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GLOBAL SELF-WEIGHTED AND LOCAL QUASI-MAXIMUM

EXPONENTIAL LIKELIHOOD ESTIMATORS FOR

ARMA–GARCH/IGARCH MODELS

BY KE ZHU AND SHIQING LING1

Hong Kong University of Science and Technology

This paper investigates the asymptotic theory of the quasi-maximum
exponential likelihood estimators (QMELE) for ARMA–GARCH models.
Under only a fractional moment condition, the strong consistency and the
asymptotic normality of the global self-weighted QMELE are obtained.
Based on this self-weighted QMELE, the local QMELE is showed to be
asymptotically normal for the ARMA model with GARCH (finite variance)
and IGARCH errors. A formal comparison of two estimators is given for
some cases. A simulation study is carried out to assess the performance of
these estimators, and a real example on the world crude oil price is given.

1. Introduction. Assume that {yt : t = 0,±1,±2, . . .} is generated by the
ARMA–GARCH model

yt = μ +
p
∑

i=1

φiyt−i +
q
∑

i=1

ψiεt−i + εt ,(1.1)

εt = ηt

√

ht and ht = α0 +
r
∑

i=1

αiε
2
t−i +

s
∑

i=1

βiht−i,(1.2)

where α0 > 0, αi ≥ 0 (i = 1, . . . , r), βj ≥ 0 (j = 1, . . . , s), and ηt is a sequence
of i.i.d. random variables with Eηt = 0. As we all know, since Engle (1982)
and Bollerslev (1986), model (1.1)–(1.2) has been widely used in economics
and finance; see Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993),
Bollerslev, Engel and Nelson (1994) and Francq and Zakoïan (2010). The asymp-
totic theory of the quasi-maximum likelihood estimator (QMLE) was established
by Ling and Li (1997) and by Francq and Zakoïan (2004) when Eε4

t < ∞. Un-
der the strict stationarity condition, the consistency and the asymptotic normality
of the QMLE were obtained by Lee and Hansen (1994) and Lumsdaine (1996)
for the GARCH(1,1) model, and by Berkes, Horváth and Kokoszka (2003) and
Francq and Zakoïan (2004) for the GARCH(r, s) model. Hall and Yao (2003)
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established the asymptotic theory of the QMLE for the GARCH model when
Eε2

t < ∞, including both cases in which Eη4
t = ∞ and Eη4

t < ∞. Under the geo-
metric ergodicity condition, Lang, Rahbek and Jensen (2011) gave the asymptotic
properties of the modified QMLE for the first order AR–ARCH model. Moreover,
when E|εt |ι < ∞ for some ι > 0, the asymptotic theory of the global self-weighted
QMLE and the local QMLE was established by Ling (2007) for model (1.1)–(1.2).

It is well known that the asymptotic normality of the QMLE requires Eη4
t < ∞

and this property is lost when Eη4
t = ∞; see Hall and Yao (2003). Usually, the

least absolute deviation (LAD) approach can be used to reduce the moment condi-
tion of ηt and provide a robust estimator. The local LAD estimator was studied by
Peng and Yao (2003) and Li and Li (2005) for the pure GARCH model, Chan and
Peng (2005) for the double AR(1) model, and Li and Li (2008) for the ARFIMA–
GARCH model. The global LAD estimator was studied by Horváth and Liese
(2004) for the pure ARCH model and by Berkes and Horváth (2004) for the pure
GARCH model, and by Zhu and Ling (2011a) for the double AR(p) model. Except
for the AR models studied by Davis, Knight and Liu (1992) and Ling (2005) [see
also Knight (1987, 1998)], the nondifferentiable and nonconvex objective func-
tion appears when one studies the LAD estimator for the ARMA model with i.i.d.
errors. By assuming the existence of a

√
n-consistent estimator, the asymptotic

normality of the LAD estimator is established for the ARMA model with i.i.d. er-
rors by Davis and Dunsmuir (1997) for the finite variance case and by Pan, Wang
and Yao (2007) for the infinite variance case; see also Wu and Davis (2010) for
the noncausal or noninvertible ARMA model. Recently, Zhu and Ling (2011b)
proved the asymptotic normality of the global LAD estimator for the finite/infinite
variance ARMA model with i.i.d. errors.

In this paper, we investigate the self-weighted quasi-maximum exponential like-
lihood estimator (QMELE) for model (1.1)–(1.2). Under only a fractional moment
condition of εt with Eη2

t < ∞, the strong consistency and the asymptotic nor-
mality of the global self-weighted QMELE are obtained by using the bracketing
method in Pollard (1985). Based on this global self-weighted QMELE, the local
QMELE is showed to be asymptotically normal for the ARMA–GARCH (finite
variance) and –IGARCH models. A formal comparison of two estimators is given
for some cases.

To motivate our estimation procedure, we revisit the GNP deflator example of
Bollerslev (1986), in which the GARCH model was proposed for the first time.
The model he specified is an AR(4)–GARCH(1,1) model for the quarterly data
from 1948.2 to 1983.4 with a total of 143 observations. We use this data set and
his fitted model to obtain the residuals {η̂t }. The tail index of {η2

t } is estimated by
Hill’s estimator α̂η(k) with the largest k data of {η̂2

t }, that is,

α̂η(k) = k
∑k

j=1(log η̃143−j − log η̃143−k)
,
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FIG. 1. The Hill estimators {α̂η(k)} for {η̂t
2}.

where η̃j is the j th order statistic of {η̂2
t }. The plot of {α̂η(k)}70

k=1 is given in Fig-
ure 1. From this figure, we can see that α̂η(k) > 2 when k ≤ 20, and α̂η(k) < 2
when k > 20. Note that Hill’s estimator is not so reliable when k is too small. Thus,
the tail of {η2

t } is most likely less than 2, that is, Eη4
t = ∞. Thus, the setup that

ηt has a finite forth moment may not be suitable, and hence the standard QMLE
procedure may not be reliable in this case. The estimation procedure in this paper
only requires Eη2

t < ∞. It may provide a more reliable alternative to practitioners.
To further illustrate this advantage, a simulation study is carried out to compare the
performance of our estimators and the self-weighted/local QMLE in Ling (2007),
and a new real example on the world crude oil price is given in this paper.

This paper is organized as follows. Section 2 gives our results on the global
self-weighted QMELE. Section 3 proposes a local QMELE estimator and gives
its limiting distribution. The simulation results are reported in Section 4. A real
example is given in Section 5. The proofs of two technical lemmas are provided in
Section 6. Concluding remarks are offered in Section 7. The remaining proofs are
given in the Appendix.

2. Global self-weighted QMELE. Let θ = (γ ′, δ′)′ be the unknown parame-
ter of model (1.1)–(1.2) and its true value be θ0, where γ = (μ,φ1, . . . , φp,ψ1, . . . ,

ψq)
′ and δ = (α0, . . . , αr , β1, . . . , βs)

′. Given the observations {yn, . . . , y1} and the
initial values Y0 ≡ {y0, y−1, . . .}, we can rewrite the parametric model (1.1)–(1.2)
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as

εt (γ ) = yt − μ −
p
∑

i=1

φiyt−i −
q
∑

i=1

ψiεt−i(γ ),(2.1)

ηt (θ) = εt (γ )/
√

ht (θ) and
(2.2)

ht (θ) = α0 +
r
∑

i=1

αiε
2
t−i(γ ) +

s
∑

i=1

βiht−i(θ).

Here, ηt (θ0) = ηt , εt (γ0) = εt and ht (θ0) = ht . The parameter space is � =
�γ × �δ , where �γ ⊂ Rp+q+1, �δ ⊂ Rr+s+1

0 , R = (−∞,∞) and R0 = [0,∞).
Assume that �γ and �δ are compact and θ0 is an interior point in �. Denote
α(z) = ∑r

i=1 αiz
i , β(z) = 1 − ∑s

i=1 βiz
i , φ(z) = 1 − ∑p

i=1 φiz
i and ψ(z) =

1 +∑q
i=1 ψiz

i . We introduce the following assumptions:

ASSUMPTION 2.1. For each θ ∈ �, φ(z) 
= 0 and ψ(z) 
= 0 when |z| ≤ 1, and
φ(z) and ψ(z) have no common root with φp 
= 0 or ψq 
= 0.

ASSUMPTION 2.2. For each θ ∈ �, α(z) and β(z) have no common root,
α(1) 
= 1, αr + βs 
= 0 and

∑s
i=1 βi < 1.

ASSUMPTION 2.3. η2
t has a nondegenerate distribution with Eη2

t < ∞.

Assumption 2.1 implies the stationarity, invertibility and identifiability of mod-
el (1.1), and Assumption 2.2 is the identifiability condition for model (1.2). As-
sumption 2.3 is necessary to ensure that η2

t is not almost surely (a.s.) a constant.
When ηt follows the standard double exponential distribution, the weighted log-
likelihood function (ignoring a constant) can be written as follows:

Lsn(θ) = 1

n

n
∑

t=1

wt lt (θ) and lt (θ) = log
√

ht (θ) + |εt (γ )|√
ht (θ)

,(2.3)

where wt = w(yt−1, yt−2, . . .) and w is a measurable, positive and bounded func-
tion on RZ0 with Z0 = {0,1,2, . . .}. We look for the minimizer, θ̂sn = (γ̂ ′

sn, δ̂
′
sn)

′,
of Lsn(θ) on �, that is,

θ̂sn = arg min
�

Lsn(θ).

Since the weight wt only depends on {yt } itself and we do not assume that ηt

follows the standard double exponential distribution, θ̂sn is called the self-weighted
quasi-maximum exponential likelihood estimator (QMELE) of θ0. When ht is a
constant, the self-weighted QMELE reduces to the weighted LAD estimator of the
ARMA model in Pan, Wang and Yao (2007) and Zhu and Ling (2011b).

