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ABSTRACT 

Energy used in transport is a particularly important focus for environment-development 
studies because it is increasing in both developed and developing countries and is largely 
carbon-intensive. This paper examines whether a systemic, mutually causal, cointegrated 
relationship exists among mobility demand, gasoline price, income, and vehicle ownership 
using US data from 1946 to 2006. We find that those variables co-evolve in a transport 
system; and thus, they cannot be easily disentangled in the short-run. However, estimating a 
long-run relationship for motor fuel use per capita was difficult because of the efficacy of 
the CAFE standards to influence fleet fuel economy. The analysis shows that the fuel 
standards program was effective in improving the fuel economy of the US vehicle fleet and 
in temporarily lessening the impact on fuel use of increased mobility demand. Among the 
policy implications are a role for efficiency standards, a limited impact for fuel tax, and the 
necessity of using a number of levers simultaneously to influence transport systems.  
 
Keywords: Transport demand; Energy consumption and development; Cointegration; 
Granger-causality; CAFE program. 
 
1. Introduction 
Energy used in transport is a particularly important focus for environment-development 
studies since transport energy use is increasing in both developed and developing countries 
and is a carbon-intensive activity everywhere. Furthermore, understanding the long-run 
relationship among transport demand/energy use, income, and fuel price in developed 
countries is important to project with any accuracy global transport fuel use and carbon 
emissions. Figure 1 shows that vehicle-miles per capita has increased linearly with GDP per 
capita in the US since 1946. Income could affect car ownership rates too, which in turn 
could impact vehicle-miles per capita, as gasoline price could impact miles traveled. In 
addition, over the long-run economic development is intertwined with spatial development, 
and spatial development/intensity also influences travel demand. This paper analyzes the 
relationship among two measures of transport demand and related variables over the long 
run in the US. It examines whether a systemic, cointegrated relationship exists among 
vehicle miles, motor fuel use, gasoline price, income, and vehicle ownership. 

Figure 1 
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The historic correlation between energy consumption and economic growth, 
coupled with concerns over energy consumption’s environmental costs (e.g., carbon 
emissions) and security issues (e.g., foreign supply dependence and nuclear technology 
proliferation), has drawn considerable attention to the relationship between energy and 
development. Some of the work dealing with this relationship has used statistical 
techniques from Granger (1980) to reveal the causal direction (Granger-causality) of the 
energy consumption-economic growth relationship. Taken as a whole, however, the 
literature on temporal causality between energy consumption and economic growth has 
offered neither robust results nor convincing rationale.  

For example, in the seminal study on the US, Kraft and Kraft (1978) found causality 
running from GNP to energy consumption for the US over the period 1947-1974. 
Subsequently, while Akarca and Long (1980) shortened the Kraft and Kraft period by two 
years, and Yu and Hwang (1984) lengthened it by four years, neither later study detected 
evidence of causality. Stern (1993) used a quality-adjusted index of energy, considered 
capital and labor inputs too, and found energy consumption causes GDP for the US. Up-
dating that study, Stern (2000) found cointegration among those variables and again 
determined that energy causes GDP.  
 One reason for the lack of conclusive results may be the high level of aggregation of 
the data analyzed. When considering energy consumption and GDP, it is not at all clear in 
what direction causality should occur, or how it might evolve temporally. Energy is an 
input in industrial production; however, in developed countries industry commands a 
declining share of GDP. Furthermore, a considerable and growing amount of energy 
consumption in developed countries is for personal transport and use in homes—activities 
that are “consumptive” in nature, and thus, would be expected to increase with wealth.  
 Previously, Liddle (2006) evaluated the link between GDP and energy for a number 
of OECD countries, using levels of disaggregation of GDP and energy consumption where 
causation between GDP and energy consumption could be predicted a priori. For example, 
industry energy consumption – production input – was expected to cause industry GDP, 
while GDP per capita, or income, was expected to cause per capita energy use in transport 
and residential buildings – normal consumption goods. The surprising result of the work 
reported in that paper was that GDP and energy are not strongly linked in most of the 
countries studied.  

The current paper expands that earlier work in two important ways. First, focusing 
on transport in the US allows for the consideration of much longer data sets (60 years) than 
previous work (typically only 30-40 years). Not having sufficiently long series is a well-
known source of spurious results in these types of time series analyses. Second, this paper 
also considers price and is a multivariate analysis. Considering additional variables 
improves the stability and accuracy of cointegration and Granger-causality testing.  

Although the purpose here is to investigate the possibility of a systemic, i.e., 
mutually causal, long-run relationship for transport, the cointegration technique and the 
type of data series used allow for estimates of price and income elasticities; thus, a brief 
review of this related and extensive literature follows. Dahl and Sterner (1991) contributed 
a survey of many estimates of transport elasticities. Graham and Glaister (2002) provided 
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an update; but of the studies they cited, only four involved cointegration,1 and none focused 
on the US. Likewise, the few studies since that review that employ conintegration have 
focused on countries other than the US, e.g., Brazil (Alves and Bueno, 2003), Greece 
(Polemis, 2006), Namibia (De Vita et al., 2006), and South Africa (Akinboade et al., 2008). 
Furthermore, only one previous cointegration analysis estimated a genuine long-run 
relationship: Bentzen (1994) considered Denmark using data spanning from 1948 to 1991. 
 
