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ABSTRACT 15

Testing causality-in-mean and causality-in-variance has been largely studied. However, none

of the tests can detect causality-in-mean and causality-in-variance simultaneously. In this arti-

cle, we introduce a factor double autoregressive (FDAR) model. Based on this model, a score

test is proposed to detect causality-in-mean and causality-in-variance simultaneously. Further-

more, strong consistency and asymptotic normality of the quasi-maximum likelihood estimator 20

(QMLE) for the FDAR model are established. A small simulation study shows good perfor-

mances of the QMLE and the score test in finite samples. A real data example on the causal

relationship between Hong Kong stock market and US stock market is given.

Some key words: Asymptotic Normality; Causality-in-mean; Causality-in-variance; Factor DAR model; Instantaneous
causality; Score test; Strong consistency. 25

1. INTRODUCTION

Since the seminal work of Granger (1969), the Granger causality test has been broadly used

in finance and economics. Principally, it tells us whether the past information of some specified

series can improve the prediction of the current and future values of the other series. The study

of causality is of theoretical interest; see, e.g., Geweke (1984a) and Gouriéroux and Monfort 30

(1997) for earlier works and Nishiyama, Hitomi, Kawasaki, and Jeong (2011) and the references

therein for more recent ones. In practice, the causality-in-mean has been widely identified be-

tween many macroeconomic variables, e.g., Sims (1972, 1980), Geske and Roll (1983), Ram

and Spencer (1983), Stock and Watson (1989), and Lee (1992) to name a few. Recently, the

nonlinear causality has received more attention. As a special case of the nonlinear causality, the 35

causality-in-variance becomes particularly essential, because it manifests the volatility spillover
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across different assets or markets; see, e.g., Baillie and Bollerslev (1990), Engle, Ito, and Lin

(1990), Hamao, Masulis, and Ng (1990), Ng (2000), and Hong (2001). For more discussions on

the explanation of causality-in-variance, we refer to Ross (1989) and Hong (2001).

Testing causality-in-mean and causality-in-variance has been largely but separately studied.40

For the causality-in-mean, Granger(1969) constructed a F-test based on the regression; Geweke

(1982, 1984b) measured the linear dependence including causality-in-mean for the multiple time

series; Boudjellade, Dufour, and Roy (1992) gave a testing procedure for the vector ARMA

model; and many others. For the causality-in-variance, Cheung and Ng (1996) proposed a resid-

ual cross-correlation function test (CCF test); Hong (2001) modified the CCF test by adding the45

weight function; Hafner and Herwartz (2006) gave a Wald test for the multivariate GARCH

model; see also Hiemstra and Jones (1994) and Nishyama et al. (2011) for other nonlinear

tests. However, none of the tests aforementioned can detect causality-in-mean and causality-

in-variance simultaneously. The empirical studies have demonstrated that these two causality

patterns may co-exist; see, e.g., Hamao et al. (1990), Cheung and Ng (1996), and Ng (2000). Pan-50

telidis and Pittis (2004) showed that without filtering out causality-in-mean, the test for causality-

in-variance could suffer severe size distortions in the present of causality-in-mean. Therefore, it

urges us to develop a tool to detect them simultaneously.

In this paper, we introduce a factor double autoregressive (hereafter FDAR) model. This causal

model not only includes Granger’s linear causality model as a special case, but characterizes the55

causality-in-variance. An extended FDAR model is also presented to capture the instantaneous

causality-in-mean and causality-in-variance altogether. We next propose a score test to detect

causality-in-mean and causality-in-variance simultaneously. In presence of both causalities, we

propose a quasi-maximum likelihood approach to estimate the parameters in the FDAR model.

Under regularity conditions, strong consistency and asymptotic normality of the quasi-maximum60

likelihood estimator (QMLE) for the FDAR model are obtained. On the basis of this FDAR

model, we analyze the causal relationship between Hong Kong stock market and US stock mar-

ket. The results find evidence that US stock market affects HK stock market largely in both mean

and variance of returns, while the impact of HK stock market to US stock market is relatively

weak. This is consistent with our sense, since US market is the largest capital market in the65

world.

The remainder of the paper is organized as follows. In Section 2, we introduce the FDAR

model and give a sufficient and necessary condition for testing causality-in-mean and causality-

in-variance. In Section 3, we propose a score test to detect causality-in-mean and causality-

in-variance, simultaneously. The asymptotic properties of the QMLE for the FDAR model are70

studied in Section 4. A simulation study is carried out in Section 5 to examine the performances

of the score test and the QMLE in finite samples. A real example is offered in Section 6. All of

the proofs are provided in the Appendix.

2. THE CAUSAL MODEL

Suppose that we observe two series xt and yt and consider how yt causes xt. Let I1,t and75

I2,t be σ-fields of {xt} and {yt} available at period t, respectively. Denote It = σ(I1,t, I2,t).
Following Granger (1969), yt is said to cause xt in mean if

P
{
E (xt|I1,t−1) ̸= E (xt|It−1)

}
> 0. (1)

Next, following Granger, Robins, and Engel (1986), yt is said to cause xt in variance if

P
{
E
{
[xt − E (xt|It−1)]

2|I1,t−1

}
̸= E

{
[xt − E (xt|It−1)]

2|It−1

}}
> 0. (2)80
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The causality-in-mean, as a special case of linear causality, is often called the first order causality;

see Nishyama et al. (2011). The causality-in-variance is a kind of the nonlinear causality defined

by Hiemstra and Jones (1994). Both of them are also two special cases of general causalities

defined by Granger (1980). It is easy to see that any of (1) and (2) holds if and only if

P
{
E
{
[xt − E (xt|I1t−1)]

2|I1t−1

}
̸= E

{
[xt − E (xt|It−1)]

2|It−1

}}
> 0. (3) 85

Thus, testing (1)-(2) altogether is equivalent to testing (3). See also Comte and Lieberman (2000).

However, without any other information, (3) can hardly be testable. For instance, it may cause

the curse of dimensionality if the conditional expectation E (xt|It−1) is estimated nonparamet-

rically.

