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ABSTRACT 

Two important, increasing trends for those concerned about climate change to consider are 

urbanization/the importance of cities and energy used in transport—particularly energy used to 

achieve personal mobility. While national urbanization levels are not a good indicator of urban 

transport demand, there is an established negative relationship between urban density and such 

demand. This paper uses a consistent, well-known population-based framework (the STIRPAT 

model) and three separate, but highly related, datasets of cities from developed and developing 

countries (with observations from 1990, 1995, and 2001) to examine the relationship among 

private transport energy consumption, population, income, urban density, and several variables 

(e.g., network size and prices) that describe the nature of the public and private transport systems 

of those cities. The paper confirms the now well-established result that urban density is 

negatively correlated with urban private transport energy consumption. In terms of policies, 

improving private vehicle fuel efficiency, in particular, and increasing fuel price as well as other 

ownership/operating costs for private transport could have a substantial impact on lowering 

transport energy consumption. On the other hand, there is no evidence that further lowering the 

cost to riders of public transport would lower private transport energy consumption. For cities in 

developing countries, demographic variables (population size and urban density) are particularly 

important in determining private transport energy consumption. Also, private transport energy 

consumption is considerably less price sensitive in those developing country cities compared to 

cities in the most developed countries.    
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1.  Introduction and background 

The level of world urbanization crossed the 50% mark in 2009; the United Nations 

expects that over the next 40 years, urban areas will absorb all of the projected 2.3 billion global 

population growth while urban areas will continue to draw in some rural population. In addition, 

most of the population growth expected in urban areas will be concentrated in less developed 

regions. At the same time, transport contributes more than one-fifth of global anthropogenic 

carbon dioxide emissions; furthermore, transport energy consumption is increasing in both 

developed and developing countries and is a carbon-intensive activity everywhere. To illustrate, 

for International Energy Agency (IEA) countries as a whole, carbon emissions from 

manufacturing industries and construction and from the residential sector (i.e., housing) both 

declined by around 20% from 1971-2007, but emissions from road transport more than doubled 

over that period (data from IEA). 

While national urbanization levels are not a particularly good indicator of transport 

demand (Liddle and Lung 2010), several studies have shown a (negative) relationship between 

urban density and vehicle miles traveled or energy consumed in private transport, using city-

based data (e.g., Newman and Kenworthy 1989; Kenworthy and Laube 1999; Romero-Lankao et 

al. 2009; Karathodorou et al. 2010; and Travisi et al. 2010). This paper uses the well-known 

STIRPAT model and three separate, but highly related, datasets of cities from developed and 

developing countries to examine the relationship among (aggregate) private transport energy 

consumption, population, income, urban density, and several variables (e.g., network size and 

prices) that describe the nature of the public and private transport systems of those cities. In 

doing so, the paper is similar to Romero-Lankao et al. (2009), but expands on that work by 

employing the three city-based transport datasets (indeed, the current paper is the only work we 
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know of that considers all three of these related datasets), and by considering additional 

explanatory variables (largely taken from economics) that also can be considered policy 

variables.  

A popular framework used to distinguish between population’s and GDP’s (or income’s) 

impact on the environment is Dietz and Rosa’s (1997) STIRPAT (Stochastic Impacts by 

Regression on Population, Affluence, and Technology). STIRPAT builds on IPAT/impact 

equation of Ehrlich and Holdren (1971): 

TAPI ××=       (1) 

Where I is environmental impact, P is population, A is affluence or consumption per capita, and 

T is technology or impact per unit of consumption. Dietz and Rosa (1997) addressed the criticism 

that the Ehrlich-Holdren/IPAT framework does not allow hypothesis testing by proposing a 

stochastic version of IPAT:  

          (2) i

d
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Where the subscript i denotes cross-sectional units (e.g., countries), the constant a and exponents 

b, c, and d are to be estimated, and e is the residual error term.  

Since Equation 2 is linear in log form, the estimated exponents can be thought of as 

elasticities (i.e., they reflect how much a percentage change in an independent variable causes a 

percentage change in the dependent variable). In addition to determining whether population or 

GDP has a greater marginal impact on the environment, another important/popular hypothesis to 

test is whether population’s elasticity is different from unity. That hypothesis is worth testing 

since, if population’s elasticity is one, then population could be removed as an independent 
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variable via division (in Equation 2), and so the dependent variable would be in per capita terms 

as is often the case in non-STIRPAT analyses (like those in the so-called Environmental Kuznets 

Curve or EKC literature). Also, the T term can now be treated more like an intensity of use 

variable and be modelled as a combination of log-linear factors. 