The weight wt is to reduce the moment condition of εt [see more discussions in
Ling (2007)], and it satisfies the following assumption:
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ASSUMPTION 2.4. E[(wt + w2
t )ξ

3
ρt−1] < ∞ for any ρ ∈ (0,1), where ξρt =

1 +∑∞
i=0 ρi |yt−i |.

When wt ≡ 1, the θ̂sn is the global QMELE and it needs the moment condition
E|εt |3 < ∞ for its asymptotic normality, which is weaker than the moment con-
dition Eε4

t < ∞ as for the QMLE of θ0 in Francq and Zakoïan (2004). It is well
known that the higher is the moment condition of εt , the smaller is the parame-
ter space. Figure 2 gives the strict stationarity region and regions for E|εt |2ι < ∞
of the GARCH(1,1) model: εt = ηt

√
ht and ht = α0 + α1ε

2
t−1 + β1ht−1, where

ηt ∼ Laplace(0,1). From Figure 2, we can see that the region for E|εt |0.1 < ∞ is

FIG. 2. The regions bounded by the indicated curves are for the strict stationarity and for

E|εt |2ι < ∞ with ι = 0.05,0.5,1,1.5 and 2, respectively.
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very close to the region for strict stationarity of εt , and is much bigger than the
region for Eε4

t < ∞.
Under Assumption 2.4, we only need a fractional moment condition for the

asymptotic property of θ̂sn as follows:

ASSUMPTION 2.5. E|εt |2ι < ∞ for some ι > 0.

The sufficient and necessary condition of Assumption 2.5 is given in Theo-
rem 2.1 of Ling (2007). In practice, we can use Hill’s estimator to estimate the tail
index of {yt } and its estimator may provide some useful guidelines for the choice
of ι. For instance, the quantity 2ι can be any value less than the tail index {yt }.
However, so far we do not know how to choose the optimal ι. As in Ling (2007)
and Pan, Wang and Yao (2007), we choose the weight function wt according to ι.
When ι = 1/2 (i.e., E|εt | < ∞), we can choose the weight function as

wt =
(

max

{

1,C−1
∞
∑

k=1

1

k9 |yt−k|I {|yt−k| > C}
})−4

,(2.4)

where C > 0 is a constant. In practice, it works well when we select C as the 90%
quantile of data {y1, . . . , yn}. When q = s = 0 (AR–ARCH model), for any ι > 0,
the weight can be selected as

wt =
(

max

{

1,C−1
p+r
∑

k=1

1

k9
|yt−k|I {|yt−k| > C}

})−4

.

When ι ∈ (0,1/2) and q > 0 or s > 0, the weight function need to be modified as
follows:

wt =
(

max

{

1,C−1
∞
∑

k=1

1

k1+8/ι
|yt−k|I {|yt−k| > C}

})−4

.

Obviously, these weight functions satisfy Assumptions 2.4 and 2.7. For more
choices of wt , we refer to Ling (2005) and Pan, Wang and Yao (2007). We first
state the strong convergence of θ̂sn in the following theorem and its proof is given
in the Appendix.

THEOREM 2.1. Suppose ηt has a median zero with E|ηt | = 1. If Assumptions

2.1–2.5 hold, then

θ̂sn → θ0 a.s., as n → ∞.

To study the rate of convergence of θ̂sn, we reparameterize the weighted log-
likelihood function (2.3) as follows:

Ln(u) ≡ nLsn(θ0 + u) − nLsn(θ0),
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where u ∈ � ≡ {u = (u′
1, u

′
2)

′ : u + θ0 ∈ �}. Let ûn = θ̂sn − θ0. Then, ûn is the
minimizer of Ln(u) on �. Furthermore, we have

Ln(u) =
n
∑

t=1

wtAt (u) +
n
∑

t=1

wtBt (u) +
n
∑

t=1

wtCt (u),(2.5)

where

At (u) = 1√
ht (θ0)

[|εt (γ0 + u1)| − |εt (γ0)|],

Bt (u) = log
√

ht (θ0 + u) − log
√

ht (θ0) + |εt (γ0)|√
ht (θ0 + u)

− |εt (γ0)|√
ht (θ0)

,

Ct (u) =
[

1√
ht (θ0 + u)

− 1√
ht (θ0)

]

[|εt (γ0 + u1)| − |εt (γ0)|].

Let I (·) be the indicator function. Using the identity

|x − y| − |x| = −y[I (x > 0) − I (x < 0)]
(2.6)

+ 2
∫ y

0
[I (x ≤ s) − I (x ≤ 0)]ds

for x 
= 0, we can show that

At (u) = qt (u)[I (ηt > 0) − I (ηt < 0)] + 2
∫ −qt (u)

0
Xt (s) ds,(2.7)

where Xt (s) = I (ηt ≤ s) − I (ηt ≤ 0), qt (u) = q1t (u) + q2t (u) with

q1t (u) = u′
√

ht (θ0)

∂εt (γ0)

∂θ
and q2t (u) = u′

2
√

ht (θ0)

∂2εt (ξ
∗)

∂θ ∂θ ′ u,

and ξ∗ lies between γ0 and γ0 + u1. Moreover, let Ft = σ {ηk : k ≤ t} and

ξt (u) = 2wt

∫ −q1t (u)

0
Xt (s) ds.

Then, from (2.7), we have
n
∑

t=1

wtAt (u) = u′T1n + �1n(u) + �2n(u) + �3n(u),(2.8)

where

T1n =
n
∑

t=1

wt√
ht (θ0)

∂εt (γ0)

∂θ
[I (ηt > 0) − I (ηt < 0)],

�1n(u) =
n
∑

t=1

{ξt (u) − E[ξt (u)|Ft−1]},
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�2n(u) =
n
∑

t=1

E[ξt (u)|Ft−1],

�3n(u) =
n
∑

t=1

wtq2t (u)[I (ηt > 0) − I (ηt < 0)]

+ 2
n
∑

t=1

wt

∫ −qt (u)

−q1t (u)
Xt (s) ds.

By Taylor’s expansion, we can see that

n
∑

t=1

wtBt (u) = u′T2n + �4n(u) + �5n(u),(2.9)

where

T2n =
n
∑

t=1

wt

2ht (θ0)

∂ht (θ0)

∂θ
(1 − |ηt |),

�4n(u) = u′
n
∑

t=1

wt

(

3

8

∣

∣

∣

∣

εt (γ0)√
ht (ζ ∗)

∣

∣

∣

∣

− 1

4

)

1

h2
t (ζ

∗)

∂ht (ζ
∗)

∂θ

∂ht (ζ
∗)

∂θ ′ u,

�5n(u) = u′
n
∑

t=1

wt

(

1

4
− 1

4

∣

∣

∣

∣

εt (γ0)√
ht (ζ ∗)

∣

∣

∣

∣

)

1

ht (ζ ∗)

∂2ht (ζ
∗)

∂θ ∂θ ′ u,

and ζ ∗ lies between θ0 and θ0 + u.
We further need one assumption and three lemmas. The first lemma is directly

from the central limit theorem for a martingale difference sequence. The second-
and third-lemmas give the expansions of �in(u) for i = 1, . . . ,5 and

∑n
t=1 Ct (u).

The key technical argument is for the second lemma for which we use the brack-
eting method in Pollard (1985).

ASSUMPTION 2.6. ηt has zero median with E|ηt | = 1 and a continuous den-
sity function g(x) satisfying g(0) > 0 and supx∈R g(x) < ∞.

LEMMA 2.1. Let Tn = T1n + T2n. If Assumptions 2.1–2.6 hold, then

1√
n
Tn →d N(0,�0) as n → ∞,

where →d denotes the convergence in distribution and

�0 = E

(

w2
t

ht (θ0)

∂εt (γ0)

∂θ

∂εt (γ0)

∂θ ′

)

+ Eη2
t − 1

4
E

(

w2
t

h2
t (θ0)

∂ht (θ0)

∂θ

∂ht (θ0)

∂θ ′

)

.
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LEMMA 2.2. If Assumptions 2.1–2.6 hold, then for any sequence of random

variables un such that un = op(1), it follows that

�1n(un) = op

(√
n‖un‖ + n‖un‖2),

where op(·) → 0 in probability as n → ∞.

LEMMA 2.3. If Assumptions 2.1–2.6 hold, then for any sequence of random

variables un such that un = op(1), it follows that:

(i) �2n(un) =
(√

nun

)′
�1
(√

nun

)

+ op(n‖un‖2),

(ii) �3n(un) = op(n‖un‖2),

(iii) �4n(un) =
(√

nun

)′
�2
(√

nun

)

+ op(n‖un‖2),

(iv) �5n(un) = op(n‖un‖2),

(v)
n
∑

t=1

Ct (un) = op(n‖un‖2),

where

�1 = g(0)E

(

wt

ht (θ0)

∂εt (γ0)

∂θ

∂εt (γ0)

∂θ ′

)

and

�2 = 1

8
E

(

wt

h2
t (θ0)

∂ht (θ0)

∂θ

∂ht (θ0)

∂θ ′

)

.

The proofs of Lemmas 2.2 and 2.3 are given in Section 6. We now can state one
main result as follows:

THEOREM 2.2. If Assumptions 2.1–2.6 hold, then:

(i)
√

n(θ̂sn − θ0) = Op(1),

(ii)
√

n(θ̂sn − θ0) →d N
(

0, 1
4�−1

0 �0�
−1
0

)

as n → ∞,

where �0 = �1 + �2.

