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Empirical Policy Function Benchmarks for Evaluation and Estimation of
Dynamic Models

Abstract

We describe a set of model-dependent statistical benchmarks that can be used to esti-
mate and evaluate dynamic models of firms’ investment and financing. The benchmarks
characterize the empirical counterparts of the models’ policy functions. These empirical
policy functions (EPFs) are intuitively related to the corresponding model, their features
can be estimated very easily and robustly, and they describe economically important as-
pects of firms’ dynamic behavior. We calculate the benchmarks for a traditional trade-off
model using Compustat data and use them to estimate some of its parameters. We present
two Monte Carlo exercises, one that shows EPF-based estimation has lower average bias
and lower variance than traditional moment-based estimation and another that shows EPF-
based tests are better at detecting misspecification.

Keywords: trade-off model,structural models of capital structure, estimation of dynamic
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1 Introduction

A large literature in finance and economics studies dynamic models of the firm, in which

agents, period by period, optimally choose optimal decisions as a function of the current

state of their environment.1 While these sophisticated dynamic programming problems

are analytically complex and often only have approximate numerical solutions, this general

research endeavor is promising: investing and financing are intrinsically dynamic problems

that can only have a quantitatively satisfactory representation in a dynamic model. More-

over, dynamic models allow researchers to extract a wealth of time series and cross sectional

predictions with which to compare model and data. This richness allows researchers to dis-

cipline dynamic models more than static models. In general, this discipline is useful because

it allows the evaluation of different models’ ability to match the data, and ultimately, to

establish the quantitatively better theoretical bases for understanding firms’ behavior.

However, an issue of concern in the financing and investment literature is that there is

no agreement on the right predictions to use for disciplining these quantitative dynamic

models. Different researchers make different choices about which features of the data to

consider, as exemplified in Table 1, which lists two sets of benchmarks used in the literature.

The result is a wealth of different models, all of which claim that they successfully explain

the data, a situation that puts in question the scientific value of this type of research. A

methodology in which models are not falsifiable is not useful. This paper argues that,

instead of arbitrary features of the data, for each model there is a natural set of statistics

to be used for estimation and evaluation. Moreover, these statistics are, to a large extent,

common across existing specifications of investment and financing problems. Therefore,

they can be thought of as benchmarks that dynamic capital structure models should aim

1For a comprehensive review, see Strebulaev and Whited (2012).
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to match. While we provide a number of these benchmarks for a particular capital structure

model, similar objects are easily calculated for any model. In this sense, we provide one

practical method to answer the typical “Which Moments to Match?” question of Gallant

and Tauchen (1996).

We derive these benchmarks from the model’s policy functions, which describe the

optimal response of the firm (the control variables) as a function of its environment (the

state variables). Our central argument is that the empirical counterpart of these policy

functions should be informative in the evaluation and estimation of a dynamic model.

Therefore, we develop a method for using robust estimates of the main features of these

empirical policy functions (EPFs) to estimating the parameters of dynamic models. Of

course, there are many ways to characterize an empirical relationship. In this paper, we

focus mainly on the first-order features of these EPFs, namely their slopes. Among these

features, we focus on statistically robust estimators, which insures that we are looking at

representative features of the data.

To estimate our EPFs we use only the within-firm variation of each of the relevant

variables. This practice is consistent with a typical model setup in which firms are ex-ante

homogeneous. The use of within-firm variation implies that we do not target the mean

values of any of the state or control variables. Instead, we use their variation across time

and states of nature. While it is possible that, for a particular model, there is a unique

feature of the data (such as the mean of a variable) that can help estimate its parameters,

our argument here is that a common set of benchmarks that captures the first order features

of the empirical policy functions should be a starting point with which to evaluate these

models.

Using EPFs as benchmarks for estimating and evaluating models confers several ad-

vantages over the practice of using arbitrary moments to estimate models. First, these
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benchmarks capture an economically important fraction of the variance of the control vari-

ables in the data. For example, out of the total dispersion of the investment to capital ratio

in the data, around 20% can be captured by the slope of the EPFs. Thus, our benchmarks

are describing a large fraction of what firms actually do.

Second, these benchmarks are intrinsically related to the economic dynamics of the

model. The point of writing dynamic models is that we have dynamic data to test them

against and therefore powerful tests of these models need to involve facts that describe

firms’ dynamics. In contrast to this principle, models in the literature are often estimated

or tested with respect to sample averages, such as mean leverage or mean cash holdings.

The third argument is that these quantities are often used already in some structural

estimations, so they are not large departures from tradition. Instead what we propose in

this paper is a transparent, simple, robust method for choosing and computing benchmarks

that can potentially let us compare one model to another meaningfully.

We conduct several Monte Carlo exercises to gauge the finite-sample performance of

estimators that use empirical EPFs, and we compare these estimators to ones that use

traditional moments. We find two important results. First, estimation with these EPF

benchmarks generates parameter estimates that are less variable and have less bias than

those generated with moments. Second, estimation with these EPF benchmarks leads to

specification tests that have more power to reject misspecified models.