To make (3) easily testable, a natural approach is to specify a meaningful causal relationship 90

between xt and yt. In this article, we assume that given {(xs, ys), s < t}, xt’s are generated from

the following model

xt = φ0 +

p∑

i=1

φixt−i +

q∑

i=1

ψiyt−i + ηt

√√√√α0 +

p∑

i=1

αix2t−i +

q∑

i=1

βiy2t−i, (4)

where all αi and βi are non-negative constant parameters, {ηt} is a sequence of i.i.d. random

variables with zero mean and unit variance and ηt is independent of It−1 for each t ≥ 1. We call 95

model (4) as the factor double autoregressive (FDAR) model. When all αi and βi are zeros, it

reduces to the Granger’s linear causal model. When the factor yt is absent, it reduces to the DAR

model in Weiss (1986) and Ling (2004, 2007), and furthermore, it reduces to the ARCH model

in Engle (1982) if all φi’s are zeros. Throughout the paper, we assume that (xt, yt) are stationary

and ergodic. 100

Since our main goal here is to detect how yt causes xt, we do not specify the generation

mechanism of yt, whether or not dependent of xt, only assuming that yt is stationary and ergodic.

Of course, the series yt can be modeled in practice. In the end of this section, we give a remark of

how to model yt. In simulation studies, we choose three generation mechanisms of yt, showing

that all the procedures proposed in Sections 3 and 4 work well. 105

Based on model (4) and Assumption 1 below, an equivalent but testable condition for (3) is

derived.

Assumption 1. (i) yt−i ̸∈ σ(I1,t−1, I2,t−i−1) for any i ≥ 1; (ii) E|ηt|2 <∞, E|xt|2 <∞ and

E|yt|2 <∞.

We now give our first proposition, which presents a sufficient and necessary condition for 110

testing (3) under model (4).

PROPOSITION 1. Suppose that Assumption 1 holds. Then, the inequality (3) holds if and only

if some ψi or βi is not zero. Particularly, (1) holds if and only if some ψi is not zero; and (2)

holds if and only if some βi is not zero.

Proof. See Appendix A. � 115

Although model (4) captures the causality-in-mean and causality-in-variance simultaneously

from yt to xt, it is often meaningful to describe the instantaneous causality-in-mean and

causality-in-variance between xt and yt. Motivated by this, we proceed to consider the following
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extended FDAR model:

xt = φ0 +

p∑

i=1

φixt−i +

q∑

i=0

ψiyt−i + ηt

√√√√α0 +

p∑

i=1

αix2t−i +

q∑

i=0

βiy2t−i, (5)120

where all αi, βi, and {ηt} are defined as in model (4) except that ηt is independent of

σ(I1,t−1, I2,t). Clearly, the extended FDAR model reduces to FDAR model when ψ0 = β0 = 0.

As in Hong (2001), we say that there is an instantaneous causality-in-mean between xt and yt if

P
{
E (xt|It−1) ̸= E (xt|I1,t−1, I2,t)

}
> 0 (6)

and an instantaneous causality-in-variance between xt and yt if125

P
{
E
{
[xt − E(xt|I1,t−1, I2,t)]2 |It−1

}
̸= E

{
[xt − E(xt|I1,t−1, I2,t)]2 |I1,t−1, I2,t

}}
> 0.

(7)

Analogous to Proposition 2.1, our second proposition below gives a sufficient and necessary

condition for testing (6) and (7) under model (5) and Assumption 2.

Assumption 2. (i) yt ̸∈ It−1; (ii) E|ηt|2 <∞, E|xt|2 <∞ and E|yt|2 <∞.

PROPOSITION 2. Suppose that Assumption 2 holds. Then, relation (6) holds if and only if130

ψ0 ̸= 0; and relation (7) holds if and only if β0 ̸= 0.

Proof. The proof is directly from Assumption 2 and hence omitted. �

Till now, we have not restricted the specification of yt. Although not being necessary, it is also

worthwhile to model yt by an extended FDAR model in practice, especially when yt exhibits the

conditional heteroskedasticity. That is, we consider another extended FDAR model for yt:135

yt = π0 +

r∑

i=0

πixt−i +

s∑

i=1

ωiyt−i + ζt

√√√√τ0 +

r∑

i=0

τix2t−i +

s∑

i=1

νiy2t−i. (8)

Likewise, model (8) shares the same property as model (5). In what follows, we call models (5)

and (8) as the bivariate extended FDAR model. Based on this bivariate extended FDAR model,

Assumptions 1-2 hold if ηt and ζt are independent. Intuitively, if ηt and ζt are dependent, there

may exist either a common factor zt affecting both xt and yt, or some other nonlinear causal140

relation besides the causality-in-variance between xt and yt. In this case, we suggest to use a

multivariate extended FDAR model to deal with the problem of common factors. If ηt and ζt
remain dependent after filtering out the impact of common factors, a further nonlinear test in

Hiemstra and Jones (1994) can be implemented to detect whether there are some other nonlinear

causal relations besides the causality-in-variance.145

3. SIMULTANEOUS CAUSALITY TEST

In this section, we propose a score test to simultaneously detect the causality-in-mean and

causality-in-variance from yt to xt under model (4). We first assume that both p and q are known.

In the end of this section, the case that p and q are unknown is discussed. Let θ = (φ′, ψ′, α′, β′)′

be the unknown parameters of model (4), where φ = (φ0, · · · , φp)′, α = (α0, · · · , αp)′, ψ =150

(ψ1, · · · , ψq)′, and β = (β1, · · · , βq)′. According to Proposition 1, we would like to test the
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hypotheses:

H0 : ψ ≡ β ≡ 0. (9)

Given the observations {(xt, yt)}nt=1, we denote Xt = (1, xt−1, · · · , xt−p)′, X∗
t = (1, x2t−1,

· · · , x2t−p)′, Yt = (yt−1, · · · , yt−q)′ and Y ∗
t = (y2t−1, · · · , y2t−q)′. By assuming that ηt follows 155

standard normal distribution, the quasi-log-likelihood function (ignoring a constant) of model

(4) is:

Ln(θ) = − 1

n

n∑

t=m

lt(θ) and lt(θ) = log
√
ht(θ) +

ε2t (θ)

2ht(θ)
, (10)

where m = 1 +max(p, q), εt(θ) = xt − φ′Xt − ψ′Yt and ht(θ) = α′X∗
t + β′Y ∗

t . Here, ht(θ)
is the conditional variance of xt, given It−1. 160

Under H0, model (4) becomes a DAR(p) model with parameters (φ′, α′)′. Denote Θ1 =:
Θφ ×Θα be the parameter space of this DAR(p) model. Let θ̄10 =: (φ̄′0, ᾱ

′
0)

′ be the true

value of (φ′, α′)′ ∈ Θ1. As in Ling (2007), the quasi-maximum likelihood estimator (QMLE)

θ̂1n =: (φ̂′n, α̂
′
n)

′ for θ̄10 is obtained by maximizing Ln(θ) with respect to (φ′, α′)′ ∈ Θ1 under

the constraint that (ψ′, β′) ≡ 0. Moreover, let θ̂n = (φ̂′n, 01×q, α̂
′
n, 01×q)

′ and 165

Tn(θ) =

(
∂Ln(θ)

∂ψ′ ,
∂Ln(θ)

∂β′

)′

(11)

be the score function for ψ and β. To construct the score statistics, we desire to prove that Tn(θ̂n)
is asymptotically normal with mean zero under H0 and regularity conditions. To accomplish it,

we need the following two assumptions.

