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ABSTRACT 
This paper analyzes urban population’s and affluence’s (GDP per capita’s) influence on 
environmental impact in developed and developing countries by taking as its starting point the 
STIRPAT framework. In addition to considering environmental impacts particularly 
influenced by population and affluence (carbon emissions from transport and residential 
electricity consumption), the paper determines whether and, if so, how those environmental 
impact relationships vary across development levels by analyzing panels consisting of poor, 
middle, and rich countries. The development-based panels approach is an improvement on the 
GDP per capita polynomial model used in the Environmental Kuznets Curve and other 
literatures for several reasons: (i) it allows one to determine whether the elasticity of all 

variables considered varies according to development; (ii) it is arguably a more accurate 
description of the development process; (iii) it avoids potentially spurious regressions 
involving nonlinear transformations of nonstationary variables (GDP per capita squared); and 
(iv) unlike the polynomial model, it allows for the possibility that elasticities are significantly 
different across development levels but still positive—precisely the relationship expected for 
the environmental impacts considered here. Whether or not the elasticity for affluence was 
greater than that for population was a function of both the choice of dependent variable and 
the makeup of the panel (all countries, poor, middle, or rich). Furthermore, the estimated 
elasticities varied, in a nonlinear fashion, according to the development process: U-shaped, 
inverted U-shaped, and monotonic patterns were revealed, again, depending on the dependent 
variable. 
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1. Introduction  

Transport contributes more than one-fifth of global anthropogenic carbon dioxide 

emissions; the residential sector consumes more than one-quarter of the world’s electricity, 

and transport and residential electricity consumption are increasing in both developed and 

developing countries. Although there are non-greenhouse gas intensive technologies for 

generating electricity, two-thirds of electricity is generated from fossil fuels1 (of which coal is 

the largest source). Furthermore, many of those alternatives to fossil fuels also have 

environmental impacts: wind farms affect bird migrations and are considered by some to be 

unsightly; hydro-power often involves massive construction-engineering projects, which 

contribute their own carbon emissions, and can cause displacements of people, wildlife, and 

ecosystems (e.g., China’s Three Gorges dam); and nuclear power raises safety concerns as 

well as the threat of non-energy, military uses. Also, as normal goods, transport and 

residential electricity consumption are unlikely to follow an inverted-U path as countries 

develop/become richer. Lastly, transport and energy in the home are consumed on the 

individual, household level, and thus, are much more likely than other environmental impacts 

to be directly influenced by per capita wealth and population.  

 Population is less likely to directly impact national, aggregate emissions like carbon 

dioxide; instead, those emissions should be heavily influenced by the structure and energy 

intensity of the macro-economy (e.g., the presence and size of sectors like iron and steel and 

aluminum smelting) and by the technologies used to generate electricity (i.e., coal vs. 

nuclear). For example, smaller in population (by about a third), but very coal-intensive, 

Australia uses less than half the energy France uses (France relies substantially on nuclear 

generated electricity); yet, Australia emits seven percent more carbon than France. However, 

as noted, the majority of transport and all energy in the home are consumed on an individual, 

                                                 
1 US Energy Information Agency projects only a small increase in the share of non-fossil fuels used in electricity 
generation by 2035 (from 0.32 to 0.35), see http://www.eia.doe.gov/oiaf/ieo/index.html. 

http://www.eia.doe.gov/oiaf/ieo/index.html
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household level, and thus, are much more likely than national, aggregate emissions to be 

directly influenced by per capita wealth and population.  

This paper employs the stochastic version of the IPAT model (or STIRPAT ) in order 

to examine population’s—specifically, urban population’s—and affluence’s (GDP per capita) 

influence on carbon emissions from transport and residential electricity consumption in both 

developed and developing countries. Also, the paper determines whether and, if so, how those 

environmental impact relationships vary across development levels by analyzing 

development-based panels consisting of poor, middle, and rich countries and by performing 

difference in means tests. Finally, the paper employs advanced time-series-based techniques 

like panel cointegration and panel Fully Modified OLS (FMOLS) to estimate variable 

elasticities (important since STIRPAT variables are stock or stock-related, and thus, likely 

nonstationary, and at least population and affluence are potentially inter-related) 

2. Literature review 

2.1 STIRPAT 

The IPAT/impact equation of Ehrlich and Holdren (1971) is a common framework to 

distinguish between population’s and GDP’s (or income’s) environmental impact. 

Environmental impact (I) is set equal to the product sum of population (P), affluence or 

consumption per capita (A), and technology or impact per unit of consumption (T). Dietz and 

Rosa’s (1997) STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and 

Technology) framework builds on the IPAT equation by allowing hypothesis testing and by 

not assuming a priori a proportionality in the functional relationships between factors. In 

general, the STIRPAT model is: 

           (1) i

d

i

c

i

b

i eTAaPI =

Where the subscript i denotes cross-sectional units (e.g., countries), the constant a and 

exponents b, c, and d are to be estimated, and e is the residual error term.  
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Since Equation 1 is linear in log form, the estimated exponents can be thought of as 

elasticities (i.e., they reflect how much a percentage change in an independent variable causes 

a percentage change in the dependent variable.) Furthermore, Equation 1 is no longer an 

accounting identity whose right and left side dimensions must balance, but a potentially 

flexible framework for testing hypotheses—such as whether elasticities differ across 

development levels. In addition to determining whether population or GDP has a greater 

marginal impact on the environment, another important hypothesis to test is whether 

population’s elasticity is different from unity, i.e., whether population or impact grows faster. 

That hypothesis is particularly interesting/important to test: if population’s elasticity is one, 

then population could be removed as an independent variable via division (from Equation 1), 

and so the dependent variable would be in per capita terms (the framework used often in non-

STIRPAT analyses, like those in the so-called Environmental Kuznets Curve literature).  

The studies applying the STIRPAT formulation to carbon emissions typically found 

that both population and income/affluence are significant drivers. Furthermore, most studies 

have found that population has a greater impact (i.e., elasticity) than affluence (e.g., Dietz and 

Rosa 1997; Shi 2003; York et al. 2003; Cole and Neumayer 2004; Martinez-Zarzoso et al. 

2007; Liddle and Lung 2010). However, those studies that sought to determine whether 

population’s elasticity was significantly different from one have produced less consistent 

results.  

For example, Dietz and Rosa (1997), York et al. (2003), and Cole and Neumayer 

(2004) all found population’s elasticity to be statistically indistinguishable from unity (thus, a 

1% increase in population causes an approximate 1% increase in emissions). By contrast Shi 

(2003) estimated a particularly high elasticity for population—between 1.4 and 1.6 for all 

countries samples; moreover, when Shi separated countries by income groups, the elasticity 

for high income countries was 0.8, whereas the elasticity for middle and low income countries 
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ranged from 1.4 to 2.0. Similarly, Poumanyvong and Kaneko (2010) estimated population 

elasticities that ranged from 1.7 to 1.2 to 1.1 for low-income, middle-income, and high-

income groups, respectively. Likewise, Martinez-Zarzoso et al. (2007) estimated a statistically 

insignificant population elasticity for old EU members, but an elasticity of 2.7 for recent EU 

accession countries. Among the possible reasons for such disparate results are: (i) the 

different data and methods used (i.e., the time dimension of the data and whether/how the 

stationarity of the data was considered/addressed); and (ii) whether elasticities were allowed 

to differ according to development level.      

