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Abstract 

This paper uses a fully nonparametric approach to estimate efficiency measures for 
primary care units incorporating the effect of (exogenous) environmental factors. This 
methodology allows us to account for different types of variables (continuous and 
discrete) describing the main characteristics of patients served by those providers. In 
addition, we use an extension of this nonparametric approach to deal with the presence 
of undesirable outputs in data, represented by the rates of hospitalization for ambulatory 
care sensitive condition (ACSC) and of hospital readmissions. The empirical results 
show that all the exogenous variables considered have a significant and negative effect 
on efficiency estimates. 
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1. INTRODUCTION 

 

The combination of growing care demands from an ageing population and the 

increasing pressures in public budgets as a consequence of the economic crisis has 

placed the objective of improving the effectiveness and efficiency of health systems at 

the center of the debate on the future of healthcare in Europe (European Commission, 

2010). In this context, there has been a growing interest in measuring efficiency in the 

health sector. Although most of the empirical work has been focused on hospitals 

(Steinmann et al., 2004), primary care provision is receiving progressively more 

attention (Amado and Dyson, 2008). In fact, primary and community-based care is 

called on to play a pivotal role in the search for an overall more efficient organization of 

healthcare (Ham, 2010). 

 

Modeling the production technology of primary care providers is a difficult task. The 

final output, which should capture the impact of the services on current and future 

health status of patients, cannot be directly measured or clearly identified. On the one 

hand, patients’ health status depends on many other factors, besides activities by 

primary care providers, and on the other hand, there may be a delay before particular 

primary care services are seen to have an effect on health. Hence, intermediate products 

related with final outputs are normally used as proxies. This strategy is not 

straightforward either, however, as primary care providers deliver multiple services, 

whose impact on health improvement is difficult to disentangle and/or may even be 

questionable in some cases.  

 

In this context, the use of a nonparametric approach, and particularly data envelopment 

analysis (DEA), has become very popular in empirical studies, since it can easily handle 

multiple dimensions of performance and is less vulnerable to the misspecification 

problems that can affect econometric models1. Furthermore, multiple extensions of this 

technique have been developed in the literature to facilitate its adaptation to different 

frameworks (Emrouznejad et al., 2008). 

 

                                                             
1See Hollingsworth (2003, 2008) or Worthington (2004) for an overview of studies on the measurement 
of efficiency in the health sector. 
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This paper contributes to the existing literature in the field by applying two extensions 

of the nonparametric approach to assess the performance of a set of primary care units 

(hereafter PCUs). Specifically, we combine the use of a transformation approach in the 

traditional DEA model to incorporate undesirable outputs and a conditional approach to 

include the effect of both continuous and discrete environmental variables. 

 

The potential existence of undesirable (bad) outputs in a production process was already 

mentioned in the seminal work by Koopmans (1951). These undesirable outputs are 

prominent in the energy and environmental context in the form of pollution emissions or 

waste in resources, but they can also appear in health care services (e.g., adverse effects 

of drugs). In such cases, the aim of units should be to minimize these outputs rather than 

maximize them. However, in the standard DEA model, decreases in outputs are not 

allowed (only inputs being allowed to decrease); thus, it would be necessary to 

transform the original data or change the production technology in order to take into 

account the presence of these factors. In the current study, the undesirable factors will 

be represented by hospitalization rates for ambulatory care sensitive conditions 

(ACSCs) and hospital readmission rates. In order to include them in a DEA model we 

use the extension developed by Seiford and Zhu (2002), since this is the method that fits 

better with the assumed production technology. This model has been used previously in 

the health (Hu et al., 2012) as well as in the environmental sector (Lu and Lo, 2007; 

Hua et al., 2007). 

 

In addition to the problem of dealing with undesirable outputs in data, we need to bear 

in mind that the performance of primary care providers can also be affected by 

exogenous or environmental variables, which in the context of our study are represented 

mainly by the characteristics of the patients served by each unit (Lezzoni, 1994). As 

these variables, unlike the inputs and the outputs, are not under the control of the 

decision making units (in our case, the PCUs), we need to include them in our 

efficiency analysis in a different way. For that purpose, many different approaches can 

be used (see Cordero et al., 2008 for an overview); however, the validity of these 

traditional models is limited, because they need to assume the separability condition 

between the input-output space and the space of external factors environmental 

variables. This is not realistic for the health sector, where the characteristics of the 

population are clearly related to the volume of outcomes and even of some inputs. 
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Therefore, in this paper we use the so-called conditional nonparametric approach 

(Cazals, 2002; Daraio and Simar, 2005; Daraio and Simar, 2007a), which avoids the 

restrictive separability assumption required by traditional approaches in order to provide 

meaningful results. This method was designed for continuous variables only, but we are 

interested in considering also discrete variables (in particular, a measure of deprivation), 

so we apply an extension of this methodology developed by De Witte and Kortelainen 

(2013) to include both types of exogenous variables. 