Assumption 3. θ̄10 is an interior point in Θ1, and Θ1 is compact with αLi ≤ αi ≤ αUi for all i, 170

where αLi and αUi are some positive constants.

Assumption 4. E|ηt|4 <∞, E|xt|ι <∞ for some ι > 0, and E|yt|4 <∞.

To be convenient, we make some notations before the theorem:

J =


 1 −Eη3

t√
2

−Eη3
t√
2

Eη4
t
−1

2


 and At(θ̄10) = diag

{
Γ1Xt − Yt√

ht(θ̄0)
,
Y ∗
t − Γ2X

∗
t√

2ht(θ̄0)

}
, (12)

where θ̄0 = (φ̄′0, 01×q, ᾱ
′
0, 01×q)

′,

Γ1 = E

(
YtX

′
t

ht(θ̄0)

)[
E

(
XtX

′
t

ht(θ̄0)

)]−1

and Γ2 = E

(
Y ∗
t X

∗′
t

h2t (θ̄0)

)[
E

(
X∗
tX

∗′
t

h2t (θ̄0)

)]−1

.

Then, we can give our first main result as follows: 175

THEOREM 1. Suppose that Assumptions 1(i) and 3-4 hold and J is positive definite. Then,

under H0, as n→ ∞,
√
nTn(θ̂n) →d N(0,Ξ),

where →d denotes the convergence in distribution, Ξ = E
[
At(θ̄10)JA

′
t(θ̄10)

]
, and J and

At(θ̄10) are defined in (12). 180

Proof. See Appendix B. �
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It is important to point out that Γ1 and Γ2 are both well defined, since the matrixes

E
[
XtX

′
t/ht(θ̄0)

]
and E

[
X∗
tX

∗′
t /h

2
t (θ̄0)

]
are positive definite by Lemma B.5 in Ling (2007).

Also, it is readily shown that J > 0 if and only if P (η2t − cηt − 1 = 0) < 1 for any c ∈ R. A

simple condition for this is that ηt has a positive density on some interval. In particular, when185

ηt ∼ N(0, 1), J becomes the identity matrix.

In practice, given the observations {(xt, yt)}nt=1, the matrix Ξ can be consistently estimated

by its sample mean Ξ̂n. Under H0, if the conditions in Theorem 1 hold, it is not hard to show

that Ξ̂n = Ξ+ op(1). Therefore, we construct a score test statistic

Sn = nT ′
n(θ̂n)Ξ̂

−1
n Tn(θ̂n)

to test (9). The following corollary gives its asymptotic distribution, as expected.

COROLLARY 1. Suppose that the conditions in Theorem 1 hold. Then, under H0, as n→ ∞,

Sn →d χ
2
2q,

where χ2
k is a chi-square distribution with degree of freedom k.

Proof. The proof is directly from Theorem 1, and hence it is omitted. �

Remark 1. Based on model (5), a score test S⋄
n which is similar to Sn, can be used to detect

the hypothesis

H⋄
0 : θ⋄2 ≡ 0,

where θ⋄2 = (ψ′, β′, ψ0, β0)
′. If Assumption 2(i) and the conditions in Theorem 1 hold, by using190

the same method as in Corollary 1, we can easily show that under H⋄
0 , S⋄

n converges to χ2
2(1+q)

as n→ ∞.

Indeed, the test statistic Sn always depends on the orders p and q. Without confusion, we

shorten the notation Sn(p, q) to Sn for brevity. In practice, both p and q are often unknown,

and should be determined before using Sn. This can be done by Akaike’s information criterion195

(AIC). In this case, we propose our testing procedure as follows:

1. Determine the values of p and q by AIC under FDAR model (4).

2. Calculate the test statistic Sn and compare it to the upper-tailed critical value of χ2
2q at an

appropriate level.

3. If Sn is larger than the critical value, then the null hypothesis H0 is rejected. Otherwise, H0200

is not rejected.

Clearly, the above procedure is also applicable to detect H⋄
0 via replacing Sn and χ2

2q by S⋄
n

and χ2
2(1+q), respectively. In order to accomplish Step 1 aforementioned, it is necessary for us

to consider the estimation for the FDAR model. The full study on this topic is given in the next

section.205

4. THE QMLE

In this section, we study the QMLE for model (4). Denote Θ =: Θφ ×Θψ ×Θα ×Θβ be the

parameter space of model (4), where Θφ ⊂ R1+p, Θψ ⊂ Rq, Θα ⊂ R1+p
+ and Θβ ⊂ Rq+ with

R+ = [0,∞). Let θ0 =: (φ̄′0, ψ̄
′
0, ᾱ

′
0, β̄

′
0)

′ be the true value of θ ∈ Θ, and θ̃n =: (γ̃′n, δ̃
′
n)

′ be the
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minimizer of Ln(θ) in Θ, i.e., 210

θ̃n = argmax
θ∈Θ

Ln(θ). (13)

where Ln(θ) is defined in (10). We call θ̃n be the QMLE of θ0. To derive the asymptotic property

of θ̃n, we make the following assumptions:

Assumption 5. The true value θ0 is an interior point in Θ, and Θ is compact with αLi ≤ αi ≤
αUi and βLj ≤ βj ≤ βUj for all i and j, where αLi , αUi , βLj and βUj are some positive constants. 215

Assumption 6. E|xt|ι <∞ and E|yt|ι <∞ for some ι > 0.

Assumptions 5-6 are analogous to Assumptions 3-4 except that only the fractional moment of

yt is required. This is because the conditional variance ht(θ) itself as one sort of weight can

control the log-likelihood function (10). When yt is absent and p = 1 (i.e., DAR(1) model),

Borkovec and Klüppelberg (2001) showed that the condition E(ln |φ+ ηt
√
α|) < 0 is sufficient 220

for the stationarity of xt. Note that this condition doesn’t rule out the case that |φ| ≥ 1. Hence, it

implies that the stationary region of DAR(1) model is larger than that of AR(1) model; see Ling

(2004, 2007) for more discussions on it.