PROOF. (i) First, we have ûn = op(1) by Theorem 2.1. Furthermore, by (2.5),
(2.8) and (2.9) and Lemmas 2.2 and 2.3, we have

Ln(ûn) = û′
nTn +

(√
nûn

)′
�0
(√

nûn

)

+ op

(√
n‖ûn‖ + n‖ûn‖2).(2.10)

Let λmin > 0 be the minimum eigenvalue of �0. Then

Ln(ûn) ≥ −
∥

∥

√
nûn

∥

∥

[∥

∥

∥

∥

1√
n
Tn

∥

∥

∥

∥

+ op(1)

]

+ n‖ûn‖2[λmin + op(1)].
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Note that Ln(ûn) ≤ 0. By the previous inequality, it follows that

√
n‖ûn‖ ≤ [λmin + op(1)]−1

[
∥

∥

∥

∥

1√
n
Tn

∥

∥

∥

∥

+ op(1)

]

= Op(1),(2.11)

where the last step holds by Lemma 2.1. Thus, (i) holds.
(ii) Let u∗

n = −�−1
0 Tn/2n. Then, by Lemma 2.1, we have

√
nu∗

n →d N
(

0, 1
4�−1

0 �0�
−1
0

)

as n → ∞.

Hence, it is sufficient to show that
√

nûn − √
nu∗

n = op(1). By (2.10) and (2.11),
we have

Ln(ûn) =
(√

nûn

)′ 1√
n
Tn +

(√
nûn

)′
�0
(√

nûn

)

+ op(1)

=
(√

nûn

)′
�0
(√

nûn

)

− 2
(√

nûn

)′
�0
(√

nu∗
n

)

+ op(1).

Note that (2.10) still holds when ûn is replaced by u∗
n. Thus,

Ln(u
∗
n) =

(√
nu∗

n

)′ 1√
n
Tn +

(√
nu∗

n

)′
�0
(√

nu∗
n

)

+ op(1)

= −
(√

nu∗
n

)′
�0
(√

nu∗
n

)

+ op(1).

By the previous two equations, it follows that

Ln(ûn) − Ln(u
∗
n) =

(√
nûn −

√
nu∗

n

)′
�0
(√

nûn −
√

nu∗
n

)

+ op(1)
(2.12)

≥ λmin
∥

∥

√
nûn −

√
nu∗

n

∥

∥

2 + op(1).

Since Ln(ûn) − Ln(u
∗
n) = n[Lsn(θ0 + ûn) − Lsn(θ0 + u∗

n)] ≤ 0 a.s., by (2.12), we
have ‖√nûn − √

nu∗
n‖ = op(1). This completes the proof. �

REMARK 2.1. When wt ≡ 1, the limiting distribution in Theorem 2.2 is the
same as that in Li and Li (2008). When r = s = 0 (ARMA model), it reduces
to the case in Pan, Wang and Yao (2007) and Zhu and Ling (2011b). In general,
it is not easy to compare the asymptotic efficiency of the self-weighted QMELE
and the self-weight QMLE in Ling (2007). However, for the pure ARCH model,
a formal comparison of these two estimators is given in Section 3. For the general
ARMA–GARCH model, a comparison based on simulation is given in Section 4.

In practice, the initial values Y0 are unknown, and have to be replaced by some
constants. Let ε̃t (θ), h̃t (θ) and w̃t be εt (θ), ht (θ) and wt , respectively, when Y0
are constants not depending on parameters. Usually, Y0 are taken to be zeros. The
objective function (2.3) is modified as

L̃sn(θ) = 1

n

n
∑

t=1

w̃t l̃t (θ) and l̃t (θ) = log
√

h̃t (θ) + |ε̃t (γ )|
√

h̃t (θ)

.

To make the initial values Y0 ignorable, we need the following assumption.
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ASSUMPTION 2.7. E|wt − w̃t |ι0/4 = O(t−2), where ι0 = min{ι,1}.

Let θ̃sn be the minimizer of L̃sn(θ), that is,

θ̃sn = arg min
�

L̃sn(θ).

Theorem 2.3 below shows that θ̃sn and θ̂sn have the same limiting property. Its
proof is straightforward and can be found in Zhu (2011).

THEOREM 2.3. Suppose that Assumption 2.7 holds. Then, as n → ∞,

(i) if the assumptions of Theorem 2.1 hold

θ̃sn → θ0 a.s.,

(ii) if the assumptions of Theorem 2.2 hold
√

n(θ̃sn − θ0) →d N
(

0, 1
4�−1

0 �0�
−1
0

)

.

3. Local QMELE. The self-weighted QMELE in Section 2 reduces the mo-
ment condition of εt , but it may not be efficient. In this section, we propose a local
QMELE based on the self-weighted QMELE and derive its asymptotic property.
For some special cases, a formal comparison of the local QMELE and the self-
weighted QMELE is given.

Using θ̂sn in Theorem 2.2 as an initial estimator of θ0, we obtain the local
QMELE θ̂n through the following one-step iteration:

θ̂n = θ̂sn − [2�∗
n(θ̂sn)]−1T ∗

n (θ̂sn),(3.1)

where

�∗
n(θ) =

n
∑

t=1

{

g(0)

ht (θ)

∂εt (γ )

∂θ

∂εt (γ )

∂θ ′ + 1

8h2
t (θ)

∂ht (θ)

∂θ

∂ht (θ)

∂θ ′

}

,

T ∗
n (θ) =

n
∑

t=1

{

1√
ht (θ)

∂εt (γ )

∂θ

[

I
(

ηt (θ) > 0
)

− I
(

ηt (θ) < 0
)]

+ 1

2ht (θ)

∂ht (θ)

∂θ

(

1 − |ηt (θ)|
)

}

.

In order to get the asymptotic normality of θ̂n, we need one more assumption as
follows:

ASSUMPTION 3.1. Eη2
t

∑r
i=1 α0i +∑s

i=1 β0i < 1 or

Eη2
t

r
∑

i=1

α0i +
s
∑

i=1

β0i = 1

with ηt having a positive density on R such that E|ηt |τ < ∞ for all τ < τ0 and
E|ηt |τ0 = ∞ for some τ0 ∈ (0,∞].
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Under Assumption 3.1, there exists a unique strictly stationary causal so-
lution to GARCH model (1.2); see Bougerol and Picard (1992) and Basrak,
Davis and Mikosch (2002). The condition Eη2

t

∑r
i=1 α0i +∑s

i=1 β0i < 1 is nec-
essary and sufficient for Eε2

t < ∞ under which model (1.2) has a finite variance.
When Eη2

t

∑r
i=1 α0i +∑s

i=1 β0i = 1, model (1.2) is called IGARCH model. The
IGARCH model has an infinite variance, but E|εt |2ι < ∞ for all ι ∈ (0,1) un-
der Assumption 3.1; see Ling (2007). Assumption 3.1 is crucial for the ARMA–
IGARCH model. From Figure 2 in Section 2, we can see that the parameter region
specified in Assumption 3.1 is much bigger than that for E|εt |3 < ∞ which is
required for the asymptotic normality of the global QMELE. Now, we give one
lemma as follows and its proof is straightforward and can be found in Zhu (2011).

LEMMA 3.1. If Assumptions 2.1–2.3, 2.6 and 3.1 hold, then for any sequence

of random variables θn such that
√

n(θn − θ0) = Op(1), it follows that:

(i)
1

n
[T ∗

n (θn) − T ∗
n (θ0)] = [2� + op(1)](θn − θ0) + op

(

1√
n

)

,

(ii)
1

n
�∗

n(θn) = � + op(1),

(iii)
1√
n
T ∗

n (θ0) →d N(0,�) as n → ∞,

where

� = E

(

1

ht (θ0)

∂εt (γ0)

∂θ

∂εt (γ0)

∂θ ′

)

+ Eη2
t − 1

4
E

(

1

h2
t (θ0)

∂ht (θ0)

∂θ

∂ht (θ0)

∂θ ′

)

,

� = g(0)E

(

1

ht (θ0)

∂εt (γ0)

∂θ

∂εt (γ0)

∂θ ′

)

+ 1

8
E

(

1

h2
t (θ0)

∂ht (θ0)

∂θ

∂ht (θ0)

∂θ ′

)

.

THEOREM 3.1. If the conditions in Lemma 3.1 are satisfied, then
√

n(θ̂n − θ0) →d N
(

0, 1
4�−1��−1) as n → ∞.

PROOF. Note that
√

n(θ̂sn − θ0) = Op(1). By (3.1) and Lemma 3.1, we have
that

θ̂n = θ̂sn −
[

2

n
�∗

n(θ̂sn)

]−1[1

n
T ∗

n (θ̂sn)

]

= θ̂sn − [2� + op(1)]−1
{

1

n
T ∗

n (θ0) + [2� + op(1)](θ̂sn − θ0) + op

(

1√
n

)}

= θ0 + �−1T ∗
n (θ0)

2n
+ op

(

1√
n

)

.
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It follows that
√

n(θ̂n − θ0) = �−1T ∗
n (θ0)

2
√

n
+ op(1).

By Lemma 3.1(iii), we can see that the conclusion holds. This completes the proof.
�

REMARK 3.1. In practice, by using θ̃sn in Theorem 2.3 as an initial estimator
of θ0, the local QMELE has to be modified as follows:

θ̂n = θ̃sn − [2�̃∗
n(θ̃sn)]−1T̃ ∗

n (θ̃sn),

where �̃∗
n(θ) and T̃ ∗

n (θ) are defined in the same way as �∗
n(θ) and T ∗

n (θ), respec-
tively, with εt (θ) and ht (θ) being replaced by ε̃t (θ) and h̃t (θ). However, this does
not affect the asymptotic property of θ̂n; see Theorem 4.3.2 in Zhu (2011).

