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1 Introduction:

The evolution of income per capita across the regions of the European Union has been a

key policy concern since the 1986 Single European Act, when the community’s regional

policy was formally established. One of the primary objectives of EU regional policy is

the reduction of regional income disparities, or regional convergence. For the period 2007

to 2013 for example, 283 billion euro, or 81% of the total regional policy budget, were

available to foster growth and catch-up of regions with per-capita incomes below 75% of

the EU average.

Considering the EU-15, total cross-regional disparities have tended to decline since

the 1980s, as indicated by measures of the dispersion of per-capita income such as the

coefficient of variation (European Commission, 2010). Nevertheless, persistent differences

between regions have remained. For example, the Greek region Epirus, located to the

south of Albania, and the Portuguese Central region were at the bottom of the per-capita

income distribution across the EU-15 regions in 1980, 1990 and 2000. On the other hand,

Brussels, Hamburg and Inner London were at or near the top of the distribution at these

points in time. More generally, levels of regional economic development have been much

lower in the peripheral regions of Greece, Portugal, Spain and Southern Italy compared

to the richer capital regions and the urban and industrial agglomerations in the centre

of Europe. In the literature, the term “blue banana” is sometimes used to describe the

curved area of high economic activity and high population density that stretches from the

West Midlands in the UK across Belgium and parts of the Netherlands, the Rhine-Ruhr

metropolitan area and south-west Germany into Northern Italy.1

These persistent disparities in regional per-capita incomes suggest that growth processes

differ considerably between the European regions. For example, an increase in a growth

driver like investment in physical capital probably has a different impact in Hamburg than

in Epirus due to a number of region-specific factors including economic institutions and

geographic proximity to economic centres. The speed at which regions adjust to shocks is

likely to vary across Europe for similar reasons. In this paper, we investigate heterogeneity

in the speed of adjustment as well as the effects of some growth determinants across the

regions of the EU-15.

A substantial part of the empirical literature on regional growth in the European Union

has estimated specifications for the short-run growth rate of per-capita income along a tran-

sition path to the long-run equilibrium, similar to the specification derived by Mankiw et al.

(1992) from the neoclassical Solow (1956) model. Regional studies in this tradition have

focused on two main themes. The first is the question of regional convergence, which has

met with great empirical interest in light of the convergence objective of EU regional pol-

icy. The second theme is the development and application of spatial econometric methods

1The term originates from satellite images of Europe at night, where the light emanating from the
banana-shaped densely populated area glows blue.
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suited to the study of regional growth. Research in this direction has been partly motivated

by interest in the size and sign of regional spillovers, and partly by concern about model

misspecification that could arise when neglecting spatial correlation in regional data.

While the regional growth literature in the tradition of Mankiw et al. (1992) now

commonly employs panel data methods that allow for region-specific intercepts, it has

largely ignored heterogeneity in the slope coefficients. However, if there are good reasons

to expect these coefficients to differ between cross-sectional units, Pesaran and Smith (1995)

show that imposing common parameters may render standard pooled panel data estimators

inconsistent. Some recent surveys of empirical growth analysis (Durlauf, Johnson and

Temple 2005; Eberhardt and Teal 2011) also emphasise the importance of taking into

account heterogeneous effects of explanatory variables across countries or regions.

In this paper, we address this gap in the literature by investigating the effect of pa-

rameter heterogeneity on the estimated coefficients of Mankiw et al.’s (1992) model of

transitional growth in a panel data framework. Our dataset covers 193 regions from the

EU-15 countries over the period 1980 to 2005. Similar to existing work, we first estimate

the model using conventional pooled estimators for dynamic panel data models that allow

at most intercepts to differ across regions. For this purpose, we split our data into five-year

intervals to control for short-run fluctuations such as business cycles. We then allow for

heterogeneous slope coefficients by estimating separate time-series models for individual

regions using Pesaran and Smith’s (1995) mean group estimator. This is implemented with

data at annual frequency. Richer dynamics are introduced into the model to control for

short-run fluctuations, and pooled annual specifications are presented for comparison.

To deal with spatial correlation in our regional data, we use the common correlated

effects (CCE) approach of Pesaran (2006). His CCEMG estimator is straightforward to

implement as an extension of the mean group estimator in our empirical setup. The CCE

approach allows for a general form of cross-section error dependence and has been shown

to remain valid in the presence of the forms of spatial error correlation typically considered

in spatial econometrics. To our knowledge, it has so far not been considered in the context

of the Mankiw et al. (1992) model applied to the EU regions.

Our empirical analysis highlights the importance of allowing for heterogeneity across

regions in the speed of adjustment to region-specific long-run paths for the level of income

per capita. When using the mean group approach, we obtain an average estimate of this

parameter that is twice as large as when using conventional pooled panel data methods.

This provides further support for the few empirical studies on this issue that exist at the

regional level. It also suggests that much of the literature on regional convergence, which

largely uses pooled panel data methods, may substantially underestimate the speed of

conditional convergence.

In addition, we find a positive and significant effect of the rate of investment throughout.

The size of the implied elasticity of output with respect to capital is robust across pooled
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and heterogeneous panel estimators, but it is smaller than we would expect based on

the Mankiw et al. (1992) model and macroeconomic data on factor income shares. Our

preferred estimate of the long-run elasticity of income with respect to investment is also

smaller than expected. There is less robust evidence of a significant long-run effect of

population growth on regional income levels.

The remainder of this paper is organised as follows. The next section reviews relevant

empirical work on European regional growth in the tradition of Mankiw et al. (1992).

Section 3 outlines the theoretical framework and our empirical specifications with homo-

geneous and heterogeneous coefficients. Sections 4 and 5 provide an overview of the esti-

mation methods and data we use. Section 6 presents and discusses our empirical results,

and section 7 concludes.

2 Review of the Empirical Literature:

The literature on European regional growth has proceeded through several stages, in paral-

lel with developments in econometric methods and data availability. Early studies predom-

inantly employed cross-section least-squares regressions to investigate convergence across

regions. For lack of data on control variables, at most country dummies or variables de-

scribing regional economic structure were usually included as regressors. Examples are

Barro and Sala-i-Martin (1991), who find a speed of convergence of about 2% per year for

European regions from 1950 to 1985, as well as Armstrong (1995) and Tondl (1999), who

report similar or lower rates for comparable time periods.

As longer time series on a greater number of variables became available at the EU

regional level, broader models like Mankiw et al. (1992) (henceforth also MRW) were

estimated, increasingly using panel data methods.2 This review focuses primarily on results

from the panel data literature, since our contribution in this paper is concerned with

relaxing the restriction of homogeneous slope coefficients imposed by conventional pooled

panel data estimators.

Mankiw et al. (1992) themselves use the cross-section regression framework for different

samples of countries to estimate a specification for the short-run growth rate of per-capita

income in transition to the long-run equilibrium. The average growth rate over the time

period under consideration, 1960 to 1985, is modelled as a positive function of the rate of

investment and a negative function of the growth rate of the labour force. In addition,

the growth rate depends negatively on income per capita in the initial period, implying

convergence to the (country-specific) long-run path for the level of income.3 Since the model

predicts that the coefficients on investment and labour force growth should be equal in

2We refer to the simple version of the Mankiw et al. (1992) model that does not include human capital,
since regional data on this variable are not available for the full time period covered in this paper.

3The literature reviewed in this section is concerned with conditional convergence. See section 3.
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magnitude but opposite in sign, it can also be estimated in restricted form, with an expected

positive coefficient on the difference between these two variables. The rate of convergence

to the long-run equilibrium and the elasticity of output with respect to capital can then

be derived from the coefficient estimates. Together with macroeconomic data on factor

income shares, the theoretical model implies a capital elasticity of about 0.33. MRW’s

own empirical findings substantially exceed this value unless the model is augmented with

human capital.

Badinger, Müller and Tondl (2004) estimate MRW’s transitional growth specification

for a panel of 196 regions from the EU-15 countries, using data at five-year intervals

spanning the period 1975 to 1999. They apply a spatial filtering method to control for

spatial dependence in their data and employ pooled panel data methods that allow at

most for region-specific intercepts (“fixed” effects). Apart from pooled OLS, these are the

within-groups estimator popularised in the empirical growth literature by Islam (1995),

and the first-differenced and system-GMM estimators developed by Arellano and Bond

(1991) and Blundell and Bond (1998). We use all of these to estimate the MRW model

with homogeneous slope coefficients in the first part of our empirical analysis.

Badinger et al. (2004) find some support for the MRW model, which they estimate

in its restricted form. They obtain a positive and significant coefficient on the difference

between investment and population growth rates across estimation methods. There is also

significant evidence of convergence to region-specific long-run paths for income. However,

the size of the implied structural parameters differs considerably across estimators. The

rate of convergence ranges between 1.5% per year with pooled OLS to 25% per year using

within groups, while the first-differenced and system-GMM estimates lie in-between at

18.4% and 7% respectively. The implied capital elasticity varies between 0.64 for pooled

OLS and 0.18 using within groups. The first-differenced and system-GMM estimates of

this parameter are 0.28 and 0.43 and thus more in line with the MRW model.

The variability of Badinger et al.’s (2004) results highlights estimation issues with

pooled panel data estimators that have also been raised in studies at the country level. For

example, Islam (1995) obtains a comparatively low rate of convergence and a high capital

elasticity when using pooled OLS for the same samples as MRW, while within groups yields

a higher rate of convergence and a lower capital elasticity. Results in Caselli, Esquivel and

Lefort (1996) reveal a similar tendency for first-differenced GMM. Using Caselli et al.’s

(1996) sample, Bond, Hoeffler and Temple (2001) find that the system-GMM estimate of

the rate of convergence lies between pooled OLS and within groups or first-differenced

GMM. It has been shown that this may be due to bias in the last three estimators, and

Badinger et al. (2004) give preference to their system-GMM results for this reason.

Elhorst, Piras and Arbia (2010) evaluate the transitional growth model of MRW, also

in its restricted form, as well as a spatial extension of it, where the conventional model is

augmented with spatially weighted dependent and independent variables. They consider
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193 EU-15 regions from 1977 to 2002. In the a-spatial case, results are obtained using cross-

section OLS as well as pooled OLS and first-differenced GMM based on five-yearly panel

data; they partly support the MRW model: there is significant evidence of convergence

to region-specific long-run income paths, and the coefficient on the difference between

investment and population growth is positive and significant for cross-section and pooled

OLS. For first-differenced GMM, it is not significantly different from zero. Pooled OLS

yields an implied capital elasticity of about 0.31, which is consistent with the MRW model.

The implied annual speed of convergence is 0.9% with pooled OLS and 7.8% for first-

differenced GMM. The latter estimate is thus considerably lower than the corresponding

figure in Badinger et al. (2004). However, in contrast to these authors, Elhorst et al.

(2010) do not report tests of the validity of their first-differenced GMM instruments, so the

reliability of these estimates is unclear. The spatial estimates of the speed of convergence

are very similar to the conventional ones, but the estimated coefficients on the investment

variable are never significant and the implied capital elasticity is sometimes negative.

Bouayad-Agha and Védrine (2010) compare the MRW model in its unrestricted form

with an extension that includes spatially weighted versions of the dependent and some

independent variables as regressors. Their study focuses on the speed of convergence and

no implied capital elasticities are presented, but it considers the same time period and

employs similar estimation methods as we do in this paper. The sample consists of 191

EU-15 regions observed for five-yearly periods from 1980 to 2005. The a-spatial version of

the model is estimated using pooled OLS, within groups and first-differenced GMM, but the

results are mixed. There is significant evidence of convergence across estimators, and the

coefficient on the investment rate - which is measured as investment divided by population

rather than output - is positive and significant throughout. However, the coefficient on the

population growth rate is either positive and significant, which runs counter to the model’s

prediction, or negative but insignificant. Further, the instruments that the authors use for

first-differenced GMM are invalid. The implied speed of convergence varies from a low rate

of 2% per year obtained with pooled OLS to a higher rate of 14.7% per year with first-

differenced GMM. The latter figure rises to between 15.1 and 21.5% when the spatially

weighted variables are added, which also improves GMM instrument validity.