2.1.1 STIRPAT/stock variables, nonstationarity, and endogeneity  

 Most variables used in STIRPAT analyses are stock (population) or stock-related 

variables (GDP, emissions, and energy consumption, which are influenced by stocks like 

population and physical capital); as such, those variables are likely nonstationary—i.e., their 

mean, variance, and/or covariance with other variables changes over time. When OLS is 

performed on time-series (or time-series cross-section) variables that are not stationary, then 

measures like R-squared and t-statistics are unreliable, and there is a serious risk of the 

estimated relationships being spurious. Yet, few STIRPAT studies that employ annual (or 

more frequent) times-series cross-section (i.e., panel) data have been concerned with the 

stationarity issue.  

Dietz and Rosa (1997) and York et al. (2003) analyzed single-year cross-sections; 

whereas, Cole and Neumayer (2004), Martinez-Zarzoso et al. (2007), and Poumanyvong and 

Kaneko (2010) estimated first-difference models to correct for nonstationarity. (Indeed, Cole 

and Neumayer 2004 hypothesized that the much higher elasticity estimated in Shi 2003 may 

be spurious because of that paper’s use of untreated, nonstationary data.) Although first-

differencing often transforms nonstationary variables into stationary ones, first-differencing 

means that the model is a short-run (rather than a long-run) model and that the estimated 
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coefficients are constants of proportionality between percentage changes in the independent 

variables and percentage changes in the measure of impact, rather than elasticities.  

As an alternative to taking first-differences, one could test for panel-unit roots (or 

stationarity) and for panel-cointegration (two or more nonstationary variables are said to be 

cointegrated if some linear combination of them is stationary), and, depending on the outcome 

of those tests, estimate the equation via methods like FMOLS. (Such tests were originally 

designed for time-series but have been expanded to cover panel data sets.) Yet, we know of 

only one STIRPAT paper to employ these alternative methods—Liddle (2011). 

Pedroni’s (2000) FMOLS estimator is designed for panels of cointegrated variables 

(finding cointegration among economic or economic-related variables is interpreted as 

evidence of a long-run, equilibrium relationship), and that estimator produces asymptotically 

unbiased estimates and standard normal distributions free of nuisance parameters. FMOLS 

accounts for stationarity and corrects for both residual autocorrelation and endogeneity. 

Addressing the long-run nature of the relationship (i.e., cointegration) among STIRPAT 

variables, as well as the likely endogeneity among them, is particularly appropriate since such 

variables are believed to be inter-related and mutually causal according to a number of social 

science theories. For example, affluence (or GDP per capita) is believed to affect 

population—through both human capital’s influence on birth rates (e.g., Becker et al. 1990) 

and higher income’s ability to lower death rates. Likewise, population has been shown to 

impact affluence—such as when the size of the working-age population increases faster than 

the size of the dependent-age population (e.g., Bloom and Williamson 1998); meanwhile, 

human capital and technology have been recognized as drivers of economic growth 

(affluence) since Solow (1956).2 

                                                 
2 In theory FMOLS accounts for endogeneity among variables implicitly. To more fully and explicitly express 
the potential mutual feedbacks among the variables would require an approach like multiple structural equation 
modeling—a discussion of that methodology is beyond the scope of the present paper.   
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2.1.2 Differences across development 

Another possible reason for the variation in population elasticity estimates discussed 

above is that the population elasticity is less than one for advanced/developed/rich countries 

and greater than one for developing countries. However, Shi (2003) is the only STIRPAT 

study that sought to determine whether elasticities were significantly different across 

income/development levels (and Shi only explored this possibility for population’s elasticity). 

(Martinez-Zarzoso et al. 2007 separated their EU panel into new and old members. Both 

Poumanyvong and Kaneko 2010 and Poumanyvong et al. 2012 separated their panels into 

three income-based groupings; however, neither paper explicitly determined if the estimated 

elasticities were statistically significantly different across those groupings.) A few STIRPAT 

studies have sought to determine whether affluence’s elasticity varies according to 

development by adding a GDP per capita squared term to the regression (e.g., York et al. 

2003). We discuss the potential shortcomings of that polynomial/quadratic approach in the 

coverage of a related literature below.  

2.1.3 Age structure and impact 

A number of researchers, working with micro-level data, have shown that activities 

like transport and residential energy consumption vary according to age structure and 

household size (e.g., O’Neill and Chen 2002; Liddle 2004; Prskawetz et al. 2004; and Zagheni 

2011). Recently, studies using cross-country, macro-level data have shown a similar 

relationship (e.g., Liddle and Lung 2010; Liddle 2011). In general, age structure matters 

because (i) people in different age-cohorts or at different stages of life have different levels of 

economic activity; and (ii) the age of household head is associated with size of household, and 

larger households consume more energy in aggregate, although less per person, than smaller 

households. Liddle and Lung (2010) reviewed the consideration of age structure in STIRPAT 

analyses; while O’Neill et al. (2012) reviewed STIRPAT studies in general. 
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Of that recent, macro-level work, particularly relevant to this paper is Liddle (2011); 

that paper employed cointegration and FMOLS estimations and considered carbon emissions 

from transport and residential electricity consumption. However, Liddle (2011) focused on 

OECD countries only. The level of disaggregation needed to meaningfully analyze population 

age structure is not available in time series format from the usual international macro-data 

sources (e.g., United Nations and World Bank);3 moreover, such data is not available in time 

series format from any source for most non-OECD countries.4 (Liddle 2011 sourced 

population data from Eurostat and individual national statistics agencies.)  

2.2 Related literatures 

2.2.1 Energy-GDP growth  

There is a substantial literature focusing on the relationship between electricity/energy 

consumption and GDP—sometimes referred to as the electricity/energy-growth nexus (see 

reviews by Ozturk 2010; Payne 2010a; and Payne 2010b). The studies in this literature (i) 

tend to analyze multivariate models using macro-level, annual data; (ii) unlike those in the 

STIRPAT literature, do test for unit roots and cointegration; and (iii) accordingly estimate 

elasticities with methods like FMOLS. Two multivariate models have emerged as most 

popular: (i) a production function model, and (ii) a demand model.  

In the production function model GDP is a function of electricity/energy consumption, 

labor/po  an r gression form is: pulation, d physical capital. Afte taking logs, the typical panel reln ሺܲܦܩሻ௜௧ ൌ ௜ߙ ൅ ௧ߛ ൅ ሻ௜௧݊ܧଵln ሺߚ ൅ ଶln ሺܲሻ௜௧ߚ ൅ ሻ௜௧ܭଷln ሺߚ ൅  ௜௧  (2)ߝ

where En is energy consumption, P is the population/labor force, and K is capital stock. Most 

often all variables are left as aggregates, but sometimes the terms of Equation 2 are divided by 

                                                 
3 One needs greater disaggregation than under 15-years and over 64-years; again, see Liddle and Lung (2010) for 
a discussion. 
4 We leave for future research a panel-style analysis (data observations at 5-10 year intervals, as opposed to time-
series cross-section data) of age structure and environmental impact in less developed countries.   
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population to convert all variables to per capita (e.g., Lee et al. 2008; and Narayan and Smyth 

2008).  

Since GDP (or GDP per capita) is the dependent variable, this literature is not 

interested in evaluating how affluence (or GDP per capita) and population/labor force affect 

energy consumption (but in evaluating how population/labor force and energy consumption 

affect GDP); nor is it interested in explaining energy consumption other than to test for so-

called Granger causality.5 In addition, most of the several papers—that have employed the 

production function model with panel data, that have tested for panel unit roots and for 

cointegration, and that accordingly have used methods like FMOLS to estimate elasticities—

have considered single panels (e.g., Narayan and Smyth 2008; Lee et al. 2008; Lee and Chang 

2008; and Apergis and Payne 2009a, 2009b, and 2010); and thus, they have not been 

interested in whether or how those elasticities vary across panels or country groupings. The 

only such production function study to separate countries into income-based panels was 

Apergis and Payne (2011), which focused on electricity rather than energy consumption. All 

of these studies have confirmed that the variables analyzed are panel I(1) and panel 

cointegrated, and that energy and GDP have an important (significant) and sometimes 

mutually causal relationship.  