2. Data and methods 
Annual data, converted to natural logs,2 ranging from 1946 to 2006 are used. The analysis 
begins after the Second World War since many economic series have structural breaks in 
the period between the two World Wars (Ben-David et al., 2003). The series are: real GDP 
per capita, from Johnston and Williamson (2008); vehicle-miles per capita, motor fuel use 
per capita, and number of registered vehicles per capita, all from the US Department of 
Transportation, Federal Highway Administration’s Highway Statistics; and real retail 
gasoline price, from US Department of Energy, Energy Information Agency. Population 
data (to convert measures to per capita) is from the US Census Bureau. Table 1 lists the 
names, definitions, and sources of the data series used. 

As noted, spatial intensity influences transport demand; however, since the area of 
the US has remained constant over the period studied (albeit, US territories Alaska and 
Hawaii became states in 1959), population density simply increases with increases in 
population, and thus, is not an appropriate variable for a time series study like this one.3 A 
better measure than population density would be population per acre of developed land, a 
statistic the Natural Resources Conservation Service (NRCS) keeps in its National 
Resources Inventory;4 unfortunately they only began recording the statistic in 1982, and 
then only at four-to-five-year intervals until 2001; thus, it is inappropriate for cointegration.  

Table 1 
The first step is to test for unit roots in each series since all variables in a Johansen 

cointegration test should be of the same order. It is expected, that these series (all of which 
contain noticeable trends) will be nonstationary in levels, but stationary in first differences. 
The Elliott, Rothenberg, and Stock (1996) Dickey-Fuller test with GLS detrending is used 
to test for unit roots. This test is appropriate for highly trending data; furthermore, Maddala 
and Kim (2000) argued that tests with GLS detrending are more powerful than the (often 
used) Augmented Dickey-Fuller test. Unit root tests allow for either a constant or a constant 
and a linear time trend in the test regression. The power of unit root tests is sensitive to the 
number of lagged terms used. To choose the optimal number of lags, Hall’s (1994) “general 
                                                           
1 As Graham and Glaister note, there is debate in the gasoline elasticity research as to the importance of 
applying methodologies like cointegration to time-series data. Work employing cointegration often states that 
the lower price elasticities estimated derive from a more appropriate treatment of the non-stationary nature of 
time-series data. 
2 Among the reasons economic data are often converted to natural logs are that doing so for a log-linear model 
means the estimated coefficients are elasticities, and for a logged and differenced model all variables are 
transformed into percentage changes. 
3 As Liddle (2004) showed, population density can be used to represent alternatives to public transport across 
countries, rather than over time. 
4 Data can be accessed from http://www.nrcs.usda.gov/technical/NRI/. 
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to specific rule” is employed, where one starts with a maximum number of lags, tests the 
significance of coefficient on the last lagged term, and reduces the number of lags 
iteratively until a significant statistic is encountered.  

Engle and Granger (1987) point out that a linear combination of two or more 
nonstationary series may be stationary. If such a stationary linear combination exists, the 
nonstationary time series are said to be cointegrated. The stationary linear combination is 
called the cointegrating equation and may be interpreted as a long-run equilibrium 
relationship among the variables. Evidence of cointegration among variables confirms the 
presence of Granger-causality as well as rules out the possibility that the estimated 
relationships are spurious; however, cointegration does not indicate the direction of 
causality between pairs of variables. 

The Johansen (1988) test for multivariate cointegration is used. That test produces 
two statistics (the trace and maximum eigenvalue statistics), which can conflict –although 
they do not in the results presented here. To determine the number of cointegrating 
equations, r, one proceeds sequentially from r = 0 to r = k – 1, where k is the number of 
endogenous variables, until one fails to reject. Those two (trace and max-eigenvalue) test 
statistics are reported for each null hypothesis of r cointegrating equations against the 
alternative of k cointegrating equations, for r = 0, 1,…, k - 1. Besides determining the 
number of cointegrating equations, one can impose restrictions on both the estimated 
cointegration coefficients and the adjustment coefficients. Two of the most common 
restrictions to impose are, for a particular variable, setting the associated cointegration 
coefficients to zero (to test if that variable can be excluded from the cointegration space) 
and setting the associated adjustment coefficients to zero (to test if that variable is weakly 
exogenous with respect to the cointegration parameters).  

If two or more variables are cointegrated, then the relationship between or among 
the variables can be modeled using vector error correction modeling (VECM), and 
statistical tests on the individual equations in the VECM can be used to reveal the direction 
of Granger-causality between pairs of variables. In general a VECM for three5 cointegrated 
variables looks like:  
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where x, y, and z are the variables, Δ  is the difference operator, ECT refers to the error-
correction terms derived from the long-run cointegrating relationship, and l is the number 
of lagged difference terms determined in the cointegrating relationship. The ECT terms 
allow for an additional channel for Granger-causality to emerge, namely a long-run 
equilibrium relationship that is not treated in the standard Granger test (that is used when 
cointegration is not found).  