We now compare the asymptotic efficiency of the local QMELE and the self-
weighted QMELE. First, we consider the pure ARMA model, that is, model (1.1)–
(1.2) with ht being a constant. In this case,

�0 = E(w2
t X1tX

′
1t ), �0 = g(0)E(wtX1tX

′
1t ),

� = E(X1tX
′
1t ) and � = g(0)�,

where X1t = h
−1/2
t ∂εt (γ0)/∂θ . Let b and c be two any m-dimensional constant

vectors. Then,

c′�0bb′�0c =
{

E
[(

c′
√

g(0)wtX1t

)(

√

g(0)X′
1tb
)]}2

≤ E
(

c′
√

g(0)wtX1t

)2
E
(

√

g(0)X′
1tb
)2

= [c′g(0)�0c][b′�b] = c′[g(0)�0b
′�b]c.

Thus, g(0)�0b
′�b′ − �0bb′�0 ≥ 0 (a positive semi-definite matrix) and hence

b′�0�
−1
0 �0b = tr(�−1/2

0 �0bb′�0�
−1/2
0 ) ≤ tr(g(0)b′�b) = g(0)b′�b. It follows

that �−1
0 �0�

−1
0 ≥ [g(0)�]−1 = �−1��−1. Thus, the local QMELE is more

efficient than the self-weighted QMELE. Similarly, we can show that the local
QMELE is more efficient than the self-weighted QMELE for the pure GARCH
model.

For the general model (1.1)–(1.2), it is not easy to compare the asymptotic
efficiency of the self-weighted QMELE and the local QMELE. However, when
ηt ∼ Laplace(0,1), we have

�0 = E

(

wt

2
X1tX

′
1t + wt

8
X2tX

′
2t

)

,

�0 = E

(

w2
t X1tX

′
1t + w2

t

4
X2tX

′
2t

)

,

� = E
(1

2X1tX
′
1t + 1

8X2tX
′
2t

)

and � = 2�,
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where X2t = h−1
t ∂ht (θ0)/∂θ . Then, it is easy to see that

c′�0bb′�0c

= {E[(c′2−1/4wtX1t )(2
−3/4X′

1tb) + (c′2−5/4wtX2t )(2
−7/4X′

2tb)]}2

≤
{

√

E(c′2−1/4wtX1t )2E(2−3/4X′
1tb)2

+
√

E(c′2−5/4wtX2t )2E(2−7/4X′
2tb)2

}2

≤ [E(c′2−1/4wtX1t )
2 + E(c′2−5/4wtX2t )

2]
× [E(2−3/4X′

1tb)2 + E(2−7/4X′
2tb)2]

= [c′2−1/2�0c][b′2−1/2�b] = c′[2−1�0b
′�b]c.

Thus, 2−1�0b
′�b′ − �0bb′�0 ≥ 0 and hence b′�0�

−1
0 �0b = tr(�−1/2

0 �0bb′ ×
�0�

−1/2
0 ) ≤ tr(2−1b′�b) = 2−1b′�b. It follows that �−1

0 �0�
−1
0 ≥ 2�−1 =

�−1��−1. Thus, the local QMELE is more efficient than the global self-weighted
QMELE.

In the end, we compare the asymptotic efficiency of the self-weighted QMELE
and the self-weighted QMLE in Ling (2007) for the pure ARCH model, when
Eη4

t < ∞. We reparametrize model (1.2) when s = 0 as follows:

yt = η∗
t

√

h∗
t and h∗

t = α∗
0 +

r
∑

i=1

α∗
i y2

t−i,(3.2)

where η∗
t = ηt/

√

Eη2
t , h∗

t = (Eη2
t )ht and θ∗ = (α∗

0 , α∗
1 , . . . , α∗

r )′ = (Eη2
t )θ . Let

θ̃∗
sn be the self-weighted QMLE of the true parameter, θ∗

0 , in model (3.2). Then,
θ̃sn = θ̃∗

sn/Eη2
t is the self-weighted QMLE of θ0, and its asymptotic covariance is

Ŵ1 = κ1[E(wtX2tX
′
2t )]−1E(w2

t X2tX
′
2t )[E(wtX2tX

′
2t )]−1,

where κ1 = Eη4
t /(Eη2

t )
2 − 1. By Theorem 2.2, the asymptotic variance of the

self-weighted QMELE is

Ŵ2 = κ2[E(wtX2tX
′
2t )]−1E(w2

t X2tX
′
2t )[E(wtX2tX

′
2t )]−1,

where κ2 = 4(Eη2
t − 1). When ηt ∼ Laplace(0,1), κ1 = 5 and κ2 = 4. Thus,

Ŵ1 > Ŵ2, meaning that the self-weighted QMELE is more efficient than the self-
weighted QMLE. When ηt = η̃t/E|η̃t |, with η̃t having the following mixing nor-
mal density:

f (x) = (1 − ε)φ(x) + ε

τ
φ

(

x

τ

)

,

we have E|ηt | = 1,

Eη2
t = π(1 − ε + ετ 2)

2(1 − ε + ετ)2
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and

Eη4
t = 3π(1 − ε + ετ 4)

2(1 − ε + ετ)2(1 − ε + ετ 2)
,

where φ(x) is the pdf of standard normal, 0 ≤ ε ≤ 1 and τ > 0. The asymptotic
efficiencies of the self-weighted QMELE and the self-weighted QMLE depend on
ε and τ . For example, when ε = 1 and τ =

√
π/2, we have κ1 = (6 − π)/π and

κ2 = 2π − 4, and hence the self-weighted QMLE is more efficient than the self-
weighted QMELE since Ŵ1 < Ŵ2. When ε = 0.99 and τ = 0.1, we have κ1 = 28.1
and κ2 = 6.5, and hence the self-weighted QMELE is more efficient than the self-
weighted QMLE since Ŵ1 > Ŵ2.

4. Simulation. In this section, we compare the performance of the global self-
weighted QMELE (θ̂sn), the global self-weighted QMLE (θ̄sn), the local QMELE
(θ̂n) and the local QMLE (θ̄n). The following AR(1)–GARCH(1,1) model is used
to generate data samples:

yt = μ + φ1yt−1 + εt ,
(4.1)

εt = ηt

√

ht and ht = α0 + α1ε
2
t−1 + β1ht−1.

We set the sample size n = 1,000 and use 1,000 replications, and study the
cases when ηt has Laplace(0,1), N(0,1) and t3 distribution. For the case with
Eε2

t < ∞ (i.e., Eη2
t α01 + β01 < 1), we take θ0 = (0.0,0.5,0.1,0.18,0.4). For

the IGARCH case (i.e., Eη2
t α01 + β01 = 1), we take θ0 = (0.0,0.5,0.1,0.3,0.4)

when ηt ∼ Laplace(0,1), θ0 = (0.0,0.5,0.1,0.6,0.4) when ηt ∼ N(0,1) and
θ0 = (0.0,0.5,0.1,0.2,0.4) when ηt ∼ t3. We standardize the distribution of ηt

to ensure that E|ηt | = 1 for the QMELE. Tables 1–3 list the sample biases, the
sample standard deviations (SD) and the asymptotic standard deviations (AD)
of θ̂sn, θ̄sn, θ̂n and θ̄n. We choose wt as in (2.4) with C being 90% quantile of
{y1, . . . , yn} and yi ≡ 0 for i ≤ 0. The ADs in Theorems 2.2 and 3.1 are estimated
by χ̂sn = 1/4�̂−1

sn �̂sn�̂
−1
sn and χ̂n = 1/4�̂−1

n �̂n�̂
−1
n , respectively, where

�̂sn = 1

n

n
∑

t=1

{

g(0)wt

ht (θ̂sn)

∂εt (γ̂sn)

∂θ

∂εt (γ̂sn)

∂θ ′ + wt

8h2
t (θ̂sn)

∂ht (θ̂sn)

∂θ

∂ht (θ̂sn)

∂θ ′

}

,

�̂sn = 1

n

n
∑

t=1

{

w2
t

ht (θ̂sn)

∂εt (γ̂sn)

∂θ

∂εt (γ̂sn)

∂θ ′ + Eη2
t − 1

4

w2
t

h2
t (θ̂sn)

∂ht (θ̂sn)

∂θ

∂ht (θ̂sn)

∂θ ′

}

,

�̂n = 1

n

n
∑

t=1

{

g(0)

ht (θ̂n)

∂εt (γ̂n)

∂θ

∂εt (γ̂n)

∂θ ′ + 1

8h2
t (θ̂n)

∂ht (θ̂n)

∂θ

∂ht (θ̂n)

∂θ ′

}

,

�̂n = 1

n

n
∑

t=1

{

1

ht (θ̂n)

∂εt (γ̂n)

∂θ

∂εt (γ̂n)

∂θ ′ + Eη2
t − 1

4

1

h2
t (θ̂n)

∂ht (θ̂n)

∂θ

∂ht (θ̂n)

∂θ ′

}

.
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TABLE 1
Estimators for model (4.1) when ηt ∼ Laplace(0,1)

θ0 = (0.0,0.5,0.1,0.18,0.4) θ0 = (0.0,0.5,0.1,0.3,0.4)

Self-weighted QMELE (θ̂sn) Self-weighted QMELE (θ̂sn)

µ̂sn φ̂1sn α̂0sn α̂1sn β̂1sn µ̂sn φ̂1sn α̂0sn α̂1sn β̂1sn

Bias 0.0004 −0.0023 0.0034 0.0078 −0.0154 0.0003 −0.0049 0.0031 0.0054 −0.0068
SD 0.0172 0.0317 0.0274 0.0548 0.1125 0.0195 0.0318 0.0219 0.0640 0.0673
AD 0.0166 0.0304 0.0255 0.0540 0.1061 0.0192 0.0311 0.0218 0.0624 0.0664