Studies employing the demand model explain electricity/energy consumption per 

capita as a function of GDP per capita and price(s). There is a substantial literature involving 

single-country analyses aimed at determining the income and price elasticities of gasoline 

consumption; however, only Liddle (2012) has employed panel data and cointegration 

modeling to estimate those elasticities. Some additional papers have analyzed residential 

electricity consumption as a dependent variable, but since time series price data is difficult to 

obtain (particularly difficult for non-OECD countries), most of them have been single-country 

                                                 
5 A variable, y, is said to be “Granger-caused” by another variable, x, if x helps in the prediction of y. Thus, 
Granger causality measures precedence and information content, but does not by itself prove causality (that y is 
the effect or result of x), any more than any statistical test can prove causality. 
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studies too (e.g., Holtedahl and Joutz 2004; Halicioglu 2007; Dergiades and Tsoulfidis 2008). 

The only such panel study to focus on residential electricity consumption, Narayan et al. 

(2007),  t - d :  considered he G 7 countries only. The equation Narayan et al. examine  wasln ሺܿܧ/ܲሻ௜௧ ൌ ௜ߙ ൅ ௧ߛ ൅ ሻ௜௧ܲ/ܲܦܩଵln ሺߚ ൅ ሻ୧୲ݎ݌ܧଶlnሺߚ ൅ ሻ௜௧ݎ݌ܩଷln ሺߚ ൅  ௜௧ (3)ߝ

where Ec is residential electricity consumption, Epr is the real residential electricity price, and 

Gpr is the real natural gas price. 

So again, this literature has not been interested in how/whether elasticities varied 

across development, nor in whether population had an effect (at least one that was different 

from unity) on that residential electricity/energy consumption/environmental impact. In 

addition to determining that the variables were I(1) and cointegrated, all of the above demand 

model studies confirmed the expected result that income has a positive, significant effect on 

both gasoline and residential electricity consumption per capita. 

2.2.2 Environmental Kuznets Curve 

 There is a (vast) literature that does seek to determine whether the relationship 

between environmental impact per capita (usually emissions) and income (typically alone) 

changes with income level—the Environmental Kuznets Curve (EKC) literature. This 

literature posits that pollution first rises with income and then falls after some threshold level 

of income/development is reached, thus forming an inverted U-shaped relationship. One of 

the main explanations in the literature for the idea that emissions would fall as income rises is 

that the income elasticity of environmental quality demand is in excess of unity, i.e., a clean 

environment is a luxury good (Dinda 2004). Thus, one expects that an EKC relationship is 

most likely to occur for pollutants whose negative impacts are clearly understood, are rather 

immediate, and can be controlled locally (i.e., the people affected by the pollution can 

institute policies that will control that pollution). Hence, one would expect that an EKC 

relationship is less likely for pollutants/environmental impacts whose reach is more global, 
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whose damages occur in the future, and whose extent of damages are more uncertain (i.e., 

carbon emissions).  

E ly llo g form: mpirical studies of the EKC based on panel data typical  take the fo winlnሺܧ/ܲሻ௜௧ ൌ ௜ߙ ൅ ௧ߛ ൅ ሻ௜௧ܲ/ܲܦܩଵlnሺߚ ൅ ଶሺlnߚ ቀீ஽௉௉ ቁሻ௜௧ଶ ൅ ଷln ሺܼሻ௜௧ߚ ൅  ௜௧ (4)ߝ

where E is emissions and Z is a vector of other drivers that is sometimes, but not always, 

considered. An EKC between emissions per capita and income is said to exist if the 

coefficient ߚଵ is statistically significant and positive, while the coefficient ߚଶ is statistically 

significant and negative. Furthermore, when the above situation is the case, the implied 

turning point—the level of GDP at which the relationship between income and emissions 

changes from positive to negative—can be calculated by differentiating the estimated 

equation with respect to GDP per capita, setting the equation equal to zero, and solving. 

The empirical evidence on whether a turning point for aggregate carbon emissions 

exists is mixed (Lieb 2004); whereas, studies that have considered aggregate energy 

consumption have found a monotonic relationship with income (e.g., Suri and Chapman 

1998; Cole et al., 1997). The STIRPAT-based criticism is that if the elasticity of population is 

not equal to one, then Equation 4 will be mis-specified (since in that case one should not 

divide both sides of a relationship like Equation 1 by population); in addition to that criticism, 

reduced form, income driven inverted-U models have been criticized for their (lack of) theory 

and for their methods, and at least partially discredited when applied to pollution (Stern 

2004).  

One such objection is to the “… assumption of a causal role of income growth and the 

inadequacy of reduced-form specifications that presume that a common income-related 

process … adequately describes the generation of the pollutant of interest” (Carson 2010, 

p.5). Similarly, the statistical grouping of countries at different stages of development does 

not necessarily approximate the actual development process that real countries experience. 
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Indeed, Deacon and Norman (2006) used nonparametric methods to examine the income-

pollution relationships of individual countries and observed that those within-country 

relationship patterns did not differ significantly from what would be expected to occur by 

chance.  

Lastly, Stern (2004) argued that many EKC studies risked spurious findings by 

ignoring that variables like emissions per capita and GDP per capita are likely nonstationary; 

later, Wagner (2008) argued further that even the EKC studies that did recognize the 

stationarity properties in the data still risked spurious findings by performing nonlinear 

(quadratic) transformations of a nonstationary variable (GDP per capita). Indeed, both 

Wagner (2008) and Stern (2010) determined that if the econometric issues in previous EKC 

studies are adequately addressed, then the relationships between GDP per capita and both 

carbon dioxide emissions per capita and sulfur dioxide emissions per capita are (positively) 

monotonic.  

Although we know of no studies that have hypothesized that residential electricity 

consumption (a normal—not inferior—good) should decline at a certain high level of income, 

there are a few (cross-country) EKC studies that have focused on transport related 

environmental impacts. Hilton and Levivson (1998) looked at automotive lead emissions 

using data for 48 countries over 20 years; they found that despite the fact that gasoline 

consumption increased with income monotonically, lead emissions and income had an 

inverted-U shaped relation because pollution intensity (i.e., the amount of lead contained in 

gasoline) declined with income. Closer to this paper’s dependent variable of carbon emissions 

from transport, Cole et al. (1997) considered per capita energy use in the transport sector in 

OECD countries over 1970-1990, and determined that energy use increased monotonically 

throughout the observed income range. Liddle (2004) effectively updated that aspect of the 

Cole et al. study, by considering per capita road energy use (again in OECD countries) over 
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1960-2000, and found an implied turning-point well outside the sample range of income. 

Thus, the transport-focused EKC studies have confirmed the hypothesis that the demand for 

mobility (and its associated energy consumption), as a normal good, is unlikely to ever 

decline with income—its income elasticity may indeed decline at high levels of income, but 

that elasticity would remain above zero. 