In sum, the results from the pooled panel data literature that examines the MRW

model using five-yearly data for the EU regions are generally consistent with the model’s

predictions of convergence (to region-specific long-run income paths) as well as a positive

and significant effect of investment. However, the studies do not agree on the size of the

implied structural parameters. Regarding the speed of convergence, the observed variability

in results described above is likely due to bias in some estimators. It is noteworthy that

Elhorst et al. (2010) do not use the system-GMM estimator, which may be less prone to

bias in this context.4 By contrast, we employ system GMM in the first part of our empirical

4Bouayad-Agha and Védrine (2010) report invalid instruments with system GMM.
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analysis to estimate the MRW model with homogeneous slope coefficients, as do Badinger

et al. (2004). Compared to the latter, we investigate a more recent time period.

The empirical literature reviewed so far does not allow the explanatory variables in

the MRW model to have a heterogeneous impact across regions. One way of doing this is

to estimate the MRW model separately for subgroups of regions that are likely to share

similar parameter values (Durlauf, Johnson and Temple 2005).5 We take the alternative

route of allowing the parameters of the MRW model to vary across all European regions

using Pesaran and Smith’s (1995) mean group estimator.

At the country level, this approach is taken by Bond, Leblebicioglu and Schiantarelli

(2010) to allow for a heterogeneous effect of investment on the long-run growth rate of GDP

per worker. A related literature considers heterogeneous univariate panel data models of

per-capita income to study convergence: Lee, Pesaran and Smith (1997) employ the mean

group estimator to estimate separate time-series models for individual countries in samples

similar to MRW and Islam (1995). The parameters of interest, obtained using annual

data, are then averaged over countries to obtain the mean group estimates. The authors

find that allowing for heterogeneous speeds of convergence in addition to heterogeneous

intercepts raises the average speed of convergence across countries. When also allowing for

heterogeneity in the long-run growth rate of per-capita income, captured by the coefficient

on a linear time trend, the average speed of convergence increases further to values between

24% and 30% per year, depending on the sample.

Meliciani and Peracchi (2006) apply Lee et al.’s (1997) framework to annual data for

95 EU regions from 1980 to 2000 and find a similar pattern. The speed of convergence

increases from 13% per annum when only intercepts are heterogeneous to 19% on average

when the speed of convergence and the long-run growth rate are also allowed to be region-

specific. Canova and Marcet (1995) use Bayesian methods to estimate an AR(1) model for

per-capita income on annual panel data for 114 EU-15 regions from 1980 to 1992. When

region-specific intercepts as well as heterogeneous speeds of convergence are allowed for, the

estimated average speed of convergence across regions amounts to 23% per year, compared

to only 2% when all parameters are restricted to be homogeneous.

Neither of the last two region-level studies considers heterogeneity in the effect of addi-

tional explanatory variables. Although the empirical specification in Lee et al. (1997) and

thus in Meliciani and Peracchi (2006) is based on a version of the Solow model, investment

and population growth rates are assumed constant over time and subsumed into country-

and region-specific intercepts. By contrast, we explicitly allow for heterogeneous impacts

of investment and population growth rates in our MRW specification.

5A related but distinct branch of the literature is concerned with identifying convergence clubs, which are
groups of regions with similar structural characteristics and initial conditions that converge to similar long-
run levels of income. Examples for the European regions include Corrado, Martin and Weeks (2005) and
Fischer and Stirböck (2006). However, this approach is not concerned with estimating the heterogeneous
effects of explanatory variables across regions.
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3 Theoretical Framework and Empirical Specifications:

This section outlines the Mankiw et al. (1992) model of per-capita income growth in tran-

sition to the long-run equilibrium, which is based on the on the neoclassical model of Solow

(1956) and Swan (1956). We then discuss in more detail our empirical specifications with

homogeneous and heterogeneous slope coefficients across regions.

Output Y at time t is produced according to the following Cobb-Douglas production

function:

Y (t) = K(t)α (A(t)L(t))1−α 0 < α < 1. (1)

K is physical capital, L is labour, A represents the level of technology and the constant

α is the elasticity of output with respect to capital. This production function exhibits

constant returns to scale and diminishing marginal returns to the inputs capital and labour.

Labour and technology grow exponentially at the constant and exogenous rates n and g,

respectively, so that A(t)L(t) - representing “effective” units of labour - grows at rate

(n + g).

The capital stock accumulates over time according to

K̇(t) = sY (t) − δK(t), (2)

where the saving rate s = S/Y , a constant and exogenous share of output, equals the

investment rate since the economy is assumed closed. δ > 0 is the constant depreciation

rate of capital. Rewriting equations (1) and (2) in terms of units of effective labour, where

e.g. ŷ(t) = Y (t)
A(t)L(t) , yields

ŷ(t) = k̂(t)α (3)

for the production function, and similarly

˙̂
k(t) = sk̂(t)α − (n + g + δ)k̂(t) (4)

for the evolution of the capital stock per effective worker.

In the long-run equilibrium of the model, also called the steady state or balanced growth

path, all variables in units of effective labour are constant. The steady-state value of k̂(t),

k̂∗, can thus be solved for by setting ˙̂
k(t) = 0 in equation (4):

k̂∗ =
(

s

n + g + δ

) 1

1−α

and consequently, ŷ∗ =
(

s

n + g + δ

) α
1−α

. (5)

In per-capita terms, where y(t) = Y (t)/L(t), an economy’s steady-state log-level of income

at time t is then given by

ln y∗(t) = ln A(0) + gt +
α

1 − α
ln(s) −

α

1 − α
ln(n + g + δ). (6)
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Thus, the higher is the rate of investment for example, the higher is the economy’s level

of income per capita in the steady state, holding everything else constant. The same holds

the lower are the growth rate of effective labour and the depreciation rate.

While the growth rates of capital and output per effective worker are zero in the steady

state, it can be shown that capital and output per capita grow at the common exogenous

rate of technological progress g - that is, they evolve over time along a path with constant

slope g. Long-run per-capita economic growth in the Solow-Swan model is therefore by

definition exogenous, in that it is not explained from within the system by the behavioural

parameters of the model, but rather exogenously given from outside. Changes in any of

the explanatory variables in equation (6) affect the steady-state level of income but not its

steady-state growth rate.

For any initial values of k̂(t) and ŷ(t) that lie off (but close to) the steady state path,

a process of convergence takes place over time until the economy reaches the long-run

equilibrium given in (5). The growth rate of income per effective worker during this

transitional period, as well as the speed at which convergence takes place, can be obtained

from a log-linear approximation around the steady state, which yields

˙̂y(t)
ŷ(t)

=
d ln ŷ(t)

dt
≈ β · (ln ŷ∗ − ln ŷ(t)) , (7)

where β = (1 − α)(n + g + δ) is the rate of convergence. Equation (7) illustrates that the

transitional growth rate of income per effective worker is positive for values of ln ŷ(t) below

the steady state and negative for values above it. The growth rate is also proportional to

the distance between log-income per effective worker at time t and its steady-state value.

The greater (more positive) this distance is, the higher is the transitional growth rate, and

as ln ŷ(t) approaches ln ŷ∗ over time, the growth rate declines until it reaches zero in the

steady state. β is the speed at which the gap is closed, and hence this notion of convergence

is usually referred to as β-convergence.

The key property of the neoclassical growth model that gives rise to convergence is that

of diminishing marginal returns to capital. At low levels of capital per effective worker,

the marginal product of k̂(t) is high, and so are the growth rates of k̂(t) and thus ŷ(t). As

k̂(t) rises over time, its marginal product declines, and the growth rate of ŷ(t) slows down

as the economy approaches the steady state.

A considerable part of the empirical literature on economic growth - particularly for

the EU regions - has, based on models like Mankiw et al. (1992), focused on whether

convergence has taken place across several countries or regions over a given time period.

The original Solow model, however, is concerned with the evolution of capital and income

within a single economy over time, as highlighted by the absence of unit-specific i-subscripts

in our outline of the model so far. Islam (1998, p. 327) refers to this as the “tension

between the within and across dimensions of the concept of convergence”. To reconcile the
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cross-country or cross-regional approach with the Solow model, Mankiw et al. (1992) and

Barro and Sala-i-Martin (1992) distinguish between the notions of absolute and conditional

β-convergence, which can also be illustrated by means of equations (6) and (7).

Absolute convergence refers to a situation where a group of economies converges to the

same steady-state level of per-capita income, so that initially poorer regions should grow

faster than richer ones along the transition path until they eventually catch up with the rich.

For this outcome to be consistent with the Solow model however, the group of regions in

question would have to be structurally identical in terms of their production functions and

the characteristics A(0), s, n, g and δ that determine the (common) steady-state income

ŷ∗. Conditional convergence, on the other hand, implies that each economy converges to

its own steady-state level of income, with growth faster the further it is away from it.

Then, initially poorer regions should grow faster than richer ones only after controlling for

differences in the determinants of their steady states. This concept of convergence may be

more realistic for a heterogeneous set of regions with diverse production functions, saving

rates and other characteristics.

From equation (7), an expression can be derived for the transitional growth rate of

per-capita income between two points in time that are τ years apart:6

ln yt − ln yt−τ =
(
1 − e−βτ

) α

1 − α
ln(s) −

(
1 − e−βτ

) α

1 − α
ln(n + g + δ) −

−
(
1 − e−βτ

)
ln yt−τ +

(
1 − e−βτ

)
ln A(0) +

+ g
(
t − e−βτ (t − τ)

)
(8)

MRW apply this model to time-averaged data on y, s and n for a single cross-section

of countries, so that all regression coefficients are restricted to be homogeneous across

countries. g and δ are assumed to be common to all countries and constant over time, with

their sum equal to 0.05. MRW recognise that the unobservable initial level of technology

ln A(0), which they define more broadly to include also physical geography, climate and

economic institutions, may differ across countries. To estimate equation (8) using OLS,

they therefore replace ln A(0) with a constant and a country-specific error term that is

assumed to be uncorrelated with the other regressors in the econometric model. This last

assumption is not entirely consistent with the theoretical model, however. From equation

(6), the country-specific component of ln A(0) is a determinant of steady-state income

ln y∗
t and hence also of ln y∗

t−τ , so that it is by construction correlated with ln yt−τ on

the right-hand side of equation (8). Given MRW’s own broad interpretation of ln A(0),

6An intermediate step between equations (7) and (8) is solving the former for ln ŷ(t), which yields
ln ŷ(t) =

(
1 − e−βt

)
ln ŷ∗ + e−βt ln ŷ(0). Barro and Sala-i-Martin (1992) derive the same equation from

a model where the saving rate is determined endogenously. However, instead of next substituting in for
ŷ∗ from (5) as MRW do, these authors proxy for ŷ∗ in a more ad hoc manner with variables they deem
important determinants of steady-state income. Empirical specifications based on Barro and Sala-i-Martin
(1992) are also known in the literature as “Barro regressions”.

9



its country-specific component may also be correlated with country-specific saving and

population growth rates.

3.1 Empirical Specification with Homogeneous Coefficients:

To estimate equation (8) consistently, the panel data framework has been advocated by

Islam (1995) among others. This approach permits treating the initial level of technology

as a country- or region-specific “fixed” effect that remains constant over time and may

be correlated with the other explanatory variables. Allowing the regressors to vary both

across regions i and over time t, and defining time period t − 1 as a point in time τ years

prior to t, equation (8) can be rewritten as a dynamic panel data model for the log-level

of income per capita:

ln yit = γ ln yi,t−1 + θ1 ln sit + θ2 ln(nit + g + δ) + uit

uit = µi + ηt + vit,
(9)

or equivalently, parameterised with the growth rate of per-capita income as the dependent

variable:

∆ ln yit = (γ − 1) ln yi,t−1 + θ1 ln sit + θ2 ln(nit + g + δ) + µi + ηt + vit,

where γ = e−βτ ,

θ1 =
(
1 − e−βτ

)
α

1−α
and θ2 = −

(
1 − e−βτ

)
α

1−α
,

µi =
(
1 − e−βτ

)
ln A(0) are unobservable region-specific fixed effects,

ηt = g
(
t − e−βτ (t − τ)

)
captures unobservable period-specific effects that are common to

all regions but vary over time, such as technology or other macroeconomic shocks; and

vit is a mean-zero error term.