                                                           
5 For a system of four cointegrated variables, the VECM would have four equations.  
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For example, Equation 1 is used to test causation from y and z to x. Short-run 
causality is tested with an F-test on the sum of the lags of an explanatory variable (e.g., an 
F-test on the γ s to test y’s influence). Long-run causality is tested by a T-test on the ECT 

term ( 1η ). This second test is equivalent to restricting the adjustment parameters associated 

with a variable to zero, and thus, the finding of non-significance of an ECT term is 
interpreted as the associated variable being weakly exogenous with respect to the long-run 
parameters. Lastly, a joint test on the significance of the lags of an explanatory variable and 
the ECT term determines Granger exogeneity or endogeneity of a dependent variable. The 
finding of nonsignificance implies exogeneity, which prompts a further joint test on all the 
explanatory variables and on the ECT term simultaneously, i.e., a test for strong Granger 
exogeneity. Thus, depending on the outcome of these tests, a variable can range from long-
run strong Granger-endogeneity to strong exogeneity; and a relationship pair can exhibit 
short-run Granger- unidirectional or bi-directional causality, or noncausality.  

 
3. Vehicle-miles 
Gasoline price could affect vehicle-miles by encouraging switching travel modes or 
traveling less in general. One would expect as vehicles per capita increased, miles traveled 
per capita would also increase because, for example, a two-car household is likely to lodge 
more miles per member than a one-car household. The strong positive relationship between 
vehicle-miles per capita and income was already displayed in Figure 1. These variables 
may be inter-related, e.g., vehicle registrations per capita is likely also a function of 
income, and those possible inter-relationships, besides addressing the time series properties 
of the data, makes using the cointegration approach particularly appropriate.  

The results of the unit root tests appear in Table 2. Assumptions about the presence 
of a constant or a trend in unit root tests sometimes lead to inconsistent results. However, it 
is expected all of these series to be of order I (1), i.e., stationary in first differences but not 
in levels; thus, the results reported in Table 2 are unconvincing evidence to reject the prior 
belief that all of these series are I (1).  

Table 2 
Table 3 shows the results of the Johansen cointegration test among vehicle-miles 

per capita, gasoline price, income, and vehicles per capita. The optimal lag length of four 
for the cointegration test was selected by the consensus of five information criteria.6 Yet, 
both the finding of cointegration and the number of cointegrating equations are not overly 
sensitive to the selection of lag length.  

Because all of the series are trending, a constant is included in the cointegration 
space. Some of the transport elasticity studies using cointegration (Bentzen, 1994; Polemis, 
2006) include a time trend in the cointegration space to account for technical change; this is 
not done for three reasons: first, GDP per capita is a more accurate measure of technical 
change than a simple linear trend (indeed, according to the economic growth literature 
technical change is a primary cause of GDP growth); second, while automakers probably 
have had the capacity to improve fuel economy as technology has advanced, over the 
majority of the time-period analyzed, they have chosen to focus technological advances on 

                                                           
6 Those information criteria are: sequential modified likelihood ratio test statistic, final prediction error, 
Akaike information criterion, Schwarz information criterion, and Hannan-Quinn information criterion.  



 6

enhancing performance characteristics; and third, having a trend in the cointegration 
equations implies or assumes that some of the series are trend stationary, an assumption I 
am not prepared to make. However, as with the lag specification, the findings of 
cointegration and the number of cointegrating equations are not sensitive to the time trend 
inclusion decision.  

Table 3 
Both the trace and max eigenvalue test statistics indicate one cointegrating equation 

at the 1% significance level (only the null hypothesis of zero cointegrating relationships is 
rejected). This finding of cointegration confirms a long-run, systemic relationship among 
price, income, mobility demand, and vehicle ownership in the US.  

Table 4 presents the coefficients of the cointegrating equation as well as the test 
statistics for exclusion from the cointegration space and for weak exogeneity for each of the 
variables. The equation is normalized to vehicle-miles, and the signs of the coefficients are 
displayed in the table as they would appear on the left-hand side of the equation. Thus, the 
direction of the relationships between vehicle-miles and the other variables are as expected. 
Among the most important results are all variables enter the cointegrating vector 
statistically significantly – none of the four variables can be excluded from the 
cointegration space; and only price can be considered weakly exogenous. These findings 
suggest mutual causality among the variables.  