2.3 This paper’s contribution 

In addition to analyzing two important, but rather ignored, environmental impacts—

carbon emissions from transport and residential electricity consumption, this paper advances 

the STIRPAT literature/framework in several important ways. First, the paper tests the 

variables analyzed for panel unit roots (or stationarity), and employs advanced time-series-

based techniques like panel cointegration and panel Fully Modified OLS (FMOLS) to 

estimate elasticities. These methods are important since STIRPAT variables are both (i) stock 

or stock-related, and thus, likely nonstationary, and (ii) highly inter-related, and since FMOLS 

addresses endogeneity among variables. (Again, the only other STIRPAT paper of which we 

are aware to employ these methods, Liddle 2011, focused on OECD countries only.)  

Second, the paper determines whether and, if so, how relationships vary across 

development levels; it does so by analyzing development-based panels consisting of poor, 

middle, and rich countries, and by performing difference in means tests. This second 

innovation is important because few STIRPAT papers have used time-series, cross-section 

data from developed and developing countries, and we know of only three STIRPAT studies 

that sought to determine whether elasticities were different across income levels—and only 

Shi (2003), who explored this possibility for only population’s elasticity, determined whether 

those elasticities were statistically significantly different. None of those three previous studies 

considered cointegration, and only Poumanyvong and Kaneko (2010) addressed stationarity 

(via first differencing). Third, the paper focuses on the influence of urban population on 
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environmental impact—important because the United Nations expects that over the next 40 

years, urban areas will absorb all of the projected 2.3 billion global population growth. 

 The paper examines a larger cross-section of countries than is typical in the energy-

GDP nexus literature (albeit by applying a model with possibly fewer explanatory variables 

than the larger panel necessitates). Also, the paper is different from the energy-GDP nexus 

literature because it is focused on how GDP per capita and urban population affect 

environmental impact; again, energy-GDP studies have as the dependent variable GDP (or 

GDP per capita), and/or they divide the GDP and environmental/energy terms by population, 

thereby assuming the elasticity of population with respect to impact is unity. Similarly, the 

paper is different from the Environmental Kuznets Curve literature for not assuming the 

elasticity of population is equal to one.  

Also, the paper contributes to the EKC literature, as well as to the broader literature 

interested in changes in impact across development levels, by comparing elasticity 

estimations from panels made up of poor and middle-level developing countries to elasticity 

estimations from panels of rich/developed countries. Since FMOLS estimated coefficients 

have asymptotically normally distributed errors, it is a simple calculation to construct 

confidence intervals (alternatively, one could construct the difference in means test statistic 

and corresponding, standard normal based, p-value for any pair of panels).  

Splitting the countries into development-based panels is a better way to determine 

whether affluence’s (and other factors’) environmental impact changes as countries develop, 

for several reasons. This method allows one to determine whether the elasticity of all 

variables considered varies according to development, and the separate panel approach is 

arguably a more accurate description of the development process. The latter point is important 

because the time dimension of the data typically available is rarely long enough to cover the 

path of any one country’s development from poor to rich (perhaps only Korea’s such path can 
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be described with the commonly used data). Lastly, the polynomial model used in the EKC 

and other literatures has been criticized on statistical grounds (by Wagner 2008) since 

regressions involving nonlinear transformations of nonstationary variables (GDP per capita) 

could be spurious, and the significance tests based on them invalid. Moreover, that 

polynomial model does not allow for the possibility that elasticities are significantly different 

across development levels but still positive—the very phenomenon that the transport-focused 

EKC literature essentially has argued is the case. 

3. Data and panels, empirical specification, methods, and pre-testing results 

We use time-series cross-section data spanning 1971-2007 for 31 developed/OECD 

countries and 54 developing/non-OECD countries. Table 1 displays the variable names and 

their sources. In addition to an “all countries” panel, we examine panels of rich, middle,6 and 

poor countries of 23, 25, and 37 countries, respectively, roughly divided according to World 

Bank income level definitions. (The countries comprising those panels are listed in Appendix 

Table A.1.) 

Table 1 

Table 2 shows summary statistics for those five variables by each of the three 

development/income-based panels. Not surprisingly, the means of all the variables except 

urban population descend with income, i.e., the rich panel has the highest means for 

environmental impact (transport carbon emissions and residential electricity consumption) 

and electrification (share electric), the middle panel has the next highest means, and the poor 

panel has the lowest means. Also, for the variables that are in aggregates (the impacts and 

urban population), the dispersion (seen by the coefficient of variation as well as the gap 

                                                 
6 The “middle” panel includes less developed OECD countries Mexico and Turkey, former communist OECD 
countries Czech Republic, Hungary, Poland, and Slovak republic, and OECD countries Korea and Portugal. The 
inclusion of Korea and Portugal in the middle group is not obvious. Korea’s and Portugal’s per capita GDP were 
very much in line with the other countries in this “middle” group until the mid-1980s—when their per capita 
GDP “broke-away” and ultimately, particularly for Korea, became considerably higher. Essentially, the 
challenge is categorizing a country as “middle” for a period of 30-plus years, since it is in this very middle group 
in which one would expect to see movement (in and out) over such a period.  
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between maximums and minimums) is quite high in all panels. That the dispersion is lowest 

for share electric (obviously the dispersion on affluence would be low since the panels are 

constructed by income level) is an indication of the strong association between electrification 

and development level (the correlation coefficient between affluence and share electric for the 

entire sample is 0.59). 

Table 2 

3.1 Empirical specification 

We consider the environmental impacts of two dependent variables: carbon emissions 

from transport (i.e., all transport activity from domestic aviation, domestic navigation, road, 

rail and pipeline transport), and residential electricity consumption. (Liddle and Lung 2010 

and Liddle 2011, which both focused on OECD countries, are the only other STIRPAT 

studies to consider these impacts.) Following others in the literature, we use real GDP per 

capita as the measure of affluence.  

Urbanization has been included in some STIRPAT analyses; however, Liddle and 

Lung (2010) ultimately determined that urbanization had no effect on carbon dioxide from 

transport for OECD countries in their STIRPAT regressions. Indeed, Newman and 

Kenworthy (1989) argued some time ago that transport is negatively correlated with urban 

density (i.e., the population density of urban areas).7 Yet, people living in urban areas are 

likely to have a greater impact on the environment than people living in rural areas—this is 

particularly true for residential electricity consumption. Furthermore, most of the population 

growth—in both developed and developing countries—is occurring in urban areas. Thus, for a 

population variable we consider urban population, which is constructed by multiplying a 

country’s population by the share living in urban areas (as described in Table 1). 

                                                 
7 Analyzing the available data on the urban density of the world’s largest cities, one finds that national 
urbanization levels are actually negatively correlated with the urban density of those cities (ρ = -0.59). 
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Also, urbanization may be correlated to the amount of people who are connected to a 

country’s electricity grid—and thus, positively correlated with residential electricity 

consumption. A more direct measure of access to a country’s electricity grid would be 

electricity’s share of residential energy consumption (a variable that was statistically 

significant in Liddle and Lung’s (2010) residential electricity consumption regressions).   

Thus, the equation analyzed for residential electricity consumption is: 

itititittiit ShEfAdPcI εβα +++++= lnlnlnln      (5) 

Where subscripts it denote the ith cross-section and tth time period. The constants α  and β  

are the country or cross-section and time fixed effects, respectively. The dependent variable, I, 

is aggregate residential electricity consumption in this case. The P, A, and ShE are total urban 

population, per capita GDP, and electricity’s share of residential energy consumption, 

respectively. Lastly,ε  is the error term.  The equation analyzed for carbon emissions from 

transport is the same as Equation 2 less the ShE term. 

 Technological advance could impact energy consumption in the transport (and thus 

carbon emissions) and residential sectors. Insofar as technologies impact similarly throughout 

cross-sections (i.e., technology diffusion), such impact would be captured by the time fixed 

effects, and technology diffusion seems a reasonable assumption for panels based on common 

level of development.  