 

The conditional approach has become very popular in the recent literature on efficiency 

measurement. Hence, it is possible to find studies using this approach to measure the 

efficiency of units operating in a wide range of settings including the education sector 

(Bonaccorsi et al., 2006; Cherchye et al., 2010; De Witte and Rogge, 2011; Haelermans 

and De Witte, 2012; De Witte and Kortelainen, 2013; De Witte et al., 2013), banks and 

mutual funds (Daraio and Simar, 2005; 2006; Daouia and Simar, 2007; Blass et al., 

2008; Badin et al., 2010), post offices (Cazals et al., 2008), public libraries (De Witte 

and Geys, 2011; 2013), regional welfare and environment (Halkos and Tzeremes, 

2011a, Halkos and Tzeremes, 2013), local services (Rogge and De Jaeger, 2012; 

Verschelde and Rogge, 2012) and the water sector (De Witte and Marques, 2010a, 

2010b; Carvalho and Marques, 2011; Vidoli, 2011). However, to the best of our 

knowledge, this methodology has only been applied previously in the health sector to 

measure the efficiency of health administrative districts in Greece (Halkos and 

Tzeremes, 2011b) and only continuous exogenous variables were considered. Therefore, 

we believe that this is the first study using this approach to estimate efficiency measures 

of primary care organizations and considering both continuous and discrete 

environmental variables. 

 

In the literature, there are few previous studies where the presence of both undesirable 

outputs and exogenous factors are considered simultaneously in a DEA framework. Hua 

et al. (2007) developed a non-radial output-oriented DEA considering both types of 

variables in a model to estimate the ecological efficiency of paper mills in China. Yang 

and Pollitt (2009) assess the performance of Chinese coal-fired power plants combining 

four different traditional models to incorporate uncontrollable variables into DEA with 

one approach to deal with undesirable factors. More recently, Halkos and Tzeremes 

(2013) use a conditional directional distance function approach for measuring regional 
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environmental efficiency, although they opt for transforming the technology of 

production to adapt it to the presence of undesirable outputs. 

 

The rest of the paper is organized as follows. The next section provides a brief literature 

review about previous studies attempting to measure efficiency of primary care 

providers. Section 3 presents the methodology employed in our study with a detailed 

explanation of the approaches we use to incorporate both undesirable outputs and 

environmental variables into the estimation of efficiency measures of PCU 

performance. Section 4 describes the dataset and the variables used in our analysis and 

Section 5 summarizes the main results. Finally, conclusions are set out in Section 6. 

 

2. LITERATURE REVIEW 

 

As we mentioned in the previous section, most studies carried out in the context of 

primary health care have opted to use a nonparametric approach. Since the pioneering 

work by Nunamaker (1983) on nursing service efficiency, multiple applications used 

this technique to estimate efficiency measures of primary care units (Huang and 

McLaughlin, 1989; Pina and Torres, 1992; Szczepura et al., 1993). Subsequently, it has 

also been employed to assess the performance of general practitioners (Bates et al., 

1996), physicians (Chilingerian and Sherman, 1996, 1997) and primary care teams 

(Goñi, 1999). 

 

All these studies use the so-called “activity-oriented models" in which the output of 

primary health care is approximated by the activity levels of the health units being 

analyzed, in particular, by their recorded number of visits or consultations. However, 

the use of these proxies of primary health care output is clearly vulnerable to criticism, 

since the number of visits does not provide any information about the quality of care 

being provided, and thus does not directly link to outcomes in terms of improvement in 

population health. 

 

Such criticisms show that it is necessary to consider not just activity-related but also 

quality-related indicators to properly measure primary health care output. However, the 

concept of quality is difficult to define, since it not only encompasses technical aspects 

reflecting the capacity of medical staff to diagnose and treat medical problems, but also 
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patients´ perceptions of the service delivered (Donabedian, 1980; Campbell et al., 

2000). Therefore, in the short list of studies using a nonparametric framework to 

incorporate quality measures into efficiency analysis it is possible to identify a variety 

of indicators used as proxies for this concept (Salinas-Jiménez and Smith, 1996; García 

et al., 1999; Rosenman and Friesner, 2004; Amado and Santos, 2009). 