From γ and θ1, the annual rate of convergence and the elasticity of output with respect

to capital can be recovered as β = − (ln γ) /τ and α = θ1/(1 − γ + θ1). Because markets

are assumed competitive in the Solow model, α equals the share of capital in total income,

which has been found to be roughly one-third from macroeconomic data on factor income

shares, especially in developed countries (Gollin 2002). sit and nit are measured as averages

over the time period between year t − τ and year t, and we set g + δ = 0.05 for all regions

and years. The unobserved common time effects ηt are accounted for by including time

dummies, which permits a flexible, possibly nonlinear, evolution of technology and long-run

income over time.

We use panel data at five-year intervals to estimate equation (9), so that τ = 5. This is

one approach chosen in the empirical literature to minimise the influence of high-frequency

fluctuations such as business cycles when trying to isolate patterns of transitional or long-
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run growth.7 Splitting our sample period into subperiods of five years each leaves us with

a total number of time periods T = 5.8

Equation (9) allows for heterogeneity in regional long-run levels of income per capita

since some of the determinants of steady-state income - the unobserved ln A(0) and the

observables s and n - are allowed to be region-specific. On the other hand, the long-run

growth rate of per-capita income g, captured by the time effects ηt, as well as the slope

coefficients in equation (9) are restricted to be common across regions. In time-income

space, region-specific long-run growth paths can therefore be visualised as parallel lines

with slope g, to which the regions converge at common speed β. The notion of convergence

implicit in equation (9) is conditional, since each region converges to its own steady-state

level of income, albeit at a speed that it shares with the other regions.

Thus, an estimate of γ that is significant and positive but strictly less than one would

be consistent with conditional convergence taking place in our sample of EU-15 regions.

Further, the model predicts that θ1 and θ2 should be of equal magnitude, with a positive and

a negative sign respectively: since a permanent increase in the rate of capital accumulation

raises a region’s steady-state level of income per capita, the growth rate in transition to

the (now higher) steady state also rises for a given level of initial income. The opposite is

the case for an increase in the growth rate of labour, which should lower the transitional

income growth rate. The long-run coefficients θ1

1−γ
and θ2

1−γ
can be estimated to gauge

the effects of permanent changes in investment or population growth on the steady-state

level of income. If the capital elasticity α implied by the estimate of θ1 is about one-third,

equation (6) suggests that θ1

1−γ
should roughly equal 0.5.

In country-level regressions based on equations (8) or (9), a host of additional explana-

tory variables have been included, under the assumption that they also proxy for differences

in initial technology or steady-state income levels across countries. Examples are indicators

of human capital, trade openness, institutional or geographical variables. At the regional

level however, data availability is limited for many of these, as data either do not exist for

the EU regions (trade) or have only been collected for more recent years (human capital).

The role of human capital is investigated in Vogel (2013), where we consider a shorter

sample period. In addition, the region-specific fixed effects µi enable us to control for any

permanent differences in human capital or trade openness across the regions in our sample,

as well as for physical geography and to some extent institutions.

7This approach is taken by all pooled panel data studies reviewed in section 2, at both country and
regional levels.

8The subperiods are 1980-1985, 1985-1990, 1990-1995, 1995-2000, 2000-2005. The investment share sit

is calculated over the five-year periods 1981-1985, 1986-1990 etc., so that the subperiods do not overlap.
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3.2 Empirical Specifications with Heterogeneous Coefficients:

To allow for heterogeneity in the slope coefficients across regions, equation (9) can be

modified as follows:

ln yit = γi ln yi,t−1 + θ1i ln sit + θ2i ln(nit + g + δ) + µi + ηt + vit (10)

This model implies that the short- and long-run effects of investment and population

growth on the level of income are now also free to differ across regions, as is the speed of

adjustment to the steady state, βi. The underlying long-run growth rate g is still assumed

to be common to all regions, so that regional long-run growth paths are again parallel

lines with slope g. However, by allowing for region-specific speeds of convergence, we

have taken a step away from the notion of convergence embodied by equation (9), which

envisages region-specific steady-state levels of income but assumes that β is homogeneous

for all i.

To implement equation (10) empirically, we estimate separate time-series models for

individual regions. For this purpose, we use data at annual frequency (τ = 1), so that the

number of time periods (T = 25) available is large enough. Since business cycles and other

short-run fluctuations may loom large in annual data, richer dynamics are introduced

into our empirical specification to control for their influence. This approach has been

taken recently by Bond et al. (2010), for example. Given our theoretical framework, these

additional dynamic terms may capture not only high-frequency business cycle fluctuations,

but also transitional growth as regions adjust to their long-run growth paths.

Instead of including time dummies, we control for the common time effects ηt by mea-

suring the data in deviations from cross-section averages, that is, by subtracting from each

observation the average across regions for that time period. For example, ln yit demeaned

in this manner yields ln ỹit = ln yit − 1
N

∑N
j=1 ln yjt. This transformation is equivalent to

using time dummies when all slope coefficients are homogeneous, as in equation (9), but

only approximately so when coefficients are heterogeneous across regions.9

Overall, our estimating equation allowing for heterogeneity in the slope coefficients is

based on the following autoregressive-distributed lag (ADL) model of order p:

ln ỹit = γ1i ln ỹi,t−1 + ... + γpi ln ỹi,t−p + θ0
1i ln s̃it + ... + θp

1i ln s̃i,t−p +

+ θ0
2i ln(ñit + g + δ) + ... + θp

2i ln(ñi,t−p + g + δ) + µ̃i + ṽit.
(11)

From this specification, the region-specific speed of adjustment can be derived as βi =

− ln(γ1i + ... + γpi), while the long-run effect of a change in the investment rate on region

i’s level of per-capita income is given by θ0

1i + ... + θ
p
1i

1 − γ1i − ... − γpi
. We reparameterise equation

9When slope coefficients are heterogeneous, demeaning introduces additional terms into the error term
of equation (10), which may increase standard errors in estimation. See Smith and Fuertes (2004), p. 62-63.
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(11) in terms of first differences and levels, which is more convenient for estimation:

∆ ln ỹit = (γ1i − 1)∆ ln ỹi,t−1 + (γ1i + γ2i − 1)∆ ln ỹi,t−2 + ... + (
p∑

j=1

γji − 1) ln ỹi,t−p +

+ θ0
1i∆ ln s̃it + (θ0

1i + θ1
1i)∆ ln s̃i,t−1 + ... +

p∑

j=0

θj
1i ln s̃i,t−p +

+ θ0
2i∆ ln(ñit + g + δ) + (θ0

2i + θ1
2i)∆ ln(ñi,t−1 + g + δ) + ... +

+
p∑

j=0

θj
2i ln(ñi,t−p + g + δ) + µ̃i + ṽit

(12)

Thus the quantities of interest in equation (11) - the sums of the coefficients on the in-

dividual (lagged) levels of each variable - can be directly obtained from the lagged levels

dated t − p in equation (12).

Finally, cross-section dependence in the error terms can be modelled by introducing a

region-specific coefficient on the common time effect ηt in equation (10):

ln yit = γi ln yi,t−1 + θ1i ln sit + θ2i ln(nit + g + δ) + µi + φiηt + vit (13)

In contrast to the previous models, the impact of the unobserved common time effect ηt

is now no longer restricted to be identical for all regions but may differ according to φi.

In effect, this allows the steady-state growth rate to be region-specific, since each region

may now deviate from g each period by the coefficient φi. Regional long-run growth paths

need therefore no longer be parallel and may even diverge. In terms of the two notions of

convergence within and across regions highlighted by Islam (1998), we have now completely

eliminated the cross-regional dimension: each region converges at its own speed to its own

steady-state income level, which may grow at a region-specific rate over time.10

Equation (13) is also implemented using annual data to estimate separate regressions for

each region, so we assume an ADL model of order p again to capture business cycle effects,

as in equation (11). Since the presence of the term φiηt is controlled for using Pesaran’s

(2006) CCEMG estimator (see section 4.3), the data are not transformed into deviations

from cross-section averages. Hence, our empirical specification allowing for cross-section

dependence is

ln yit = γ1i ln yi,t−1 + ... + γpi ln yi,t−p + θ0
1i ln sit + ... + θp

1i ln si,t−p +

+ θ0
2i ln(nit + g + δ) + ... + θp

2i ln(ni,t−p + g + δ) + µi + φiηt + vit,

10We therefore use the term “speed of convergence” only in the context of model (9) and otherwise refer
to the “speed of adjustment”.
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which we reparameterise in differences-and-levels form, analogous to equation (12):

∆ ln yit = (γ1i − 1)∆ ln yi,t−1 + (γ1i + γ2i − 1)∆ ln yi,t−2 + ... + (
p∑

j=1

γji − 1) ln yi,t−p +

+ θ0
1i∆ ln sit + (θ0

1i + θ1
1i)∆ ln si,t−1 + ... +

p∑

j=0

θj
1i ln si,t−p +

+ θ0
2i∆ ln(nit + g + δ) + (θ0

2i + θ1
2i)∆ ln(ni,t−1 + g + δ) + ... +

+
p∑

j=0

θj
2i ln(ni,t−p + g + δ) + µi + φiηt + vit.

(14)

4 Estimation Issues and Methods:

4.1 Pooled Dynamic Panel Data Estimators:

To estimate equation (9), two econometric issues need to be considered: first, the joint

presence of region-specific fixed effects and a lagged dependent variable, which renders

some estimators inconsistent, particularly when the number of time periods is small; and

second, the potential endogeneity of some explanatory variables due to e.g. simultaneity.

The first-differenced and system-GMM estimators developed in Arellano and Bond (1991),

Arellano and Bover (1995) and Blundell and Bond (1998) are, under certain conditions,

able to deal with both issues. Below, we review these and other available estimators. Let

xit be a row vector containing the explanatory variables ln sit and ln(nit + g + δ) for this

purpose.

The standard pooled OLS estimator is inconsistent for equation (9) because the lagged

dependent variable ln yi,t−1 is by construction correlated with the region-specific fixed

effects µi, which may also be correlated with other explanatory variables in the model.

This is a form of endogeneity resulting from omitted variables that are correlated with

included explanatory variables. For the coefficient γ, it can be shown that the large-

sample bias in the OLS estimator is likely to be upward. Given that β = − (ln γ) /τ , this

implies that the speed of convergence β may be underestimated.

The within-groups (WG) or fixed-effects estimator is also inconsistent if the number of

time periods in the panel is small (Nickell 1981), as in our case. Within-groups estima-

tion consists of applying OLS to the data transformed into deviations from region-specific

means, whereby time-invariant variables like µi are removed (“within transformation”).11

Equivalently, this estimator can be obtained by including a set of N region-specific dummy

variables in the OLS regression, so that it is also called Least-Squares Dummy Variables

11Within-transforming any variable yit yields yit − 1

T

∑T

s=1
yis.

14



(LSDV). The WG estimate of γ is likely to be biased downwards in large-N samples, in

the opposite direction to OLS, so that the speed of convergence may be overestimated.

When assessing the empirical outcomes of other estimators, it is therefore advisable to

be sceptical of those yielding an estimate γ̂ that is considerably lower (higher) than the

corresponding WG (pooled OLS) estimate (Bond 2002). Consequently, we provide OLS

and WG estimates primarily as benchmarks.

If one or more of the explanatory variables in equation (9) are endogenous because they

are contemporaneously correlated with vit, both OLS and WG estimators are inconsistent.

One possible cause for this is simultaneity, which may be the case for the share of output

that is invested, sit, as well as the growth rate of labour, nit, if we allow for inward or

outward migration to take place in response to shocks to regional output.

The first-differenced and system-GMM estimators use model (9) in first differences,

which, like the within transformation, removes the time-invariant fixed effect µi. Since

the first-differenced lagged dependent variable, ∆ ln yi,t−1, is now correlated with the first-

differenced error term, ∆vit, both GMM estimators employ lagged levels of the dependent

variable dated t − 2 and earlier as instruments. Similarly, lagged levels dated t − 2 and

earlier of those explanatory variables xit that are endogenous in equation (9) due to cor-

relation with vit can be used as instruments for the first-differenced equations. While

first-differenced GMM (FD-GMM) is based on equation (9) in first differences only, the

system-GMM estimator (S-GMM) uses a combination of this equation in first differences

and in levels. The instruments employed for the first-differenced equations are as described

above. For the levels equations, first-differences dated t − 1 of the dependent variable and

the endogenous explanatory variables may serve as instruments.