3.2 Methods 

 The first step is to determine whether all the variables are integrated of the same 

order.8 A variable is said to be integrated of order d, written I(d), if it must be differenced d 

times to be made stationary. Thus, a stationary variable is integrated of order zero, i.e., I(0), 

and a variable that must be differenced once to become stationary is integrated of order one or 

                                                 
8 As mentioned by an anonymous reviewer, technically, each individual cross-sectional series should be I(1); 
however, because time-series unit root tests have low power—a problem that is exacerbated when the time 
dimension is short (less than 50)—one cannot convincingly establish that to be the case. Hence, there is a (near) 
universal convention in the applied literature to rely on panel unit root tests. 
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I(1). A number of panel unit root tests have been developed to determine the order of 

integration of panel variables; however, these tests sometimes provide conflicting results. 

Consequently, we employ four of them.  

Im, Pesaran and Shin (2003) developed a test (IPS) that allowed for a heterogeneous 

autoregressive unit root process across cross-sections by testing a statistic that is the average 

of the individual (i.e., for each cross-sectional unit) ADF statistics. Maddala and Wu (1999) 

proposed a panel unit root test based on Fisher (1932) that, like Im et al., allows for individual 

unit roots, but improves upon Im et al. by being more general and more appropriate for 

unbalanced panels. Maddala and Wu’s test (ADF-Fisher) is based on combining the p-values 

of the test statistic for a unit root in each cross-sectional unit, is non-parametric, and has a chi-

square distribution.  

Both of the above tests assume that the cross-sections are independent; yet, for 

variables like GPD per capita, cross-sectional dependence is possible to likely for panels of 

similar countries because of, for example, regional and macroeconomic linkages. Pesaran 

(2007) determined that when cross-sectional dependence is high, the first-generation tests 

tend to over-reject the null (thus, the main motivation for considering cross-sectional 

dependence is avoiding the erroneous acceptance of I(0)). More recently, panel unit root 

tests—so-called second-generation tests—have been developed that relax this independence 

assumption. Among the most commonly used so far is that of Pesaran (2007), which is based 

on the IPS test, allows for cross-sectional dependence to be caused by a single (unobserved) 

common factor, and is valid for both unbalanced panels and panels in which the cross-section 

and time dimensions are of the same order of magnitude.  

 Lastly, because series can have structural breaks, we consider the Jewell et al. (2003) 

panel LM unit root test that allows for two endogenously determined structural breaks. The 

Jewell et al. test is based on the Im et al. (2003) panel unit root test (and thus, assumes cross-
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sectional independence)9 and on the Lee and Strazicich (2003) time-series unit root test that 

determines the optimal number and location of breaks endogenously. All four tests assume the 

null hypothesis of nonstationarity. 

If all the variables are integrated of the same order, the next step is to test for 

cointegration. Again, if a stationary linear combination of two or more nonstationary series 

exists, the nonstationary series are said to be cointegrated (Engle and Granger 1987). The 

stationary linear combination is called the cointegrating equation.  

 The Pedroni (1999, 2004) heterogeneous panel cointegration test is an extension to 

panel data of the Engle-Granger framework. The test involves regressing the variables along 

with cross-section specific intercepts, and examining whether the residuals are integrated 

order one (i.e., not cointegrated). Pedroni proposes two sets of test statistics: (i) a panel test 

based on the within dimension approach (panel cointegration statistics), of which four 

statistics are calculated: the panel v-, rho-, PP-, and ADF-statistic; and (ii) a group test based 

on the between dimension approach (group mean panel cointegration statistics), of which 

three statistics are calculated: the group rho-, PP-, and ADF-statistic. Pedroni (1999, 2004) 

further demonstrated that the panel PP and ADF and the group PP and ADF statistics have the 

best small-sample (time dimension less than 40-50) properties of the seven test statistics, and 

thus, provide the strongest single evidence of cointegration. Hence, we focus on those four 

statistics. Pedroni (1999, 2004) recommends subtracting out common time effects to capture a 

limited form of cross-sectional dependency (e.g., common business cycle shocks). 

The Westerlund (2007) second-generation panel cointegration test is based on the 

error-correction model setup, i.e., it tests for the absence of cointegration by determining 

whether there exists error-correction for individual panel members or for the panel as a whole. 

Similar to the Pedroni test, the Westerlund test produces panel and group test statistics (two 

                                                 
9 The literature on panel unit root tests with structural breaks that account for cross-sectional dependence too is 
still developing. Early evidence suggests that the additional consideration of cross-sectional dependence can 
reverse the findings of structural break tests alone (e.g., Snaith 2012). 
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each for a total of four). We focus on the group-τ and panel-τ statistics since, according to 

Westerlund (2007), those statistics have the highest power and are the most robust to cross-

sectional correlation (i.e., dependence). Robust (to cross-sectional correlation) critical values 

for the test-statistics are obtained through bootstrapping. Both the Pedroni and Westerlund 

tests assume a null hypothesis of no cointegration.  

Lastly, if the variables are shown to be cointegrated, then the long-run elasticities are 

calculated from Pedroni’s (2000) FMOLS estimator. Again, in addition to producing 

asymptotically unbiased estimates with normally distributed standard errors, FMOLS is a 

nonparametric approach in which an initial estimation calculates the serial correlation and 

endogeneity correction terms. Also, the FMOLS estimator is a group mean or between-group 

estimator that allows for a high degree of heterogeneity in the panel.  

3.3 Pre-testing results 

 As discussed above, in the energy economics literature a number of researchers have 

found variables like GDP per capita, energy consumption, carbon emissions, population, and 

labor force to be nonstationary in levels but stationary in first differences for panels of 

developed and developing countries. For example, energy consumption, real GDP, and labor 

force were found to be panel I(1) for developing Asian countries (Lee and Chang 2008), 

Central American countries (Apergis and Payne 2009a), and former Soviet countries (Apergis 

and Payne 2009b); Lee et al. (2008) found energy consumption per capita and GDP per capita 

to be I(1) for OECD countries; Apergis and Payne (2010) found energy consumption and 

labor force to be I(1) for OECD countries, and Narayan et al. (2007) found residential 

electricity consumption per capita to be I(1) for G-7 countries. Thus, we have a strong a priori 

belief that the variables in this study should be panel I(1) as well.  

Table 3 
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 Table 3 displays the panel unit root test results for the four panels described earlier. 

The results for carbon emissions, energy consumption, per capita GDP, and population do not 

provide any compelling evidence to contradict the findings of many previous studies that have 

found those variables to be panel I(1). The null hypothesis of nonstationarity in levels is never 

rejected in all four tests; whereas, the null hypothesis of nonstationarity in first differences is 

rejected by each test.10 Also, the table indicates convincing evidence that the novel variable 

tested here, share of residential energy consumption from electricity (Sh electric), is an I(1) 

variable for all panels as well (convincing, at least for the three income-based panels). Thus, 

OLS regressions with the variables in levels would be inefficient and likely spurious. 

 Table 4 shows the results of the panel cointegration tests for the two models (carbon 

emissions from transport and residential electricity consumption) for all four panels. The 

Pedroni tests indicate substantial evidence of cointegration for both models since at least three 

of the four statistics are significant for each panel, except for residential electricity model and 

the rich countries panel (and for that panel both Westerlund statistics are significant). The 

Westerlund tests also indicate substantial evidence of cointegration since the panel statistic is 

significant for each panel, and the rejection of the null by that statistic is evidence of 

cointegration for the panel as a whole (a significant group statistic is evidence of cointegration 

for at least one of the cross-sections). Thus, there is a long-run cointegrating relationship 

among those environmental impacts, affluence, and population.  