Although our paper is clearly related to the many applied papers that have used simu-

lated method of moments to estimate the parameters of dynamic models, it is more closely

related to a set of papers that deal with estimation of dynamic oligopoly games in indus-

trial organization. For example, Rust (1994) describes a set of methods for solving and

estimating Markov Decision Processes and Eckstein and Wolpin (1989) provide a survey

of estimation methods for discrete choice models. Aguirregabiria and Mira (2007) and
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Bajari, Benkard, and Levin (2007) describe two-step algorithms for estimating a dynamic

game under particular assumptions about the game’s equilibrium. The estimation method

proposed by Bajari et al. (2007) is closely related to the one in this paper and focuses on

estimating the policy functions as the essential quantities to input into a simulated mini-

mum distance estimator. Our paper stands apart from this literature because our methods

are “full-solution” methods that actually match theoretical and estimated policy functions.

This paper proceeds as follows: Section 2 of the paper presents a generic model and

detailed steps for benchmark calculation, a measure of the explanatory power of a model,

and a brief description of indirect inference and bootstrapping as applied here; section 3

presents a generic dynamic trade-off model of capital structure, along with its benchmarks,

and a comparison of indirect inference performed with traditional moments and with our

benchmarks; section 5 presents two Monte Carlo exercises, the first, a parameter recovery

experiment that shows our benchmarks generate parameter estimates with lower volatility

and bias, and the second that shows that our benchmarks are better at detecting mis-

specification; section 6 concludes.

2 Benchmarks and Estimation

2.1 Generic Model

The models of the firm that we consider can be described generically in terms of a Bellman

equation:

V (x) = max
h

{

D(x, h) + βE (V (x′) | x, h)
}

, (1)

in which x is an M = N +K vector of state variables, with a prime indicating tomorrow

and no prime indicating today. This vector can contain endogenous state variables that
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can be directly manipulated by the N vector of control variables, h, as well as K exogenous

stochastic state variables, which follow a Markov process. The control and state variables

are linked via a law of motion given by

x′ ≡ g(x, h) (2)

V (x) represents the market value of the firm’s equity, D(x, h) represents payments to

or from shareholders, β is the discount factor and E(· | x, h) is the expectation with

respect to the Markov transition function, given x and h. For example, the variable x

typically contains the firm’s capital, leverage, and a profitability shock. The vector of

control variables typically contains investment and debt issuance. The firm observes x and

then maximizes the present discounted value of the sum of current and future dividends by

setting the control variable h optimally during each period.

In this generic setup, the solution of the model consists of the optimal policy function

H(x) and the value function of the firm V (x). The policy and value functions satisfy the

following system:

H(x) = argmax
h

{

D(x, h) + βE (V (x′) | x, h)
}

(3)

and

V (x) = D(x,H(x)) + βE (V (x′) | x,H(x)) (4)

For simplicity, we assume that all of the state variables are observable. As we show below,

however, in many of the cases in which some of the stochastic state variables are unobserv-

able, the policy function can be expressed in terms of observable transformations of the

state variables.
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2.2 Benchmarks

Given the process for exogenous variables, the policy function H(x) characterizes the solu-

tion of the model. It is the main object that translates the assumptions of the model into

a functional prediction about the firm’s actions in different situations. Therefore, a direct,

simple and theoretically motivated way to evaluate a dynamic model is to evaluate its abil-

ity to replicate the firms’ observed policies. In this paper we argue that a good approach

to doing this is to characterize firms’ policy functions empirically, and then use this char-

acterizations as the objectives in structural model estimation and evaluation. This section

describes one robust way to characterize the first-order and the second-order features of

these objects, i.e. their slope and convexity.

Empirical Policy Functions

In order to obtain empirical policy function estimates it is necessary to have estimates of

the state in which firms are and of the policies that they follow in each state. We use

a simple process, inspired in the portfolio formation frequently used in the asset pricing

literature, to summarize these objects in a few key numbers.

The empirically estimated equivalent of the function H(x) is an estimated function Ĥ

such that:

Ĥ (x) =
(

Ĥ1 (x) , Ĥ2 (x) , . . . , ĤN (x)
)

. (5)

where Ĥn(x) represents the average or the median behavior along control dimension n for

firms that observe a value x for the state variable. A typical procedure is to use regression

analysis to estimate H as a linear function of x, however that procedure is not robust to the

presence of outliers or to the possibility of nonlinearity. Therefore we characterize ˆH(x)

by splitting the state space into percentile bins for each of the state variables and then
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estimating the median choice for the control variables for all firms within a particular bin

as described in detail below.

Step 1: Demean each state and control variable at the firm level. This step is important

because the models described and exemplified above are typically models where firms are

ex-ante homogenous. Also, we are concerned mainly with the dynamics of the different

variables, as opposed to any cross-sectional variation. Label the demeaned state variables

as xi,t and control variables as hi,t for each firm-period observation.

Step 2: Generate B equally spaced bins across each of the state variables of the model. For

example, if we use five binds, we define the bins as the 0%–20%, 20%–40%, 40%–60%, 60%–

80% and 80%–100% percentiles of each state variable and label them from 1 to 5. Classify

each observation of each state variable as belonging into one variable-specific bin. This

classification is done independently for each variable, that is, it is non-sequential sorting.

Each firm-period observation is therefore given a classification as b(xi,t) = (b1, b2, . . . , bM),

with each bm representing state variable m’s bin classification for that firm in that period.

Similarly, classify the control variables in bins c(hi,t) = (c1, c2, . . . , cN).