2. Data and models 

The STIRPAT model typically is employed with national level data. There are a few 

single-country studies using local level data, typically the US and typically county level (e.g., 

DeHart and Soule 2000; Squalli 2009; and Roberts 2011); the only other STIRPAT study we 

know of to use both city-based data and locally-based, cross-national data is Romero-Lankao et 

al. (2009).  

The first of the three transport and cities datasets used here is Kenworthy et al. (1999). It 

contains data from 1960, 1970, 1980, and 1990, but economic data (GDP per capita and 

prices/costs) is available only for 1990. Cities from Asia, Australia, Europe, and North America 

(46 in total) are included (the specific cities used here from each of the three datasets are 

displayed in Appendix Table A-1). The Millennium Cities Database for Sustainable Transport 

(Kenworthy and Laube 2001) is by far the largest of the three, both in terms of the indicators 

collected and the cities covered. It contains 1995 data for 100 cities (which comprised a total 

population of over 400 million in 1995)—included is nearly every city with more than 2 million 

inhabitants that is located in an International Union for Public Transport (UITP) member 

country. There also are a substantial number of cities from developing countries, including ones 

from Africa, Middle East, and South America. Lastly, the Mobility in Cities Database (UITP 

2005) contains 2001 data for 50 cities. The UITP aimed to have the Kenworthy and Laube 

(2001) and UITP (2005) databases as compatible as possible; however, fewer indicators are 



5 
 

contained in UITP (2005), and some of the remaining indicators have slightly changed 

definitions. Furthermore, nearly all of the cities in UITP (2005) are European.  

By far the most popularly used datasets are the ones drawing on the 1990 and 1995 data 

(Romero-Lankao et al. 2009 employ Kenworthy and Laube 2001). Indeed, we know of only one 

published paper that depends on UITP (2005).
1
 

Because of indicator availability, this study uses data from 167 cities (from 1990, 1995, 

and 2001). In Figure 1, the ratio of city GDP per capita to the associated country GDP per capita 

is plotted against that country GDP per capita for 160 of those cities.
2
 There are two interesting 

observations. First, most of the cities have higher GDP per capita than their respective countries 

as a whole—the ratio of GDPs is below one for only 35 cities, and below 0.85 for only 14. 

Second, the relative economic importance of cities is stronger in countries with lower GDP per 

capita. That second point demonstrates the important migratory pull cities have in developing 

countries, and provides insight into why the vast majority (20 of 26) of megacities (cities with 

populations over 10 million) are located in less developed countries, and why the UN projects all 

future population growth (over the next 40 years) will be located in urban areas. 

Figure 1 

2.1 Variables analyzed 

 As a dependent variable, we focus on (aggregate) private transport energy consumption 

(measured in megajoules
3
) as opposed to total energy consumption (the dependent variable 

considered in Romero-Lankao et al. 2009); we do so because public transport is the main 

mobility alternative to private transport, and we aim, in part, to explain this choice. Since private 

                                                            
1 That paper, Albalate and Bel (2010), focuses on public transit provision in Europe. 
2 The city-states Hong Kong and Singapore and Taipei, Taiwan have been excluded from this figure, and from all 

other city-to-nation comparisons. 
3 A megajoule (MJ) is one million joules. 



6 
 

transport is much more energy intensive than public transport, a major way cities can lower their 

transport energy consumption is to shift mobility away from private to public modes. Indeed, for 

the cities studied here, the average ratio of private to public transport intensity (energy consumed 

divided by passenger kilometers driven/provided) is 4.4, and in all but 10 cities, private transport 

was at least 50% more energy intensive (the ratio was below one only for Glasgow in 1995). 

 In addition to GDP per capita and total population, we consider several intensity variables 

(the “T-type” variables from Equation 2). The main intensity variable used here is urban 

density—indeed, urban density is a primary motivation for the use of these datasets by all 

researchers. As mentioned above, the negative correlation between private transport use and 

urban density was established by Newman and Kenworthy (1989) and has been confirmed by 

several studies since then. Although there is still debate about the causal mechanism involved, 

we agree with Rickwood et al. (2008) that the most compelling explanation is that “… there is a 

positive feedback loop between transport and land use such that public transport friendly land 

use encourages less automobile travel and more public transport travel, which in turn encourages 

public transport friendly land use…” (Rickwood et al. 2008, p. 74). 