Table 4 
The top panel of Table 5 shows the causality results for short-run dynamics (the 

four dependent variables, corresponding to the four equations in the VECM, head the 
columns). Vehicle-miles per capita are caused by income as expected; however, gasoline 
price and vehicles per capita do not have a causal impact on vehicle-miles in the short-run. 
GDP per capita is caused by gasoline price, which is not surprising since gasoline price is 
highly correlated with oil price and since others (Stern, 1993; 2000) have found that energy 
has a causal impact on GDP in the US. Finally, the number of vehicles per capita is caused 
by gasoline price and vehicle-miles, but not by income. The most surprising results are that 
vehicles per capita do not Granger-cause vehicle-miles, and that income does not Granger-
cause vehicles per capita. However, these results only test for short-run causality, and as the 
other panels in Table 5 show, there is long-run Granger-causality among those variables. 
The fact that vehicle-miles per capita was found to Granger-cause vehicles per capita, 
however, reflects that the vehicle-miles variable is a proxy for mobility demand – i.e., as 
the demand for personal mobility increases, one would expect people to own more cars. 
One might expect mutual causality between vehicle-miles and income, and expect causality 
running from vehicles per capita to income; since some of the vehicle-miles include the 
trucking of goods, and since the US has a domestic car industry, the trucking of goods and 
purchase of more vehicles would feed GDP. This is indeed the case if the Wald-test for 
joint significance is used instead of the F-test, as both vehicle-miles per capita and vehicles 
per capita enter statistically significantly (both at the 5% level) in the GDP per capita 
equation. Those are the only two coefficients in Table 5 whose statistical significance is 
materially sensitive to the choice of joint test.  

Table 5 
The middle panel, long-run causality or weak exogenity test, confirms the earlier 

result (reported in Table 4) that only price is weakly exogenous. Finally, and most 
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importantly, the last panel in Table 5 shows the joint test or Granger endogeneity test. For 
all equations, except for price, the results imply the Granger endogeneity of all variables. 
For price the results imply exogeneity, and indeed, a joint significance test on all the 
explanatory variables in the price equation (to conserve space result not shown) indicates 
that price is strongly Granger/econometrically exogenous. This last result is not surprising 
since gasoline is an internationally traded commodity, and since tax on gasoline is 
relatively low in the US (running between 10-30% of pump price); thus, gasoline price 
would not be determined by US demand factors alone.  
 
4. Motor fuel use 
Estimating a long-run relationship for motor fuel use per capita in the US is problematic 
because of the certain, significant impact the Corporate Average Fuel Economy (CAFE) 
standards have had on overall fleet fuel economy. Fleet fuel economy is a potentially 
important impact factor on fuel use, but a factor whose impact has been fairly constant in 
periods when the CAFE standards either did not exist or went unchanged.  
 In 1975 the US Congress established the CAFE program, which set standards for 
the sales-weighted average fuel economy of the passenger car and light-duty truck fleets 
sold in the US. The standard for passenger cars rose from 18 miles per gallon (mpg) in 
automobile model year (MY) 1978 to 27.5 mpg in MY 1985, where it remains today; the 
current standard for light trucks is 22.2 mpg.7 According to the National Highway Traffic 
Safety Administration, overall fuel economy for cars and light trucks in the US peaked in 
1987 at 26.3 mpg; by 2004 that average had fallen slightly to 24.6 mpg. During those 
intervening years, vehicles increased in size from an average of 3,220 pounds to 4,066 
pounds (in part because the share of truck ownership nearly doubled). 

Figure 2 shows the real retail gasoline price and the realized fuel economy of 
passenger cars, i.e., actual miles traveled divided by fuel consumption, along with the 
CAFE standards for passenger cars over 1946-2006. With the exception of the recent 
increase in gasoline prices (which are demand-driven and very well may be sustained), the 
primary experience of real gasoline prices in the US is one of decline, with a couple of 
short-lived, supply-driven spikes around the OPEC oil embargo (1973) and the Iranian 
revolution (1979) and beginning of the Iran-Iraq war (1980-1981). Figure 2 indicates a 
relatively weak relationship between gasoline price and fuel economy; indeed, the 
correlation coefficient for the whole period is -0.46, implying that as price increases, fuel 
economy decreases. However, since the recent increase in gasoline prices beginning in 
2002, price and fuel economy are positively related with a correlation coefficient of 0.47. 
On the other hand, the relationship between the CAFE standards and fuel economy appears 
strong, with fuel economy lagging the standards slightly; indeed, the two curves look more 
or less parallel. 

Figure 2 
There are several reasons why actual fuel economy is below the standard: the 

standard is sales-weighted and based on estimates of fuel economy achieved under 
idealized conditions; whereas, the realized fuel economy is miles traveled-weighted (e.g., it 
includes cars made before CAFE or under lower standards and may reflect lower-gas 

                                                           
7 A law signed in mid-2007 requires that automakers raise fleetwide gas mileage to 35 mpg by 2020. 
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mileage cars being driven further), and reflects the conditions under which, and the ways in 
which, people actually drive (e.g., congestion, driving over speed limits). 