We now are ready to give our second main result as follows:

THEOREM 2. Suppose that Assumptions 1(i) and 5-6 hold, Eη4t <∞ and J is positive defi- 225

nite. Then, as n→ ∞,

(i) θ̃n → θ0 a.s.;

(ii)
√
n(θ̃n − θ0) →d N(0,Ω−1

0 Σ0Ω
−1
0 ),

where Ω0 = E [Bt(θ0)B
′
t(θ0)], Σ0 = E [Bt(θ0)JB

′
t(θ0)], and

Bt(θ) =
( 1√

ht(θ)

∂εt(θ)

∂θ′
,

1√
2ht(θ)

∂ht(θ)

∂θ′

)′
.

Proof. See Appendix B. �

Remark 2. Similar to (13), we can define the QMLE θ⋄n of θ⋄0 for model (5), where θ⋄0 =
(θ′0, ψ00, β00)

′ is the true value of model (5). If Assumption 2(i) and the conditions in Theorem 230

2 hold, by using the similar method as for Theorem 2, the strong consistency and asymptotic

normality of θ⋄n can be obtained as well.

By a direct calculation, we can see that

∂εt(θ)

∂θ
= (−K ′

t, 01×(p+q))
′ and

∂ht(θ)

∂θ
= (01×(1+p+q), K

∗′
t )

′.

whereKt = (X ′
t, Y

′
t )

′ andK∗
t = (X∗′

t , Y
∗′
t )′. Thus we can show that Ω0 > 0 and Σ0 > 0 if J > 235

0 and Assumption 1 holds. When yt is absent, the asymptotic variance in Theorem 2 is the same

as the one for the DAR(p) models in Ling (2007). Furthermore, if Eη3t = 0, then Ω−1
0 Σ0Ω

−1
0

reduces to a block diagonal matrix

diag

{[
E

(
1

ht(θ0)
KtK

′
t

)]−1

, κ ·
[
E

(
1

2h2t (θ0)
K∗
tK

∗′
t

)]−1
}
,

with κ = (Eη4t − 1)/2. 240
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In the end, we proceed to discuss the diagnostic checking of model (4). Denote η̂t be the

residual of model (4). A portmanteau testQ2(M) defined in the same way as the Li-Mak test can

be used to test the independence of {ηt}. If {ηt} is independent, by a similar method as in Li and

Mak (1994), we can show that Q2(M) →d χ
2
M as n→ ∞. Therefore, model (4) is not adequate

ifQ2(M) is larger than the upper-tailed critical value of χ2
M at an appropriate level. Moreover, if245

we further consider a bivariate extended FDAR model, the test statistic C(M) =: n
∑M

i=−M r̂2i
defined in the same way as the CCF test can be used to detect the independence of {ηt} and

{ζt}, where r̂i is the sample cross-correlation of the squared residuals {η̂2t } and {ζ̂2t } at lag i. If

{ηt} and {ζt} are independent, by a similar method as in Cheung and Ng (1996), it is not hard to

show that C(M) →d χ
2
2M+1 as n→ ∞. Hence, we reject the hypothesis that {ηt} and {ζt} are250

independent, if C(M) is larger than the upper-tailed critical value of χ2
2M+1 at an appropriate

level.

5. SIMULATION

In this section, we first give a simulation study to assess the performance of θ̃n in finite sam-

ples. The model used to generate data samples is255

xt = φ0 + φ1xt−1 + ψ1yt−1 + ηt

√
α0 + α1x2t−1 + β1y2t−1. (14)

where ηt follows the standard normal distribution. The factor sample {yt}nt=1 are generated from

three different models:

(a) yt = 0.5yt−1 + ζt (AR(1) model);

(b) yt = ζt

√
0.1 + 0.5y2t−1 (ARCH(1) model);

(c) yt = 0.5yt−1 + 0.5xt−1 + ζt

√
0.1 + 0.2y2t−1 + 0.3x2t−1 (FDAR model),

where ζt follows the standard normal distribution and is independent of ηt. We

take the sample size n = 1000 and use 1000 replications. The true parameters are260

θ0 = (0.0, 0.5, 0.5, 1.0, 0.5, 0.5), (0.0, 0.0,−0.3, 1.0, 0.5, 0.5), (0.0, 0.6, 0.0, 1.0, 0.6, 0.3), and

(0.0,−0.2, 0.7, 1.0, 0.3, 0.6), respectively. Based on models (a)-(c), Tables 1-3 list the sample

biases, the sample standard deviations (SD) and the average estimated asymptotic standard devi-

ations (AD) of θ̃n, respectively. Each estimated asymptotic standard deviation is obtained from

Theorem 2 with Ω0 and Σ0 being estimated by their sample averages. From Tables 1-3, we can265

see that θ̃n has very small bias and its SD and AD are very close to each other. Interestingly, the

way in which {yt} is generated does not affect the performance of θ̃n, hence it gives us enough

freedom to choose factor in practice.

Next, we assess the performance of our score test (Sn) in finite samples. The model used to

generate data samples is270

xt = 0.5xt−1 + ψ1yt−1 + ηt

√
1.0 + 0.5x2t−1 + β1y2t−1, (15)

where (ψ1, β1) = κ(1.0, 1.0) with κ = {0.0, 0.02, 0.04, · · · , 0.1}, and the factor samples

{yt}nt=1 are generated from models (a)-(c). Here, {ηt}nt=1 and {ζt}nt=1 are random samples gener-

ated from a bivariate normal distribution with mean zero, variance one, and covariance ρ. Again,

we set the sample size n = 1000 and use 1000 replications, and choose the significance level275

α = 0.05. For ρ = 0.0, 0.4, and 0.8, the power curves are plotted in Fig 1 (a)-(c), based on mod-

els (a)-(c), respectively. The sizes correspond to the cases when κ = 0.0. From Fig 1, it is clear
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Table 1. Estimators for model (14) when {yt} is generated from model (a)