Both GMM estimators are consistent for model (9) for large N and small T if the

instruments they employ are valid - that is, uncorrelated with the error term of the rele-

vant equation - and informative, that is, correlated with the variables that are treated as

endogenous. If these conditions are satisfied, the GMM estimators offer a solution to the

two estimation issues discussed above by first-differencing and making use of instruments

“internal” to the model that are available in the panel framework.

To ensure that the instruments employed for the first-differenced equations are valid -

that is, uncorrelated with ∆vit - vit must be serially uncorrelated.12 This condition can be

tested using Arellano and Bond’s (1991) test for serial correlation in the first-differenced

regression residuals. If the number of available instruments is greater than the number of

explanatory variables, the Sargan (1958)/Hansen (1982) test of overidentifying restrictions

provides an additional tool for assessing the validity of the instruments.

The informativeness of the instruments for the first-differenced equations may be weak,

however, when the series used in estimation are very persistent. In this case, lagged levels

12An additional requirement for both GMM estimators considered is the absence of feedback from the
current shock vit to past values of the dependent and explanatory variables. This is a standard and not
unreasonable assumption.
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of the variables are only weakly correlated with the subsequent first differences they serve

as instruments for. This could lead to considerable finite-sample bias and imprecision in

the FD-GMM estimates, particularly when the time dimension of the panel is short. The

bias in γ̂ is likely to be downward, in the direction of WG. On the other hand, the S-

GMM estimator addresses the weak instruments problem in FD-GMM by introducing the

additional instruments for the levels equations.13 Since in this paper, we make use of series

that may be quite persistent over time, such as output per capita and the output share of

investment, S-GMM may be the preferred estimator.14

For the additional instruments for the equations in levels employed by S-GMM to

be valid - that is, uncorrelated with uit - one requirement is again the absence of serial

correlation in vit. Further, the additional instruments for the levels equations must be

uncorrelated with the region-specific fixed effects µi. In the context of a multivariate

model similar to equation (9), Blundell and Bond (2000) show that for the lagged first

differences of the dependent variable, the latter condition requires a restriction on the

initial conditions of the dependent variable, ln yit in our case. Provided that the first-

differenced explanatory variables ∆xit are uncorrelated with µi, this restriction is satisfied

if equation (9) has generated ln yit for long enough before the start of the sample period for

the influence of the true initial conditions to vanish. In our application to data for Western

European regions since 1980, it does not seem unreasonable to make this assumption. The

validity of the additional instruments for the equations in levels can be formally investigated

using the Difference Sargan/Hansen test.

4.2 Parameter Heterogeneity:

To estimate equation (12), we employ the mean group (MG) approach of Pesaran and

Smith (1995), which consists of estimating separate time-series regressions for each region

in the sample and averaging the estimated coefficients across regions. Pesaran and Smith

(1995) show that neglecting parameter heterogeneity in a dynamic panel data model like

(9) renders the pooled estimators considered in section 4.1 inconsistent. This is because

the unmodelled heterogeneous components of the terms on the right-hand side of equation

(9) - say (γi − γ) ln yi,t−1 and (θi − θ)xit, where θ = (θ1 θ2)′15 - become part of the error

13Monte Carlo simulations conducted by Blundell and Bond (1998) for the univariate AR(1) case with
persistent series indicate that the gains in terms of bias and precision from using the S-GMM estimator are
substantial for T as large as 11. Simulations by Blundell, Bond and Windmeijer (2000) for the multivariate
case suggest that this result extends to a model with additional explanatory variables, which is more relevant
to equation (9).

14Estimating simple AR(1) models for ln yit and ln sit based on five-yearly data provides evidence of
persistence in both series. For ln yit, the autoregressive coefficient lies above 0.95 when using pooled OLS
and both GMM estimators, with a lower estimate of 0.55 obtained using WG. For ln sit, all estimators
except WG yield an autoregressive coefficient above 0.80.

15These expressions result from assuming a random coefficients model for the heterogeneous parameters:
γi = γ + ξ1i and θi = θ + ξ2i, where ξ1i and ξ2i are zero-mean random variables. This setup is considered
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term, which is then correlated with the included regressors if these are serially correlated

(at least as long as γi 6= 0).16 An instrumental variables approach such as the GMM

estimators described above is probably also infeasible, since any candidate instrument that

is correlated with ln yit and xit will also be correlated with the error term and therefore

invalid.

The pooled OLS and WG estimates of γ are likely to be biased upwards asymptotically

(for both N and T large) when parameter heterogeneity is ignored, thus leading to potential

underestimation of the speed of adjustment. The long-run coefficients θ
1−γ

are also likely

biased upwards, while θ tends to be underestimated.17 These large-sample biases have

been found to increase with the degree of parameter heterogeneity and the degree of serial

correlation in the explanatory variables.

If both N and T are large, the MG approach provides consistent estimates of the

averages of the regression coefficients when these are heterogeneous across regions, as in

model (12). The MG estimator of the average speed of adjustment, for example, is given by

β̂MG = N−1 ∑N
i=1 β̂i = N−1 ∑N

i=1 − ln(γ̂1i + ... + γ̂pi), where γ̂1i to γ̂pi are region-specific

(e.g. OLS) estimates obtained from the individual time-series regressions of equation (12).

The average effect of investment on long-run income across regions can be computed as

N−1 ∑N
i=1

(
θ̂0

1i + ... + θ̂
p
1i

1 − γ̂1i − ... − γ̂pi

)
. The region-specific parameters in equation (12) can also

be estimated by instrumental variables (IV) methods to allow for the possibility that the

explanatory variables xit are endogenous, for example using their own lags as instruments

in a time-series model for each region.

The MG estimator is consistent both when the variables in the model are covariance

stationary, and when ln yit and xit are integrated of order 1, or I(1), with a cointegrating

relationship between them for each region. In this case, the long-run equilibrium relation-

ship between ln yit and xit can be estimated by OLS, which is super-consistent for θi, and

the average long-run coefficients across regions can be obtained as above.

Monte Carlo studies conducted by Pesaran, Smith and Im (1996) and Hsiao, Pesaran

and Tahmiscioglu (1999) suggest that for fairly short time series (T = 20), the MG esti-

mator may be biased downwards for γ and θ. For the long-run coefficients, however, the

MG estimator performs much better even for small panels (N = T = 20). Since we use 25

time periods in estimation, we will therefore not focus on the short-run effects of ln sit and

ln(nit + g + δ) on income levels.

for convenience, and Pesaran and Smith (1995) find that their main results also hold when the coefficients
are assumed fixed but different across i.

16Using annual data to estimate AR(1) models for ln yit and ln sit yields strong evidence of autocorrelation
in the series. For per-capita income, the autoregressive coefficient is 0.99 and 0.90 when using pooled OLS
and WG respectively. For the investment share, we obtain 0.94 with OLS and 0.85 with WG.

17The direction of the bias for γ and θ
1−γ

depends on the assumption that the xit variables follow AR(1)
processes with positive autocorrelation coefficients. For negative autocorrelation, the pooled OLS and WG
estimates of γ and θ

1−γ
are biased downwards. See Pesaran and Smith (1995).
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4.3 Cross-Section Dependence:

To estimate equation (14), we use the common correlated effects mean group estimator

(CCEMG) proposed by Pesaran (2006). This estimator controls for the term φiηt by aug-

menting the equation with the cross-section averages for each time period of the dependent

variable and each of the explanatory variables. In equation (14), the terms ∆ ln ȳt, ∆x̄t

and their lags as well as ln ȳt−p and x̄t−p are thus added to the regressors on the right-hand

side, where e.g. ∆ ln ȳt = 1
N

∑N
i=1 ∆ ln yit. The augmented model is then estimated by

mean groups, based on individual time-series regressions for each region.

Pesaran’s (2006) approach belongs to a strand of research that assumes a factor struc-

ture for the error term in order to model cross-sectional error correlation, or cross-section

dependence. In this framework, the error term εit = φiηt + vit in equation (14) can be

interpreted as a single factor model, where ηt is an unobserved common factor that may in-

fluence each region differently, with “factor loading” φi. Assuming that φi is non-stochastic

and ηt ~ iid N(0, 1) over t, the covariance between the errors for two regions i 6= j is given

by E(εitεjt) = φiφj .18 This approach does not assume that the structure of the error cor-

relation is known and therefore allows for a general form of cross-section dependence. By

contrast, the spatial econometrics literature models cross-section correlation by means of

a pre-selected weight matrix, so that the nature of the correlation between regions is spec-

ified in advance. The CCE approach, on the other hand, remains valid in the presence of

the forms of spatial error correlation typically considered in spatial econometrics (Pesaran

and Tosetti 2011). It also remains valid in the presence of a finite number of unobserved

common factors with heterogeneous coefficients, not just the single common factor ηt.

Therefore, the CCEMG estimator is a feasible way to control for a variety of possible

causes of cross-sectional error correlation, including spatial dependence, in our annual

panel setup where T may be considered sufficiently long to estimate separate time-series

regressions for each region. However, the estimated parameters on the included cross-

section averages cannot be directly interpreted, so that we cannot make statements on the

sign and strength of the cross-section dependence.

The expression for the error covariance above illustrates that cross-section dependence

that remains unaccounted for may induce inefficiency in the MG estimator. It will also be

biased and inconsistent if the common factor ηt affects not only the dependent variable,

but also one or more of the explanatory variables in our model (possibly again in a region-

specific manner). An example of such a situation would be the heterogeneous impact of the

recent “great recession” on EU regional incomes and investment, depending for instance

on regional industrial structure.

Pesaran (2006) shows that when N is large, the CCEMG estimator yields consistent

estimates for model (14). Intuitively, this is because the cross-sectional averages that are

included as additional regressors approximate ηt - in general, a finite number of unobserved

18This example is adapted from Phillips and Sul (2003), p. 225.
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common factors - as N becomes large. Kapetanios, Pesaran and Yamagata (2011) establish

that this result holds not only when variables and common factors are covariance stationary,

as in Pesaran (2006), but also when the common factors contain unit roots, inducing

nonstationarity in the observed variables ln yit and xit. A requirement is that the model

errors vit are stationary, however, so that given ηt, ln yit and xit must be cointegrated.

Monte Carlo simulations by Coakley, Fuertes and Smith (2006), Pesaran (2006) and

Kapetanios et al. (2011) are supportive of the CCEMG estimator in samples of the size

we consider. These studies find that it outperforms the MG estimator in terms of bias

and precision under different scenarios regarding the factor structure of the errors, correla-

tion between factors and explanatory variables, and stationarity properties of the common

factors. In particular, the simulations in Pesaran (2006) indicate that not accounting for

common factors with heterogeneous coefficients may lead to substantial bias and impreci-

sion in the conventional MG estimator.

5 Data and Variables:

We use data from the 2007 edition of the Cambridge Econometrics (CE) European Regional

Database, which covers the period from 1980 to 2005. Regional per-capita income yit

is constructed as regional gross value added (GVA) divided by population. In the CE

database, GVA is measured at constant prices in 2000 euros, which we adjust for cross-

country differences in price levels via national purchasing power parities (PPPs) defined

relative to the EU average.19 We measure the saving rate sit as the share of gross fixed

capital formation, also expressed in PPP-adjusted 2000 euros, in total regional GVA. The

growth rate of the total population is used to proxy the growth rate of labour input nit.

Our sample consists of 193 NUTS-2 regions from the EU-15 countries.20 It does not in-

clude the French, Spanish and Portuguese small island territories in the Atlantic, Caribbean

and Indian Oceans, nor Ceuta and Melilla, two Spanish exclaves on the Moroccan coast.

In addition, we exclude the East German regions, for which data are only available from

1991 onwards, and the Dutch region Flevoland, with data only from 1986. We also drop

Groningen from the Netherlands, whose per-capita income series exhibits great volatility

over our sample period; output in this region is strongly dependent on natural gas pro-

duction. For a list of all regions in the sample, see Appendix A. Appendix B provides

summary statistics of our variables.

Figure 1 below illustrates the spatial distribution of the variables across all regions in

the sample. In the top left-hand map, a banana-shaped arc of regions with high GVA per

19The resulting artificial common European currency unit is the Purchasing Power Standard (PPS),
where one PPS equals the average purchasing power of one euro across the European Union.