Table 6 shows the results of subjecting the natural log of realized passenger car fuel 
economy to a simple linear trend model (i.e., regressed on a constant and a time trend) over 
three regimes: a period before CAFE standards existed, 1946-1976; the period of influence 
for CAFE, say 1977-1991 (MY 1978 vehicles first appeared in 1977, and although the 
standards ceased to increase after 1985,8 the CAFE program would continue to influence 
overall fleet fuel economy as the pre-CAFE vehicles are gradually retired9); and the current 
period of constant fuel economy standards, 1992-2006. In the period before CAFE 
standards (pre-MY 1978), realized fuel economy actually declined at a rate of 0.3% per 
annum (p.a.), despite obvious technological improvements throughout the economy. 
Whereas, from 1977-1991, realized fuel economy increased by about 2.6% p.a., and since 
1992 has increased at the more modest rate of 0.6% p.a. The R-squared values imply a 
fairly strong fit for the linear-trend model over those three periods. In addition, this analysis 
suggests that, at least for the US, using a time trend to account for fuel efficiency 
improvements leads to a misspecification; although technology may increase nearly 
linearly, technology improvements are not necessarily channeled into fuel efficiency. 

Table 6 
A similar pattern—of technology contributing little to fuel economy, then being 

focused on fuel economy improvement, and again being channelled to areas other than fuel 
economy—is indeed what a National Research Council (2002) report found. From the 
period 1978, when CAFE standards were first introduced, through 1985, when they were 
last increased, the report determined that auto manufacturers channelled technological 
improvements—in engines, drive trains, and vehicle aerodynamics—toward improved fuel 
efficiency since fuel economy increased by 62% without any loss in 0-60 mph acceleration 
times. However, since 1985 technology improvements have been concentrated on 
performance since fuel economy of new vehicles has stayed essentially the same while 
vehicles have become 20% heavier and acceleration times 25% faster. 

To investigate the existence of a structural break in the motor fuel use per capita 
series, I adopt the Zivot and Andrews (1992) unit root test that allows for a single unknown 
break in intercept and trend. The Zivot-Andrews endogenous structural break test is a 
sequential test that assigns a dummy variable for each possible break date. The break date is 
selected where the t-statistic from the Augmented Dickey-Fuller test of unit root is at a 
minimum (most negative), and thus where the evidence is least favorable for the unit root 
null. To improve the accuracy of the test, all available data are used (Table 7).  

Table 7 
The Zivot-Andrews test finds evidence that a statistically significant break in the 

motor fuel use per capita series at the 1% level occurred in 1979 – about the time the CAFE 

                                                           
8 The standard was actually revised down to 26.0 mpg for MYs 1986-1988, increased to 26.5 mpg for MY 
1989, and then returned to 27.5 mpg for MY 1990. 
9 According to data on the average fuel economy of new cars for 1975 to 1993 from Murrell et al. (1993), the 
largest percentage improvement in occurred between 1975 and 1980, when new car fuel economy increased 
by 40% (between 1980 and 1993, new car fuel economy increased by only 17.5%). Furthermore, the expected 
lifetime of a car manufactured in 1980 was about 12 years (Davis, 1997), so by 1992 nearly all the pre-1980 
cars would have been replaced. 
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standards came into effect. None of the other series used here had statistically significant 
breaks between 1946 and 2006.10 Because a statistically significant break was found in the 
period of analysis, the test is repeated on the motor fuel use per capita series for 1980 to 
2006,11 and again a statistically significant break is calculated: in 1990 – a time when the 
unchanged CAFE standards’ influence would begin to wane (last row of Table 7). 

Because of the breaks in the motor fuel use per capita series in 1979 and 1990, and 
the influence of CAFE standards, the analysis of motor fuel use is separated by periods: 
1946-1977, 1978-1990, and 1991-2006. The 1978 start date for the second is a compromise 
between 1977 used in Table 6, and associated with the initial implementation of CAFE, and 
the first statistically significant break in 1979 in the motor fuel use per capita series. 
Because these periods may be too short to accurately estimate cointegration, and because 
1991-2006 does not constitute a long-run, standard OLS is used to estimate a relationship 
(the Newey-West method is used to control for heteroskedasticity and autocorrelation). 
Since cointegration and VECM are not used to treat the potential nonstationarity in the 
data, a first difference model is used to ensure all series are stationary. The logged and 
differenced model means the estimated coefficients are constants of proportionality 
between percentage changes in the right hand side variables and motor fuel use per capita, 
rather than elasticities.  

During periods when fuel efficiency was unchanged or changing slowly, one would 
expect fuel consumption per capita to be closely related to miles driven per capita. Indeed, 
a 1% increase in travel should increase fuel consumption by close to 1%. Even if increases 
in gasoline price alone are unlikely to encourage the manufacture or purchase of more fuel 
efficient cars, price may still influence the way people drive, and thus, fuel efficiency and 
consumption. For example, higher gasoline prices may encourage smoother acceleration 
and deceleration, lower speeds, and in two-car households, the use of the most fuel efficient 
vehicle. Per capita GDP is included because income growth should temper the impact on 
the budget constraint from price growth (or perhaps, exacerbate it in the period around the 
oil “shocks” when income may fall). 