Local QMELE (θ̂n) Local QMELE (θ̂n)

µ̂n φ̂1n α̂0n α̂1n β̂1n µ̂n φ̂1n α̂0n α̂1n β̂1n

Bias 0.0008 −0.0019 0.0027 0.0002 −0.0094 0.0010 −0.0044 0.0024 −0.0008 −0.0025
SD 0.0170 0.0253 0.0249 0.0400 0.0989 0.0192 0.0261 0.0203 0.0502 0.0591
AD 0.0162 0.0245 0.0234 0.0407 0.0920 0.0190 0.0258 0.0206 0.0499 0.0591

Self-weighted QMLE (θ̄sn) Self-weighted QMLE (θ̄sn)

µ̄sn φ̄1sn ᾱ0sn ᾱ1sn β̄1sn µ̄sn φ̄1sn ᾱ0sn ᾱ1sn β̄1sn

Bias −0.0003 −0.0016 0.0041 0.0114 −0.0227 0.0005 −0.0039 0.0031 0.0104 −0.0127
SD 0.0243 0.0451 0.0301 0.0624 0.1237 0.0283 0.0458 0.0242 0.0750 0.0755
AD 0.0240 0.0443 0.0285 0.0607 0.1184 0.0283 0.0461 0.0243 0.0704 0.0741

Local QMLE (θ̄n) Local QMLE (θ̄n)

µ̄n φ̄1n ᾱ0n ᾱ1n β̄1n µ̄n φ̄1n ᾱ0n ᾱ1n β̄1n

Bias 0.0007 −0.0034 0.0026 0.0037 −0.0144 0.0022 −0.0045 0.0020 0.0044 −0.0081
SD 0.0243 0.0368 0.0279 0.0461 0.1115 0.0282 0.0377 0.0227 0.0579 0.0674
AD 0.0236 0.0361 0.0261 0.0459 0.1026 0.0281 0.0384 0.0230 0.0564 0.0659

From Table 1, when ηt ∼ Laplace(0,1), we can see that the self-weighted
QMELE has smaller AD and SD than those of both the self-weighted QMLE
and the local QMLE. When ηt ∼ N(0,1), in Table 2, we can see that the self-
weighted QMLE has smaller AD and SD than those of both the self-weighted
QMELE and the local QMELE. From Table 3, we note that the SD and AD of
both the self-weighted QMLE and the local QMLE are not close to each other
since their asymptotic variances are infinite, while the SD and AD of the self-
weighted QMELE and the local QMELE are very close to each other. Except θ̄n in
Table 3, we can see that all four estimators in Tables 1–3 have very small biases,
and the local QMELE and local QMLE always have the smaller SD and AD than
those of the self-weighted QMELE and self-weighted QMLE, respectively. This
conclusion holds no matter with GARCH errors (finite variance) or IGARCH er-
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TABLE 2
Estimators for model (4.1) when ηt ∼ N(0,1)

θ0 = (0.0,0.5,0.1,0.18,0.4) θ0 = (0.0,0.5,0.1,0.6,0.4)

Self-weighted QMELE (θ̂sn) Self-weighted QMELE (θ̂sn)

µ̂sn φ̂1sn α̂0sn α̂1sn β̂1sn µ̂sn φ̂1sn α̂0sn α̂1sn β̂1sn

Bias 0.0003 −0.0042 0.0075 0.0065 −0.0372 −0.0008 −0.0034 0.0029 −0.0019 −0.0028
SD 0.0192 0.0457 0.0366 0.0600 0.1738 0.0255 0.0437 0.0204 0.0815 0.0512
AD 0.0189 0.0443 0.0379 0.0604 0.1812 0.0257 0.0424 0.0202 0.0809 0.0491

Local QMELE (θ̂n) Local QMELE (θ̂n)

µ̂n φ̂1n α̂0n α̂1n β̂1n µ̂n φ̂1n α̂0n α̂1n β̂1n

Bias 0.0006 −0.0051 0.0061 0.0019 −0.0268 0.0000 −0.0040 0.0029 −0.0048 −0.0015
SD 0.0184 0.0372 0.0357 0.0487 0.1674 0.0252 0.0364 0.0197 0.0671 0.0472
AD 0.0183 0.0370 0.0350 0.0488 0.1652 0.0252 0.0359 0.0194 0.0685 0.0453

Self-weighted QMLE (θ̄sn) Self-weighted QMLE (θ̄sn)

µ̄sn φ̄1sn ᾱ0sn ᾱ1sn β̄1sn µ̄sn φ̄1sn ᾱ0sn ᾱ1sn β̄1sn

Bias −0.0001 −0.0039 0.0069 0.0089 −0.0361 −0.0006 −0.0016 0.0024 0.0027 −0.0045
SD 0.0151 0.0366 0.0333 0.0566 0.1599 0.0196 0.0337 0.0189 0.0770 0.0481
AD 0.0150 0.0352 0.0345 0.0568 0.1658 0.0200 0.0329 0.0188 0.0757 0.0459

Local QMLE (θ̄n) Local QMLE (θ̄n)

µ̄n φ̄1n ᾱ0n ᾱ1n β̄1n µ̄n φ̄1n ᾱ0n ᾱ1n β̄1n

Bias 0.0009 −0.0048 0.0055 0.0038 −0.0252 0.0004 −0.0031 0.0024 −0.0019 −0.0027
SD 0.0145 0.0300 0.0322 0.0454 0.1535 0.0195 0.0287 0.0183 0.0633 0.0442
AD 0.0145 0.0294 0.0320 0.0460 0.1517 0.0197 0.0279 0.0181 0.0644 0.0424

rors. This coincides with what we expected. Thus, if the tail index of the data is
greater than 2 but Eη4

t = ∞, we suggest to use the local QMELE in practice; see
also Ling (2007) for a discussion.

Overall, the simulation results show that the self-weighted QMELE and the
local QMELE have a good performance in the finite sample, especially for the
heavy-tailed innovations.

5. A real example. In this section, we study the weekly world crude oil price
(dollars per barrel) from January 3, 1997 to August 6, 2010, which has in total
710 observations; see Figure 3(a). Its 100 times log-return, denoted by {yt }709

t=1,
is plotted in Figure 3(b). The classic method based on the Akaike’s information
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TABLE 3
Estimators for model (4.1) when ηt ∼ t3

θ0 = (0.0,0.5,0.1,0.18,0.4) θ0 = (0.0,0.5,0.1,0.2,0.4)

Self-weighted QMELE (θ̂sn) Self-weighted QMELE (θ̂sn)

µ̂sn φ̂1sn α̂0sn α̂1sn β̂1sn µ̂sn φ̂1sn α̂0sn α̂1sn β̂1sn

Bias 0.0004 −0.0037 0.0059 0.0081 −0.0202 −0.0005 −0.0026 0.0032 0.0088 −0.0158
SD 0.0231 0.0416 0.0289 0.0600 0.1084 0.0221 0.0404 0.0252 0.0619 0.0968
AD 0.0233 0.0393 0.0282 0.0620 0.1101 0.0238 0.0393 0.0266 0.0637 0.1001

Local QMELE (θ̂n) Local QMELE (θ̂n)

µ̂n φ̂1n α̂0n α̂1n β̂1n µ̂n φ̂1n α̂0n α̂1n β̂1n

Bias 0.0011 −0.0039 0.0041 0.0011 −0.0115 0.0001 −0.0028 0.0019 0.0029 −0.0092
SD 0.0229 0.0328 0.0256 0.0429 0.0955 0.0218 0.0325 0.0226 0.0450 0.0842
AD 0.0228 0.0314 0.0252 0.0461 0.0918 0.0233 0.0317 0.0243 0.0483 0.0851

Self-weighted QMLE (θ̄sn) Self-weighted QMLE (θ̄sn)

µ̄sn φ̄1sn ᾱ0sn ᾱ1sn β̄1sn µ̄sn φ̄1sn ᾱ0sn ᾱ1sn β̄1sn

Bias −0.0056 −0.0151 0.0029 0.0503 −0.0594 0.0036 −0.0141 0.0115 0.0442 −0.0543
SD 0.9657 0.1045 0.0868 0.2521 0.1740 0.1827 0.1065 0.3871 0.2164 0.1605
AD 0.0536 0.0907 33.031 0.1795 34.498 0.0517 0.0876138.38 0.1875 11.302

Local QMLE (θ̄n) Local QMLE (θ̄n)

µ̄n φ̄1n ᾱ0n ᾱ1n β̄1n µ̄n φ̄1n ᾱ0n ᾱ1n β̄1n

Bias −0.0048 −0.0216 −2.1342 0.0185 3.7712 −0.0010 −0.0203 1.3241 0.0253 −0.1333
SD 0.0517 0.1080 38.535 0.3596 83.704 0.0521 0.1318 42.250 0.2524 3.4539
AD 0.0508 0.0661 55.717 0.1447 45.055 0.0520 0.0707 13.761 0.1535 1.1343

criterion (AIC) leads to the following model:

yt = 0.2876εt−1 + 0.1524εt−3 + εt ,
(5.1)

(0.0357) (0.0357)

where the standard errors are in parentheses, and the estimated value of σ 2
ε is

16.83. Model (5.1) is stationary, and none of the first ten autocorrelations or par-
tial autocorrelations of the residuals {ε̂t } are significant at the 5% level. However,
looking at the autocorrelations of {ε̂2

t }, it turns out that the 1st, 2nd and 8th all ex-
ceed two asymptotic standard errors; see Figure 4(a). Similar results hold for the
partial autocorrelations of {ε̂2

t } in Figure 4(b). This shows that {ε2
t } may be highly

correlated, and hence there may exist ARCH effects.
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(a) (b)

FIG. 3. (a) The weekly world crude oil prices (dollars per barrel) from January 3, 1997 to August 6,
2010 and (b) its 100 times log return.