φ0 φ1 ψ1 α0 α1 β1 φ̃0n φ̃1n ψ̃1n α̃0n α̃1n β̃1n

0.0 0.5 0.5 1.0 0.5 0.5 Bias -0.0012 -0.0027 -0.0009 0.0091 -0.0063 -0.0026

SD 0.0484 0.0351 0.0549 0.1144 0.0505 0.1023

AD 0.0487 0.0356 0.0527 0.1119 0.0489 0.0984

0.0 0.0 -0.3 1.0 0.5 0.5 Bias -0.0019 -0.0017 -0.0010 0.0028 -0.0049 0.0012

SD 0.0466 0.0398 0.0511 0.1072 0.0579 0.0999

AD 0.0462 0.0390 0.0501 0.1059 0.0585 0.0926

0.0 0.6 0.0 1.0 0.6 0.3 Bias -0.0017 -0.0044 -0.0013 -0.0008 -0.0038 -0.0020

SD 0.0461 0.0375 0.0501 0.1069 0.0541 0.0783

AD 0.0476 0.0373 0.0483 0.1077 0.0547 0.0786

0.0 -0.2 0.7 1.0 0.3 0.6 Bias 0.0013 -0.0008 0.0001 -0.0029 -0.0029 -0.0016

SD 0.0449 0.0341 0.0504 0.1033 0.0437 0.0938

AD 0.0446 0.0342 0.0504 0.1007 0.0427 0.0959

Table 2. Estimators for model (14) when {yt} is generated from model (b)

φ0 φ1 ψ1 α0 α1 β1 φ̃0n φ̃1n ψ̃1n α̃0n α̃1n β̃1n

0.0 0.5 0.5 1.0 0.5 0.5 Bias -0.0021 -0.0032 -0.0047 -0.0038 -0.0053 0.0006

SD 0.0419 0.0383 0.1040 0.0862 0.0542 0.2921

AD 0.0411 0.0369 0.1024 0.0850 0.0533 0.2851

0.0 0.0 -0.3 1.0 0.5 0.5 Bias 0.0005 -0.0030 -0.0011 -0.0011 -0.0044 0.0022

SD 0.0392 0.0402 0.1001 0.0834 0.0606 0.2795

AD 0.0397 0.0397 0.0989 0.0827 0.0616 0.2730

0.0 0.6 0.0 1.0 0.6 0.3 Bias 0.0012 -0.0005 0.0022 -0.0061 -0.0032 0.0277

SD 0.0433 0.0382 0.1033 0.0879 0.0548 0.2592

AD 0.0429 0.0374 0.1037 0.0877 0.0554 0.2648

0.0 -0.2 0.7 1.0 0.3 0.6 Bias 0.0006 -0.0010 0.0029 0.0019 -0.0048 -0.0053

SD 0.0393 0.0336 0.0997 0.0791 0.0493 0.2813

AD 0.0376 0.0360 0.0955 0.0775 0.0489 0.2702

that the sizes of Sn are close to their nominal ones. Although the power becomes weaker as the

value of ρ increases, Sn performs well no matter how the factor samples are generated. Overall,

the numerical study shows that both θ̃n and Sn have good performances in finite samples. 280

6. AN EXAMPLE

In this section, we study the causal relationship between Hong Kong (HK) stock market and

US stock market. We choose the Hang Seng index (HSI) and SP500 Composite index (SPCI) as

the proxies for the HK stock market and the US stock market, respectively. The data sets used

are the daily closing HSI data and SPCI data from Jun 16, 2008 to Jun 10, 2010, and each of 285

them has in total 501 observations; see Fig 2 (a). Furthermore, we denote the log-return of HSI

and SPCI by xt and yt, respectively, and plot them in Fig 2 (b).

We first consider the causal relation from yt to xt. Unless stated otherwise, we set the signif-

icance level α = 0.05. According to AIC, we choose p = 2 and q = 3 in model (4). Then, we

obtain Sn = 73.6, which is greater than 12.59 (the 95% upper percentile of χ2
6). So there exists 290

the simultaneous causality-in-mean and causality-in-variance from yt to xt. Therefore, we use



10 S. GUO, S. LING AND K. ZHU
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Fig. 1. (a) power curves for ρ = 0 (solid line), ρ = 0.4 (dashed line), and ρ = 0.8 (dotted line), based on model (a);(b)
power curves for ρ = 0 (solid line), ρ = 0.4 (dashed line), and ρ = 0.8 (dotted line), based on model (b);(c) power

curves for ρ = 0 (solid line), ρ = 0.4 (dashed line), and ρ = 0.8 (dotted line), based on model (c).
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Table 3. Estimators for model (14) when {yt} is generated from model (c)

φ0 φ1 ψ1 α0 α1 β1 φ̃0n φ̃1n ψ̃1n α̃0n α̃1n β̃1n

0.0 0.5 0.5 1.0 0.5 0.5 Bias 0.0002 -0.0018 -0.0005 -0.0032 -0.0030 -0.0007

SD 0.0714 0.0354 0.0398 0.1406 0.0469 0.0520

AD 0.0697 0.0354 0.0399 0.1362 0.0445 0.0514

0.0 0.0 -0.3 1.0 0.5 0.5 Bias -0.0023 -0.0013 0.0012 -0.0028 -0.0011 -0.0032

SD 0.0498 0.0384 0.0462 0.0989 0.0601 0.0699

AD 0.0483 0.0389 0.0456 0.0987 0.0581 0.0694

0.0 0.6 0.0 1.0 0.6 0.3 Bias 0.0004 -0.0028 0.0007 -0.0048 -0.0041 -0.0013

SD 0.0540 0.0383 0.0370 0.1021 0.0560 0.0426

AD 0.0533 0.0381 0.0373 0.1060 0.0559 0.0426

0.0 -0.2 0.7 1.0 0.3 0.6 Bias 0.0017 -0.0012 -0.0035 -0.0032 -0.0016 -0.0037

SD 0.0516 0.0312 0.0422 0.1026 0.0396 0.0648

AD 0.0514 0.0327 0.0424 0.1018 0.0379 0.0634

1 50 100 150 200 250 300 350 400 450 500
5000

10000

15000

20000

25000

Time

(a)

1 50 100 150 200 250 300 350 400 450 500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time

(b)

Fig. 2. (a) the daily closing HSI (—) and SP500 (×10) (-.-.) and (b) the log-return of HSI (—) and SP500 (-.-.).
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the following FDAR model

xt = φ0 +
2∑

i=1

φixt−i +
3∑

i=1

ψiyt−i + ηt

√√√√α0 +
2∑

i=1

αix2t−i +
3∑

i=1

βiy2t−i, (16)

to fit the data set {xt}. All parameters are estimated through the QMLE method and these results

are reported in Table 4 with the standard errors in parentheses. Based on the residuals {η̂t},295

the Li-Mak tests Q2(6) and Q2(12) reported in Table 4 indicate that model (16) is adequate.

However, the parameters φ0 in model (16) is not significantly different from zero. Hence, by

using the QMLE method, we re-fit the data set {xt} as

xt =

2∑

i=1

φixt−i +

3∑

i=1

ψiyt−i + ηt

√√√√α0 +

2∑

i=1

αix2t−i +

3∑

i=1

βiy2t−i, (17)

where all results for model (17) are reported in Table 4, and indicate that model (17) is adequate.300

From this model, we observe that US market affects HK market in both the mean and variance

of return. Specifically, the influence for the mean of return lasts for three days, and it becomes

weak as time goes by; while the influence for the variance of return has one-day delay since β1
closes to zero, and then starts to mitigate two days later.