 

An indicator widely used as a measure of primary care quality and effectiveness is that 

of rates of hospital admission for ACSCs (Finegan et al. 2010; Schiøtz et al., 2011; 

Pelone et al. 2012). The conditions chosen are those for which timely and effective 

primary care could be expected to reduce the risk of admission to hospital by preventing 

the onset of illness, controlling an acute episode of illness or better long term 

management (Giuffrida et al., 1999). Several empirical studies (Kringos et al., 2013) 

and literature reviews (Rosano et al., 2012; Gibson et al., 2013) support the (negative) 

association between access and quality of primary care and hospitalization rates for 

ACSCs. The role of primary care in avoiding hospitalizations for ACSCs is supported 

by expert opinions and particularly well suited to the views of primary care 

professionals of their own role in the healthcare system. This role would be focused 

around primary prevention, early detection and monitoring of acute episodes, and 

monitoring of chronic conditions (Caminal et al., 2004). Likewise, care coordination 

and integration are aspects of primary care performance that are of particular interest in 

a context where chronic patients represent most of the interactions with the healthcare 

system (Ham, 2010; Nuño et al. 2012). As measures of integrated care, previous 

comparative and evaluation studies have included indicators such as unplanned hospital 

admissions, re-admissions and avoidable hospital admissions (Curry and Ham, 2010), 

30-day readmission rates (Schiøtz et al., 2011) and emergency hospital admissions 

(Bardsley et al., 2013). The main problem with all these indicators is that they cannot be 

used in a standard DEA model, because they represent undesirable targets for the 

evaluated units, so we need to adapt the model used to their presence as we explain in 

Section 3. 

 

Another way of increasing the accuracy of the model specification is to consider the 

influence that external or environmental variables can have on the performance of 

health care providers. Particularly, in making an efficiency assessment of PCUs these 

variables are mainly the characteristics of the population demanding care. Many 
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previous studies recommend adjusting for case mix when making comparisons between 

healthcare organizations on the basis of hospitalization rates for ACSCs (Finegan et al., 

2010), which are also found to be influenced by other clinical and socioeconomic 

factors such as age, health status and co-morbidities, deprivation and income level 

(Caminal et al., 2004; Rosano et al., 2012; Gibson et al., 2013).  

 

However, there is little in the primary health care performance literature on the 

approach of considering these environmental factors. Actually, most of the studies that 

have attempted to incorporate this information have been limited to performing a 

second-stage analysis in order to identify potential explanatory factors of inefficient 

behavior, but they have not incorporated the effect of these variables into the efficiency 

scores (Zavras et al., 2002; Kontodimopoulos et al., 2007, Ramirez-Valdivia et al. 

2010).  

 

More recently, Kontodimopoulos et al. (2010) and Cordero et al. (2010; 2013) 

estimated corrected efficiency scores including information about the characteristics of 

the population covered by each primary care center using two traditional approaches 

such as the three-stage model (Muñiz, 2002) and four-stage model (Fried et al., 1999), 

which adjust original input and output values to obtain a measure of managerial 

inefficiency that controls for the effect of exogenous factors. However, as we mentioned 

in the previous section, there have not been previous empirical studies attempting to 

incorporate this information through a conditional nonparametric model. 

 

3. METHODOLOGY 

 

Following most previous studies in the health sector, we use a nonparametric approach 

to measure the efficiency of PCUs. Introducing the basic notation used in this paper, we 

consider a production process where units are characterized by a set of inputs x ( px 

) and outputs y ( qy  ). The production technology is the set of all feasible input-

output combinations: 

 

    qpyx 
 ),( x can produce y    (1) 
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Given that the set   cannot be observed as well as the efficiency scores, it has to be 

estimated from a random sample of production units denoted by  niyxX ii ,...,1),(  . 

Since the pioneering work of Farrell (1957), multiple approaches have been developed 

to achieve this goal. In this framework, an observed production unit ),( ii yx , defines an 

individual production possibility set ),( ii yx , which under the free disposability of 

inputs and outputs, can be written as: 

 

    ii
qp yyxxyxyixi  

 ;),(),(    (2) 

 

Within this framework, the DEA estimator is the most common in the literature since it 

does not rely on a restrictive hypothesis on the data generating process. Following the 

notation provided by Daraio and Simar (2007a), this estimator DEÂ  can be defined as2: 

 

  




  
 




n

i

n

i
iiii

qp
DEA xxyyyx

1 1
,;),(ˆ   for ),....,( 1 n  

s.t.







n

i
ii niy

1
,....,1,0;1     (3) 

 

The estimator of the output efficiency scores for a given ),( 00 yx  can be obtained by 

solving a simple linear program: 

 

    DEADEA yxyx  ˆ)(sup),(ˆ
0,000     (4) 

 

This production describes a production process which transforms conventional inputs 

into conventional outputs. However, in the context of our study the technology must 

also allow for the production of undesirable factors and the potential effect of external 

or environmental variables on results. The following subsections are devoted to the 

analysis of these two aspects within a nonparametric framework. 