20The sample covers regions from Austria (9 regions), Belgium (11), Denmark (3), Finland (5), France
(22), Germany (30), Greece (13), Ireland (2), Italy (21), Luxembourg (1), Netherlands (10), Portugal (5),
Spain (16), Sweden (8) and the United Kingdom (37).
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capita is clearly visible, stretching from Southern England across the Benelux countries and

south-western Germany into Northern Italy. The richest region over our sample period is

Inner London, followed by Brussels, Hamburg and Luxembourg. Average levels of income

per capita are substantially lower in Portugal, the south of Spain, Southern Italy and

Greece. The poorest regions in per-capita terms are Epirus in Greece, the Portuguese

Central region and Extremadura in Spain.

Figure 1: Variable Distribution across EU-15 NUTS-2 Regions, 1980-2005

In the top right-hand map of Figure 1, the fastest-growing regions between 1980 and

2005 are Luxembourg and the two Irish NUTS-2 regions. The maximum is attained by

Southern and Eastern Ireland, where per-capita GVA grew at an annualised rate of 5.4%.

The average growth rate in our sample is 1.8% per year. British and Finnish regions

also registered high growth rates, as did some regions with low levels of per-capita GVA:

Extremadura, Crete in Greece and the Algarve in southern Portugal. On the other hand,

Central Greece registered by far the lowest average annual growth rate (0.12%), followed
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by Drenthe in the Netherlands and several Austrian and German regions.

Overall, the two top panels of the Figure suggest that the growth and convergence

experiences of the EU-15 regions differed widely across and within countries: both high-

and low-income regions grew fast between 1980 and 2005, and both high- and low-income

regions grew slowly. Hence, this first look at the data indicates that allowing for hetero-

geneity in speeds of adjustment is sensible.

As the bottom left-hand panel of Figure 1 shows, the share of total GVA invested

(GFCF) was highest on average in regions from Greece and Austria, Germany, Southern

Italy and Spain (around 30%). At the other end of the spectrum, average investment shares

amounted to only about half of this figure (15%) in regions across the UK, in Brussels and

in Stockholm.

Rates of population growth (bottom right-hand panel) are rather heterogeneous across

the EU-15. In Greece and Ireland, the population grew rather strongly across all regions,

while most regions grew moderately in Germany, Belgium, the Netherlands and the south

and centre of the UK. On the other hand, the population barely changed on average in

Italy: Liguria registered the strongest population decline of all EU-15 regions (-0.62%

per year on average), while growth rates were modest or zero in all other Italian regions.

In Sweden, France, Spain and Portugal, structurally weaker peripheral or inland regions

lost population, while economic centres gained. The sample maximum average population

growth rate of 1.52% per year was achieved by the Spanish Balearic Islands.

5.1 Time-Series Properties:

When the time dimension of the data used in estimation is moderate or large, the time-

series properties of the data matter. Many macroeconomic variables are nonstationary; if

this is the case for ln yit and some of the xit in this paper, the MG and CCEMG approaches

require cointegration between them for consistency. Panel A of Table 1 reports the results

of applying the Im, Pesaran and Shin (2003) panel unit root test to each variable. Their

W test statistic is a standardised average of N region-specific augmented Dickey-Fuller

(ADF) statistics, so the test allows for heterogeneous parameters in the individual ADF

regressions. The ADF lag length of greatest interest to us is lag three, as we set p = 3 in

our empirical implementation of the region-specific models (12) and (14). We also present

results for shorter lag lengths for robustness. The tests are carried out on data in deviations

from cross-section averages, which removes trends that are common across regions.

The results of the Im et al. (2003) test suggest that ln ỹit may be considered integrated

of order 1, or I(1): first, the test cannot reject the null hypothesis that each regional ln ỹit

series is nonstationary, irrespective of whether region-specific time trends are included in

the individual ADF regressions. Second, nonstationarity is rejected for the variable in

first-differences, both with and without trends.
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The investment share ln s̃it also appears to be I(1) at all lag lengths in the version of

the test that does not allow for region-specific trends. On the other hand, when trends

are included, the test indicates that ln s̃it may be stationary around these trends, except

at lag length three, for which it seems to be nonstationary even given the trends. In the

long term, it does not seem plausible that the investment share contains stochastic or

deterministic trends, given that it is bounded by zero and one. However, over shorter time

spans, the series may be trending and thus look I(1). We therefore proceed on the premise

that the investment share behaves like an I(1) series over our sample period.

Table 1: Variable Time-Series Properties

Panel A: Im, Pesaran and Shin (2003) Test for Unit Roots in Heterogeneous Panels

Constant Constant and trend
lags ln ỹit ln s̃it ln(ñi,t+g+δ) ln ỹit ln s̃it ln(ñi,t+g+δ)
0 1.73 (0.96) 1.77 (0.97) -18.00 (0.00) 2.78 (1.00) -5.16 (0.00) -12.83 (0.00)
1 -0.93 (0.18) 0.26 (0.60) -10.83 (0.00) -0.64 (0.26) -6.07 (0.00) -4.65 (0.00)
2 1.07 (0.86) 1.35 (0.91) -8.08 (0.00) 0.76 (0.78) -3.84 (0.00) -1.16 (0.12)
3 1.27 (0.90) 2.58 (1.00) -6.53 (0.00) 1.20 (0.88) -0.69 (0.25) 0.45 (0.67)

Constant Constant and trend
lags ∆ ln ỹit ∆ ln s̃it ∆ln(ñi,t+g+δ) ∆ ln ỹit ∆ ln s̃it ∆ln(ñi,t+g+δ)
0 -47.19 (0.00) -54.11 (0.00) -70.92 (0.00) -42.07 (0.00) -47.45 (0.00) -64.72 (0.00)
1 -30.66 (0.00) -32.67 (0.00) -41.54 (0.00) -25.78 (0.00) -24.88 (0.00) -34.68 (0.00)
2 -19.43 (0.00) -24.26 (0.00) -25.05 (0.00) -15.12 (0.00) -17.26 (0.00) -18.99 (0.00)
3 -14.97 (0.00) -17.70 (0.00) -16.26 (0.00) -11.00 (0.00) -10.92 (0.00) -10.31 (0.00)

Panel B: Pedroni (1999, 2004) Test for Cointegration between ln ỹit and ln s̃it

Constant Constant and trend
lags Panel ADF Group ADF Panel ADF Group ADF
0 -1.50 (0.07) -2.46 (0.01) -0.80 (0.21) -0.92 (0.18)
1 -1.43 (0.08) -2.85 (0.00) -0.69 (0.25) -1.90 (0.03)
2 -1.64 (0.05) -3.58 (0.00) -0.99 (0.16) -5.55 (0.00)
3 -1.69 (0.04) -4.58 (0.00) -1.67 (0.05) -8.67 (0.00)

Notes: Im et al. (2003) test: W statistic reported, p-values in parentheses; W statistic is asymptotically
standard normal under the null hypothesis that all region-specific series are nonstationary; alternative hy-
pothesis (one-sided) is that some region-specific series are stationary.
Pedroni (1999, 2004) test: p-values in parentheses; panel and group ADF statistics are both asymptotically
standard normal under the null hypothesis of no cointegration; alternative hypothesis is one-sided.

Lastly, for the population growth rate ln(nit + g + δ), the Im et al. (2003) test rejects non-

stationarity for both level and first-difference when no region-specific trends are included.

With trends, there is some evidence of nonstationarity at lag lengths two and three. How-

ever, European population levels over the last three decades have clearly not evolved in a

way that would be consistent with a unit root in the population growth rate. We therefore

treat ln(nit + g + δ) as stationary or I(0).
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For all variables, we also carried out Pesaran’s (2007) unit root test for cross-sectionally

dependent data, which mostly confirms our conclusions from the Im et al. (2003) test. The

results are given in Table C.1 in the Appendix.

Given the evidence for I(1) behaviour in ln ỹit and ln s̃it presented in Panel A of Table

1, Panel B reports results of the Pedroni (1999, 2004) test for cointegration between the two

variables. This test is applied to the residuals of region-specific cointegrating regressions,

thereby allowing for heterogeneity in the long-run cointegrating relationships between ln ỹit

and ln s̃it. The group ADF statistic further allows for heterogeneous coefficients in the ADF

regressions, while the panel ADF statistic is based on a pooled specification.

The group ADF statistic rejects the null hypothesis of no cointegration, both with and

without region-specific time trends, at almost all lag lengths. At lag three, the panel ADF

statistic also rejects at the 5% level for both versions of the test. Since this is the relevant

lag length for us, we assume that ln ỹit and ln s̃it are cointegrated for the remainder of this

paper. We note however that the panel ADF statistic provides less evidence of cointegration

in the model with trends at shorter lag lengths.

Finally, Table C.2 in the Appendix contains the results of Pesaran’s (2004) CD test for

cross-section dependence applied to each of the series used in estimation. The test statistic

is based on the pairwise correlation coefficients between the regional observations at each

point in time. For five-yearly and annual data, the CD test provides significant evidence of

cross-section dependence for all variables (panels A and B). For annual data in deviations

from cross-section averages in panel C, this is the case only for some series.

6 Estimation Results and Discussion:

We begin our empirical analysis with equation (9), where all parameters except region-

specific fixed effects are assumed to be homogeneous across regions. Table 2 presents the

results of estimating this model using conventional pooled estimators based on data at five-

year intervals. For ease of comparison with the annual results below, we report results for

equation (9) parameterised with ∆ ln yit as the dependent variable, so that the coefficient

on ln yi,t−1 given in the table is (γ̂ − 1). A full set of time dummies is included to account

for the unobserved common time effects ηt.

The pooled OLS specification in column (i) does not appear to lend much support

to the Mankiw et al. (1992) model, since only the estimated coefficient on the lagged

dependent variable is significantly different from zero. The size of this estimate implies

that convergence - which occurs at a common speed to region-specific but parallel steady-

state income growth paths in the context of equation (9) - takes place across regions at

the slow rate of 1% per year. The associated half-life of convergence, which measures the

time required to close half of the gap to the steady state, is 69.8 years.21 The finding of
21The annual speed of convergence is computed as β̂ = −(ln γ̂)/5; the half-life of convergence is (ln 2)/β̂.
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slow convergence when using pooled OLS is consistent with the results of both country-

and region-level studies reviewed in section 2 (Islam 1995; Badinger et al. 2004). If there

are important unobserved region-specific effects however, the OLS estimate of (γ − 1) in

column (i) is likely to be biased upwards towards zero, so that the speed of convergence

may be underestimated.

The within-groups results in column (ii) differ markedly from OLS, which suggests that

allowing for region-specific fixed effects matters. The WG results are also more promising

for the MRW model. All coefficients are highly significant and have the expected signs.

θ̂1 and θ̂2 are not significantly different in absolute value, as the model would predict.22

However, at 0.154, the implied elasticity of output with respect to capital α̂ is only half

its usual size found from macroeconomic data on factor income shares (0.33). The long-

run elasticities of per-capita income with respect to investment and population growth are

denoted by LR ln sit and LR ln(nit + g + δ) in the table:23 our estimates indicate that

a permanent increase in the rate of investment by 1% raises the long-run level of income

per capita for the average region by about 0.18%, while an equal increase in the rate of

population growth lowers it by 0.26%. The first of these numbers is considerably lower

than the value of 0.5 that would be consistent with the MRW model if our estimate of α

were equal to 0.33. The speed of convergence implied by the WG estimate of (γ −1), 11.7%

per annum, is much higher than the corresponding OLS estimate, a finding that is again

in line with other empirical studies both at the level of countries and EU regions. At a

convergence speed of 11.7%, the half-life amounts to just 5.9 years. The large discrepancy

between the OLS and WG estimates of (γ − 1) could however reflect the likely downward

bias in the WG estimate, towards −1, so that β may be overestimated.

Arellano and Bond’s (1991) tests of serial correlation, AB-AR(1) and AB-AR(2), in-

dicate significant second-order serial correlation in the residuals of both OLS and within-

groups specifications in columns (i) and (ii). There is also some evidence of first-order

serial correlation for WG but none for OLS.24 Since both OLS and WG estimators are

likely to be biased, diagnostic tests on the residuals in columns (i) and (ii) need not be

reliable.

The first-differenced and system-GMM results in columns (iii) and (v) make use of

all available lagged levels, dated t − 2 and earlier, of ln yit, ln sit and ln(nit + g + δ) as

instruments for the first-differenced equations.25 That is, we treat both the saving rate

22A t-test of the null hypothesis θ̂1 = −θ̂2 produces a p-value of 0.390.
23The implied capital elasticity is computed according to α̂ = θ̂1/(1− γ̂ + θ̂1), and the long-run coefficient

on investment is calculated as θ̂1/(1− γ̂). Standard errors for α̂, β̂ and the long-run coefficients are obtained
using the delta method.