Thus, we try to use a MA(3)–GARCH(1,1) model to fit the data set {yt }. To
begin with our estimation, we first estimate the tail index of {y2

t } by using Hill’s
estimator {α̂y(k)} with k = 1, . . . ,180, based on {y2

t }709
t=1. The plot of {α̂y(k)}180

k=1
is given in Figure 5, from which we can see that the tail index of {y2

t } is be-
tween 1 and 2, that is, Ey4

t = ∞. So, the standard QMLE procedure is not suit-
able. Therefore, we first use the self-weighted QMELE to estimate the MA(3)–
GARCH(1,1) model, and then use the one-step iteration as in Section 3 to obtain

(a) (b)

FIG. 4. (a) The autocorrelations for {ε̂2
t } and (b) the partial autocorrelations for {ε̂2

t }.
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FIG. 5. Hill estimators {α̂y(k)} for {y2
t }.

its local QMELE. The fitted model is as follows:

yt = 0.3276εt−1 + 0.1217εt−3 + εt ,

(0.0454) (0.0449)
(5.2)

ht = 0.5147 + 0.0435ε2
t−1 + 0.8756ht−1,

(0.3248) (0.0159) (0.0530)

where the standard errors are in parentheses. Again model (5.2) is stationary, and
none of first ten autocorrelations or partial autocorrelations of the residuals η̂t �

ε̂t ĥ
−1/2
t are significant at the 5% level. Moreover, the first ten autocorrelations and

partial autocorrelations of {η̂2
t } are also within two asymptotic standard errors; see

Figure 6(a) and (b). All these results suggest that model (5.2) is adequate for the
data set {yt }.

Finally, we estimate the tail index of η2
t in model (5.2) by using Hill’s estimator

α̂η(k) with k = 1, . . . ,180, base on {η̂2
t }. The plot of {α̂η(k)}180

k=1 is given in Fig-
ure 7, from which we can see that Eη2

t is most likely finite, but Eη4
t is infinite.

Furthermore, the estimator of Eη2
t is

∑n
t=1 η̂2

t /n = 1.6994, and it turns out that
α̂1n(

∑n
t=1 η̂2

t /n)+ β̂1n = 0.9495. This means that Eε2
t < ∞. Therefore, all the as-

sumptions of Theorem 3.1 are most likely satisfied. In particular, the estimated tail
indices of {y2

t } and {η̂2
t } show the evidence that the self-weighted/local QMELE is

necessary in modeling the crude oil price.

6. Proofs of Lemmas 2.2 and 2.3. In this section, we give the proofs of Lem-
mas 2.2 and 2.3. In the rest of this paper, we denote C as a universal constant, and
G(x) be the distribution function of ηt .
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(a) (b)

FIG. 6. (a) The autocorrelations for {η̂2
t } and (b) the partial autocorrelations for {η̂2

t }.

PROOF OF LEMMA 2.2. A direct calculation gives

ξt (u) = −u′ 2wt√
ht

∂εt (γ0)

∂θ
Mt (u),

where Mt (u) =
∫ 1

0 Xt (−q1t (u)s) ds. Thus, we have

|�1n(u)| ≤ 2‖u‖
m
∑

j=1

∣

∣

∣

∣

∣

wt√
ht

∂εt (γ0)

∂θj

n
∑

t=1

{Mt (u) − E[Mt (u)|Ft−1]}
∣

∣

∣

∣

∣

.

FIG. 7. The Hill estimators {α̂η(k)} for {η̂2
t } of model (5.2).
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It is sufficient to show that
∣

∣

∣

∣

∣

wt√
ht

∂εt (θ0)

∂θj

n
∑

t=1

{Mt (un) − E[Mt (un)|Ft−1]}
∣

∣

∣

∣

∣

= op

(√
n + n‖un‖

)

,(6.1)

for each 1 ≤ j ≤ m. Let mt = wth
−1/2
t ∂εt (θ0)/∂θj , ft (u) = mtMt (u) and

Dn(u) = 1√
n

n
∑

t=1

{ft (u) − E[ft (u)|Ft−1]}.

Then, in order to prove (6.1), we only need to show that for any η > 0,

sup
‖u‖≤η

|Dn(u)|
1 + √

n‖u‖ = op(1).(6.2)

Note that mt = max{mt ,0} − max{−mt ,0}. To make it simple, we only prove the
case when mt ≥ 0.

We adopt the method in Lemma 4 of Pollard (1985). Let F = {ft (u) : ‖u‖ ≤ η}
be a collection of functions indexed by u. We first verify that F satisfies the bracket-
ing condition in Pollard (1985), page 304. Denote Br(ζ ) be an open neighborhood
of ζ with radius r > 0. For any fix ε > 0 and 0 < δ ≤ η, there is a sequence of small
cubes {Bεδ/C1(ui)}Kε

i=1 to cover Bδ(0), where Kε is an integer less than c0ε
−m and

c0 is a constant not depending on ε and δ; see Huber (1967), page 227. Here, C1
is a constant to be selected later. Moreover, we can choose Ui(δ) ⊆ Bεδ/C1(ui)

such that {Ui(δ)}Kε

i=1 be a partition of Bδ(0). For each u ∈ Ui(δ), we define the
bracketing functions as follows:

f ±
t (u) = mt

∫ 1

0
Xt

(

−q1t (u)s ± εδ

C1
√

ht

∥

∥

∥

∥

∂εt (γ0)

∂θ

∥

∥

∥

∥

)

ds.

Since the indicator function is nondecreasing and mt ≥ 0, we can see that, for any
u ∈ Ui(δ),

f −
t (ui) ≤ ft (u) ≤ f +

t (ui).

Note that supx∈R g(x) < ∞. It is straightforward to see that

E[f +
t (ui) − f −

t (ui)|Ft−1] ≤ 2εδ

C1
sup
x∈R

g(x)
wt

ht

∥

∥

∥

∥

∂εt (γ0)

∂θ

∥

∥

∥

∥

2

≡ εδ�t

C1
.(6.3)

Setting C1 = E(�t ), we have

E[f +
t (ui) − f −

t (ui)] = E{E[f +
t (ui) − f −

t (ui)|Ft−1]} ≤ εδ.

Thus, the family F satisfies the bracketing condition.
Put δk = 2−kη. Define B(k) ≡ Bδk

(0), and A(k) to be the annulus B(k)/B(k +
1). Fix ε > 0, for each 1 ≤ i ≤ Kε , by the bracketing condition, there exists a
partition {Ui(δk)}Kε

i=1 of B(k).



QMELE FOR ARMA–GARCH/IGARCH MODELS 2153

We first consider the upper tail. For u ∈ Ui(δk), by (6.3) with δ = δk , we have

Dn(u) ≤ 1√
n

n
∑

t=1

{f +
t (ui) − E[f −

t (ui)|Ft−1]}

= D+
n (ui) + 1√

n

n
∑

t=1

E[f +
t (ui) − f −

t (ui)|Ft−1]

≤ D+
n (ui) +

√
nεδk

[

1

nC1

n
∑

t=1

�t

]

,

where

D+
n (ui) = 1√

n

n
∑

t=1

{f +
t (ui) − E[f +

t (ui)|Ft−1]}.

Denote the event

En =
{

ω : 1

nC1

n
∑

t=1

�t (ω) < 2

}

.

On En with u ∈ Ui(δk), it follows that

Dn(u) ≤ D+
n (ui) + 2

√
nεδk.(6.4)

On A(k), the divisor 1 +√
n‖u‖ >

√
nδk+1 = √

nδk/2. Thus, by (6.4) and Cheby-
shev’s inequality, it follows that

P

(

sup
u∈A(k)

Dn(u)

1 + √
n‖u‖ > 6ε,En

)

≤ P
(

sup
u∈A(k)

Dn(u) > 3
√

nεδk,En

)

≤ P
(

max
1≤i≤Kε

sup
u∈Ui(δk)∩A(k)

Dn(u) > 3
√

nεδk,En

)

(6.5)
≤ P

(

max
1≤i≤Kε

D+
n (ui) >

√
nεδk,En

)

≤ Kε max
1≤i≤Kε

P
(

D+
n (ui) >

√
nεδk

)

≤ Kε max
1≤i≤Kε

E[(D+
n (ui))

2]
nε2δ2

k

.

Note that |q1t (ui)| ≤ Cδkξρt−1 and m2
t ≤ Cw2

t ξ
2
ρt−1 for some ρ ∈ (0,1) by Lem-

ma A.1(i), and supx∈R g(x) < ∞ by Assumption 2.6. By Taylor’s expansion, we
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have

E[(f +
t (ui))

2] = E{E[(f +
t (ui))

2|Ft−1]}

≤ E

[

m2
t

∫ 1

0
E

[
∣

∣

∣

∣

Xt

(

−q1t (ui)s + εδk

C1
√

ht

∥

∥

∥

∥

∂εt (γ0)

∂θ

∥

∥

∥

∥

)∣

∣

∣

∣

∣

∣

∣Ft−1

]

ds

]

≤ CE
[

sup
|x|≤δkCξρt−1

|G(x) − G(0)|w2
t ξ

2
ρt−1

]

≤ δkCE(w2
t ξ

3
ρt−1).

Since f +
t (ui) − E[f +

t (ui)|Ft−1] is a martingale difference sequence, by the pre-
vious inequality, it follows that

E[(D+
n (ui))

2] = 1

n

n
∑

t=1

E{f +
t (ui) − E[f +

t (ui)|Ft−1]}2

≤ 1

n

n
∑

t=1

E[(f +
t (ui))

2]

(6.6)

≤ δk

n

n
∑

t=1

CE(w2
t ξ

3
ρt−1)

≡ πn(δk).