 The relationship between urban density of cities and some related national-level 

indicators may be surprising. For the sample used here, the correlation (ρ) between urban density 

and the corresponding national population density is only 0.35, and national urbanization levels 

are actually negatively correlated with urban density (ρ = -0.59). Figure 2 shows, for the data 

used here, the relationship between urban private transport energy use per capita (the dependent 

variable) and both urban density (the upper graph) and the corresponding national urbanization 

level (the lower graph). The upper graph displays the now well-known negative, nonlinear 

relationship between urban private transport and urban density (e.g., Newman and Kenworthy 
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1989; Kenworthy and Laube 1999); whereas, the bottom graph shows the weaker and, perhaps 

surprising, positive relationship between urban private transport and urbanization level. That 

higher levels of national urbanization are correlated with greater levels of urban private transport 

most likely reflects the positive correlation between urbanization and income (ρ = 0.61 for the 

countries represented in this study).      

Figure 2 

 In their analysis of total energy from transport, Romero-Lankao et al. (2009) considered 

the percentage of public transportation use in cities. Rather than use that variable, we use a series 

of variables designed to infer the private vs. public transport choice. The first of those variables 

involves the costs of private and public transport: fuel price, the cost per passenger kilometer of 

private transport (which, in addition to fuel, includes maintenance, insurance, and taxes, among 

other costs), and the cost to the traveler of one public transport kilometer. As well as representing 

the economic choice facing city inhabitants, differences in these prices across cities represent the 

broader society values of public and private transport. One would expect higher fuel and private 

per kilometer costs to discourage private transport and thus lower private transport energy 

consumption; whereas, higher public per kilometer costs would discourage public transport and 

thus raise private energy consumption. The other choice-based variable relates to the public 

transport network coverage: the public transport seat kilometers of service offered per city 

inhabitant. The larger that indicator, the better the public transport alternative would be for 

achieving desired mobility, and thus, the lower private transport energy consumption should be.  

 The last independent variable considered is fuel efficiency. Fuel efficiency is clearly the 

key factor in the relationship between vehicle miles traveled (VMT) and transport fuel 

consumption. In the transport economics literature, fuel efficiency is often thought to be 
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influenced by fuel price (e.g., Karathodorou et al. 2010). We include both fuel price and fuel 

efficiency for several reasons.  

First, the fuel price indicator is only available for the 1995 dataset, whereas fuel 

efficiency can be estimated for all three datasets. Second, the measure of fuel efficiency used is 

based on travel and energy consumption within the urban borders averaged across several 

vehicle modes (passenger cars, motorcycles, and taxis). Thus, the measure of effective fuel 

efficiency for private urban travel may differ from the overall fuel efficiency of a country’s 

vehicle fleet, and it is that second measure of efficiency that is most likely to have a strong 

association to fuel price. Indeed, the correlation between the fuel efficiency and fuel price 

measures used here is only 0.22.  

Lastly, fuel efficiency, like many of the independent variables, can be thought of as a 

policy variable/lever that can be adjusted via national vehicle fuel efficiency standards. Fuel 

price, of course, can be and is affected by taxes. The cost of private transport travel can be 

further affected by vehicle registration, parking, and road-use tolls; whereas, public transport can 

be encouraged by ticket subsidies and/or frequent traveler discounts and investment in network 

coverage. Urban density also can be influenced through various policies, but probably less 

directly and arguably less effectively so than the previous variables. Table 1 lists the variables 

used, their definitions and units, and their coverage in the three datasets. 

Table 1 

We do not consider any geography-based dummy variables, in part, because the urban 

density variable appears to play that role very well. Figure 3 displays the average urban density 

for each of four geographic/cultural groups: Asia; Europe; Australia, Canada, and the US; and a 
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rest of world group. Figure 3 also shows the 99% confidence bounds for those averages (the 

error bars). 