24Given that the OLS estimator does not account for the region-specific fixed effects µi, significant serial
correlation in the OLS residuals may be expected. For within groups however, the tests are obtained from
its least-squares dummy-variables variant and are thus carried out on vit, which we would hope to be serially
uncorrelated.

25All GMM estimators are implemented as two-step estimators with standard errors corrected for small-
sample bias as suggested by Windmeijer (2005). The GMM estimates in this paper are computed using
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and the population growth rate as potentially endogenous variables. In columns (iv) and

(vi), we use only levels dated t − 3 and earlier as a robustness check. Overall, the GMM

Table 2: Pooled MRW Model Estimates - Model (9) using Five-Yearly Data

Dependent variable: (i) (ii) (iii) (iv) (v) (vi)
∆ ln yit POLS WG FD-GMM FD-GMM S-GMM S-GMM
FD IV-set first lag: t − 2 t − 3 t − 2 t − 3
ln yi,t−1 -0.049∗∗∗ -0.443∗∗∗ -0.211∗ -0.384 -0.089∗∗∗ -0.207∗∗∗

(0.010) (0.061) (0.114) (0.273) (0.031) (0.061)

ln sit -0.016 0.080∗∗∗ 0.110∗ 0.392∗ 0.080∗∗ -0.127
(0.015) (0.019) (0.056) (0.234) (0.034) (0.083)

ln(nit + g + δ) -0.011 -0.116∗∗∗ -0.292∗∗∗ -0.711∗ -0.117 0.172
(0.036) (0.039) (0.087) (0.425) (0.103) (0.193)

Implied β̂ 0.010∗∗∗ 0.117∗∗∗ 0.047 0.097 0.019∗∗∗ 0.047∗∗∗

(0.002) (0.022) (0.029) (0.089) (0.007) (0.015)

Implied α̂ -0.492 0.154∗∗∗ 0.342∗∗∗ 0.505∗∗∗ 0.475∗∗∗ -1.572
(0.675) (0.038) (0.112) (0.155) (0.151) (2.034)

LR ln sit -0.330 0.181∗∗∗ 0.520∗∗∗ 1.020 0.903∗ -0.611∗∗

(0.303) (0.053) (0.258) (0.633) (0.548) (0.307)

LR ln(nit + g + δ) -0.216 -0.262∗∗∗ -1.385 -1.852 -1.315 0.831
(0.741) (0.087) (0.873) (1.541) (1.369) (0.818)

AB-AR(1) 1.35 -1.82 -4.77 -2.76 -6.30 -5.80
(0.178) (0.069) (0.000) (0.006) (0.000) (0.000)

AB-AR(2) 2.09 -3.55 1.15 -0.57 1.58 1.26
(0.037) (0.000) (0.249) (0.568) (0.113) (0.207)

Hansen J 55.92 34.18 84.30 43.92
(0.000) (0.000) (0.000) (0.000)

Dif-Hansen 35.28 17.04
(0.000) (0.017)

Time Dummies Yes Yes Yes Yes Yes Yes
Observations 965 965 772 772 965 965
Number of Regions 193 193 193 193 193 193
Number of Instruments 26 16 37 24

Notes: Standard errors, reported in parentheses, are robust to heteroskedasticity and serial correlation; for
POLS and WG, they are Huber-White standard errors clustered on regions; GMM estimators are two-step es-
timators with standard errors corrected for small-sample bias as suggested by Windmeijer (2005); ∗∗∗, ∗∗, and
∗ indicate significance at 1%, 5% and 10% levels; AB-AR(1) and AB-AR(2) are Arellano and Bond’s (1991)
tests of first- and second-order residual serial correlation, asymptotically standard normal under the null of
no serial correlation, p-values in parentheses; Hansen J and Dif-Hansen are the Hansen (1982) and Difference
Hansen tests of m overidentifying restrictions, asymptotically χ2(m) under the null that the overidentifying
restrictions are valid, p-values in parentheses.

Roodman’s (2009) xtabond2 command for Stata.
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estimators using lags t − 2 and earlier perform better, and the parameter estimates in

column (iii) are quite sensible. The AB-AR tests in columns (iii) to (vi) provide strong

evidence of first- but not of second-order residual autocorrelation. While negative first-

order serial correlation is to be expected in the residuals of the first-differenced equations,

the absence of significant second-order residual autocorrelation is consistent with serially

uncorrelated vit, a condition for instrument validity in FD- and S-GMM. However, the

Hansen and Difference Hansen tests in all columns reject the null hypothesis that the

instruments are valid. One reason for this may be that the restriction of homogeneous

parameters imposed by the pooled panel data estimators does not hold, as noted in section

4.2. Examining the validity of instrument subsets by individual variables and lag length

did not reveal a solution to the problem, so that the GMM results must be interpreted

with caution.

The FD-GMM parameter estimates in column (iii) improve in some respects compared

to the WG results. The capital elasticity α̂ is now very close to the value for capital’s share

in income generally found from data on factor income shares. (γ̂ − 1) lies approximately in

the middle between the OLS and WG point estimates, which is reassuring given the likely

direction of bias in these estimators; it could be that any downward bias arising from weak

instruments in the FD-GMM estimate of (γ −1) is at least partly offset by upward bias due

to invalid instruments. The implied speed of convergence of 4.7% per year is marginally

significant at the 10.3% level, and the long-run effect on per-capita income of a 1% increase

in the investment rate rises to 0.5%, as the MRW model would imply given our estimate

of α. However, the standard errors of the short-run coefficients have increased, so that the

long-run effects are not very precisely estimated. There is also some indication that θ̂1 and

θ̂2 are not equal in absolute value: a t-test rejects this hypothesis with a p-value of 0.059.

To investigate further the problem with instrument validity highlighted by the Hansen

test, we re-estimated column (iii) using different instrument subsets by variables and lag

length, albeit unsuccessfully. In column (iv), we report FD-GMM results using only lagged

levels dated t − 3 and earlier as instruments, which the Hansen test still rejects. Moreover,

most coefficients are now very imprecisely estimated, and (γ̂ − 1) is lower than in column

(iii) and closer to the WG estimate in column (ii). Both these factors could indicate weak

instruments, and we found that restricting the instrument set to even longer lags tended

to amplify this problem without yielding significant improvements in validity.

In column (v), the S-GMM estimate of (γ − 1) is higher than for WG and FD-GMM

and closer to the OLS estimate in column (i). Since the Hansen test continues to reject the

validity of our instrument set for the first-differenced equations, and the Difference Hansen

test suggests that the additional instruments for the levels equations are also invalid, we

have reason to suspect that this may reflect upward bias in (γ̂ − 1). The implied estimates

of α and the long-run coefficient on investment which, at 0.475 and 0.903 respectively,

appear unreasonably high, are consistent with this suspicion.
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In column (vi), excluding instruments dated t − 2 and t − 1 from the instrument sets

for the first-differenced and the levels equations respectively improves overall instrument

validity only very marginally. The Hansen test rejects the null hypothesis at the 1% level

as in the previous columns, and the Difference Hansen test rejects at the 5% level. In

addition, while θ̂1 and θ̂2 switch signs but are insignificant, the long-run coefficient on the

investment rate is negative and significant, which runs counter to the prediction of the

Solow model.

Overall, all estimators available when using data at five-year intervals seem subject to

considerable bias, so that in this framework, we cannot hope to obtain reliable estimates

of the structural and long-run coefficients implied by the MRW model for our sample of

EU regions. In particular, the assumption of homogeneous slope coefficients underlying

the pooled estimators could be behind the problems with instrument validity in FD- and

S-GMM. Therefore, we now turn to annual data, which allows us to investigate parameter

heterogeneity and cross-section dependence.

In equation (12), all parameters except that on the unobserved common time effect ηt

are free to differ across regions. Before estimating this model by means of separate time-

series regressions for each region, in Table 3 we first present results obtained using pooled

annual data. This intermediate step provides a benchmark against which the effects of

allowing all parameters to vary across regions can be evaluated. For comparability with

the region-specific models estimated by MG and CCEMG later on, where each individual

regression contains a region-specific intercept, we include a full set of region dummies in

Table 3. Considering constraints on degrees of freedom in the region-specific regressions, we

aim for parsimony in the dynamics of equation (12) and thus set the maximum lag length

p equal to three. The coefficient on ln ỹi,t−3 reported in Table 3 is therefore (γ̂1 + γ̂2 + γ̂3 −

1), and all data are measured in deviations from cross-section averages to control for ηt.

In terms of estimation, we pursue a general-to-specific strategy eliminating insignificant

variables one at a time to arrive at a parsimonious specification. Since the GMM results

in Table 2 were broadly similar when treating sit and nit as predetermined rather than

endogenous, we employ OLS to estimate the pooled annual model. Eliminating insignificant

lags also leaves us with a specification that involves no levels dated t of the investment

rate, thus reducing simultaneity concerns for this variable.

Column (i) of Table 3 contains estimates for the full model (12). Dropping statistically

insignificant lags yields the results in column (ii). Given these, we impose the restriction

in column (iii) that the coefficients on all included first-differences of ln(ñi,t +g +δ) and its

lags are equal, which minimises the number of explanatory variables and provides the basis

for the region-specific regressions below. An F-test of the restriction, shown in column (ii),

indicates that it cannot be rejected.

Across all specifications, the estimated coefficients on the lagged levels dated t − 3

are highly significant and have the signs that the MRW model predicts. The coefficient
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on ln ỹi,t−3 implies a speed of adjustment - which, given that we impose homogeneous

coefficients on model (12) in Table 3, is still common across regions and occurs to region-

specific but parallel steady-state income growth paths - of 11.2% per year.26 This estimate

is very similar to the WG estimate of 11.7% that we found in Table 2 based on five-yearly

data. If model parameters are heterogeneous across regions however, it may be biased

downwards.

Table 3: Pooled MRW Model Estimates
Model (12) with Homogeneous Coefficients using Annual Data

Dependent variable: (i) (ii) (iii)
∆ ln ỹit LSDV LSDV LSDV

Unrestricted Parsimonious Restricted
coeff. (s.e.) coeff. (s.e.) coeff. (s.e.)

∆ ln ỹi,t−1 -0.006 (0.032)

∆ ln ỹi,t−2 -0.121∗∗∗ (0.044) -0.121∗∗∗ (0.044) -0.122∗∗∗ (0.043)

ln ỹi,t−3 -0.106∗∗∗ (0.023) -0.106∗∗∗ (0.022) -0.106∗∗∗ (0.022)

∆ ln s̃it -0.002 (0.011)

∆ ln s̃i,t−1 0.021∗∗∗ (0.007) 0.020∗∗∗ (0.007) 0.020∗∗∗ (0.007)

∆ ln s̃i,t−2 0.008 (0.008)

ln s̃i,t−3 0.014∗∗∗ (0.005) 0.013∗∗∗ (0.005) 0.013∗∗∗ (0.005)

∆ ln(ñit + g + δ) -0.022∗∗∗ (0.004) -0.022∗∗∗ (0.004) }
-0.022∗∗∗ (0.004)∆ ln(ñi,t−1 + g + δ) -0.022∗∗∗ (0.004) -0.023∗∗∗ (0.004)

∆ ln(ñi,t−2 + g + δ) -0.022∗∗∗ (0.005) -0.022∗∗∗ (0.005)

ln(ñi,t−3 + g + δ) -0.035∗∗∗ (0.005) -0.035∗∗∗ (0.004) -0.035∗∗∗ (0.004)

Implied β̂ 0.112∗∗∗ (0.026) 0.112∗∗∗ (0.024) 0.112∗∗∗ (0.024)

Implied α̂ 0.117∗∗∗ (0.041) 0.107∗∗∗ (0.036) 0.107∗∗∗ (0.036)

LR ln sit 0.132∗∗ (0.052) 0.119∗∗∗ (0.045) 0.120∗∗∗ (0.045)

LR ln(nit + g + δ) -0.325∗∗∗ (0.075) -0.327∗∗∗ (0.075) -0.330∗∗∗ (0.073)

F-Test Restriction 0.02 (0.979)

AB-AR(1) -0.99 (0.324) -0.15 (0.878) -0.15 (0.879)
AB-AR(2) -0.93 (0.351) -0.98 (0.328) -0.97 (0.333)

CD Test -0.10 (0.917) -0.15 (0.879) -0.15 (0.879)

Region Dummies Yes Yes Yes
Observations 4246 4246 4246
Number of Regions 193 193 193

Notes: Standard errors, reported in parentheses, are robust to heteroskedasticity and serial correlation
(Huber-White standard errors clustered on regions); CD is the Pesaran (2004) test for cross-section
dependence in the model residuals, asymptotically standard normal under the null hypothesis of no
cross-section dependence, p-values in parentheses.