Next, we consider the causal relation from xt to yt. Since HK stock market is one day earlier305

than US stock market in calendar, we use S⋄
n instead of Sn in this case. According to AIC, we

choose p = 4 and q = 1 in model (8). Then, we obtain S⋄
n = 127.8, which is greater than 9.5

(the 95% upper percentile of χ2
4). Similar to model (16), we obtain the following fitted model for

the data set {yt}:

yt = π0 +

4∑

i=1

πiyt−i +

1∑

i=0

ωixt−i + ζt

√√√√τ0 +

4∑

i=1

τiy2t−i +

1∑

i=0

νix2t−i, (18)310

where all results for model (18) are reported in Table 4, and indicate that model (18) is adequate.

Furthermore, we find that the parameters π0, π3, and π4 in model (18) are not significantly

different from zero. Thus, similar to model (17), we re-fit the data set {yt} using the model

yt =

2∑

i=1

πiyt−i +

1∑

i=0

ωixt−i + ζt

√√√√τ0 +

4∑

i=1

τiy2t−i +

1∑

i=0

νix2t−i. (19)

Again, all results for this adequate model are reported in Table 4. Since the parameters ω0, ω1, ν0,315

and ν1 in model (19) are significantly different from zero, we claim that HK market causes US

market in both the mean and variance. However, compared with model (17), the impact period

from HK market to US market only lasts for two days, and is shorter than the one from US market

to HK market. This is consistent with the fact that the US market is the largest capital market in

the world. Moreover, based on the residuals from models (17) and (19), the CCF tests C(6) and320

C(12) reported in Table 4 indicate that {ηt} and {ζt} are independent, and hence the bivariate

FDAR models (17) and (19) are enough for us to characterize the causal relations between HK

market and US market.
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Table 4. Results for models (16)-(19)

Causal models from yt to xt Causal models from xt to yt

parameters Model (16) Model (17) parameters Model (18) Model (19)

φ0 -0.0011 π0 0.0004

(0.0007) (0.0006)

φ1 -0.1986 -0.1977 π1 -0.2717 -0.2665

(0.0493) (0.0493) (0.0489) (0.0488)

φ2 -0.1211 -0.1177 π2 -0.2057 -0.2095

(0.0500) (0.0499) (0.0552) (0.0548)

ψ1 0.6395 0.6401 π3 -0.0181

(0.0471) (0.0472) (0.0511)

ψ2 0.1780 0.1735 π4 0.0989

(0.0681) (0.0679) (0.0517)

ψ3 0.1877 0.1819 ω0 0.2726 0.2700

(0.0589) (0.0587) (0.0440) (0.0442)

α0 0.0001 0.0001 ω1 0.1422 0.1391

(0.00002) 0.00002 (0.0459) (0.0459)

α1 0.0883 0.0842 τ0 0.000016 0.000020

(0.0522) (0.0518) (0.000011) (0.000012)

α2 0.1064 0.0986 τ1 0.000001 0.000001

(0.0560) (0.0552) (0.0389) (0.0394)

β1 0.0148 0.0150 τ2 0.1648 0.1642

(0.0350) (0.0353) (0.0714) (0.0719)

β2 0.3625 0.3563 τ3 0.2678 0.2651

(0.0984) (0.0976) (0.0796) (0.0803)

β3 0.1603 0.1577 τ4 0.2476 0.2428

(0.0696) (0.0692) (0.0794) (0.0797)

ν0 0.1375 0.1408

(0.0520) (0.0534)

ν1 0.1342 0.1247

(0.0537) (0.0537)

Q2(6) = 10.15 Q2(6) = 10.63 Q2(6) = 9.46 Q2(6) = 11.01
Q2(12) = 16.19 Q2(12) = 16.44 Q2(12) = 13.33 Q2(12) = 14.14

C(6) = 17.67
C(12) = 28.64
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A. PROOF OF PROPOSITION 1

PROOF OF PROPOSITION 1. For brevity, we only prove that

the inequality (3) fails if and only if all ψi and βi are zeros. (A1)

It suffices to show the necessity of (A1). Suppose that relation (3) does not hold. By Assumption 1 and a335

direct calculation, it follows that

E



(

q∑

i=1

ψiyt−i

)2 ∣∣I1t−1


−

[
E

(
q∑

i=1

ψiyt−i
∣∣I1t−1

)]2
+ E

(
q∑

i=1

βiy
2
t−i

∣∣I1t−1

)

=

q∑

i=1

βiy
2
t−i (A2)

a.s. Then, if β1 ̸= 0, we have yt−1 ∈ σ(I1,t−1, I2,t−2), and this is a contradiction with Assumption 1(i).

Hence, β1 = 0. Similarly, β2 = · · · = βq = 0. Next, when all βi are zeros, by (A2) and Hölder’s inequal-340

ity, we know that
∑q
i=1 ψiyt−i ≡ constant a.s. Then, if ψ1 ̸= 0, we have yt−1 ∈ I2,t−2, and this is

against Assumption 1(i). Hence, ψ1 = 0. Similarly, ψ2 = · · · = ψq = 0. This completes the proof.

B. PROOFS OF THEOREMS 1 AND 2

To facilitate presentation in the proof of Theorem 1, we denote ε̃t(φ) = xt − φ′Xt and h̃t(α) = α′X∗

t

and let

L̃n(θ1) = − 1

n

n∑

t=m

l̃t(θ1) with l̃t(θ1) = log

√
h̃t(α) +

ε̃2t (φ)

2h̃t(α)
,

where θ1 = (φ′, α′)′, and L̃n(θ1) =: Ln(θ)
∣∣
(ψ′,β′)′=0

is the quasi-log-likelihood function under H0.