Table 4  

4. Main results and discussion 

 Tables 5 and 6 show the long-run elasticities for the two consumption-driven impacts 

(carbon emissions from transport and residential electricity consumption, respectively) for all 

four panels. For both models the elasticity estimates appear to differ considerably when they 

                                                 
10 Several additional first-generation unit root tests were applied as well. None of those results conflict with the 
ones displayed. 
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are estimated from panels according to development level compared to when all countries are 

grouped together. To determine whether the estimated coefficients for the various panels are 

indeed statistically different, 99 percent confidence intervals are displayed as well. If the 

displayed confidence intervals of a coefficient do not overlap for two panels, then those 

coefficients should be statistically different at least at the one percent level. Additionally, the 

results from difference in means tests are displayed in the lower panels of Tables 5 and 6.  

Table 5 

For carbon emissions from transport, the coefficients for both affluence and urban 

population are not statistically different from unity for the “all countries” panel. Likewise, 

affluence’s coefficients are not statistically different from unity for the poor and middle 

country panels. Affluence has a greater environmental impact than urban population in poor 

and middle countries;11 but affluence has a smaller impact than urban population for rich 

countries,12 and affluence’s elasticity for rich countries is considerably, significantly smaller 

than affluence’s elasticity estimated from the “all countries” panel (as can be seen by 

comparing their confidence bounds in the table). This result is not surprising since rich 

countries are likely near saturation in aspects like car ownership, so additional income would 

not increase emissions as much as adding another high-consuming person. Furthermore, both 

the confidence intervals and the difference in means tests show that affluence’s elasticity for 

rich countries is significantly different from affluence’s elasticity for both poor and middle 

countries. Yet, the elasticities for affluence for the poor and middle country panels are not 

statistically different from each other.  

For carbon emissions from transport, urban population’s influence on environmental 

impact has an inverted-U relationship with respect to development level. The coefficient for 

urban population is higher for middle countries than for poor countries, and it is higher for 

                                                 
11 Difference in means test statistics 2.72 and 1.81 and associated p-values 0.01 and 0.07, respectively, for poor 
and middle countries (results not shown in Table 5). 
12 Difference in means test statistic -2.78 and associated p-value 0.01 (result not shown in Table 5). 
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middle countries than for rich countries. However, this difference in impact is statistically 

significant only for the rich and middle country panels—and then only at the ten percent level.  

That the elasticity of affluence (income) is significantly lower for rich countries than 

for other countries but still positive confirms the general result from EKC studies that 

considered transport-driven pollutants: those studies (Cole et al. 1997; Hilton and Levivson 

1998; Liddle 2004) rejected an inverted-U relationship between income and transport energy 

consumption.  

That urban population is an important driver of transport carbon emissions confirms a 

general result from the STIRPAT literature. However, the finding that transport carbon 

emissions tend to grow faster than urban population provides some contrast to several 

STIRPAT papers (Dietz and Rosa 1997; Shi 2003; York et al. 2003; and Cole and Neumayer 

2004). Yet, those STIRPAT papers estimated elasticities between total carbon emissions and 

total population and did not estimate separate elasticities for different levels of development. 

By contrast, Poumanyvong et al. (2012), who considered transport energy use, estimated an 

elasticity for (total) population of less than one for low-income countries, but estimated 

elasticities greater than one for both middle- and high-income countries.  

Table 6  

With residential electricity consumption as the dependent variable, Table 6, for both 

the all countries and the poor countries panels, affluence’s influence on environmental impact 

is considerably smaller than either urban population’s or the access to/relative size of the 

electricity grid (share electric). This result could indicate that poor countries differ 

substantially with respect to electrification even when controlling for per capita GDP (poor 

countries are the only panel to have a coefficient of variation greater than one for share 

electric, see Table 2). For middle countries, share electric’s elasticity is larger than affluence’s 

too, but urban population’s elasticity is quite small. Affluence’s elasticity is certainly 
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tempered by the share of residential energy from electricity (Sh electric), a variable that is 

highly related to, and indeed, probably caused by affluence (as discussed above). For rich 

countries all three variables have quite similar elasticities.  

 Considering elasticities across development levels indicates quite different non-

linearities for the three variables. Affluence’s impact has an inverted-U relationship with 

respect to development—similar to an EKC (however, importantly, the elasticity of affluence 

is still positive for rich countries). Electrification is an important part of the development 

process, and the lower coefficient for rich countries than middle countries could, as with 

affluence’s elasticity with respect to carbon emissions from transport, signal a saturation 

process. Yet, for affluence, the differences between the poor and rich country panels and 

between the middle and rich country panels are not statistically significant.  

On the other hand, urban population’s impact follows a U-shaped relationship with 

development. The elasticity for middle countries is an order of magnitude less than for poor 

countries and less than half that of rich countries—and all of these differences are highly 

statistically significant. That the elasticity for urban population in poor countries would be 

essentially one and that it would be much higher than the elasticity for both middle and rich 

countries reflects the fact that rural populations in poor countries would have virtually no 

access to electricity, unlike in middle and rich countries where gaps in electricity access 

between rural and urban (suburban) areas/regions should be smaller. That high elasticity for 

urban population in poor countries also suggests that rural to urban migration in poor 

countries has an important environment impact. No clear explanation comes to mind as to 

why the elasticity for urban population in middle countries would be so low, but perhaps this 

finding reflects the difficulty of defining middle countries (and thus, the diversity among 

those countries) over such a long time-frame (as discussed in Footnote 6). 
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Meanwhile, the impact of the share of residential energy consumption from electricity 

has a monotonically declining relationship with development, but an apparently nonlinear 

one, since the share electric’s elasticity for rich countries is considerably smaller than that for 

middle countries; whereas, the difference in elasticities is much less between poor and middle 

countries. Those differences across development are all statistically significant, and thus, 

share electric is probably masking the effect of affluence for which differences across 

development were insignificant to only marginally significant.   

These three different nonlinear relationships (for affluence, urban population, and 

share electric) are displayed in Figure 1. The figure also shows the five percent error bars for 

each estimated elasticity (the vertical lines), and thus, it can be seen that each development 

level (poor, middle, and rich) has a statistically significantly different elasticity (at the five 

percent level) for urban population and share electric (for each panel, its upper bound is 

outside every other panel’s lower bound). Yet, for affluence, the elasticity for rich countries is 

not statistically different from the elasticities of either middle or poor countries (however, 

middle and poor countries do have a statistically different elasticity from each other).  

Figure 1 

5. Conclusions  

This paper started with the familiar stochastic IPAT (or STIRPAT) framework and 

used panel cointegration and Fully Modified OLS to estimate the long run environmental 

impacts of affluence (GDP per capita) and urban population for panels of developed and 

developing countries. Many of the highly trending, stock-based variables typically analyzed 

in STIRPAT studies, like income (GDP per capita), population, energy consumption, and 

emissions, are nonstationary; thus, panel OLS estimations (with the variables in levels) would 

produce unreliable diagnostics, as well as a high risk of the estimated relationships being 

spurious. Yet, few in the STIRPAT literature have addressed this potential nonstationarity, 
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and only one other paper to our knowledge has exploited the possible cointegration among the 

variables (as is commonly done in the energy/carbon emissions-economics literature). So, by 

using those methods, the paper accounted for the highly inter-related and mutually causal 

nature of the IPAT variables, as well as for their integration properties.     