                                                             
2 This definition represents the case of variable returns to scale (VRS) according to the model introduced 
by Banker et al. (1984). The constant returns to scale model developed by Charnes et al. (1978) can also 

be applied when the equality constraint (



n

i
i

1

1 ) is omitted from the equation. 
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3.1. Dealing with undesirable outputs  

Efficiency measurement usually relies on the idea that inputs have to be minimized and 

outputs have to be maximized. This means that, for each evaluated unit, more output 

and less input imply a higher degree of efficiency, which is also implicitly assumed in 

DEA models. However, in some cases, the production function may also contain 

undesirable outputs that need to be minimized (Chung et al., 1997), and this 

complicates the estimation of the DEA standard efficiency scores using Equation (2), 

because these bad outputs cannot be simply incorporated as another conventional 

output3. 
 

In the literature, several approaches are proposed for handling undesirable factors in 

DEA models4, but there is no clear standard protocol (Sheel, 2001). The proposed 

models can be roughly divided into two groups. The first is based on the concept of 

weak disposability reference technology and allows for using the original data. The 

second is based on data translation and the utilization of traditional DEA models. It is 

worth noting that the use of these alternative approaches often leads to different 

outcomes in terms of the units identified as efficient and in terms of the targets set for 

inefficient units (Dyson et al., 2001; Sahoo et al., 2011). 

 

Färe et al. (1989) proposed the first non-linear DEA program in which desirable outputs 

are increased and undesirable outputs are decreased using a hyperbolic output efficiency 

measure. Subsequently, Färe and Grosskopf (2004) suggested an alternative approach 

for treating the undesirable factors involving the use of a directional distance function to 

estimate efficiency scores based on weak disposability of undesirable outputs5. These 

approaches have been widely applied in the field of environmental performance 

measurement, where the presence of undesirable outputs is frequent6. Indeed, the weak 

disposable reference technology is also referred to as an environmental DEA 

technology. We decided not to use this methodology in our study because it would 

imply the introduction of new axioms (weak disposability of outputs) that would be 

                                                             
3 The presence of negative values in data can cause similar problems. See Cheng et al. (2013) for details. 
4 See Hua and Bian (2007) or You and Yan (2011) for an extended review of these methods. 
5 Weak disposability assumes that it is costly to reduce undesirable outputs because it increases the inputs 
or decreases desirable outputs at the same time (Yang et al., 2008). 
6 See Zhou et al. (2008) for a review of studies using this approach. 



10 
 

incompatible with the methodology presented above as well as the extension used to 

deal with external factors7. 

 

Among the methods transforming the data, which do not need to modify the standard 

axioms of the technology (free disposability is assumed), there are also different 

options. The first possibility would be either to treat the negative or undesirable outputs 

as inputs (Dyckhoff and Allen, 2001, Korhonen and Luptacik, 2004), or to invert the 

value of the original variables (Lovell et al., 1995). However, these methods do not 

truly reflect the real production process or lose an invariant to the data transformation. 

 

To overcome these shortcomings, Seiford and Zhu (2002) developed a methodology 

based on a monotone decreasing transformation by multiplying each undesirable output 

by −1 and then find a proper translation vector to let all negative undesirable outputs be 

positive. In particular, they proposed that a sufficiently large positive scalar constant 

number (K) be added to the reciprocal additive transformation of the undesirable output 

to ensure that the final new value would be isotonic. 

 

We selected this method to treat the undesirable output factors in our study as it can 

truly reflect the real production process and is invariant to the data transformation 

within the DEA model (Lovell and Pastor, 1995). A problem then arises from the fact 

that the method is sensitive to the choice of the constant value: an overly large value can 

dominate the data and modify the structure of the efficient frontier, while selecting a 

small value reduces the effect of the translation on results. Therefore, we must take this 

decision cautiously. Moreover, due to strong convexity constraints, it can only be solved 

under variable returns to scale (Silva Portela et al., 2004), so our empirical analysis 

should be performed using the BCC model (Banker et al., 1984). 

 

3.2. The incorporation of external factors using a conditional approach 

Environmental factors that are not under the control of the primary care provider need to 

be considered in evaluation of the provider since such factors are a potential source of 

inefficiency. An evaluation of a health care facility should explicitly include this 

information to ensure that the efficiency score finally assigned to the centre truly 

                                                             
7 See Podinovski and Kuosmanen (2011) for details. 
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reflects the portion of the production process for which that centre is itself responsible 

(Muñiz, 2002). 