The first three panels of Table 8 show results for the logged-difference model of 
motor fuel use per capita over the three periods. For the first and third sample periods the 
coefficient for vehicle-miles is significant, considerably larger than the other coefficients, 
and near (but, at least for the first period, statistically different from) unity. For the pre-
CAFE sample period as well as the third period, the coefficients for price and per capita 
GDP have the expected signs, but are marginally significant to insignificant at conventional 
levels. For the first two sample periods, the Durbin-Watson statistic is just outside the 
accept range (upper bound is 2.35), in the inconclusive zone; for the third sample period 
that statistic is in the middle of the inconclusive zone; however, the LM test rejects serial 
correlation for all three sample periods.12  

Table 8 

                                                           
10 A statistically significant break in GDP per capita in 1939 for the US is a date similar to that found by Ben-
David et al. (2003), who specifically searched for breaks in GDP series for a number of countries.  
11 Running the Zivot-Andrews test on motor fuel use per capita for 1919 to 1978, yields a break (at the 10% 
level) in 1929.  
12 The Breusch-Godfrey LM test rejected higher order serial correlation as well for all three samples (these 
results are not shown).  
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The fourth panel shows the results of a Chow breakpoint test for two breaks in 1978 
and 1991. That test provides further evidence that the model is different over the three 
periods, and that the CAFE program did indeed influence fuel consumption through its 
impact on fleet fuel economy. Furthermore, the coefficient for price declines in absolute 
value in each period, suggesting a declining influence of price on fuel consumption. The 
coefficient for vehicle-miles in the middle period is nearly half its value in the first and 
third periods, suggesting that CAFE standards helped to decouple somewhat miles traveled 
and fuel consumption. Table 9 shows the results of difference of means tests on the 
coefficients of gasoline price and vehicle-miles for the three pairs of the periods.  

Table 9 
The decline in gasoline price’s coefficient is not statistically significant for each 

period pair (e.g., between the first and second), but is statistically significantly different 
between the two most recent periods (i.e., between 1978-1990 and 1991-2006). That result 
is similar to Hughes et al. (2008), who found that the short-run price elasticity of gasoline 
demand is considerably more inelastic today than in pervious decades, estimating (from 
monthly data) that it fell from a range of -0.21 to -0.34 over 1975 to 1980 to a range of -
0.034 to -0.077 over 2001 to 2006. Lastly, Table 9 shows the coefficient for vehicle-miles 
was indeed significantly lower during the period of greatest CAFE influence (i.e., 1978-
1990).  

 
5. Conclusions and policy implications 
The analysis here showed that in the US mobility demand has a long-run systemic, 
mutually causal relationship with gasoline price, income, and vehicle ownership. Since 
these variables co-evolve in a transport system, they cannot be easily disentangled in the 
short-run. However, estimating a long-run relationship for motor fuel use per capita is 
difficult because of the combination of the efficacy of the CAFE standards to influence 
fleet fuel economy and the short period for which those standards existed and were 
increased. The data used shows that before the fuel economy standards were introduced and 
in the current period when they were kept constant, overall fleet fuel economy was either 
stable or increasing only slightly despite substantial improvements in technology; 
furthermore, during those periods of either no or unchanging standards, the growth of 
motor fuel use per capita was highly dependent on the growth of mobility demand.  

These findings have a number of potential implications for policy. First, the fuel 
standards program was effective both in improving the fuel economy of the US vehicle 
fleet and in temporarily lessening mobility demand’s impact on fuel use. Second, higher 
gasoline taxes are likely to have a limited impact on mobility and fuel demand. Gasoline 
price did not have a significant short-run causal impact on vehicle-miles. Also, fuel price 
had a negative coefficient in the fuel use regressions, but was only marginally significant in 
two of the three periods, and that coefficient declined in each subsequent period (although 
that decline was not always statistically different at standard levels). The finding of a 
declining influence of gasoline price on motor fuel use is supported by Hughes et al. (2008) 
who found that the short-run price elasticity of gasoline demand is considerably more 
inelastic now than in the 1970s.  

Although gasoline price did have a short-run impact on vehicles per capita, the 
decision whether to purchase a vehicle is different from the decision of which type of 
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vehicle to purchase. Indeed, gasoline costs’ influence on that second kind of decision is 
small and declining. The American Automobile Association (various years) estimated that 
the gasoline cost of operating a vehicle for 15,000 miles per year increased 50% in real 
terms from 1985 to 2006; however, the fixed ownership costs (insurance, license, 
registration, taxes, depreciation, and finance charges) more than doubled over that time, 
causing the share of gasoline costs to drop from 24 to 17%. 

Finally, lowering or even stabilizing vehicle-miles per capita in the US will require 
a combination of policies. The empirical evidence that mobility demand, fuel price, and 
economic growth are part of a mutually causal system reported here is in concert with the 
latest urban planning research (Ewing et. al., 2007); that research concluded that urban 
development through its relationship with vehicle travel “… is both a key contributor to 
climate change and an essential factor in combating it.” In other words, creating urban 
development that lowers the need for personal motorized transport is crucial to lowering 
fuel use. For example, according to the NRCS, the population per acre of developed land 
declined by 17% from 1982 to 1997; hence, sprawl increased. Yet, Polzin and Chu (2005) 
reported that survey data shows the share of people using public transit to get to work fell 
steadily from 1970 to 1995.  