Step 3: Estimate the policy function for control variable n as functions of state variable

m as the median observed choice within each of the (composite) bins:

Ĥn
m(B) = median{i,t|bm(xi,t)=B}(h

n
i,t). (6)

Step 4: Finally, characterize the features of ˆH(x) by comparing the policies over bins

across each state variable. Here, we consider both slope and curvature. The first-order

features (the slope) of the policy function can be characterized as the ratio of the difference

between the median policies in the first and last bins to the ratio of the medians of the

7



state variable in those bins:

βn
m(1, B) =

Ĥn
m(B)− Ĥn

m(1)

x̃ |bm(x)=B −x̃ |bm(x)=1

, (7)

in which x̃ |bm(x)=k represents the median value of the state variable x in the kth bin of that

variable.

The second order features (the curvature) of the policy function can be characterized

as the ratio of the change in slope over the state variable to the range of that particular

state variable.

Γn
m(1, B) =

βn
m(B/2, B)− βn

m(1, B/2)

(x̃ |bm(x)=B −x̃ |bm(x)=1)/2
(8)

2.3 Potential Explanatory Power

An important question in evaluating a dynamic model of the firm is how much of the

actual behavior of the firm can we expect to rationalize. We define a robust measure of

this quantity as follows:

PEn
m =

h̃n
i,t |i,t|bm(xi,t)=B −h̃n

i,t |i,t|bm(xi,t)=1

h̃n
i,t |i,t|cn(hi,t)=B −h̃n

i,t |i,t|cn(hi,t)=1

(9)

where h̃n
i,t |i,t|cn(hi,t)=k represents the median of the nth control variable in the kth quintile

of the empirical hm distribution and h̃n
i,t |i,t|bm(xi,t)= k represents the median value of hn

for data observations where the mth state variable is in the kth quintile of the empirical xm

distribution. A large value of this ratio suggests that a large fraction of the total variance

of the control variable hn in the data can potentially be explained by a model in which hn

is the control variable and xm is the state variable.
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2.4 Benchmark’s Variance-Covariance

The statistics described above are not traditional moments in the sense of being sample

averages of a function of each observation. Therefore, the standard methods to obtain

estimates of the variance and covariance of an estimate or vector of estimates are not

useful in this case. This section describes how we estimate the variance and covariance of

the statistics described above.2

2.5 Bootstrapping

One way to obtain a measure of the variance of the estimators described above is through

bootstrapping. The bootstrapping procedure uses the variation of the estimator across

different artificial samples as a measure of the volatility of the estimator. These artificial

samples are drawn from the original sample and used to recalculate the estimator. The

estimation is then performed for a J bootstrapped samples. The variation of the estimator

in the population is then estimated to be similar to the variation across the different

estimates obtained in this way.

We perform bootstrapping on our estimators by sampling with replacement, taking the

time series of each firm as one element of the sample. The estimate of the variance of an

estimator θ̂ is

ˆV (θ) = (1/J)
J
∑

j=1

(

θsj − ¯̂
θ)′(θsj − ¯̂

θ
)

(10)

where is θsj is the estimator evaluated with the sample sj and θ̂ is the mean over j ∈

{1, . . . , J} of θsj.

2An alternative method is the use of influence functions, as described in the appendix.
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2.6 Indirect Inference

Once the above benchmarks are calculated we can use them to estimate a model through

the indirect inference procedure in Smith (1993) and Gourieroux, Monfort, and Renault

(1993).We now briefly describe the procedure, as it applies to our policy function bench-

marks. First, we now explicitly allow the policy and value functions, h = H(x, θ) and

V (x, θ), to depend on a vector of structural model parameters, θ. These parameters in-

clude such quantities as the curvature of a production function, the variance of an exogenous

state variable, or a cost of external finance. On an intuitive level, it might be desirable

to estimate θ via maximum likelihood. However, for most dynamic models of the firm, a

closed-form likelihood is not available. Indirect inference fills this gap by using an auxil-

iary model, with its own parameter vector, b. This auxiliary model should ideally capture

important features of the data. The goal is then to estimate θ by minimizing the distance

between the parameter vector of the auxiliary model, b, estimated with a real data set and

the same parameter parameter vector estimated with data simulated from a model.

Let yT be a real data matrix of length T , Without loss of generality, the parameters of

the auxiliary model can be represented as the solution to the maximization of a criterion

function

bT = argmax
b

JT (yT , b) ,

The simulation of data from the model in section 2.1 proceeds as follows. First, given θ,

pick a starting value for x, x0. Next, update x0 by by using the policy function to generate

h, and then using the law of motion to generate x′, and so on. Let yst be the resulting

simulated data matrix of length T from simulation s, s = 1, . . . , S. For each of these data

sets, estimate bs by maximizing an analogous criterion function
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bsT (b) = argmax
b

JT (xs
T , b

s (b)) ,

Note that the bsT (b), as explicit functions of the structural parameters, θ.

The indirect estimator of b is then defined as the solution to the minimization of

θ̂ = argmin
b

[

bT − 1

S

S
∑

h=1

bsT (θ)

]′

ŴT

[

bT − 1

S

S
∑

h=1

bsT (θ)

]

(11)

≡ argmin
b

Ĝ′
T ŴT ĜT , (12)

in which ŴT is a positive definite matrix that converges in probability to a deterministic

positive definite matrix W . We use the the optimal weight matrix, which is the inverse of

the covariance matrix of θ described in Section 2.5.

