Phelps, “Entrepreneurial Culture”, Wall Street Journal, Feb. 12, 2007. 
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Figure 1:  Foreign Direct Investment (FDI) to China, 1982-2009 
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Figure 2 

 

 

Descriptions of Chinese SIC 2-digit Industry Code  

SIC-2   Industry Description   SIC-2   Industry Description 

13   agriculture food processing  28   chemical fiber 

14   food   29   rubber   

15   beverage   30   plastics   

16   tobacco   31   non-metal minerals 

17   textile   32   ferrous metals 

18   apparel   33   non-ferrous metals 

19   leather products   34   metal products 

20   wood processing   35   general equipment 

21   furniture   36   special equipment 

22   paper   37   transportation equipment 

23   printing   39   electric equipment 

24   sports products 40   telecom, computer, electronics

25   oil refinery   41   office equipment 

26   chemicals       

27   medicine       
 

Source: NBS and authors’ own calculation based on China LME dataset. 
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Figure 3  Histogram of Technological Distance (1995-2004) 
(Percent (technological distance>0) = 95.6%) 
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Note: tech. distance is measured by the natural log of relative TFP difference. Refer to equation (3) for details. 
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Table 1  Share of Foreign Invested Firms in China's Manufacturing 

1995-2004 

      

Year # of firms % Employment % Output % Sales % 

1995 17.1% 11.1% 19.4% 23.1% 

1996 17.9% 12.2% 19.4% 24.2% 

1997 35.1% 22.4% 29.2% 35.7% 

1998 19.7% 13.8% 22.4% 28.2% 

1999 21.9% 14.8% 24.0% 30.0% 

2000 23.3% 17.0% 25.8% 32.3% 

2001 27.8% 19.0% 28.5% 35.6% 

2002 30.3% 19.7% 29.4% 35.6% 

2003 44.8% 32.5% 36.2% 42.8% 

2004 55.3% 42.2% 41.1% 49.2% 
 

Source: Authors’ own calculation based on China LME dataset, NBS. 
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Table 2   Descriptive statistics     

  Mean 
Std. 
dev Min Max 

          

Total Factor Productivity, TFP* 14.87 19.94 0.07 666.87 

Growth of TFP 0.033 0.624 -2.421 2.320 

Total Factor Productivity, TFP2** 155.13 249.92 0.63 9028.09 

Growth of TFP2 0.025 0.613 -2.782 2.429 

Foreign entry rate 0.025 0.154 -0.465 2.196 

Technological distance  1.67 1.09 -0.72 5.61 

firm size  1427 3558 1 197048 

Industry concentration ratio  0.28 0.15 0.04 1.00 
  

Notes: *TFP is calculated following equation (5);  **TFP2 is calculated following equation (6).  
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Table 3  Benchmark Estimates          

             

  Dependent variable: 

  gTFP, growth of total factor productivity 

  Pooled OLS   Fixed Effects (within estimation) 

Independent variables: (1) (2)  (3) (4) (5) 

             

foreign entry 0.042 0.097***   0.077** 0.089*** 0.086** 

  (0.028) (0.030)   (0.033) (0.034) (0.036) 

              

technological distance, (t-1) 0.118*** 0.146***   0.464*** 0.470*** 0.475*** 

  (0.002) (0.003)   (0.005) (0.005) (0.005) 

              

entry * distance (t-1) -0.039*** -0.048***   -0.084*** -0.083*** -0.090*** 

  (0.015) (0.015)   (0.018) (0.018) (0.018) 

              

              

constant -0.155*** -0.315***   -0.712*** -0.352** -0.417*** 

  (0.005) (0.023)   (0.008) (0.133) (0.134) 

industry effects  No Yes   No Yes Yes 

time effects No No   No No Yes 

firm fixed effects No No   Yes Yes Yes 

number of obs 57,961 57,961   57,961 57,961 57,961 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.     
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Table 4  Robustness Check           

              

  Dependent variable: 

  gTFP, growth of total factor productivity 

  Robust Error Structure Alternative TFP (TFP2) SOEs Only 

Independent variables: (1) (2) (3) (4) (5) (6) 

              

foreign entry 0.086** 0.079** 0.085** 0.074* 0.278*** 0.251*** 

  (0.040) (0.040) (0.035) (0.039) (0.057) (0.056) 

              

technological distance, (t-1) 0.475*** 0.470*** 0.456*** 0.454*** 0.473*** 0.468*** 

  (0.007) (0.006) (0.005) (0.006) (0.008) (0.008) 

              

entry * distance (t-1) -0.090*** -0.091*** -0.085*** -0.085*** -0.160*** -0.149*** 

  (0.024) (0.024) (0.018) (0.023) (0.031) (0.030) 

              

firm size    -0.297***   -0.145***   -0.307*** 

    (0.016)   (0.015)   (0.022) 

              

industry concentration   -0.305***   -0.282***   -0.422*** 

    (0.060)   (0.060)   (0.088) 

              

constant -0.417*** 1.563*** -0.385*** 0.607*** -0.348 1.763*** 

  (0.140) (0.176) (0.131) (0.174) (0.218) (0.270) 

industry effects  Yes Yes Yes Yes Yes Yes 

time effects Yes Yes Yes Yes Yes Yes 

firm fixed effects Yes Yes Yes Yes Yes Yes 

robust error Yes Yes Yes Yes Yes Yes 

number of obs 57,961 57,961 57,961 57,961 34,029 34,029 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.       
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Table 5  Competition and TFP Growth         

            

  Dependent variable: 

  gTFP, growth of total factor productivity 

  monopoly   competition 

Independent variables: (1) (2)   (3) (4) 

            

foreign entry 0.0791** 0.0724**   0.0904** 0.0689* 

  (0.036) (0.036)   (0.035) (0.035) 

            

technological distance, (t-1) 0.470*** 0.472***   0.469*** 0.474*** 

  (0.005) (0.005)   (0.005) (0.005) 

            

entry * distance (t-1) -0.0909*** -0.0902***   -0.0907*** -0.0913*** 

  (0.018) (0.018)   (0.018) (0.018) 

            

firm size  -0.297*** -0.297***   -0.296*** -0.297*** 

  (0.010) (0.010)   (0.010) (0.010) 

            

monopoly level -0.305*** -1.501***       

  (0.056) (0.156)       

            

monopoly level, squared    1.535***       

    (0.186)       

            

competition level       0.00731*** 0.0572*** 

        (0.002) (0.005) 

            

competition level, squared         -0.00201*** 

          (0.000) 

            

            

constant 1.563*** 1.722***   1.456*** 1.234*** 

  (0.148) (0.150)   (0.148) (0.149) 

industry effects  Yes Yes   Yes Yes 

time effects Yes Yes   Yes Yes 

firm fixed effects Yes Yes   Yes Yes 

number of obs 57,961 57,961   57,961 57,961 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level. Competition level is measured by 
the inverse of industry concentration ratio. 

  

 