More specifically, in countries with developed, vehicle-intensive transport systems, 
like the US, a combination of policies would mean higher standards for vehicle efficiency, 
higher gasoline taxes, and other incentives for more public transit-friendly urban 
development to take advantage of as many policy levers as possible. Large, economically 
growing countries still developing their transport systems, like China and India, would be 
wise to develop a system of prices, technology, and mobility options that help them avoid 
the difficult choice that the US faces.  
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Sources: GDP data are from Johnston and Williamson (2008). Travel data are from the Federal Highway 
Administration. 

 
Figure 1. Vehicle-miles per capita and real GDP per capita (in 2000 US$), 1946-2006.  
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Sources: Energy Information Agency, Federal Highway Administration, and National Highway Traffic Safety 
Administration. 

 
Figure 2. Real gasoline price (per gallon), realized fuel economy for passenger cars, and 
CAFE standards for passenger cars, 1946-2006.  
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Table 1. Variable definitions and data sources. 
Variable Definition Source 

LGDP Natural log real GDP per 
capita 

Johnston and Williamson (2008) 
http://www.measuringworth.org/usgdp/# 
 

LPRICE Natural log real retail gasoline 
price 

Energy Information Agency 
http://www.eia.doe.gov/emeu/steo/pub/fsheets
/PetroleumPrices_files/frame.htm 
 

LMFU Natural log motor fuel use per 
capita 

Federal Highway Administration 
http://www.fhwa.dot.gov/policy/ohpi/hss/hssp
ubs.htm 
 

LVMT Natural log vehicle-miles per 
capita 

Federal Highway Administration 
http://www.fhwa.dot.gov/policy/ohpi/hss/hssp
ubs.htm 
 

LREG Natural log of the number of 
registered vehicles per capita 

Federal Highway Administration 
http://www.fhwa.dot.gov/policy/ohpi/hss/hssp
ubs.htm 

 
 
Table 2. Unit root tests on levels and first differences of GDP per capita, gasoline prices, 
motor fuel use per capita, vehicle-miles per capita, and registered vehicles per capita using 
Dickey-Fuller with GLS detrending. 
 

 Levels First differences 

 Trend & constant Constant Trend & constant Constant 
LGDP -3.20 [4]** 1.68 [1] -3.58 [0]** -2.16 [0]** 
LPRICE -2.76 [5] -2.03 [1]** -6.25 [0]* -5.86 [0]* 
LMFU -1.55 [5] -0.34 [5] -4.05 [4]* -2.02 [1]** 
LVMT -3.31 [5]** -0.24[5] -4.35[5]* -3.55[5]* 
LREG -1.46 [5] -0.32 [5] -6.76 [3]* -1.51 [4] 

 
Notes: The Elliott-Rothenberg-Stock DF-GLS test statistic is shown. The numbers in brackets are the optimal 
lags determined by the general to specific procedure. Levels of significance are indicated by * and **, 
referring to the 1% and 5% levels.

http://www.measuringworth.org/usgdp/
http://www.eia.doe.gov/emeu/steo/pub/fsheets/PetroleumPrices_files/frame.htm
http://www.eia.doe.gov/emeu/steo/pub/fsheets/PetroleumPrices_files/frame.htm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm
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Table 3. Johansen cointegration test for vehicle-miles per capita, fuel prices, GDP per 
capita, and vehicles per capita, 1946-2006 (adjustments for four lags). 
Null Alternative Statistic 5 % Critical value 

Trace statistic 
r = 0 r > 0 178.67* 47.86 
r <= 1 r > 1 18.09 29.80 
r <= 2 r > 2 2.88 15.49 
r <= 3 r = 3 0.14 3.84 
Maximum eigenvalues 
r = 0 r > 0 160.58* 27.58 
r <= 1 r > 1 15.21 21.13 
r <= 2 r > 2 2.74 14.26 
r <= 3 r = 3 0.14 3.84 

Notes: r Indicates the number of cointegrating relationships. * Indicates rejection of the null 
hypothesis of no cointegration at the 1% level. 
 
 
Table 4. Cointegrating equation and test statistics for vehicle-miles per capita, fuel prices, 
GDP per capita, and vehicles per capita, 1946-2006 (adjustments for four lags). 
 LVMT LPRICE LGDP LREG Constant 
Cointegrating vector 1.00 0.18 -0.46 -0.62 -4.56 
(t-stats)  (14.7) (-24.6) (-36.7)  
      
χ2 -test statistic for exclusion from cointegration 
space 

123.6* 65.6* 123.5* 88.6*  

      
χ 2 -test statistic for weak exogeneity 74.8* 0.02 31.7* 11.3*  
      
Adjustment coefficients  -0.72 -0.04 0.52 -0.18  
(t-stats) (-10.2) (-0.1) (5.4) (3.0)  

Notes: * Indicates rejection of the null hypothesis at the 1% level. Coefficients of the 
cointegrating equation are shown as they would appear on the left-hand-side of the 
equation. 
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Table 5. Short and long run pair-wise Granger-causality and weak and strong exogeneity 
tests results based on the vector error correction model. 