Two consumption-driven impacts were considered—carbon emissions from transport 

and residential electricity consumption. Whether or not the elasticity for affluence was greater 

than that for urban population was a function of both the choice of dependent variable and the 

makeup of the panel (all countries, poor, middle, or rich). Also, some elasticities were 

statistically indistinguishable from unity, whereas other elasticities were considerably lower, 

depending on those same factors. Furthermore, the elasticities varied, in a nonlinear fashion, 

according to the development process—this pattern was particularly true for residential 

electricity consumption, where differences according to development (i.e., poor, middle, rich) 

were nearly always statistically significant. These nonlinearities themselves were diverse: U-

shaped, inverted U-shaped, and monotonic patterns were revealed, again, depending on the 

choice of dependent and independent variables in question. 

The different estimations have important implications for future emissions/energy 

consumption. The elasticity estimates imply that in poor and middle countries income growth 

should be a major driver of carbon emissions from transport. Indeed, both affluence and urban 

population elasticities imply substantial growth in such emissions for countries of all 

development levels—although slower growth for rich countries. Clearly, efforts to lower 

future carbon emissions from transport need to focus on vehicle technology (i.e., encouraging 

the adoption of more fuel efficient vehicles as well as increasing fuel efficiency). Increasing 

electrification should be an important driver of residential electricity use in both poor and 

middle countries, as will continued rural to urban migration in poor countries. By contrast, all 
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three of the elasticity estimates for rich countries imply relatively low growth for residential 

electricity consumption (each factor having a similar impact).  

The paper introduced/argued for a methodological improvement to the greater macro-

level, cross-country-development empirical analysis literature. The paper addresses the 

question whether the elasticities (for affluence and population) change with development; it 

does so by comparing estimations from panels made up of poor, middle-level, and 

rich/developed countries and by determining whether those estimations are statistically 

significantly different from each other, rather than by including a squared GDP per capita 

term in the regressions (and testing whether that coefficient is negative and statistically 

significant). The paper thereby addressed a criticism by Wagner (2008), levied on the EKC 

literature, that regressions involving such nonlinear transformations of integrated variables 

could be spurious, and significance tests based on them invalid. Similarly, the paper builds on 

the transport-focused EKC literature—which has rejected an inverted-U relationship between 

income and transport energy consumption—by explicitly determining that affluence’s (GDP 

per capita’s) elasticity for carbon emissions from transport is statistically significantly lower 

for rich countries than for poor or middle countries, but is still positive. Allowing for such a 

possibility is an additional strength of the panel-based approach.  

Further, it could be argued the panel-based approach used here more accurately 

reflects the true development process, which seems to proceed more intermittently and in 

step-wise fashion than continuously or smoothly. Indeed, the typical approach analyzes all 

countries together (and typically with data spanning only the last 30-50 years); in doing so, it 

implicitly assumes that, when countries like Switzerland or USA had low levels of income 

years ago, those countries behaved as do—and were described by macro variables as are—

countries with similarly low levels of income today; but in fact they may not, because the 

timing and history of the development process are quite important. For example, Bangladesh 
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and Cameroon have levels of real per capita GDP today similar to those of Western Europe 

and the USA in 1820;13 but few would believe or claim that those developing countries today 

are very similar to the Western countries of that earlier time, or that they have similar 

prospects for the future. The OECD countries largely began in the 1800s the development 

process (e.g., the transition to lower infant mortality and fertility rates, the transition away 

from agriculture toward industry and then toward high value services, the move from on-site 

energy generation and consumption to centralized electricity grids, creation and refinement of 

institutions like free trade, etc.), and the various steps of that process evolved over 100 years 

or so. Yet, to the extent that the countries that are described as developing today have 

undergone or begun to undergo those steps, they have done so at a much more rapid pace and 

in a world with much different technologies and sets of governing institutions. Hence, 

separating countries according to similar current levels of development not only groups 

countries that are at similar levels today, but groups countries that have had and likely will 

have similar development paths.  

                                                 
13 The data for this example come from Angus Maddison (http://www.ggdc.net/).  
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Table1. Variables used in the study. 
Symbol Definition Source 
CO2 Transport Carbon dioxide emissions from transport 

in metric tons 
 

International Energy Agency 

Residential 
Electricity 

Total residential electricity consumption 
in kilowatt hours 
 

Ibid 

Affluence Real per capita GDP in USD and 2000 
constant prices 
 

Ibid  

Sh Electric Share of residential energy consumption 
from electricity 
 

Ibid 

Urban population Share of people living in urban areas x 
total mid-year population 
 

World Bank Development Indicators 

Note: All variables in natural log form.  
 
 
 
 
 
 
 
Table 2. Summary statistics by panel. 
Panel Statistic CO2 transport 

(metric tons) 
Residential 
electricity 

(1,000 KW h) 

Affluence 
(constant 2000 
US$ per cap.) 

Urban 
population 
(millions) 

Share electric 
(% of total) 

Rich Mean 102.1  73.7 22,178 23.0  31.1

 Std. Dev. 293.2  194.1 7,227 41.1  20.5

 Coef. Var. 2.9  2.6 0.3 1.8  0.7

 Max. 1,808.8  1,392.2 65,000 245.3  92.8

 Min. 0.3  0.2 5,095 0.2  3.5

       
Middle Mean 19.5  9.2 7,621 16.6  17.0

 Std. Dev. 26.3  13.0 3,402 24.3  12.7

 Coef. Var. 1.3  1.4 0.4 1.5  0.8

 Max. 147.6  90.9 21,992 161.8  76.6

 Min. 0.04  0.1 1,667 0.1  1.2

       
Poor Mean 10.2  5.8 2,019 23.8  4.4

 Std. Dev. 31.0  23.4 1,232 64.8  5.8

 Coef. Var. 3.0  4.0 0.6 2.7  1.3

 Max. 407.3  362.3 7,509 556.3  36.7

 Min. 0.1  0.0 455 0.5  0.1
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Table 3. Panel unit root tests results. 
 Im et al. W‐stat  ADF‐Fisher chi‐square  Jewell et al. LM-stat Pesaran Z-stat 

Variables Levels  First diff.  Levels  First diff.  Levels  First diff.  Levels  First diff. 
 All countries 

CO2 
transport 

0.3 -38.5*** 195.4 1513.2*** -3.0***  0.6 -6.1*** 

Residential 
electricity 

0.5 -40.2*** 195.9 1560.8*** -0.6 -72.0*** -0.1 -8.9*** 

Affluence  3.0 -24.5*** 153.1 904.4*** -1.7**  2.1 -6.2*** 

Urban 
population 

0.2 -3.3*** 258.1***  10.1 -11.0*** -2.3***  

Sh Electric  -0.5 -44.9*** 186.8 1805.1*** -2.7***  -2.0**  

 Rich 

CO2 
transport 

0.3 -19.4*** 56.8 384.3*** 0.4 -19.2*** 1.4 -6.9*** 

Residential 
electricity 

-0.0 -22.1*** 75.0**  3.0 -9.9*** 1.2 -4.9*** 

Affluence  -1.4 -15.3*** 63.1 291.5*** -2.8***  0.2 -1.7** 

Urban 
population 

-0.7 -2.0** 60.3 83.6*** -1.6* -8.9*** -0.9 -2.2** 

Sh Electric  -0.9 -25.0*** 65.5**  0.1 -15.1*** -0.2 -4.4*** 

 Middle 

CO2 
transport 

0.5 -18.2*** 50.5 366.3*** 0.9 -20.8*** -0.9 -4.2*** 

Residential 
electricity 

0.6 -18.7*** 45.5 367.2*** 0.5 -12.1*** 1.1 -4.4*** 

Affluence  0.9 -11.5*** 45.6 227.9*** -0.3 -12.5*** 1.8 -5.0*** 

Urban 
population 

1.7 -1.4* 60.8 96.5**** 8.2 -2.2** -1.7**  

Sh Electric  0.1 -23.2*** 49.6 482.3*** -4.9***  -0.3 -5.6*** 

 Poor 

CO2 
transport 

3.2  ‐19.5***  66.1  610.3***  -5.5***  0.4  ‐3.4*** 

Residential 
electricity 

2.8  ‐14.7***  52.2  427.7***  -5.2***  ‐0.7  ‐6.0*** 

Affluence  4.5  ‐15.7***  49.3  395.2***  -0.2 -14.7*** 0.3  ‐4.0*** 
Urban 
population 