 

Recent years have seen the development of different ways to incorporate the effect of 

external factors or environmental variables into the production process in estimating 

efficiency scores through DEA8. The most widely used approach is a two-stage 

procedure, where initial efficiency scores are estimated using a standard DEA model 

and then they are regressed on the environmental variables (Simar and Wilson, 2007; 

McDonald, 2009)9. Most studies using this approach in the second stage estimation 

have employed either Tobit regression or ordinary least squares. Unfortunately, usual 

inference on the obtained estimates of the regression coefficients is not possible, so it is 

necessary to use a bootstrap-based procedure to obtain more reliable results (Simar and 

Wilson, 2007). However, this two-stage approach still has a major weakness, since it 

requires a restrictive separability condition between the input–output space and the 

space of external or environmental factors. This is often unrealistic, since those factors 

usually affect the probability of being more or less efficient (Badin et al., 2010). One 

model in which the two-stage approach is valid was proposed by Banker and Natarajan 

(2008), but this heavily depends on quite restrictive and unrealistic assumptions about 

the production process, as described in Simar and Wilson (2011). 

 

More recently, the specific literature devoted to exogenous (environmental) factors and 

their influence on efficiency has advanced significantly with the development of a more 

general and appealing full nonparametric conditional approach based on a probabilistic 

definition of the frontier (Daraio and Simar, 2005, 2007a, 2007b). In order to explain 

the conditional efficiency approach, it is necessary to introduce some basic concepts 

developed by Cazals et al. (2002). These authors proposed an alternative probabilistic 

formulation to the production process, denoted by HXY(x, y), which represents the 

probability of dominating a unit operating at level (x, y): 

 

    ),Pr(),( yYxXyxH XY      (5) 

 

                                                             
8 See Fried et al. (2008) for an overview. 
9 In a slight variation on this approach, Fried et al. (1999, 2002) regress radial and non-radial slacks on 
environmental variables. 
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This probability function can be further decomposed as follows: 

 

)Pr()Pr(),( xXxXyYyxH XY  =  

)()( xXFxXyYS XXY  = )()( xFxyS XXY    
(6) 

 

where )( xyS XY represents the conditional function of Y and )(xFX  the cumulative 

distribution function of X. Therefore, the output oriented technical efficiency measure 

can also been defined as the proportionate increase in outputs required for the evaluated 

unit to have a zero probability of being dominated at the given input level:  

 

   0)(sup),(ˆ  xySyx Y  =  0),(sup yxH XY    (7) 

 

In order to estimate efficiency scores using this probabilistic formulation, the empirical 

distribution functions ),(ˆ
, yxH nXY  and )(ˆ

, xyS nY  must replace ),( yxH XY  and )( xySY  

respectively. These empirical analogs are represented by the following expressions: 

 

   



n

i
iinXY yyxxI

n
yxH

1
, ),(1),(ˆ

    (8) 

)(ˆ
),(ˆ

)(ˆ
,

,
, xF

yxH
xyS

nX

nXY
nY  = 

)0,(ˆ
),(ˆ

,

,

xH
yxH

nXY

nXY

   
(9) 

 

where I(-) is an indicator function. Using the plug-in rule, the conditional DEA 

estimator (which relies on the convexity assumption of  ) for the output-oriented 

efficiency score can be obtained by solving the linear program involved by:  

 

    DEAnYDEA yxSyx  ˆ)(ˆsup),(ˆ
, 

   (10)
 

 

In this context, Cazals et al. (2002) and, subsequently, Daraio and Simar (2005; 2007a; 

2007b) suggested that the presence of additional external factors kZ   can be 

incorporated into the analysis by conditioning the production process to a given value of 

Z = z. This conditional function can be defined as: 
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   ),( zyxH ZXY = ),Pr( zZyYxX     (11) 

 

The function ),( zyxH ZXY  represents the probability of a unit operating at level (x, y) 

being dominated by other units facing the same environmental conditions z. This can 

also be decomposed into: 

 

   ),( zyxH ZXY  = ),Pr( zZxxyY  ),Pr( zZxX    

         = );(),(, zZxXFzZxXyYS XZXY 
 

= )(),( zxFzxyS XY       
(12) 

 

Therefore, the output efficiency measure can be analogously defined as: 

 

 0),(0sup),(ˆ  zZxXySzyx XZY     (13) 

 

However, the estimation of ),( zxySY is more difficult than the unconditional case, 

because we need to use smoothing techniques for the exogenous variables in z (due to 

the equality constraint Z = z): 

 

),()(

),(),(
),(ˆ

ˆ
1

1
ˆ

,

ih

n

i
i

n

i
ihii

nY

zzKxxI

zzKyyxxI
zxyS














    
(14) 

 