Thus, by (6.5) and (6.6), we have

P

(

sup
u∈A(k)

Dn(u)

1 + √
n‖u‖ > 6ε,En

)

≤ Kε

πn(δk)

nε2δ2
k

.

By a similar argument, we can get the same bound for the lower tail. Thus, we can
show that

P

(

sup
u∈A(k)

|Dn(u)|
1 + √

n‖u‖ > 6ε,En

)

≤ 2Kε

πn(δk)

nε2δ2
k

.(6.7)

Since πn(δk) → 0 as k → ∞, we can choose kε so that

2πn(δk)Kε/(εη)2 < ε

for k ≥ kε . Let kn be an integer so that n−1/2 ≤ 2−kn < 2n−1/2. Split {u : ‖u‖ ≤ η}
into two sets B(kn + 1) and B(kn + 1)c = ⋃kn

k=0 A(k). By (6.7), since πn(δk) is
bounded, we have

P

(

sup
u∈B(kn+1)c

|Dn(u)|
1 + √

n‖u‖ > 6ε

)

≤
kn
∑

k=0

P

(

sup
u∈A(k)

|Dn(u)|
1 + √

n‖u‖ > 6ε,En

)

+ P(Ec
n)(6.8)
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≤ 1

n

kε−1
∑

k=0

CKε

ε2η2 22k + ε

n

kn
∑

k=kε

22k + P(Ec
n)

≤ O

(

1

n

)

+ 4ε
22kn

n
+ P(Ec

n)

≤ O

(

1

n

)

+ 4ε + P(Ec
n).

Since 1 + √
n‖u‖ > 1 and

√
nδkn+1 < 1, using a similar argument as for (6.5)

together with (6.6), we have

P

(

sup
u∈B(kn+1)

Dn(u)

1 + √
n‖u‖ > 3ε,En

)

≤ P
(

max
1≤i≤Kε

D+
n (ui) > ε,En

)

≤ Kεπn(δkn+1)

ε2
.

We can get the same bound for the lower tail. Thus, we have

P

(

sup
u∈B(kn+1)

|Dn(u)|
1 + √

n‖u‖ > 3ε

)

= P

(

sup
u∈B(kn+1)

|Dn(u)|
1 + √

n‖u‖ > 3ε,En

)

+ P(Ec
n)(6.9)

≤ 2Kεπn(δkn+1)

ε2 + P(Ec
n).

Note that πn(δkn+1) → 0 as n → ∞. Furthermore, P(En) → 1 by the ergodic
theorem. Hence,

P(Ec
n) → 0 as n → ∞.

Finally, (6.2) follows by (6.8) and (6.9). This completes the proof. �

PROOF OF LEMMA 2.3. (i). By a direct calculation, we have

�2n(u) = 2
n
∑

t=1

wt

∫ −q1t (u)

0
G(s) − G(0) ds

= 2
n
∑

t=1

wt

∫ −q1t (u)

0
sg(ς∗) ds(6.10)

=
(√

nu
)′[K1n + K2n(u)]

(√
nu
)

,

where ς∗ lies between 0 and s, and

K1n = g(0)

n

n
∑

t=1

wt

ht (θ0)

∂εt (γ0)

∂θ

∂εt (γ0)

∂θ ′ ,
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K2n(u) = 2

n‖u‖2

n
∑

t=1

wt

∫ −q1t (u)

0
s[g(ς∗) − g(0)]ds.

By the ergodic theorem, it is easy to see that

K1n = �1 + op(1).(6.11)

Furthermore, since |q1t (u)| ≤ C‖u‖ξρt−1 for some ρ ∈ (0,1) by Lemma A.1(i), it
is straightforward to see that for any η > 0,

sup
‖u‖≤η

|K2n(u)| ≤ sup
‖u‖≤η

2

n‖u‖2

n
∑

t=1

wt

∫ |q1t (u)|

−|q1t (u)|
s|g(ς∗) − g(0)|ds

≤ 1

n

n
∑

t=1

[

sup
|s|≤Cηξρt−1

|g(s) − g(0)|wtξ
2
ρt−1

]

.

By Assumptions 2.4 and 2.6, E(wtξ
2
ρt−1) < ∞ and supx∈R g(x) < ∞. Then, by

the dominated convergence theorem, we have

lim
η→0

E
[

sup
|s|≤Cηξρt−1

|g(s) − g(0)|wtξ
2
ρt−1

]

= 0.

Thus, by the stationarity of {yt } and Markov’s theorem, for ∀ε, δ > 0, ∃η0(ε) > 0,
such that

P
(

sup
‖u‖≤η0

|K2n(u)| > δ
)

<
ε

2
(6.12)

for all n ≥ 1. On the other hand, since un = op(1), it follows that

P(‖un‖ > η0) <
ε

2
(6.13)

as n is large enough. By (6.12) and (6.13), for ∀ε, δ > 0, we have

P
(

|K2n(un)| > δ
)

≤ P
(

|K2n(un)| > δ,‖un‖ ≤ η0
)

+ P(‖un‖ > η0)

< P
(

sup
‖u‖≤η0

|K2n(u)| > δ
)

+ ε

2

< ε

as n is large enough, that is, K2n(un) = op(1). Furthermore, combining (6.10) and
(6.11), we can see that (i) holds.

(ii) Let �3n(u) = (
√

nu)′K3n(ξ
∗)(

√
nu) + K4n(u), where

K3n(ξ
∗) = 1

n

n
∑

t=1

wt√
ht

∂2εt (ξ
∗)

∂θ ∂θ ′ [I (ηt > 0) − I (ηt < 0)],

K4n(u) = 2
n
∑

t=1

wt

∫ −qt (u)

−q1t (u)
Xt (s) ds.
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By Assumption 2.4 and Lemma A.1(i), there exists a constant ρ ∈ (0,1) such that

E

(

sup
ξ∗∈�

wt√
ht

∣

∣

∣

∣

∂2εt (ξ
∗)

∂θ ∂θ ′ [I (ηt > 0) − I (ηt < 0)]
∣

∣

∣

∣

)

≤ CE(wtξρt−1) < ∞.

Since ηt has median 0, the conditional expectation property gives

E

(

wt√
ht

∂2εt (ξ
∗)

∂θ ∂θ ′ [I (ηt > 0) − I (ηt < 0)]
)

= 0.

Then, by Theorem 3.1 in Ling and McAleer (2003), we have

sup
ξ∗∈�

|K3n(ξ
∗)| = op(1).

On the other hand,

K4n(u)

n‖u‖2
= 2

n

n
∑

t=1

wt

∫ −q2t (u)/‖u‖2

0
Xt

(

‖u‖2s − q1t (u)
)

ds

≡ 2

n

n
∑

t=1

J1t (u).

By Lemma A.1, we have |‖u‖−2q2t (u)| ≤ Cξρt−1 and |q1t (u)| ≤ C‖u‖ξρt−1 for
some ρ ∈ (0,1). Then, for any η > 0, we have

sup
‖u‖≤η

|J1t (u)| ≤ wt

∫ Cξρt−1

−Cξρt−1

{Xt (Cη2ξρt−1 + Cηξρt−1)

− Xt (−Cη2ξρt−1 − Cηξρt−1)}ds

≤ 2Cwtξρt−1{Xt (Cη2ξρt−1 + Cηξρt−1)

− Xt (−Cη2ξρt−1 − Cηξρt−1)}.
By Assumptions 2.4 and 2.6 and the double expectation property, it follows that

E
[

sup
‖u‖≤η

|J1t (u)|
]

≤ 2CE[wtξρt−1{G(Cη2ξρt−1 + Cηξρt−1)

− G(−Cη2ξρt−1 − Cηξρt−1)}]

≤ C(η2 + η) sup
x

g(x)E(wtξ
2
ρt−1) → 0

as η → 0. Thus, as for (6.12) and (6.13), we can show that K4n(un) = op(n‖un‖2).
This completes the proof of (ii).

(iii) Let �4n(u) = (
√

nu)′[n−1∑n
t=1 J2t (ζ

∗)](√nu), where

J2t (ζ
∗) = wt

(

3

8

∣

∣

∣

∣

εt (γ0)√
ht (ζ ∗)

∣

∣

∣

∣

− 1

4

)

1

h2
t (ζ

∗)

∂ht (ζ
∗)

∂θ

∂ht (ζ
∗)

∂θ ′ .
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By Assumption 2.4 and Lemma A.1(ii)–(iv), there exists a constant ρ ∈ (0,1) and
a neighborhood �0 of θ0 such that

E
[

sup
ζ ∗∈�0

|J2t (ζ
∗)|
]

≤ CE[wtξ
2
ρt−1(|ηt |ξρt−1 + 1)] < ∞.

Then, by Theorem 3.1 of Ling and McAleer (2003), we have

sup
ζ ∗∈�0

∣

∣

∣

∣

∣

1

n

n
∑

t=1

J2t (ζ
∗) − E[J2t (ζ

∗)]
∣

∣

∣

∣

∣

= op(1).

Moreover, since ζ ∗
n → θ0 a.s., by the dominated convergence theorem, we have

lim
n→∞E[J2t (ζ

∗
n )] = E[J2t (θ0)] = �2.

Thus, (iii) follows from the previous two equations. This completes the proof
of (iii).