‐0.1  ‐3.9***  287.8***  13.9 -10.1*** -1.9**  

Sh Electric  2.8  ‐26.6***  63.7  730.8***  -1.8**  ‐0.3  ‐6.5*** 

Note: Statistical significance is indicated by: *** p <0.01, ** p<0.05, and * p <0.1. 
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Table 4. Pedroni and Westerlund panel cointegration tests for the individual models and 
panels. 
  Pedroni test statistics Westerlund test statistics
  Panel‐PP  Panel‐ADF  Group‐PP  Group‐ADF    Panel τ a  Group τ a

               
  CO2 Transport, Affluence, Population 
All countries  ‐3.4***  ‐3.2***  ‐3.1***  ‐3.8***    ‐14.6***  ‐2.1*** 
Rich  ‐2.0**  ‐0.6  ‐2.5***  ‐1.9**    ‐8.9**  ‐1.9 
Middle  ‐2.0**  ‐2.5***  ‐1.8**  ‐4.0***    ‐14.5***  ‐2.1* 
Poor  ‐1.9**  ‐1.9**  ‐2.3**  ‐2.6***    ‐7.5***  ‐1.6 
               
  Residential Electricity, Affluence, Population, Sh Electric 
All countries  ‐4.0***  ‐2.9***  ‐4.3***  ‐3.7***    ‐6.6**  ‐1.8 
Rich  ‐0.4  0.5  ‐3.0***  ‐2.9***    ‐4.7***  ‐2.0** 
Middle  ‐1.1  ‐2.0**  ‐1.3*  ‐2.8***    ‐2.8*  ‐2.0 
Poor  ‐2.5***  ‐2.2**  ‐2.1**  ‐2.2**    ‐4.5*  ‐1.9 

Note: Statistical significance is indicated by: *** p <0.01, ** p<0.05, and * p <0.1. 
a P-values are robust to cross sectional correlation via bootstrapping.  
 
 
 
 
 
Table 5. Long-run elasticity estimates and 99% confidence intervals (C.I.) from FMOLS for 
carbon emissions from transport as the dependent variable. Plus difference in means tests for 
the Poor, Middle, and Rich sub-samples. 
 Affluence Urban population 

Panel Coeff. 99% C.I. Coeff. 99% C.I. 

All countries 0.999* 
(0.025) 

 

 
[0.935, 1.063] 

1.050* 
(0.029) 

 
[0.975, 1.126] 

Poor 0.972* 
(0.042) 

 

 
[0.861, 1.082] 

0.705* 
(0.088) 

 
[0.475, 0.934] 

Middle 1.002* 
(0.045) 

 

 
[0.884, 1.120] 

0.858* 
(0.065) 

 
[0.688, 1.028] 

Rich 0.438* 
(0.033) 

 

 
[0.353, 0.522] 

0.682* 
(0.081) 

 
[0.470, 0.894] 

     

 Difference in means test 

Panels compared Test statistic a P-value Test statistic a P-value 

Poor, Middle -0.487 0.626 -1.393 0.164 
Poor, Rich 9.973 0.000 0.186 0.852 
Middle, Rich 10.105 0.000 1.682 0.093 

Notes: Standard errors in parentheses. * Coefficients statistically significant at p <0.001. 

a: 

( ) ( )22

2

1

21

SESE
tc

+

−
=

ββ
, where subscripts refer to two sub-samples, β to the estimated coefficients, and SE 

to the estimated standard errors. 
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Table 6. Long-run elasticities estimates and 99% confidence intervals (C.I.) from FMOLS for 
residential electricity as the dependent variable. Plus difference in means tests for the Poor, 
Middle, and Rich sub-samples. 
 Affluence Urban population Share Electric 

Panel Coeff. 99% C.I. Coeff. 99% C.I. Coeff. 99% C.I. 

All countries 0.348* 
(0.018) 

 

 
[0.301, 0.394] 

0.852* 
(0.023) 

 
[0.793, 0.910] 

0.642* 
(0.006)

 
[0.627, 0.657] 

Poor 0.139* 
(0.018) 

 

 
[0.091, 0.187] 

1.022* 
(0.132) 

 
[0.680, 1.364] 

0.780* 
(0.007)

 
[0.761, 0.799] 

Middle 0.355* 
(0.030) 

 

 
[0.278, 0.432] 

0.098* 
(0.019) 

 
[0.049, 0.146] 

0.613* 
(0.020)

 
[0.561, 0.665] 

Rich 0.234* 
(0.068) 

 

 
[0.057, 0.411] 

0.233* 
(0.024) 

 
[0.170, 0.296] 

0.286* 
(0.014)

 
[0.248, 0.323] 

       

 Difference in means test 

Panels 
compared 

Test 
statistic a 

P-value Test 
statistic a 

P-value Test 
statistic a 

P-value 

Poor, Middle -6.175 0.000 6.959 0.000 7.788 0.000 
Poor, Rich -1.350 0.177 5.899 0.000 30.427 0.000 
Middle, Rich 1.625 0.104 -4.441 0.000 13.204 0.000 

Notes: Standard errors in parentheses. * Coefficients statistically significant at p <0.001. 

a: 

( ) ( )22

2

1

21

SESE
tc

+

−
=

ββ
, where subscripts refer to two sub-samples, β to the estimated coefficients, and SE 

to the estimated standard errors. 
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Figure 1. The change in the elasticities of affluence, urban population, and share electric 
according to development level. The dependent variable is residential electricity consumption. 
Each graph shows the elasticity estimate (the circle) and the 5% error bars (the vertical lines) 
for each panel (poor, middle, and rich countries). Thus, the difference between any two 
panels’ elasticity is statistically significant (at the 0.05 level) if one panel’s upper bound is 
outside another panel’s lower bound. A fitted second order polynomial and the average GDP 
per capita (in yr-2000 USD) for each panel (in parentheses) also are displayed. 
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Appendix 
 
Table A.1. Country lists for the Rich, Middle, and Poor panels 

Rich Middle Poor 

AUS ARG AGO 
AUT BRA BEN 
BEL CHL BGD 
CAN COL BOL 
CHE CRI CHN 
DNK CZE CIV 
ESP GAB CMR 
FIN HUN COG 
FRA JAM CUB 
GBR KOR DZA 
GRC MEX ECU 
HKG MYS EGY 
IRL PAN ETH 
ISL PER GHA 
ITA POL GTM 
JPN PRT HND 
LUX SLV HTI 
NLD SVK IDN 
NOR THA IND 
NZL TTO KEN 
SGP TUN LKA 
SWE TUR MAR 
USA URY MMR 

 VEN MOZ 
 ZAF NIC 
  NPL 
  PAK 
  PHL 
  PRY 
  SDN 
  SEN 
  TGO 
  TZA 
  VNM 
  ZAR 
  ZMB 
  ZWE 

 
  
 