Therefore, this approach relies on the estimation of a nonparametric kernel function to 

select the appropriate reference partners and a bandwidth parameter h using some 

bandwidth choice method10. This would be straightforward if all the Z variables are 

continuous, but it is more complicated if we have mixed data (continuous and discrete 

variables) as in our empirical study. For that purpose, De Witte and Kortelainen (2013) 

recently proposed a model to smooth any type of discrete variable (ordered and 
                                                             
10 The estimation of conditional full frontiers does not depend on the chosen kernel but only on the 
selected bandwidth. 
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unordered) along with continuous variables extending the ideas proposed by Racine and 

Li (2004), Hall et al. (2004) and Li and Racine (2007). Basically, this approach consists 

of multiplying three different multivariate kernel functions (one for each type of 

variable) to obtain a generalized product kernel function (
h

K ˆ̂ ) and substitute it for h
K ˆ  

in equation 14. Subsequently, the conditional estimator ),(ˆ zyx
 
can be obtained by 

plugging in the new ),(ˆ
, zxyS nY  in equation 13. 

 

Given that our dataset only contains continuous and ordered discrete variables, we adapt 

this methodology to a simpler case with only two multivariate kernel functions. 

Following De Witte and Kortelainen (2013), we employ the Epanechnikov kernel 

function ( )/)((),( 1
ˆ hzZKhzzK iih    for continuous variables and the Li and Racine 

(2007) discrete kernel function for ordered discrete variables. Regarding the estimation 

of the bandwidth parameters, we follow the data-driven selection approach developed 

by Badin et al. (2010), which can be easily adapted to the case of mixed environmental 

variables11.  

 

Finally, this conditional approach allows us to evaluate the direction of the effect of 

exogenous variables on the production process by comparing conditional with 

unconditional
 
measures. In particular, when Z is continuous and univariate, Daraio and 

Simar (2005, 2007a) suggest using a scatter plot of the ratio between these measures (

),(ˆ/),(ˆ yxzyxQ z  ) against Z and its smoothed nonparametric regression line. In an 

output-oriented conditional model, an increasing regression line will indicate that Z is 

favorable to efficiency whereas a decreasing line will denote an unfavorable effect. In 

the former case, the environmental variable operates as a sort of extra input freely 

available, and consequently the value of ),( zyx will be much smaller than ),( yx
 
for 

small values of Z than for large values of Z. In the latter case, the environmental 

variable can be interpreted as an extra undesired output to be produced, which requires 

the use of more inputs, and thus ),( zyx  will be smaller than ),( yx  for large values 

of Z (Daraio and Simar, 2005).  

                                                             
11 In the case of an ordered discrete variable, we assure that the performance of each unit is compared 
only to those in the same category (i.e., the same value of discrete variable) by forcing the bandwidth to 
be zero for the variable in question. 
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In addition, it is also possible to investigate the statistical significance of Z explaining 

the variations of Q. For that purpose, we use local linear least squares for regression 

estimation and then we apply the nonparametric regression significance test proposed 

by Li and Racine (2004) and Racine and Li (2004), which smooths both continuous and 

discrete variables. Specifically, we test the significance of each of the continuous and 

discrete variables using bootstrap tests proposed by Racine (1997) and Racine et al. 

(2006), which can be interpreted as the nonparametric equivalent of standard t-tests in 

ordinary least squares regression. 

 

4. DATA AND VARIABLES 

 

The aim of the present study is to analyse the efficiency of PCUs in the public Basque 

Health Service. In the Basque Country, with a population of approximately 2.2 million 

inhabitants, a public organization (Osakidetza) provides universal and comprehensive 

health care services (primary, specialized and mental care), free of charge at the point of 

service, to all residents. Primary care is provided through group practices, organized in 

132 PCUs (with on average 1,500 registered patients per general practitioner) spread 

across the region both in urban and rural areas. Each resident is registered with a GP, 

who plays a gate-keeping role regarding access to other health care services of the 

system (except for emergency services, which can be directly accessed by patients). 

There are ten acute hospitals in the Basque Health Service, each of them acting as 

referral hospitals for outpatient and inpatient care for a set of PCUs in its geographical 

area. 

 

Resources at the disposal of PPCs for the accomplishment of their mission to maintain 

and improve the health status of the population under their responsibility care can be 

divided into four main categories: labour (health and non-health professionals), 

pharmaceuticals and other medical products, infrastructure and technology. Assuming 

that in the Basque public health sector available infrastructure and medical technology 

are similar across PCUs and that there are few non-health professionals directly 

involved in patient care at the primary care level, we propose using the following input 

variables in our empirical study: number of GPs, number of nurses and number of 

prescriptions per PCU, which correspond to those most commonly used in the literature 

(Amado and Dyson, 2008). 
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Output indicators have been selected following the criterion that they reflect the role of 

primary care, focused on health promotion and education, disease prevention, early 

diagnosis and timely treatment. Primary care also plays a key role in ensuring the 

comprehensiveness and continuity of patient care, being patients’ first point of contact 

with the healthcare system and guiding them throughout the different healthcare settings 

and services. According to this, two output indicators were selected: hospitalisation 

rates for ACSCs and the rates of re-admissions to hospital 30 days after discharge (in 

both cases counting only one per person). Both of these indicators are solidly supported 

by the literature (as seen in Section 2) and represent undesirable outputs. 