(iv) Since E|ηt | = 1, a similar argument as for part (iii) shows that (iv) holds.
(v) By Taylor’s expansion, we have

1√
ht (θ0 + u)

− 1√
ht (θ0)

= −u′

2(ht (ζ ∗))3/2

∂ht (ζ
∗)

∂θ
,

where ζ ∗ lies between θ0 and θ0 + u. By identity (2.6), it is easy to see that

|εt (γ0 + u1)| − |εt (γ0)| = u′ ∂εt (ξ
∗)

∂θ
[I (ηt > 0) − I (ηt < 0)]

+ 2u′ ∂εt (ξ
∗)

∂θ

∫ 1

0
Xt

(

− u′
√

ht

∂εt (ξ
∗)

∂θ
s

)

ds,

where ξ∗ lies between γ0 and γ0 + u1. By the previous two equations, it follows
that

n
∑

t=1

wtCt (u) =
(√

nu
)′[K5n(u) + K6n(u)]

(√
nu
)

,

where

K5n(u) = 1

n

n
∑

t=1

wt

2h
3/2
t (ζ ∗)

∂ht (ζ
∗)

∂θ

∂εt (ξ
∗)

∂θ ′ [I (ηt < 0) − I (ηt > 0)],

K6n(u) = −1

n

n
∑

t=1

wt

h
3/2
t (ζ ∗)

∂ht (ζ
∗)

∂θ

∂εt (ξ
∗)

∂θ ′

∫ 1

0
Xt

(

− u′
√

ht

∂εt (ξ
∗)

∂θ
s

)

ds.

By Lemma A.1(i), (iii), (iv) and a similar argument as for part (ii), it is easy to see
that K5n(un) = op(1) and K6n(un) = op(1). Thus, it follows that (v) holds. This
completes all of the proofs. �
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7. Concluding remarks. In this paper, we first propose a self-weighted
QMELE for the ARMA–GARCH model. The strong consistency and asymptotic
normality of the global self-weighted QMELE are established under a fractional
moment condition of εt with Eη2

t < ∞. Based on this estimator, the local QMELE
is showed to be asymptotically normal for the ARMA–GARCH (finite variance)
and –IGARCH models. The empirical study shows that the self-weighted/local
QMELE has a better performance than the self-weighted/local QMLE when ηt

has a heavy-tailed distribution, while the local QMELE is more efficient than the
self-weighted QMELE for the cases with a finite variance and –IGARCH errors.
We also give a real example to illustrate that our new estimation procedure is nec-
essary. According to our limit experience, the estimated tail index of most of data
sets lies in [2,4) in economics and finance. Thus, the local QMELE may be the
most suitable in practice if there is a further evidence to show that Eη4

t = ∞.

APPENDIX

The Lemma A.1 below is from Ling (2007).

LEMMA A.1. Let ξρt be defined as in Assumption 2.4. If Assumptions 2.1
and 2.2 hold, then there exists a constant ρ ∈ (0,1) and a neighborhood �0 of θ0
such that:

sup
�

|εt−1(γ )| ≤ Cξρt−1,

(i) sup
�

∥

∥

∥

∥

∂εt (γ )

∂γ

∥

∥

∥

∥

≤ Cξρt−1 and

sup
�

∥

∥

∥

∥

∂2εt (γ )

∂γ ∂γ ′

∥

∥

∥

∥

≤ Cξρt−1,

(ii) sup
�

ht (θ) ≤ Cξ2
ρt−1,

(iii) sup
�0

∥

∥

∥

∥

1

ht (θ)

∂ht (θ)

∂δ

∥

∥

∥

∥

≤ Cξ
ι1
ρt−1 for any ι1 ∈ (0,1),

(iv) sup
�

∥

∥

∥

∥

1√
ht (θ)

∂ht (θ)

∂γ

∥

∥

∥

∥

≤ Cξρt−1.

LEMMA A.2. For any θ∗ ∈ �, let Bη(θ
∗) = {θ ∈ � : ‖θ − θ∗‖ < η} be an

open neighborhood of θ∗ with radius η > 0. If Assumptions 2.1–2.5 hold, then:

(i) E
[

sup
θ∈�

wt lt (θ)
]

< ∞,

(ii) E[wt lt (θ)] has a unique minimum at θ0,

(iii) E
[

sup
θ∈Bη(θ∗)

wt |lt (θ) − lt (θ
∗)|
]

→ 0 as η → 0.



2160 K. ZHU AND S. LING

PROOF. First, by (A.13) and (A.14) in Ling (2007) and Assumptions 2.4
and 2.5, it follows that

E

[

sup
θ∈�

wt |εt (γ )|√
ht (θ)

]

≤ CE[wtξρt−1(1 + |ηt |)] < ∞

for some ρ ∈ (0,1), and

E
[

sup
θ∈�

wt log
√

ht (θ)
]

< ∞;

see Ling (2007), page 864. Thus, (i) holds.
Next, by a direct calculation, we have

E[wt lt (θ)] = E

[

wt log
√

ht (θ) + wt |εt (γ0) + (γ − γ0)
′(∂εt (ξ

∗)/∂θ)|√
ht (θ)

]

= E

[

wt log
√

ht (θ) + wt√
ht (θ)

E

{
∣

∣

∣

∣

εt (γ0) + (γ − γ0)
′ ∂εt (ξ

∗)

∂θ

∣

∣

∣

∣

∣

∣

∣Ft−1

}]

≥ E

[

wt log
√

ht (θ) + wt√
ht (θ)

E(|εt ||Ft−1)

]

= E

[

wt

(

log

√

ht (θ)

ht (θ0)
+
√

ht (θ0)

ht (θ)

)]

+ E
[

wt log
√

ht (θ0)
]

,

where the last inequality holds since ηt has a unique median 0, and obtains the min-
imum if and only if γ = γ0 a.s.; see Ling (2007). Here, ξ∗ lies between γ and γ0.
Considering the function f (x) = logx + a/x when a ≥ 0, it reaches the minimum
at x = a. Thus, E[wt lt (θ)] reaches the minimum if and only if

√
ht (θ) =

√
ht (θ0)

a.s., and hence θ = θ0; see Ling (2007). Thus, we can claim that E[wt lt (θ)] is
uniformly minimized at θ0, that is, (ii) holds.

Third, let θ∗ = (γ ∗′, δ∗′)′ ∈ �. For any θ ∈ Bη(θ
∗), using Taylor’s expansion,

we can see that

log
√

ht (θ) − log
√

ht (θ∗) = (θ − θ∗)′

2ht (θ∗∗)

∂ht (θ
∗∗)

∂θ
,

where θ∗∗ lies between θ and θ∗. By Lemma A.1(iii)–(iv) and Assumption 2.4, for
some ρ ∈ (0,1), we have

E
[

sup
θ∈Bη(θ∗)

wt

∣

∣log
√

ht (θ) − log
√

ht (θ∗)
∣

∣

]

≤ CηE(wtξρt−1) → 0

as η → 0. Similarly,

E

[

sup
θ∈Bη(θ∗)

wt√
ht (θ)

∣

∣|εt (γ )| − |εt (γ
∗)|
∣

∣

]

→ 0 as η → 0,

E

[

sup
θ∈Bη(θ∗)

wt |εt (γ
∗)|
∣

∣

∣

∣

1√
ht (θ)

− 1√
ht (θ∗)

∣

∣

∣

∣

]

→ 0 as η → 0.
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Then, it follows that (iii) holds. This completes all of the proofs of Lemma A.2.
�

PROOF OF THEOREM 2.1. We use the method in Huber (1967). Let V be any
open neighborhood of θ0 ∈ �. By Lemma A.2(iii), for any θ∗ ∈ V c = �/V and
ε > 0, there exists an η0 > 0 such that

E
[

inf
θ∈Bη0 (θ∗)

wt lt (θ)
]

≥ E[wt lt (θ
∗)] − ε.(A.1)

From Lemma A.2(i), by the ergodic theorem, it follows that

1

n

n
∑

t=1

inf
θ∈Bη0 (θ∗)

wt lt (θ) ≥ E
[

inf
θ∈Bη0 (θ∗)

wt lt (θ)
]

− ε(A.2)

as n is large enough. Since V c is compact, we can choose {Bη0(θi) : θi ∈ V c, i =
1,2, . . . , k} to be a finite covering of V c. Thus, from (A.1) and (A.2), we have

inf
θ∈V c

Lsn(θ) = min
1≤i≤k

inf
θ∈Bη0 (θi)

Lsn(θ)

≥ min
1≤i≤k

1

n

n
∑

t=1

inf
θ∈Bη0 (θi)

wt lt (θ)(A.3)

≥ min
1≤i≤k

E
[

inf
θ∈Bη0 (θi)

wt lt (θ)
]

− ε

as n is large enough. Note that the infimum on the compact set V c is attained. For
each θi ∈ V c, from Lemma A.2(ii), there exists an ε0 > 0 such that

E
[

inf
θ∈Bη0 (θi)

wt lt (θ)
]

≥ E[wt lt (θ0)] + 3ε0.(A.4)

Thus, from (A.3) and (A.4), taking ε = ε0, it follows that

inf
θ∈V c

Lsn(θ) ≥ E[wt lt (θ0)] + 2ε0.(A.5)

On the other hand, by the ergodic theorem, it follows that

inf
θ∈V

Lsn(θ) ≤ Lsn(θ0) = 1

n

n
∑

t=1

wt lt (θ0) ≤ E[wt lt (θ0)] + ε0.(A.6)

Hence, combining (A.5) and (A.6), it gives us

inf
θ∈V c

Lsn(θ) ≥ E[wt lt (θ0)] + 2ε0 > E[wt lt (θ0)] + ε0 ≥ inf
θ∈V

Lsn(θ),

which implies that

θ̂sn ∈ V a.s. for ∀V , as n is large enough.

By the arbitrariness of V , it yields θ̂sn → θ0 a.s. This completes the proof. �
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