345

PROOF OF THEOREM 1. First, by (10), (11) and a direct calculation, we can show that

Tn(θ̂n) =

(
− 1

n

n∑

t=m

ε̃t(φ̂n)

h̃t(α̂n)
Y ′

t ,
1

2n

n∑

t=m

[
1

h̃t(α̂n)
− ε̃2t (φ̂n)

h̃2t (α̂n)

]
Y ∗

′

t

)′

. (B1)
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Recall that θ̄10 = (φ̄′0, ᾱ
′

0)
′ and θ̂1n = (φ̂′n, α̂

′

n)
′. By Taylor’s expansion, we have

ε̃t(φ̂n)

h̃t(α̂n)
=
ε̃t(φ̄0)

h̃t(ᾱ0)
−
(

X ′

t

h̃t(ξ2n)
,
ε̃t(ξ1n)X

∗
′

t

h̃2t (ξ2n)

)
(θ̂1n − θ̄10),

1

h̃t(α̂n)
=

1

h̃t(ᾱ0)
−
(
0,

X∗
′

t

h̃2t (ξ2n)

)
(θ̂1n − θ̄10), 350

ε̃2t (φ̂n)

h̃2t (α̂n)
=
ε̃2t (φ̄0)

h̃2t (ᾱ0)
− 2

(
ε̃t(ξ1n)X

′

t

h̃2t (ξ2n)
,
ε̃2t (ξ1n)X

∗
′

t

h̃3t (ξ2n)

)
(θ̂1n − θ̄10),

where (ξ1n, ξ2n) lies between θ̂1n and θ̄10. Note that ε̃t(φ̄0)/
√
h̃t(ᾱ0) = ηt under H0. Therefore, by

(B1), it follows that, under H0,

Tn(θ̂n) =


− 1

n

n∑

t=m

ηtY
′

t√
h̃t(ᾱ0)

,
1

2n

n∑

t=m

(
1− η2t

)
Y ∗

′

t

h̃t(ᾱ0)




′

+

(
S1n

S2n

)
(θ̂1n − θ̄10), (B2)

where 355

S1n =
1

n

n∑

t=m

(
YtX

′

t

h̃t(ξ2n)
,
ε̃t(ξ1n)YtX

∗
′

t

h̃2t (ξ2n)

)
,

S2n =
1

n

n∑

t=m

(
ε̃t(ξ1n)Y

∗

t X
′

t

h̃2t (ξ2n)
, − Y ∗

t X
∗
′

t

2h̃2t (ξ2n)
+
ε̃2t (ξ1n)Y

∗

t X
∗
′

t

h̃3t (ξ2n)

)
.

Note that for any (i, j) ∈ {1, · · · , q} × {1, · · · , 1 + p}, the (i, j)-th entry of YtX
′

t is xt−j+1yt−i, where

we set xt ≡ 1 for convenience. Since h̃t(α) ≥ αL0 > 0 holds uniformly in Θ1 by Assumption 3, it is

straightforward to see that 360

E

[
sup
θ1∈Θ1

|xt−j+1yt−i|
h̃t(α)

]
≤ O(1)E


 sup
θ1∈Θ1

|xt−j+1yt−i|√
h̃t(α)




≤ O(1)E


 |xt−j+1yt−i|√

h̃Lt




≤ O(1)E


 |xt−j+1yt−i|√

αLj−1|xt−j+1|




= O(1)E |yt−i| <∞, (B3)

where h̃Lt = αL0 + αL1 x
2
t−1 + · · ·+ αLp x

2
t−p, and the last inequality holds by Assumption 4. Thus, it fol- 365

lows that

E

[
sup
θ1∈Θ1

∥YtX ′

t∥
h̃t(α)

]
<∞.

Similarly, since ε̃t(φ) = ηt

√
h̃t(ᾱ0) + (φ̄0 − φ)′Xt under H0, as for (B3), we can show that

E


 sup
θ1∈Θ1

∥∥∥ε̃t(φ)YtX∗
′

t

∥∥∥
h̃2t (α)


 <∞.
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Then, by Theorem 3.1 of Ling and McAleer (2003) and the dominated convergence theorem, it follows370

that

S1n =

(
E

[
YtX

′

t

h̃t(ξ2n)

]
, E

[
ε̃t(ξ1n)YtX

∗
′

t

h̃2t (ξ2n)

])
+ op(1)

=

(
E

[
YtX

′

t

h̃t(ᾱ0)

]
, E

[
ηtYtX

∗
′

t

h̃
3/2
t (ᾱ0)

])
+ op(1)

=

(
E

[
YtX

′

t

h̃t(ᾱ0)

]
, 0

)
+ op(1), (B4)

where the last equation holds due to the double expectation. Similarly, we can show that375

S2n =

(
0, E

[
Y ∗

t X
∗
′

t

2h̃2t (ᾱ0)

])
+ op(1). (B5)

Note that E|xt|ι <∞ for some ι > 0 by Assumption 4. Thus, by Assumptions 3-4, Theorem 3.1 in Ling

(2007) showed that
√
n(θ̂1n − θ̄10) = Op(1) underH0. Therefore, by (B2), (B4) and (B5), we have under

H0,

√
nTn(θ̂n) =


− 1√

n

n∑

t=m

ηtY
′

t√
h̃t(ᾱ0)

,
1

2
√
n

n∑

t=m

(
1− η2t

)
Y ∗

′

t

h̃t(ᾱ0)




′

380

+ diag

{
E

[
YtX

′

t

h̃t(ᾱ0)

]
, E

[
Y ∗

t X
∗
′

t

2h̃2t (ᾱ0)

]}
√
n(θ̂1n − θ̄10) + op(1). (B6)

Since θ̂1n is the QMLE of L̃n(θ1), by Taylor’s expansion, we have

0 =
∂L̃n(θ̂1n)

∂θ1
=
∂L̃n(θ̄10)

∂θ1
+ (θ̂1n − θ̄10)

∂2L̃n(ζn)

∂θ1∂θ′1
,

where ζn lies between θ̂1n and θ̄10. Then it follows that

√
n(θ̂1n − θ̄10) = −

(
1

n

n∑

t=m

∂2 l̃t(ζn)

∂θ1∂θ′1

)−1(
1√
n

n∑

t=m

∂l̃t(θ̄10)

∂θ1

)
.385

By a similar argument as for (B4), we can show that

1

n

n∑

t=m

∂2 l̃t(ζn)

∂θ1∂θ′1
= diag

{
E

[
XtX

′

t

h̃t(ᾱ0)

]
, E

[
X∗

tX
∗
′

t

2h̃2t (ᾱ0)

]}
+ op(1).

Thus, it follows that

√
n(θ̂1n − θ̄10) = −diag





[
E

(
XtX

′

t

h̃t(ᾱ0)

)]−1

,

[
E

(
X∗

tX
∗
′

t

2h̃2t (ᾱ0)

)]−1





− 1√

n

n∑

t=m

ηtX
′

t√
h̃t(ᾱ0)

,
1

2
√
n

n∑

t=m

(
1− η2t

)
X∗

′

t

h̃t(ᾱ0)




′

+ op(1). (B7)390

As a result, by (B6)-(B7) we have

√
nTn(θ̂n) =

1√
n

n∑

t=m

At(θ̄10)

(
ηt,

1− η2t√
2

)′

+ op(1),



Simultaneous causality testing 17

where At(θ̄10) is defined as in (12). Note that Ξ > 0, because J > 0 and Assumption 1(i) holds. Then,

the conclusion follows from the martingale central limit theorem. This completes the proof.