 

Exogenous variables have been selected in accordance with evidence in the literature 

(seen in Section 2), and our own findings (Orueta el al., 2013) on the factors influencing 

health care outcomes, and include measures of age, health status and socioeconomic 

status of the population being served by each PCU. Data originate from the database of 

the Basque Country population stratification program (PREST) (Orueta et al., 2013), 

and correspond to the period between September 2009 and August 2010. In particular, 

we use the percentage of population above 65 years old, a morbidity index and a 

deprivation indicator. The morbidity index used is based on Adjusted Clinical Groups 

(ACGs), a case-mix system developed by Starfield et al. (1991) and well-known all 

over the world12. It is defined as a measure of “disease burden” of individuals and 

populations and, in our case,  it was estimated as the ratio between the expected number 

of visits for a group of patients (in our case, the ones served by a PCU) and the mean 

observed for the whole population (Tucker et al., 1996). The deprivation indicator was 

constructed from variables such as the percentage of manual workers, the 

unemployment and temporary employment rates and low levels of educational 

attainment for the whole population and also for young people (inhabitants between 16–

29 years of age) (Domínguez et al., 2008). It is based on census tract, the smallest 

geographical unit into which population census data can be divided (around 1,200 

inhabitants per tract), which are classified into quintiles, thus the variable is categorical. 

 

                                                             
12 This instrument enables the classification of individuals into a hundred of mutually exclusive groups 
according to their diagnosis, age and sex; such categorization offers a measure of health care needs and 
expected costs. . 
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All inputs and outputs have been adjusted by 10,000 inhabitants in order to avoid 

potential distortions due to the existence of significant differences in the size of the 

PCUs. Likewise, the original values of the (undesirable) output variables have been 

transformed using the method proposed by Seiford and Zhu (2002). Following this 

model, the values of both variables were multiplied by -1 and, subsequently, we 

subtracted the value obtained from a large enough parameter, which in our case was set 

at a value K = 500. Table 1 provides a brief summary of the main descriptive statistics 

of variables used in the analysis. 

 

Table 1. Descriptive statistics of inputs, outputs and exogenous variables 

Variables Role Mean SD Min Max 
Number of GPs per 
PCU per 10,000 
inhabitants 

Input 6.53 2.69 3.78 33.08 

Number of nurses per 
PCU per 10,000 
inhabitants 

Input 6.32 1.26 3.78 12.52 

Number of prescriptions 
per PCU per 10,000 
inhabitants 

Input 166,522.3 48,998.9 62,064.6 55,5171.5 

Hospitalizations due to 
ACSC per PCU per 
10,000 inhabitants 

Output 389.95 41.43 213.00 474.22 

Re-admissions in 30 
days per PCU per 
10,000 inhabitants 

Output 432.68 23.85 307.30 487.39 

Percentage of 
population above 65 

Exogenous 
(continuous) 19.55 3.99 4.31 29.24 

Morbidity rate Exogenous 
(continuous) 1.03 0.13 0.65 1.38 

Deprivation index 
Exogenous  
(discrete) 
 

3.07 1.25 1.00 5.00 

Source: PREST dataset 

 

5. RESULTS 

 

The results of the efficiency estimations for both unconditional and conditional models 

using VRS and an output orientation are summarized in Table 2. Focusing on the 

performance of PCUs without controlling for exogenous variables (unconditional 

model), we note that the mean efficiency score is 1.116, with only 10 PCUs being 

considered efficient. Therefore, one could suppose that inefficient units could still 
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improve their performance by almost 12% on average to achieve the efficiency levels of 

the best practices. However, this initial assessment does not take into account the 

characteristics of the population served by each primary care unit, so these initial 

efficiency scores may not adequately represent their level of efficiency.  

 

Once we include the three exogenous indicators (two continuous and one discrete) in 

the estimation of the conditional efficiency model, more than half of the units become 

efficient. This result derives from the fact that now each unit is only compared with 

those operating in a similar environment, so the reference set is smaller. In line with 

this, the margin for improvement is notably reduced, since the average level of 

efficiency decreases to 1.0251. 

 

Table 2 also includes the summary statistics for bandwidth estimates, which present a 

reasonable average value for the discrete variable (deprivation index) and very high 

average and maximum values for the two continuous variables. At this point, it should 

be noted that the high values can be attributed to some outlying maximum scores. 