Figure 3 

Not surprisingly, Australian, Canadian, and US cities have by far the lowest average 

urban density—the very cities for which Newman and Kenworthy (1989) coined the term auto-

dependent. European cities have average urban densities considerably higher than those auto-

dependent cities, and Asian cities have average urban densities considerably higher than the 

European ones. Also, for those three groups, their averages are all highly significantly different 

from one another. The rest of world cities (mostly drawn from developing countries) have an 

average urban density between Europe’s and Asia’s. However, that average is not statistically 

different from Europe’s (not very surprising given the diversity in the rest of world group).  

Table 2 displays some descriptive statistics (means and standard deviations) for each of 

the variables considered and for each dataset used. Table 2 also splits the 1995 dataset into cities 

from developed and from less developed countries for reasons that will be made clear below. 

Table 2 

3. Results and discussion 

 In part because the indicators covered and the definitions of similar indicators differed 

from dataset to dataset, and because the coverage of cities changed considerably, a series of 

Chow tests confirmed that the datasets should not be pooled, but rather analyzed individually as 

cross-sections.
4
 (OLS with White-corrected standard errors was employed on the three cross-

                                                            
4 In principle one could construct, from the three datasets, a balanced panel of 14 cities. However, 10 of those cities 

would be from Western Europe, and none could be considered located in a developing country. Furthermore, several 

of the variables determined significant here either do not have coverage for each year or have their definitions 

change in the various datasets. Indeed, a balanced panel consisting of all three time observations could only include 

GDP per capita, population, and urban density as explanatory variables; hence, such a panel analysis was not 

performed. 
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sections.) Thus, Table 3 displays the regression results for the three datasets/cross-sections. The 

variance inflation factors (VIF) are shown (both average and maximum) for the regressions that 

exclude insignificant variables. 

Table 3 

 The elasticities for population, GDP per capita, and urban density are statistically 

significant—typically highly so (except for GDP per capita in Regression II), usually large, and 

always have the expected sign. The elasticity for population is always greater than that for GDP 

per capita (their 95% confidence intervals overlap only marginally and only in regression VII), 

but the population elasticity is only significantly different from one (at the 95% confidence level) 

for Regression IV. (Appendix Table A-2 displays the 95% confidence intervals for GDP per 

capita and population for each regression shown in Tables 3 and 4.) The elasticity for the 

variable measuring the user costs of the public transport alternative is never significant; however, 

the elasticity for the variable measuring the size of the public transport network is significant and 

negative (as expected), but is always smaller than the other statistically significant elasticities.  

 When fuel price was added to the regressions (V and VI), the elasticity for fuel efficiency 

fell (in absolute terms), implying that fuel price does indeed affect effective urban fuel efficiency 

(in addition to fleet efficiency). Urban density had its lowest elasticity estimates in Regressions 

VII and VIII—the regressions on the mostly European city sample. That result is not surprising 

for a Europe dominated sample, given the rather tight distribution of urban densities among 

European cities (demonstrated in Figure 3). The elasticities for GDP per capita, fuel efficiency, 

and the measure of the total private transport cost per kilometer (in absolute terms for those 

second and third variables) were all the highest in the regressions on the most recent, 

predominately European city sample.  
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 Thus, the regressions displayed in Table 3, using a consistent modeling framework, 

across three different city-based datasets, confirm the finding that greater urban density is 

associated with lower private transport energy consumption. In terms of policy, the regressions 

also confirm that measures to improve fuel efficiency (e.g., standards) would lead to a substantial 

lowering of private transport energy consumption. In addition, at least in Europe, increasing the 

total costs of private vehicle ownership and operation (e.g., registration fees, parking fees, and 

road tolls) could lead to a similar (nearly one-to-one) drop in private transport energy 

consumption.    

3.1 Importance of income/development level: further investigation into the 1995 dataset 

Researchers often want to know whether the elasticity for a variable, like affluence, 

changes with development. That question of nonlinear relationships is often addressed by 

including a GDP per capita squared term in regressions (e.g., as done in the EKC literature) and 

testing whether the coefficient for that squared term is negative and statistically significant. 

Furthermore, when the coefficient for the GDP term is positive and the GDP squared term 

negative, the implied turning point—the level of GDP at which the relationship between income 

and the dependent variable (environmental impact) changes from positive to negative—can be 

calculated by differentiating the estimated equation with respect to GDP per capita, setting equal 

to zero, and solving. 