The indirect estimator is asymptotically normal for fixed S. Define J ≡ plimT→∞ (JT ) .

Then

√
N

(

θ̂ − θ
)

d−→ N
(

0, avar(θ̂)
)

where

avar(θ̂) ≡
(

1 +
1

S

)

[

∂J

∂b∂θ′

(

∂J

∂b

∂J ′

∂b

)−1
∂J

∂θ∂b′

]−1

.

The technique provides a test of the overidentifying restrictions of the model, with

TS

1 + S
Ĝ′

T ŴT ĜT

converging in distribution to a χ2, with degrees of freedom equal to the dimension of θ

minus the dimension of b.

3 Trade-Off Model

In this section we show the results of an indirect inference structural estimation using

EPFs, and compare the results to one that uses traditional moments. We simulate data
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from a trade-off model and then perform indirect inference on data simulated by that

model. We then describe the ability of the two indirect inference procedures to recover the

parameters of the original model. We compare the two estimations in terms of average bias

and estimator volatility. The rest of this section describes an example of a model in this

literature. It is a simplified version of Hennessy and Whited (2005):

The firm’s cash flow

We consider a firm that uses capital, Kt to generate operating income according to AtK
α
t ,

where Kt is capital, 0 < α < 1 is a parameter that governs returns to scale, and At is a

productivity shock. The productivity shock, At, is lognormally distributed and follows the

process given by:

ln(At) = Ā+ ρ ln(At−1) + σεt, εt ∼ N (0, 1) (13)

The firm’s cash flow (Et) is its operating income plus its net debt issuance ∆Bt, minus

its net expenditure on investment, C(It), and minus its interest payments on debt, Btr
B
t :

Et = AtK
α
t − C(It) + ∆Bt − Btr

B
t (Bt, Kt) (14)

In 14, It is defined by a standard capital stock accounting identity:

Kt+1 ≡ Kt(1− δ) + It (15)

Similarly, net debt issuance, ∆Bt is defined by

Bt+1 ≡ Bt +∆Bt (16)

Dividends and equity issuance

The firm’s dividends and equity issuance are defined in terms of the firm’s cash flows. A

positive cash flow implies the firm’s optimal decision is to pay dividends (Dt = Et) to its
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stockholders, a negative cash flow implies that the firm’s optimal decision is to set dividends

at 0 and instead obtain funds from the equity market (Xt = −Et).

Et > 0 ⇒ Dt = Et, Xt = 0 (17)

Et ≤ 0 ⇒ Dt = 0, Xt = (1 + λ)(−Et), (18)

in which λ stands for the proportional cost of issuing equity.

Real sector frictions

The firm faces a set of frictions. Consistent with most of the literature it faces convex

costs of investment as well as some degree of investment irreversibility. The firm’s cost

of investment function includes the cost of purchasing the capital, plus a convex cost of

investment and plus an investment irreversibility term.

C(It) = It + γKt(It/Kt)
2 − ξKtI(It < 0), (19)

where γ represents the magnitude of convex costs of investment, ξ represents the magnitude

of fixed costs of investment, and I(It > 0) represents an identifier function that is 1 if It > 0

and 0 otherwise.

Interest rate on debt

The interest rate on debt is a risk free rate plus a ‘risk premium’, an increasing, convex

function of leverage:

rBt = Rrf +Rrp(Bt/Kt)
2 (20)
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The firm’s optimization problem

The firms problem is to maximize the discounted value of dividends for current owners

of the firm. With this objective the firm chooses investment and net debt issuance. The

resulting Bellman equation is then given by:

V (Kt, Bt, At) = max
It,∆Bt

{

DtIEt>0 + (1 + λ)XtIEt<0 + EtV (Kt+1, Bt1 , At+1),
}

, (21)

subject to (15) and (16). Here, I is an indicator function.

State space and control space transformations

In the model above, Kt, At and Bt are the state variables and It and ∆Bt are the control

variables. However, At is an unobservable shock. Therefore, to estimate the parameters

of this model, we need to work with observable transformations of the state and control

variables. Further, because the levels of the real Kt and Bt are only defined up to a constant

of proportionality defined by an arbitrary price index. We therefore work with variables in

ratio form. We use the investment rate It/Kt and the debt issuance rate ∆Bt/Kt as the

control variables of the model. Similarly, we use profitability, Πt ≡ AtK
α
t /Kt, and leverage,

Lt = Bt/Kt, as the state variables of the model.3

4 Benchmarks for Trade-Off Model

4.1 Data

We draw our sample of firms from the Compustat database from 1962 to 2012. We screen

the sample as follows. The firm must have a CRSP share code of 10 or 11. We then

drop all firms with fewer than two years of data, or that belong to the financial (SIC

code 6) or regulated (SIC code 49) sectors. Finally, we observations in which any of the

3Note that, as in most capital structure and investment models, once At or Πt as defined above are
given, the firms Value V or Tobin’s Q (Vt/Kt) are not state variables of the model.
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variables we use are missing. We define the following variables to be used in the rest of the

analysis. Book Leverage is (DLC +DLTT)/AT, Profitability is OIBDP/GPPE, Investment

is CAPX/GPPE, and Debt Issuance is ∆ (DLC + DLTT)/AT.