395

Next, we give the proof of Theorem 2. The following lemma below is needed to prove the strong

consistency of θ̃n.

LEMMA B1. For any θ∗ ∈ Θ, let Bδ(θ
∗) = {θ ∈ Θ : ∥θ − θ∗∥ < δ} be an open neighborhood of θ∗

with radius δ > 0. Suppose that the conditions in Theorem 2 hold. Then,

(i) E

[
sup
θ∈Θ

|lt(θ)|
]
<∞;

(ii) E[lt(θ)] has a unique minimum at θ0;

(iii) E

[
sup

θ∈Bδ(θ∗)

|lt(θ)− lt(θ
∗)|
]
→ 0 as δ → 0.

400

Proof. First, by Assumptions 5-6, the proof of (i) is similar to that of (B3) (see also Lemma B.2 in Ling

(2007)). Second, a direct calculation shows that

E [lt(θ)] = E

{
log
√
ht(θ) +

ht(θ0)

2ht(θ)
E

[
ε2t (θ)

ht(θ0)

∣∣It−1

]}

= E

{
log
√
ht(θ) +

ht(θ0)

2ht(θ)
E
[
|ηt − γt|2

∣∣It−1

]}

(
γt =

[
(φ− φ̄0)

′Xt + (ψ − ψ̄0)
′Yt
]
/
√
ht(θ0) ∈ It−1

)
405

≥ E

{
log
√
ht(θ) +

ht(θ0)

2ht(θ)
E
[
η2t
∣∣It−1

]}

= E

{
log

√
ht(θ)

ht(θ0)
+
ht(θ0)

2ht(θ)
+ log

√
ht(θ0)

}

≥ E

{
1

2
+ log

√
ht(θ0)

}
= E[lt(θ0)],

where the last second inequality holds due to the fact that E [ηt − a]
2 ≥ E

[
ηt − E

(
ηt
∣∣It−1

)]2
for any

a ∈ It−1 and the last inequality holds since the function f(x) = log x+ 1/x reaches the minimum at

x = 1. Moreover, if E[lt(θ)] = E[lt(θ0)], i.e., E[lt(θ)] reaches the minimum, then we have

(φ− φ̄0)
′Xt + (ψ − ψ̄0)

′Yt = 0, a.s. and (α− ᾱ0)
′X∗

t + (β − β̄0)
′Y ∗

t = 0, a.s.,

which implies that θ = θ0 by Assumption 1(i). Thus, we claim that E[lt(θ)] has a unique minimum at θ0,

i.e., (ii) follows. 410

Last, by Taylor’s expansion, we have

lt(θ)− lt(θ
∗) = (θ − θ∗)′

∂lt(ξ
∗)

∂θ
, (B8)

where ξ∗ lies between θ and θ∗. Similar to the proof of (B3), by Assumptions 5-6, we can show that

E

[
sup
θ∈Θ

∥∥∥∥
∂lt(θ)

∂θ

∥∥∥∥
]
<∞.

Thus, it follows from (B8) that (iii) holds. This completes the proof. �

PROOF OF THEOREM 2. By Lemma B1, a similar proof as for Theorem 2.1 in Zhu and Ling (2011)

shows that (i) holds. Next, we use Theorem 4.1.3 in Amemiya (1985) to prove (ii). So, we only need to 415
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check that

(a)
1

n

n∑

t=m

∂2lt(θ)

∂θ∂θ′
exits and is continuous in Θ;

(b) For any sequence θn such that θn → θ0 in probability, we have

1

n

n∑

t=m

∂2lt(θn)

∂θ∂θ′
= Ω0 + op(1), where Ω0 is a finite positive definite matrix;

(c)
1√
n

n∑

t=m

∂lt(θ0)

∂θ
→d N(0,Σ0) as n→ ∞, where Σ0 is a finite positive definite matrix.420

First, because J is positive definite and Assumption 1(i) holds, it is not hard to show that both Ω0 and

Σ0 are positive definite. Second, by Assumptions 5-6 and a similar proof as for (B3), we can show that

E

[
sup
θ∈Θ

∥∥∥∥
∂2lt(θ)

∂θ∂θ′

∥∥∥∥
]
<∞.

Then, part (a) follows from the ergodic theorem and part (b) is implied by Theorem 3.1 in Ling and

McAleer (2003) and the dominated convergence theorem. Third, part (c) is directly from the martingale

central limit theorem and the Crámer-Wold device. Therefore, we know that (ii) holds. This completes the

proof.
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BORKOVEC, M. and KLÜPPELBERG, C. (2001). The tail of the stationary distribution of an autoregressive process

with ARCH(1) errors. Annals of Applied Probability 11, 1220-1241.430

BOUDJELLABA, H., DUFOUR, J.-M. and ROY, R. (1992). Testing causality between two vectors in multivariate
autoregressive moving average models. Journal of the American Statistical Association 87, 1082-1090.

CHEUNG, Y.-W. and NG, L.K. (1996). A causality-in-varince test and its application to financial market prices.
Journal of Econometrics 72, 33-48.

COMTE, F. and LIEBERMAN, O. (2000). Second-order noncausality in multivariate GARCH processes. Journal of435

Time Series Analysis, 21, 535-557.
ENGLE, R.F. (1982). Autoregressive conditional heteroskedasticity with estimates of variance of U.K. inflation.

Econometrica 50, 987-1008.
ENGLE, R.F., ITO, T. and LIN, W.L. (1990). Meteor shower or heat waves? heteroskedastic intra-daily volatility in

the foreign exchange market. Econometrica 59, 524-542.440

GESKE, R. and ROLL, R. (1983). The monetary and fiscal linkage between stock returns and inflation. Journal of
Finance 38, 1-33.

GEWEKE, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the
American Statistical Association 77, 304-313.

GEWEKE, J. (1984a). Inference and causality in economic time series, In: Griliches, Z., Intriligator, M.D. (eds.),445

Handbook of Econometrics, vol. 2. North-Holland, Amsterdam.
GEWEKE, J. (1984b). Measures of conditional linear dependence and feedback between time series. Journal of the

American Statistical Association 79, 907-915.
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