Romero-Lankao et al. (2009) included such a squared term in their regressions, and the 

elasticity for that term is sometimes negative and significant. However, the implied turning 

points are approximately at 5-7 times the sample average GDP per capita, or at a level of 2-3 

times the highest GDP per capita in the sample—i.e., well out of the sample range.
5
 Such a 

finding is to be expected for an essentially normal consumer good like transport. Indeed, Liddle 

                                                            
5 The turning points had to be estimated since Romero-Lankao et al. (2009) do not report such statistics. 
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(2004) similarly rejected an EKC for road energy use per capita using national-level OECD 

country data (again, the implied turning-point was well outside the sample range).  

We ran an EKC-type regression on the 1995 sample (the only sample with enough cities 

located in developing countries to possibly make such an exercise worthwhile), by adding a GDP 

per capita squared term to model VI in Table 3; in doing so, the additionally considered variables 

(beyond those included in the regressions reported by Romero-Lankao et al. 2009) meant an 

EKC relationship was rejected even more strongly. The elasticity for the GDP per capita squared 

term, while negative, was not significant (p-value = 0.19), and the implied turning point was 69 

times the sample average or at a level of over one million USD per capita (regression not 

shown).  

Yet, after splitting the 1995 sample into cities in OECD/developed/rich countries
6
 and 

cities in less developed countries, a Chow test suggested that many of the estimated elasticities in 

Regressions III-VI (in Table 3) may be significantly different depending on development level. 

Thus, the sample was split in two, and the regressions run again. Those regression results are 

shown in Table 4. 

Table 4 

 The top half of Table 4 displays the results of the regressions run with cities from OECD 

or the most developed countries. Those results are not too different from the previous regressions 

shown in Table 3. In comparing Regression III to Regression IX, the biggest difference is that, 

when only rich cities are considered, the elasticity for the variable measuring total private 

transport costs per kilometer is now significant and fairly large. Also, the elasticity for the 

variable measuring the user costs of the public transport alternative is (marginally) significant, 

                                                            
6 The cities located in non-OECD countries that were considered to be in rich/developed countries were: Hong 

Kong, Singapore, Taipei, and Tel Aviv.  
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but, surprisingly, negative. Regressions X and XI again imply that fuel efficiency and fuel costs 

are associated since the elasticity for fuel efficiency is substantially smaller (in absolute terms) 

when fuel costs are considered.   

 The bottom half of Table 4 shows the results for the cities located in less developed 

countries. The elasticity for population is substantially larger than in any of the other regressions 

and (for Regressions XIII and XV) statistically significantly greater than one (at the 95% 

confidence level). Also, the elasticity for urban density is larger (in absolute terms) than in any of 

the other regressions. Thus, it appears cities in developing countries differ importantly along 

demographic lines in terms of the drivers of private transport energy consumption.  

The only other variable that had a significant elasticity is fuel price (in Regression XV), 

although its impact on energy consumption is only about half of that found in developed, richer 

cities (shown in Regressions X and XI). Because only the very rich may own cars in developing 

country cities, perhaps it is not surprising that the elasticity for fuel price should be smaller (in 

absolute terms), since those relatively richer drivers may be less (fuel) price sensitive.  

In general, it is not clear whether cities in developing countries truly have fewer policy 

levers at their disposal to lower private transport energy consumption, or whether because their 

transport systems are less developed, the impact of certain policy levers cannot be accurately 

assessed (the smaller sample size could be a factor in finding fewer variables with significant 

elasticities, too).  

4. Conclusions  

 The paper confirmed the now well-established result that urban density is negatively 

correlated with urban private transport energy use; it did so by analyzing three separate, but 

related datasets (with observations from 1990, 1995, and 2001) using a consistent modeling 
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framework and as consistent variables as the three datasets would allow. Also, population was 

found to have a greater elasticity with respect to energy consumption than GDP per capita (their 

95% confidence intervals virtually never overlap). Variables representing effective private 

transport fuel efficiency, fuel price, and public transport network size were typically statistically 

significant and had the expected signs. However, some differences in estimated elasticities were 

uncovered between cities located in more developed and less developed countries.   

Interestingly, judging by the data collected in the sets analyzed here, urban density in 

Europe, while still significantly higher than most of the rest of the developed world, is declining 

(dropping by nearly 40% from 1960 to 2001 for the 11 cities for which there is data over this 

period). At the same time, European countries are experiencing population aging, and an 

association between a higher proportion of population in advanced age groups and a decline in 

transport energy/carbon emissions has been established by studies examining micro-level data 

and macro-level, cross-national data (e.g., Prskawetz et al. 2004 and Liddle 2011, respectively). 