4.2 Summary Statistics

Table 2 presents the summary statistics of the state and control variables of the model as

defined above. Note that the values are consistent with other similar studies. The zero

value for the 10th percentile of investment rates and the 50th percentile of debt issuance

is consistent with research on lumpiness in the investment and financing literature.

The variation of the state variables is an essential quantitative feature of the data. As

the summary statistics show, the bottom quintile of profitability is about 16% lower than

the mean, while the top quintile is about 13% higher, so that the 5–1 inter-quintile range is

about 29% of average profitability. With respect to leverage it shows that the inter-quintile

range is about 62% of total assets, evenly distributed above and below the mean.

4.3 First-Order Benchmarks

Table 3 describes the estimates of the first-order features (i.e the slopes) of the firm’s

policy functions. It shows the result of grouping each firm year observation according to

the value of productivity and leverage into quintiles and then obtaining the median policy

of firms in these bins in terms of investment and debt issuance. The main results are the

policy function slopes in the last column of the table. It shows that each percentage point

of leverage reduces investment by 0.32 percentage points, and reduces debt issuance by

0.17 percentage points. Also, it shows that each percentage point of profitability increases

investment by 1.26 percentage points and increases debt issuance by 0.07 percentage points.

The standard errors presented in this table suggest these figures are estimated with high
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precision, with all of the standard errors lying below 10% of the estimated value.

4.4 Second-Order Benchmarks

Table 4 describes the estimates of the second order features in the data. It shows that

investment is concave in leverage, that is, investment is more affected by debt at high

leverage levels. In contrast, debt issuance policy is convex in leverage, that is, it is less

sensitive to leverage at high leverage levels. Also, investment convex in profitability, that

is, it is more sensitive to profitability at high profitability levels. Finally, it shows that

the slopes of debt increase relative to profitability are not significantly different at high

and low profitability levels. Note that for brevity, we do not use these benchmarks in the

estimation exercises that follow.

4.5 Covariance Matrix of the Policy Function Benchmarks

The indirect inference procedure requires, ideally, that one use the inverse of the variance-

covariance matrix of the policy function slopes, ŴT , to normalize the distance between

the real-data and simulated policy function slopes. As described in section 2.4 above,

one way to estimate this matrix is through bootstrapping, which is what we do in this

paper. Below we compare the performance of a traditional moments-based estimation with

an estimation based on our policy function benchmarks. As a first step, Tables 6 and 7

describe the bootstrap-estimated variance-covariance matrices for both the moments and

policy functions we use. The main feature of this table is that the traditional moments

are substantially less variable than the EPF benchmarks. This result makes sense in that

fewer observations are used in the estimation of the empirical policy functions.
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4.6 Estimation Results

Table 8 describes the results of using the two different sets of empirical benchmarks to

estimate the parameters of the Trade-Off model. It shows that the results are substantially

different depending on the benchmark used. The EPF-based benchmarks result in a higher

estimate of capital adjustment costs, a lower estimate of the credit risk growth coefficient

and of the fixed cost of investment. The minimum value of the distance function is much

larger in the case of the EPF model. We interpret this difference as implying that the

EPF-based benchmarks are more powerful at detecting model misspecification.

Table 9 displays the results of the indirect inference estimation of the trade-off model

from the point of view of the value of the different benchmarks with each of the two

estimated sets of parameters. It shows that, as expected, the EPF-based inference generates

a model whose benchmarks are closer to the EPF-benchmarks in the data, and vice versa,

the TM-based inference generates a model whose benchmarks that are closer to the TM

benchmarks in the data.

Moreover, this table lets us highlight one of the key advantages of focusing on EPF-based

benchmarks. The advantage is that the the distance between the EPF-based benchmarks

in the data and in the estimated model have a clear, useful interpretation, in contrast to the

same distance between TM-benchmarks. Comparing the first and third row of the second

set of columns of the table shows that in the estimated Trade-Off model a unit of leverage

increase leads to 0.421 units decrease in the investment rate, compared to 0.321 in the

data, a unit of leverage decreases debt issuance by 0.444 units, compared to 0.174 in the

data, a unit of profitability increases investment by 1.013 units compared to 1.258 in the

data and a unit of profitability increases debt issuance by 0.034 compared to 0.074 in the

data. In other words, the Trade-Off model yields an investment and debt issuance that are
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too sensitive to leverage, and not sensitive enough to profitability. These conclusions are a

useful way to contrast the model with the data from the point of view of capital structure

theory.

Finally, comparing the first and second lines of this table suggest that although the

Indirect Inference estimation of the Trade-Off model with TM-based benchmarks is able

to generate TM-benchmarks that are close in the data and in the model, the estimated

model is not able to replicate the main quantitative relationships between variables in the

model. Investment and debt issuance are an order of magnitude too sensitive to leverage

and debt issuance is an order of magnitude to sensitive to profitability. While the EPF-

basd estimation leads TM-based benchmarks that are also very much off the mark, it is

not clear how to interpret these distances meaningfully.