Dependent 
variable 

ΔLVMT ΔLPRICE ΔLGDP ΔLREG 

Short-run causality (F-statistics) 
ΔLVMT — 0.79 1.76a 2.11*** 
ΔLPRICE 0.98 — 4.38* 2.75** 
ΔLGDP 4.86* 0.55 — 0.36 
ΔLREG 0.86 0.60 1.93b — 
 
Long-run causality or weak exogeneity (T-statistics) 
ECT  -10.21* -0.10 5.42* -2.97* 
 
Granger endogeneity (joint test on short-run causality and ECT, F-statistics) 
ΔLVMT — 0.76 5.98* 6.73* 
ΔLPRICE 25.85* — 6.89* 4.62* 
ΔLGDP 25.78* 0.48 — 2.45** 
ΔLREG 30.59* 0.49 6.97* — 
Notes: Levels of significance are indicated by *, **, and ***, referring to the 1%, 5%, and 10% levels, 

respectively. If the Wald test for joint significance is used, then the statistical significance of two 

coefficients change. The coefficient superscripted a becomes 9.26 and is significant at the 5 % level, and that 
superscripted b becomes 10.1 and is significant at the 5 % level. 

2χ

 

 
 
 
Table 6. A time-trend model for the natural log of realized passenger car fuel economy over 
three regimes of CAFE influence. 
Time period Intercept Trend Adjusted R2 

1946-1976 2.80* -0.0034* 0.79 
1977-1991 1.15* 0.026* 0.94 
1992-2006 2.62* 0.0057* 0.88 

Note: * denotes statistical significance at the 1% level. 
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Table 7. Zivot-Andrews endogenous test for structural break in intercept and trend. 
Series Observations Break-date T-statistic 

LMFU 1919-2006 1979 -6.44* 
LVMT 1936-2006 1954 -3.89 
LPRICE 1919-2006 1991 -3.41 
LGDP 1919-2006 1939 -7.20* 
LREG 1940-2006 1955 -4.46 
 
LMFU 

 
1980-2006 

 
1990 

 
-5.63* 

Note: * statistical significance at the 1% level. 
 
 
Table 8. Logged-difference model of motor fuel use per capita before, during, and after 
CAFE standards’ greatest impact on fuel economy.  
 Coefficient Std. Error Prob. 

 
Sample: 1946-1977 

Constant -0.0032 0.0060 0.60 

Δ (LPRICE) -0.11 0.068 0.11 

Δ (LVMT) 0.86 0.051 0.00 

Δ (LGDP) 0.19 0.11 0.092 
 

Adj. R-squared 0.81 Durbin-Watson stat. 2.40 
Breusch-Godfrey LM test stat. 1.60 (0.21) 
 

Sample: 1978-1990 
Constant -0.026 0.0023 0.00 

Δ (LPRICE) -0.082 0.016 0.00 

Δ (LVMT) 0.46 0.12 0.00 

Δ (LGDP) 0.59 0.15 0.00 

Adj. R-squared 0.92 Durbin-Watson stat. 2.38 
Breusch-Godfrey LM test stat. 0.94 (0.33) 

 
Sample: 1991-2006 

Constant -0.0010 0.0058 0.11 

Δ (LPRICE) -0.026 0.017 0.16 

Δ (LVMT) 0.88 0.20 0.00 

Δ (LGDP) 0.46 0.26 0.10 
 

Adj. R-squared 0.66 Durbin-Watson stat. 1.38 
Breusch-Godfrey LM test stat. 0.80 (0.37) 
 
Chow Breakpoint test with two breaks in 1978 & 1991 
F-statistic 2.54** LR-statistic 21.19* 

Notes: is the difference operator. Dependent variable is Δ Δ (LMFU). The probability associated with the 
LM test statistic is in parentheses. Levels of significance for the Chow test are indicated by * and **, referring 

to the 1% and 5%, levels, respectively. 
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Table 9. Difference of means tests between the three periods for the gasoline price and 
vehicle-miles coefficients. 
Periods compared Test statistic a Probability 

LPRICE 

1946-1977 & 1978-1990 
 

-0.40 0.69 

1978-1990 & 1991-2006 
 

-2.40 0.024 

1946-1977 & 1991-2006 -1.20 0.24 

LVMT 

1946-1977 & 1978-1990 
 

3.07 0.00 

1978-1990 & 1991-2006 
 

-1.80 0.083 

1946-1977 & 1991-2006 -0.10 0.92 

a: 

( ) ( )22

2

1

21

SESE
tc

+

−
=

ββ
, where subscripts refer to two time periods, β to the estimated coefficients, and 

SE to the estimated standard errors. 
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