26The annual speed of adjustment is computed from the coefficient on ln ỹi,t−3 as β̂ = − ln(γ̂1 + γ̂2 + γ̂3).
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The coefficients on ln s̃i,t−3 and ln(ñi,t−3 + g + δ) differ significantly in size: in every

column, a t-test rejects their equality in absolute value at the 1% level. Moreover, the

point estimates of α and the long-run effect of investment in columns (ii) and (iii), 0.107

and about 0.12, are even lower than the corresponding WG estimates in Table 2, which are

themselves only half the size suggested by MRW. On the other hand, the long-run coefficient

on the population growth rate, about -0.33, is larger in absolute value and more precisely

estimated than in Table 2. From the AB-AR and CD tests, there is no evidence that the

residuals in Table 3 are serially correlated or cross-sectionally dependent. Demeaning the

annual data therefore seems to capture any cross-sectional dependence present. Overall

however, it seems that moving from pooled five-yearly to pooled annual data does little to

improve the fit of the Solow model to our EU regional data.

In Table 4, we turn to the results of estimating equations (12) and (14) by means of

separate time-series regressions for each region. For this purpose, we use the restricted

specification in column (iii) of Table 3 and focus on the lagged levels dated t − 3 of each

variable as well as on the implied structural and long-run parameters. For each coefficient,

we report its mean, the standard error of the mean, and the median across the region-

specific regression estimates, where the mean is an estimate that is robust to outliers.27

For the MG estimator, we present results for two different ways of controlling for the

unobserved common time effects ηt. In column (i), we use data in deviations from cross-

section averages, which allows for an unconstrained, possibly nonlinear, evolution of the

unobservable factors over time but restricts their impact to be identical across regions. As

an alternative and a transition to CCEMG, in column (ii) we use the original data but

add linear trends to the region-specific regressions. Thus the unobservables may differ in

impact across regions but are constrained to evolve linearly. Column (iii) presents the

CCEMG results - also based on the original, untransformed data - and in the final column,

we include region-specific trends in CCEMG estimation.

On the whole, the MG estimator based on demeaned data in column (i) appears to

be most successful at identifying the model coefficients in Table 4. The estimated mean

coefficient on ln yi,t−3 lies below its pooled counterpart in the previous table and implies

that on average, regions adjust to their (still parallel) long-run income growth paths at

a rate of almost 22% per year. Put differently, the regions are able to close half of the

gap to their steady-state paths in just 3.2 years. Allowing for heterogeneous coefficients

across regions thus yields a much higher average speed of adjustment than the pooled

estimators in Tables 2 and 3, which is consistent with important regional differences in this

parameter. This finding is also in line with the existing regional studies that have allowed

for heterogeneous speeds of adjustment in univariate models, Meliciani and Peracchi (2006)

27The robust estimate of the mean is obtained from a robust regression of the 193 region-specific coefficient
estimates on a constant only, using the rreg command in Stata. The standard error of the robust mean is
then computed using the observation-specific weights (with outliers downweighted) generated by rreg.
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and Canova and Marcet (1995).

Table 4: Heterogeneous MRW Model Estimates
Restricted Models (12) and (14) using Annual Data

Dependent variable: (i) (ii) (iii) (iv)
∆ ln yit MG MG CCEMG CCEMG

Demeaned +Trends +Trends
ln yi,t−3 Mean -0.195∗∗∗ -0.304∗∗∗ -0.253∗∗∗ -0.324∗∗∗

(0.026) (0.029) (0.033) (0.034)
Median -0.194 -0.315 -0.253 -0.321

ln si,t−3 Mean 0.017 -0.027 0.003 -0.007
(0.017) (0.020) (0.022) (0.022)

Median 0.017 -0.026 0.003 -0.004

ln(ni,t−3 + g + δ) Mean -0.018 -0.026 -0.013 0.007
(0.019) (0.020) (0.021) (0.021)

Median -0.013 -0.017 -0.012 0.002

Implied β̂ Mean 0.217∗∗∗ 0.363∗∗∗ 0.292∗∗∗ 0.391∗∗∗

(0.027) (0.031) (0.035) (0.043)
Median 0.216 0.378 0.291 0.390

Implied α̂ Mean 0.159∗∗∗ 0.051 0.115∗∗ 0.079
(0.036) (0.032) (0.057) (0.085)

Median 0.159 0.023 0.099 0.058

LR ln sit Mean 0.120∗∗ -0.038 0.016 -0.005
(0.057) (0.039) (0.077) (0.072)

Median 0.099 -0.003 0.020 -0.015

LR ln(nit + g + δ) Mean -0.087 -0.021 -0.007 0.029
(0.059) (0.107) (0.059) (0.059)

Median -0.054 -0.008 -0.028 0.017

CD Test 0.72 (0.472) 72.26 (0.000) -0.12 (0.906) -1.28 (0.201)

Observations 4246 4246 4246 4246
Number of Regions 193 193 193 193

Notes: Outlier-robust means reported; standard errors of robust means in parentheses; standard
errors are also robust to heteroskedasticity and autocorrelation.
The specifications in columns (i) and (ii) also include the following explanatory variables:
∆ ln yi,t−2, ∆ ln si,t−1 and Σ2

q=0∆ ln(ni,t−q + g + δ).
The specifications in columns (iii) and (iv) also include the following explanatory variables:
∆ ln yi,t−2, ∆ ln si,t−1 and Σ2

q=0∆ ln(ni,t−q +g +δ); in addition, they include the sample means of
these variables, of ln yi,t−3, ln si,t−3 and ln(ni,t−3 + g + δ), and of the dependent variable ∆ ln yit.

The other average short-run coefficients in column (i) are not significantly different from

zero, a feature that recurs in the remaining columns of the table and is not entirely surpris-

ing given that at most 25 time-series observations are used in the region-specific regressions.

The long-run coefficient on population growth is also insignificant throughout. However,

the average estimates of α and the long-run coefficient on investment in column (i) are
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significant, positive and quite similar to the pooled WG and LSDV estimates in Tables 2

and 3.28 The CD test detects no evidence of residual cross-section dependence.

In column (ii) by contrast, the CD test clearly indicates that introducing region-specific

trends instead of demeaning does not adequately capture the cross-section dependence in

the data. The average speed of adjustment increases to 36% but none of the other implied

and long-run parameters are significant. Given the evidence for residual cross-section

dependence, we do not regard these results as very reliable.

The CCEMG estimator in column (iii) allows for unobservable common time effects

that may both be nonlinear and heterogeneous in their regional impact. From the CD

test, this strategy indeed seems to deal with cross-section dependence quite comprehen-

sively. Compared to column (i), the smaller mean coefficient on ln ỹi,t−3 raises the implied

average speed of adjustment further, to almost 30% per year. At this rate, the half-life

of convergence is only 2.4 years. This may be explained by the fact that conceptually, all

homogeneity constraints on regional long-run adjustment processes have been eliminated:

steady-state income paths may evolve at region-specific growth rates over time and may

even diverge.

The average short-run coefficients in column (iii) are very small, and of the implied

and long-run coefficients, only the output elasticity with respect to capital is significant

although it is also rather small. It should be borne in mind however that the number of

explanatory variables in the region-specific regressions underlying column (iii) is 13 due to

the inclusion of cross-section average terms for CCEMG estimation. Identifying individual

coefficients may thus be quite challenging given our moderate time dimension. In column

(iv), the addition of region-specific linear trends does not produce a well-specified model,

as both average short- and long-run effects of investment and population growth switch

signs and appear to be dominated by the autoregressive income process. Moreover, the

CD test statistic has increased in absolute value compared to the previous column.

Overall, our preferred results in Table 4 are those in column (i), given that MG based

on demeaned data leaves no cross-section dependence in the residuals and the results are

the most informative about the role played by investment and population growth in driving

regional long-run income levels.

In summary, throughout our empirical analysis in this paper, we have found the role of

investment to be positive and statistically significant but generally smaller than predicted

by the MRW model together with macroeconomic data on factor shares. From the pooled

fixed-effects results in Tables 2 and 3 to the region-specific mean-group estimates in Table

4, the output elasticity of capital α lies between 0.107 and 0.159, which is substantially

lower than the 0.33 we would expect. The long-run effect of a 1% increase in investment

28The estimates of the implied structural and long-run parameters in Table 4 are obtained as nonlinear
combinations of the estimated coefficients on ln yi,t−3 and ln si,t−3. These nonlinear combinations are
constructed separately for each region and then averaged over all regions. See the discussion between
equations (11) and (12) for the formulae of the region-specific implied parameters.
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on income ranges between approximately 0.12% and 0.18%, which is also smaller than

expected. The only exception are the first-differenced GMM estimates in Table 2, which

are much more consistent with the Solow model but should not be overemphasised because

of the evidence of invalid instruments. The prediction that the short-run coefficients on

investment and population growth should be equal in magnitude but opposite in sign is

only found to hold in the within-groups estimates of the pooled model for five-year periods

(Table 2, column ii). The long-run effect of a 1% increase in population growth, where

significant, lies between -0.26% and -0.33%.

One implication of these results is that factors other than capital accumulation and

population growth need to be considered to explain the evolution of regional incomes

across the EU-15 since 1980. In Vogel (2013), we examine the role of human capital and

research and development, which are emphasised by endogenous growth theories.

Regarding the speed of convergence to the steady state, an issue that has attracted much

attention in research on EU regional growth, we find that it occurs at a speed of about

11% as long as only long-run income levels are free to differ between regions. Allowing

the speed of adjustment itself to be heterogeneous while maintaining the assumption of a

common long-run growth rate raises its average value across regions to 22%. This figure

suggests that the speed of adjustment may have been substantially underestimated in the

empirical literature using pooled panel data estimators, which impose homogeneity in slope

coefficients across regions. In our view, allowing for region-specific speeds of adjustment

is therefore an important and sensible extension to allowing for region-specific long-run

income levels only, as is currently common practise.

7 Conclusion:

Observed patterns of regional economic development across the European Union since the

1980s suggest that regional growth processes are characterised by substantial heterogeneity.

The existing empirical literature on European regional growth has so far not emphasised

heterogeneity in estimated regression coefficients, although it has been shown that ignoring

this may lead to bias (Pesaran and Smith 1995). In this paper, we contribute to the

literature by investigating the effects of allowing for heterogeneous slope coefficients in the

model of Mankiw et al. (1992), using panel data for 193 EU-15 regions from 1980 to 2005.

Similar to previous studies, we first use pooled panel data estimators, based on data

at five-year intervals, restricting all slope coefficients to be homogeneous across regions.

Then we relax this restriction and estimate separate time-series models for each region,

based on annual data, using Pesaran and Smith’s (1995) mean group estimator. To address

possible spatial correlation in our data, we employ the common correlated effects approach

of Pesaran (2006).
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Our empirical analysis indicates important differences across regions in the speed of

adjustment to region-specific long-run paths for the level of income per capita. Restricting

this parameter to be homogeneous results in an estimate of 11% per year, while allowing for

heterogeneity raises it to 22% per year on average across regions. This finding is consistent

with previous studies at the EU regional level, which have not considered heterogeneity in

the effect of additional explanatory variables.

Throughout most of our empirical analysis, we find a positive and statistically signifi-

cant coefficient on the rate of investment. The size of the implied elasticity of output with

respect to capital is fairly robust across pooled and heterogeneous panel estimators and

lies between 0.107 and 0.159. We thus find this parameter to be at most half as large as

the value of 0.33 implied by the Mankiw et al. (1992) model together with macroeconomic

data on factor income shares. Our preferred mean-group estimate of the long-run elasticity

of per-capita income with respect to investment is, at 0.12%, also smaller than what the

Mankiw et al. (1992) model would predict. We find less robust evidence regarding the

effect of population growth on long-run income levels. Only the pooled estimators indicate

a significant long-run elasticity, which ranges between -0.26% and -0.33%.