4.7 Potential Explanatory Power of the Trade-Off Model

Relative Variation: State and Control Variables

An essential measure of whether our theories explain the data is one that compares the

relative variation of explanatory and dependent variables. The figures in table 5 show this

comparison. These are one set of benchmarks for dynamic model evaluation: they describe

the relative variation in the data between state variables and control variables. Under this

measure a quantitatively good dynamic model of investment and debt issuance that as a

function of changing profitability and current leverage is one that replicates the relative

variation in investment and debt issuance with respect to leverage and profitability.

Table 5 describes this relative variation. It shows that the variation range of investment

along the leverage state variable is 13.1% of the total variation range of investment. Simi-

larly the variation of debt issuance along the leverage state variable is equivalent to 16.3%

of the total variation of debt issuance. Along the profitability dimension the values are 25%
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for investment and 3.7% for debt issuance. These figures provide a measure of how much

of the variation in each of these variables we could expect a dynamic model with leverage

and profitability as state variables to explain.

5 Monte Carlo Exercises

This section describes the results of a set of Monte Carlo experiments that put to test

the intuition described above. These results are important in the sense that they show

that in a practical sense, estimation using EPF-based benchmarks produces better results

than estimation using traditional moments. We design these experiments as follows. Each

Monte Carlo is based on 100 simulated data sets. Each data set has a length of 50 and

a cross-sectional size of 3,000. These dimensions are roughly the average time-series and

cross-sectional dimensions of our real data set. We create our simulated samples as follows.

First, we choose values for three key parameters: the variable and fixed costs of adjustment

of the capital stock, γ = 1 and ξ = 0.03, and the premium on debt financing, Rrp = 2. To

keep the Monte Carlo tractable, we treat the curvature of the profit function, α, and the

parameters that govern the process for AT , σ and ρ, as known, setting them to 0.8, 0.15,

and 0.65, respectively.

5.1 Parameter Recovery

Table 10 describes the mean and the variance of two sets of statistics that can be used to

estimate a structural model. The first one is a set of traditional moments. The second

set corresponds to the slopes of the empirical policy functions as described above. The

statistics come from simulated data from the model above. The first column of the table

shows the simulated means of the different benchmarks. The second and third columns

describe the standard deviation of both sets of of statistics, which we compute in two

19



ways. The first calculation is simply the standard deviation across the different Monte

Carlo trials. The second measure comes from simulating the model once and then taking

bootstrapping the benchmark by sampling with replacement over the firms in the sample.

This exercise suggests that, in this example, bootstrapping provides very good estimates

of the variance of the benchmark, which gives us confidence in the bootstrap estimates of

the empirical variance covariance matrices given before.

Table 10 describes a set of empirical estimates that we use for structural estimation. It

consists of two panels, each describing the means and two estimates of the standard error of

that mean. The first standard error estimate, in column 2, consists of the error calculated as

the standard deviation of the mean observed for different repetitions of model simulations.

The second estimate, in column 2, uses bootstrapping calculating a set of means through

sampling from individual firms in the first simulation. The table shows that, in the model,

the firm level bootstrapping estimate of the standard error of the mean provides a good

approximation to standard deviation of the estimate across different simulations.

Table 11 shows the results of a Monte Carlo experiment estimating the trade-off model

described above using both the traditional moment-based and EPF benchmarks for estima-

tion. Both methods are able to get close to the parameter values of the model. However,

the estimation where direct inference uses EPF-type statistics performs better than the one

where the same procedure uses traditional moment statistics. The EPF based estimation

results in significantly lower bias in two out of three parameters, but most importantly in

dramatically reduced variance of the estimators. The variance reduction is of the order of

80%.
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5.2 Power of Specification Tests

The last comparison we perform between estimation with traditional moments and estima-

tion with EPF-based moments focuses on mis-specification tests. An important concern in

economics is our ability to tell whether a model fits the data well enough or not. One such

test is a misspecification test. In the case of indirect inference, an available test is obtained

by a comparison of the distance between the estimated parameters of the auxiliary model

in the data and in the model with its theoretical distribution. Under conditions specified in

Gourieroux et al. (1993) the objective function described in equation 11 has a well defined

Ξ2 distribution.

In order to asses the power of different benchmarks to detect mis-specification we per-

form a Monte Carlo experiment. The experiment consists of simulating data from a know

model and then using simulated data from this known model to estimate the parameters

of two models: a well specified model and a misspecified model. We perform both of

these estimations twice, first using traditional moments as benchmarks and second with

the EPF-based benchmarks. We then compare the rejection power of tests based on each

one.

The misspecified model is similar to the one in section 3, but where the smooth risk

premium function has been substituted with a collateral constraint. In other words, the

interest rate equation, 20 in section 3, has been substituted for

rBt = RrfIBt < λKt +RrfIBt >= µKt

i.e. a flat interest equal to the risk free rate as long as book leverage is below µ and a

100% interest rate otherwise. In the mis-specified model estimation, we estimate µ instead

of estimating Rrp.
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Table 12 presents the results of the exercise described above. It shows that while

indirect inference of a well-specified model yields similar values for the objective function

for both the TM and EPF benchmarks, this is not the case for a mis-specified model. We

interpret this result as implying that the EPF benchmarks are (much) better at detecting

mis-specification without rejecting the true model more often.