Nevertheless, these values do not imply that the influence of the variables is not 

significant as we demonstrate above. 

 
Table 2. Efficiency estimates and bandwidths 

 Min Median Mean Max SD Efficient 
units 

Unconditional eff. 1.0000 1.1157 1.1160 1.5196 0.0765 10 (7.5%) 

Conditional eff. 1.0000 1.0000 1.0251 1.3246 0.0532 74 (56%) 

Bandwidth  Dep. 
Index 0.0000 0.3171 0.3767 0.1948 0.7928 - 

Bandwidth  % > 65 
years 0.1086 2.6950 1.00E+07 3.07E+07 1.99E+08 - 

Bandwidth Morb. 
Index 0.009 0.1378 2.61E+05 1.03E+06 7.11E+06 - 

 

In order to test the influence of the exogenous variable, we regress the ratio between 

conditioned and unconditioned efficiency scores on the environmental variables using 

the local linear estimator described in Section 3.2. Table 3 presents the p-values of the 

significance tests proposed by Li and Racine (2004) and Racine and Li (2004), which 
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suggest that all the variables have a significant impact on PCU performance, although 

the level of significance is slightly lower for the deprivation index. 

 
Table 3. Nonparametric significance test 

Variable p-value 

Deprivation index 0.084*  

Percentage of people over 65 years < 2E-16*** 

Morbidity index 0.035** 

R2 0.309 
   ** denotes statistical significance at 5%  

        * denotes statistical significance at 10% 
 
As we are interested in identifying the effect of the exogenous variables, we analyze the 

values of the ratio against the Z variables. Hence, following the principles established 

by Daraio and Simar (2005, 2007), we first observe the partial regression scatter plots 

for both continuous variables, considering their median value and, respectively, their 

first and third quartiles to capture the heterogeneity among units (Figure 1). Since we 

are examining an output oriented case, a decreasing regression line indicates that the 

environmental variable is unfavorable to PCU efficiency. This evidence confirms the 

result we expected and is in line with some previous studies (see Cordero et al., 2013), 

since the performance of units is frequently worse when the levels of morbidity and the 

percentage of older adults in the population (proxies for a poor health status) are higher.  

 

Figure 1. Effects of continuous Z variables on PCU efficiency scores 
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Figure 2 also illustrates the partial regression plot for the discrete ordered variable 

(Deprivation index). In this case, the result observed is similar, since the variable has an 

unfavorable effect on the level of efficiency, although there is an unexpected favorable 

increase for the highest level (5). This can be explained by the existence of a low 

number of units with these values, which implies that most of them are considered as 

efficient in the conditional model, where the reference set is smaller. 

 
Figure 2. Effect of the discrete variable on PCU efficiency score 

 

 
 
 

6. CONCLUSIONS 

 

This paper uses a recently developed conditional nonparametric approach to estimate 

efficiency measures for a set of Spanish primary care units incorporating the effect of 

different types of environmental factors (continuous and discrete) representing the 

characteristics of the population served by these providers. This method allows us to 

avoid the restrictive separability assumption between the input-output space and the 

space of external factors environmental variables required by traditional approaches and 

thereby provide meaningful results. In addition, this methodology makes it possible to 

determine the statistical significance and the direction of the effect of the exogenous 

variables. To the best of our knowledge, this is the first empirical study using this 

method in the health sector. 

 

Further, the variables selected to represent the outcomes of the evaluated units can be 
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For this, we have needed to use an extension of the traditional DEA model to transform 

the original values of those variables and estimate valid measures of performance for 

the evaluated units.  

 

Other strengths of the study are that it includes all the primary care organizations of the 

public Basque Health Service. Moreover, instead of only considering activity-related 

indicators, it uses more solid performance indicators, in particular, hospitalization rates 

for ACSCs and hospital re-admission rates. In addition, the study population is adjusted 

for health status through a morbidity index (based on ACGs), which is a sophisticated 

measure validated in our context (Orueta et al., 2006). The population is also adjusted 

for age and for the socio-economic level of the area of residence. 

 

The empirical results show that all the environmental variables considered have a 

significant and negative effect on the performance of primary health care providers, 

which is in line with the results obtained in the scarce previous literature using 

traditional semi-parametric approaches (Cordero et al., 2013). Among the limitations of 

this study, it should be noted that the output measures used might not only depend on 

performance by PCUs, but could also be influenced by other factors. Specifically, 

hospitalisation rates for ACSCs might also depend on differences in quality of 

outpatient specialist care and admission policies between hospitals (Muecke, 2010), and 

hospital re-admission rates could also depend on the quality of inpatient care at the first 

hospital admission. Finally, it has to be considered that the deprivation index is not 

assessed at the individual level so it could also represent an ecological fallacy. 
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