Overall, this paper highlights the importance of allowing for heterogeneous parameters

in empirical growth models. We illustrate this with our finding that regions’ average speed

of adjustment to their long-run paths for the level of income per capita doubles when con-

sidering heterogeneity in this parameter compared to the case where only long-run income

levels are allowed to differ between regions. Therefore, the empirical literature on regional

income convergence, which predominantly considers the latter case, may substantially un-

derestimate regional speeds of adjustment to equilibrium.
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Appendices

A List of Regions

Country Code Region Name Country Code Region Name

Austria AT11 Burgenland France FR51 Loire Counties
AT12 Lower Austria FR52 Brittany
AT13 Vienna FR53 Poitou-Charentes
AT21 Carinthia FR61 Aquitaine
AT22 Styria FR62 South Pyrenées
AT31 Upper Austria FR63 Limousin
AT32 Salzburg FR71 Rhône-Alpes
AT33 Tyrol FR72 Auvergne
AT34 Vorarlberg FR81 Languedoc-Roussillion

FR82 Provence-Alpes-Côte d’Azur
Belgium BE10 Brussels FR83 Corsica

BE21 Antwerp
BE22 Limburg Germany DE11 Stuttgart
BE23 East Flanders DE12 Karlsruhe
BE24 Flemish Brabant DE13 Freiburg
BE25 West Flanders DE14 Tübingen
BE31 Walloon Brabant DE21 Upper Bavaria
BE32 Hainault DE22 Lower Bavaria
BE33 Liège DE23 Upper Palatinate
BE24 Luxembourg (BE) DE24 Upper Franconia
BE25 Namur DE25 Middle Franconia

DE26 Lower Franconia
Denmark DK01 Capital Region DE27 Swabia

DK02 East of the Great Belt DE50 Bremen
DK03 West of the Great Belt DE60 Hamburg

DE71 Darmstadt
Finland FI13 East Finland DE72 Gießen

FI18 South Finland DE73 Kassel
FI19 West Finland DE91 Braunschweig
FI1A North Finland DE92 Hannover
FI20 Åland Islands DE93 Lunenburg

DE94 Weser-Ems
France FR10 Île de France DEA1 Düsseldorf

FR21 Champagne-Ardenne DEA2 Cologne
FR22 Picardy DEA3 Münster
FR23 Upper Normandy DEA4 Detmold
FR24 Centre DEA5 Arnsberg
FR25 Lower Normandy DEB1 Koblenz
FR26 Burgundy DEB2 Trier
FR30 North-Pas de Calais DEB3 Rhine-Hesse-Palatinate
FR41 Lorraine DEC0 Saarland
FR42 Alsace DEF0 Schleswig-Holstein
FR43 Franche-Comté
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Country Code Region Name Country Code Region Name

Greece GR11 East Macedonia Netherlands NL34 Zeeland
GR12 Central Macedonia NL41 North Brabant
GR13 West Macedonia NL42 Limburg
GR14 Thessaly
GR21 Epirus Portugal PT11 North
GR22 Ionian Islands PT15 Algarve
GR23 West Greece PT16 Centre
GR24 Central Greece PT17 Lisbon
GR25 Peloponnese PT18 Alentejo
GR30 Attica
GR41 North Aegean Spain ES11 Galicia
GR42 South Aegean ES12 Principality of Asturias
GR42 Crete ES13 Cantabria

ES21 Basque Country
Ireland IE01 Border, Midlands ES22 Navarre

and Western ES23 La Rioja
IE02 Southern and Eastern ES24 Aragón

ES30 Community of Madrid
Italy ITC1 Piedmont ES41 Castile and León

ITC2 Aosta Valley ES42 Castile-La Mancha
ITC3 Liguria ES43 Extremadura
ITC4 Lombardy ES51 Catalonia
ITD1 Bolzano-Bozen ES52 Community of Valencia
ITD2 Trento ES53 Balearic Islands
ITD3 Veneto ES61 Andalusia
ITD4 Friuli-Venezia Giulia ES62 Region of Murcia
ITD5 Emilia-Romagna
ITE1 Tuscany Sweden SE01 Stockholm
ITE2 Umbria SE02 Eastern Central Sweden
ITE3 Marche SE04 South Sweden
ITE4 Latium SE06 Northern Central Sweden
ITF1 Abruzzo SE07 Central Norrland
ITF2 Molise SE08 Upper Norrland
ITF3 Campania SE09 Småland and Islands
ITF4 Apulia SE0A West Sweden
ITF5 Basilicata
ITF6 Calabria UK UKC1 Tees Valley and Durham
ITG1 Sicily UKC2 Northumberland and
ITG2 Sardinia Tyne and Wear

UKD1 Cumbria
Luxembourg LU00 Luxembourg UKD2 Cheshire

UKD3 Greater Manchester
Netherlands NL12 Friesland UKD4 Lancashire

NL13 Drenthe UKD5 Merseyside
NL21 Overijssel UKE1 East Riding and
NL22 Gelderland North Lincolnshire
NL31 Utrecht UKE2 North Yorkshire
NL32 North Holland UKE3 South Yorkshire
NL33 South Holland UKE4 West Yorkshire
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Country Code Region Name Country Code Region Name

UK UKF1 Derbyshire and UK UKJ1 Berkshire, Buckinghamshire
Nottinghamshire and Oxfordshire

UKF2 Leicestershire, Rutland UKJ2 Surrey, East and West Sussex
and Northamptonshire UKJ3 Hampshire and Isle of Wight

UKF3 Lincolnshire UKJ4 Kent
UKG1 Herefordshire, UKK1 Gloucestershire, Wiltshire

Worcestershire and and North Somerset
Warwickshire UKK2 Dorset and Somerset

UKG2 Shropshire and Staffordshire UKK3 Cornwall and Isles of Scilly
UKG3 West Midlands UKK4 Devon
UKH1 East Anglia UKL1 West Wales and The Valleys
UKH2 Bedfordshire and UKL2 East Wales

Hertfordshire UKM1 North Eastern Scotland
UKH3 Essex UKM2 Eastern Scotland
UKI1 Inner London UKM3 South Western Scotland
UKI2 Outer London UKM4 Highlands and Islands

UKN0 Northern Ireland

NUTS version: 2003.
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B Summary Statistics

Table B.1: Summary Statistics

Variable Mean Std. Dev. Min. Max. Observations
yit overall 16,536 5,161 5,871 54,367 N = 5018

between 4,468 8,293 38,505 n = 193
within 2,601 2,066 32,406 T = 26

∆ ln yit overall 0.018 0.029 -0.159 0.479 N = 4825
between 0.007 0.001 0.054 n = 193
within 0.027 -0.162 0.476 T = 25

sit overall 0.223 0.047 0.088 0.500 N = 5018
between 0.037 0.151 0.327 n = 193
within 0.030 0.023 0.431 T = 26

nit overall 0.004 0.006 -0.046 0.060 N = 4825
between 0.003 -0.006 0.015 n = 193
within 0.005 -0.052 0.061 T = 25

Table B.2: Correlation Matrix

Panel A: Five-Yearly Data

∆ ln yit ln yi,t−1 ln sit ln(nit + g + δ)
∆ ln yit 1
ln yi,t−1 -0.1889∗∗∗ 1
ln sit 0.0475 -0.1793∗∗∗ 1
ln(nit + g + δ) -0.0774∗∗ 0.1130∗∗∗ 0.1496∗∗∗ 1

Panel B: Annual Data

∆ ln yit ln yi,t−1 ln sit ln(nit + g + δ)
∆ ln yit 1
ln yi,t−1 -0.0708∗∗∗ 1
ln sit 0.0126 -0.1538∗∗∗ 1
ln(nit + g + δ) -0.1313∗∗∗ 0.0997∗∗∗ 0.0705∗∗∗ 1

Panel C: Annual Data, Cross-Sectionally Demeaned

∆ ln ỹit ln ỹi,t−1 ln s̃it ln(ñit + g + δ)
∆ ln ỹit 1
ln ỹi,t−1 -0.0861∗∗∗ 1
ln s̃it -0.0187 -0.1759∗∗∗ 1
ln(ñit + g + δ) -0.1072∗∗∗ 0.0667∗∗∗ 0.0754∗∗∗ 1

Notes: ∗∗∗ and ∗∗ indicate significance at the 1% and 5% levels respectively.
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C Data Properties

Table C.1: Pesaran (2007) Test for Unit Roots under Cross-Section Dependence

Constant Constant and trend
lags ln yit ln sit ln(ni,t+g+δ) ln yit ln sit ln(ni,t+g+δ)
0 0.17 (0.57) 4.63 (1.00) -15.02 (0.00) 3.57 (1.00) -5.15 (0.00) -14.43 (0.00)
1 -1.47 (0.93) 6.26 (1.00) -4.89 (0.00) 5.92 (1.00) -1.76 (0.04) -4.40 (0.00)
2 5.00 (1.00) 9.71 (1.00) 2.51 (0.99) 9.90 (1.00) 2.89 (0.99) 3.27 (0.99)
3 8.05 (1.00) 11.41 (1.00) 9.29 (1.00) 14.40 (1.00) -8.39 (1.00) 11.48 (1.00)

Constant Constant and trend
lags ∆ ln yit ∆ ln sit ∆ln(ni,t+g+δ) ∆ ln yit ∆ ln sit ∆ln(ni,t+g+δ)
0 -36.97 (0.00) -46.89 (0.00) -52.03 (0.00) -33.07 (0.00) -40.71 (0.00) -48.44 (0.00)
1 -20.34 (0.00) -26.66 (0.00) -32.72 (0.00) -16.79 (0.00) -20.65 (0.00) -28.05 (0.00)
2 -8.95 (0.00) -15.65 (0.00) -19.43 (0.00) -5.64 (0.00) -9.26 (0.00) -15.50 (0.00)
3 -2.49 (0.00) -6.54 (0.00) -4.58 (0.00) -0.60 (0.28) -1.04 (0.15) -2.70 (0.00)

Notes: Z-statistic reported, p-values in parentheses; Z statistic is asymptotically standard normal under the
null hypothesis that all region-specific series are nonstationary; alternative hypothesis (one-sided) is that
some region-specific series are stationary; the test is based on a standardised average of N region-specific
ADF test statistics, where the ADF regressions are augmented with cross-section averages of dependent
and all explanatory variables (lagged levels and first-differences of the individual series) to control for un-
observed common factors that may affect each region differently (cross-section dependence).

Table C.2: Pesaran (2004) Test for Cross-Section Dependence

Panel A: Five-Yearly Data

ln yit ln sit ln(ni,t+g+δ) ∆ ln yit ∆ ln sit ∆ln(ni,t+g+δ)
CD test 282.84 7.41 33.96 108.19 30.06 33.17
p-value 0.000 0.000 0.000 0.000 0.000 0.000
Avg. ρ 0.929 0.024 0.112 0.397 0.110 0.122
Avg. |ρ| 0.929 0.568 0.447 0.572 0.501 0.506

Panel B: Annual Data

ln yit ln sit ln(ni,t+g+δ) ∆ ln yit ∆ ln sit ∆ln(ni,t+g+δ)
CD test 625.55 66.25 64.09 135.24 108.32 30.34
p-value 0.000 0.000 0.000 0.000 0.000 0.000
Avg. ρ 0.919 0.097 0.094 0.203 0.162 0.046
Avg. |ρ| 0.919 0.425 0.278 0.271 0.242 0.203

Panel C: Annual Data, Cross-Sectionally Demeaned

ln ỹit ln s̃it ln(ñi,t+g+δ) ∆ ln ỹit ∆ ln s̃it ∆ln(ñi,t+g+δ)
CD test 2.95 -0.23 14.20 -0.71 1.37 21.46
p-value 0.003 0.815 0.000 0.475 0.170 0.000
Avg. ρ 0.004 0.000 0.021 -0.001 0.002 0.032
Avg. |ρ| 0.449 0.449 0.281 0.210 0.209 0.214

Notes: CD test statistic is asymptotically standard normal under the null hypothesis of no cross-section
dependence; the test is based on the simple average of the N(N −1) pairwise correlation coefficients be-
tween the regional series; avg. ρ and avg. |ρ| are average and average absolute correlation coefficients.
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