6 Conclusion

We describe a set of benchmarks that we use for the quantitative evaluation of dynamic

corporate finance models. The benchmarks are a small set of numbers that characterize

the empirical counterparts of the policy functions from these models, which provide the

optimal firm policies, given the current state of the firm. We then describe a simple set

of steps to calculate these EPF-based benchmarks. We argue that these benchmarks are

intuitive, robust and theoretically motivated.

We then calculate these benchmarks for a typical dynamic capital structure model, and

use them to estimate the model. We also estimate the model using traditional moments.

We confirm that, in the estimation of the model, the choice of benchmarks is important.

Different benchmarks generate different parameter estimates when using them for indirect

inference.

We then show in first a Monte Carlo exercise that estimation with the proposed bench-

marks results in less biased and less variable estimates of the parameters of the model,

relative to a standard moments-based estimation. In a second Monte Carlo exercise, we

show that a specification test based on our proposed benchmarks has more power than the

same test based on traditional moments. It rejects the misspecified model more often, even

though it rejects the correctly-specified model just as often.
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Table 1: Examples of matching statistics used in the capital structure literature

Hennessy and Whited (2005) Nikolov and Schmid (2012)
Average investment/assets Average of investment
Variance of investment/assets Variance of investment
Average EBITDA/assets Serial correlation of cash
Average debt-assets ratio(net of cash) Average leverage
Average equity issuance/assets Variance of cash
Frequency of equity issuance Serial correlation of investment
Investment-q sensitivity Average of Tobin’s q
Debt-q sensitivity Serial correlation of Tobin’s q
Serial correlation of income/assets Average cash
Std. Dev. of shock to income/assets Serial correlation of leverage

Covariance of cash and investment

Benchmarks correspond to Table II in Hennessy and Whited (2005) and to Tables 3 and 4
in Nikolov and Schmid (2012).
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Table 2: Summary Statistics: State Variables

mean p50 sd p10 p90
Market Leverage 0.26 0.18 0.53 0.00 0.67
Book Leverage 0.28 0.24 0.30 0.00 0.62
Profitability 0.08 0.10 0.19 −0.06 0.23
Market to Book 12.13 3.60 54.88 1.06 24.29
Observations 232033

This table describes summary statistics for the state variables in this paper. Each row is
calculated using the observations for which the variable is available, and so the sample is
different from row to row.
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Table 3: Empirical Policy Function Slopes

Control Variable State Variable 1 to 5
Bin 1 Bin 5 Range Slope

βi
L 0.017 -0.059 0.237 -0.320

(0.002) (0.002) (0.003) (0.013)

βdi
L 0.007 -0.034 0.237 -0.174

(0.001) (0.001) (0.003) (0.007)

βi
Π -0.092 0.059 0.120 1.258

(0.002) (0.002) (0.001) (0.027)

βdi
Π -0.009 0.000 0.120 0.074

(0.001) (0.000) (0.001) (0.005)

Columns 1 and 2 describe the median of the policy function observations at time t for those
firms classified in the first and 5th quintile of the state variable at time t − 1. Columns 3
and 4 describe the median of the state variable at time t− 1 in the 1st and 5th quintile bins
for that variable. Column 5 describes the slope of the policy function calculated as (Control
Bin 5- Control Bin 1)/(State Bin 1 - State Bin 5). Standard errors are calculated with
bootstrapping, by sampling at the firm level. βi

L = slope of investmtent policy over leverage
state, βdi

L = slope of debt increase policy over leverage state, βi
Π = slope of investment policy

over profitability state, and βdi
Π = slope of debt increase policy over profitability state. Data

are from Compustat from 1987 to 2012. Variables are demeaned at the firm level. Variable
definitions are available in the appendix.
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Table 4: Table of Empirical Policy Function Convexities

Slope State Variable Convexity
Bin 1-3 Bin 3-5 Range

Γi
L -0.316 -0.324 0.118 0.061

(0.019) (0.024) (0.001) (0.293)

Γdi
L -0.298 -0.059 0.118 -2.024

(0.011) (0.008) (0.001) (0.113)

Γi
Π 1.155 1.377 0.060 -3.716

(0.042) (0.037) (0.001) (0.978)

Γdi
Π 0.071 0.079 0.060 -0.126

(0.008) (0.013) (0.001) (0.323)

Columns 1 and 2 describe the slope of the policy function approximated from the medians in
the state variable quintiles 1 to 3 and 3 to 5. Columns 3 describes the corresponding range
for the state variable. Column 4 describes the convexity of the policy function calculated as
(Slope 3-5- Slope 1-3)/(State Var. Range). Standard errors are calculated with bootstrap-
ping, by sampling at the firm level. Γi

L = convexity of investmtent policy over leverage state,
Γdi
L = convexity of debt increase policy over leverage state, Γi

Π = convexity of investment
policy over profitability state, and Γdi

Π = convexity of debt increase policy over profitability
state. Data is from Compustat from 1987 to 2012. Variables are demeaned at the firm level.
Variable definitions are available in the appendix.
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Table 5: Range of Control Variable Variation in the Data

Control Variable Total Range Range Over PECV
SV

State Variable

State Variable: Leverage
Investment 0.60 -0.077 0.131
Debt Increase 0.25 -0.041 0.163

State Variable: Profitability
Investment 0.60 0.152 0.251
Debt Increase 0.25 0.009 0.037

The first column describes the q5-q1 range of the control variable. The second column
describes the range of the same variable over the q5-q1 range of the corresponding state
variable, leverage(L) in the top panel and Profitability(Π) in the second one. The third
column describes the ratio between these two.
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Table 6: Variance-Covariance Matrix, Traditional Moments

µ(L) σ2(L) µ(i) σ2(i)

µ(L) 32.1
σ2(L) 73.2 1003.00
µ(i) 0.691 8.63 3.18
σ2(i) -0.141 0.06 0.99 1.05

Figures describe the variance-covariance matrix of the vector of statistics listed in the first
column, estimated using bootstrapping over firms in the sample. All variables are multiplied
by 10 million. Data is from Compustat. Variable definitions are in the appendix.

Table 7: Variance-Covariance Matrix, EFP based benchmarks

βi
L βdi

L βi
Π βi

Π

βi
L 106

βdi
L 56.9 459

βi
Π -7.67 -20.3 639

βdi
Π 6.69 41.1 127 205

Figures describe the variance covariance matrix of the vector of statistics listed in the first
column, estimated using bootstrapping over firms in the sample. All variables are multiplied
by 10 million. Data is from Compustat. Variable definitions are in the appendix.
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Table 8: Structural Estimates of Trade-Off model Parameters with Different Benchmarks

Benchmark type Estimated Parameters Minimum of
γ Rrp ξ Objective

Traditional moments -0.028 0.0525 0.046 16859.2
Empirical policy functions 1.031 0.658 0.035 28281.3

Coefficients obtained through indirect inference on the three parameters, Adjustment Costs,
Credit Risk and Fixed Costs. Indirect inference performed by minimizing the (inverse co-
variance matrix weighted) distance of the simulated values of each set of benchmarks from
the corresponding values found in Compustat. γ is the cost of capital adjustment parame-
ter, Rrp is the size parameter for the risk premium function, and ξ is the parameter of the
non-convex costs of capital adjustment.

Table 9: Benchmark Values at Indirect Inference Estimates, Trade-Off Model

Traditional moments Empirical policy functions

µ(L) σ2(L) µ(i) σ2(i) βi
L βdi

L βi
Π βdi

Π

Data 0.285 0.088 0.095 0.101 -0.322 -0.174 1.258 0.074

Tradtional moments 0.235 0.013 0.135 0.098 -2.655 -1.963 1.733 0.678

Empirical policy functions 0.077 0.000 0.104 0.010 -0.421 -0.444 1.013 0.034

Value of traditional moment benchmarks and EPF-based benchmarks at Indirect Inference
estimates of the Trade-Off model parameters. The first column describes the source of the
benchmarks: Traditional Moment based Indirect Inference (TM), Empirical Policy Function
based Indirect Inference (EPF), or data.
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Table 10: Measures of the Standard Error of Benchmarks, Simulated Data

Benchmark µ̂ SE(µ̂) B.S SE(µ̂)

Traditional moments
µ(i) 10.42% 0.112% 0.241%
σ2(i) 0.84% 0.009% 0.009%
µ(L) 4.3% 0.023% 0.039%
σ2(L) 0.024% 0.002% 0.001%

Empirical policy functions
βi
L -4.53 0.322 0.510

βdi
L -0.88 0.035 0.034

βi
Π 0.95 0.012 0.009

βdi
Π 0.05 0.027 0.029

This table describes different measures of estimate standard errors. The means, sample
volatility estimate, and bootstrapping estimate over repetitions are calculated with 30 rep-
etitions of the model simulation. The bootstrapping within one repetition estimate is cal-
culated by bootstrapping across firms in a single repetition of the simulation. i stands for
the investment rate I/K, , di stands for debt issuance rate DI/K, Π stands for profitability
AKα−1, and L stands for leverage.µ(·) stands for the mean, σ2(·) stands for the variance
and βn

m stands for the first order characterization of the policy for control variable n as a
function of state variable m.
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Table 11: Comparison of Model Estimation with Different Matching Objectives

Model/Estimation Estimates
γ Rrp ξ

Parameter values 1.00 2.00 0.03

EPF-based estimation
Mean Estimate 1.11 1.90 0.0286
Average Bias 0.11 -0.10 -0.0014
S.E. 0.0064 0.0639 0.0002

TM-based estimation
Mean Estimate 0.72 2.02 0.0373
Average Bias -0.28 0.02 0.0073
S.E. 0.0353 0.0728 0.0015

Monte Carlo mean and standard error of Indirect Inference parameter estimates obtained
with two sets of benchmarks, and corresponding model parameters.

Table 12: Comparison of Mis-specification Detection Power

Estimation Objective Function
Correct Model, TM-based estimation 15.5
Correct Model, EPF-based estimation 11.9
Mis-specified Model, TM-based estimation 233.8
Mis-specified Model, EPF-based estimation 1274.5

Column 1 describes the model that was estimated. ‘Correct model’ implies that the same
model was used to produce the data and to estimate the parameters. ‘Mis-specified model’
implies that the alternative model was used to estimate the parameters. The average of
the objective function is taken over 30 observations in each of which a different random
parameter was chosen for the original model, a different random sequence was used for
simulating the original model, a different random starting point was used for the Indirect
Inference search, and a different random sequence was used for simulation in the Indirect
Inference simulations.
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