Thus, in European cities at least, that trend of more sparse population density could partly offset 

the decline private transport that would be associated with the well established trend of 

aging/older populations.
7
  

In terms of policies, improving private vehicle fuel efficiency, in particular, and 

increasing fuel price could have a substantial impact on lowering transport energy consumption. 

Furthermore, in developed country cities, increasing the entire costs of private transport (e.g., 

registration, parking, and road tolls) could lower energy consumption substantially as well. On 

the other hand, there is no evidence that further lowering the cost to riders of public transport 

would lower private transport energy consumption. And the elasticity for the public transport 

                                                            
7 That the transport impacts from changes in urban density uncovered here may run counter to transport impacts 

from population aging was suggested by an anonymous reviewer.  
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network per capita is significant and negative, but typically considerably smaller than the 

elasticities for the other variables. For developing country cities, which did have a much smaller 

sample size, the only policy variable/lever (other than urban density, which is already quite high 

in those cities) that could be recommended is increasing the fuel price; the elasticity for fuel 

price is negative and significant, but significantly smaller in absolute terms than that for 

developed country cities (i.e., private transport energy consumption is less price sensitive in 

developing country cities than in developed country cities). 
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Table 1. Variables analyzed in the study. 
Variable name  Definition  Units Coverage

Private transport 
energy consumption 

Energy consumed for fuel for private passenger 
transport within the metropolitan area (includes cars, 
motorcycles, taxis, and share taxis) 
 

MJ 1990, 1995, & 
2001 a 

GDP p.cap.  Metropolitan gross domestic product per capita  2001 USD per 
person 

1990, 1995, & 
2001 

Population  Population in metropolitan area persons  1990, 1995, & 
2001 

Urban density  Ratio between the population and the urbanized 
surface area of the metropolitan area (i.e., does not 
include sea, lakes, rivers, etc.)  
 

Persons per 
hectare 

1990, 1995, & 
2001 

Fuel efficiency  Private passenger vehicle kilometres travelled divided 
by private passenger transport energy use 
 

VKm/MJ  1990, 1995, & 
2001 a 

Pub. cost p. Pass. 
km 

Cost of one public transport passenger kilometre for 
the traveller (ticket revenue plus fines paid by fare‐
evaders divided by public transport passenger 
kilometres travelled) 
 

2001 USD  1990, 1995, & 
2001 

Prvt. Cost p. Pass. 
Km 

Cost of one private motorised passenger kilometre for 
the traveller/motorist (includes fuel, maintenance, 
insurance, taxes, parking, tolls, and depreciation) 
 

2001 USD  1995 & 2001

Fuel price  Average (weighted by distance travelled) price of fuel 
for private cars and motorcycles 
 

2001 USD/MJ  1995

Pub. Seat km p. Cap.  Summed over all public transport vehicles: the distance 
travelled times the number of seats/places offered in 
the vehicle, divided by the number of inhabitants  

Seat/place km 
per person 

1995 & 2001 b

a: It is not clear whether the 1990 cross-section includes taxis and share taxis. 

b: The 1995 cross-section considers only seats; the 2001 cross-section counts seats and standing 

passengers, assuming the capacity of four standing passengers per square metre of vehicle 

passenger space. 
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Table 2. The means and standard deviations (in parentheses) for the variables considered for 

each dataset/cross-section. 
  1990  1995 2001

  All OECD/developed Less developed 
Private transport 
energy consumption 

1.6E+11 
(1.9E+11) 

7.7E+10

(1.2E+11) 
9.2E+10

(1.4E+11) 
4.7E+10 
(6.2E+10) 

3.6E+10

(5.5E+10) 
GDP p.cap.  31,706 

(14,323) 
24,856

(17,284) 
34,301

(12,345) 
4,568 
(3,133) 

22,882

(9,101) 
Population (mil.)  4.9 

(6.0) 
4.7

(5.5) 
3.6

(5.2) 
6.9 
(5.5) 

2.8

(3.4) 
Urban density  61.6 

(75.5) 
75.7

(74.3) 
52.6

(52.8) 
125.2 
(88.2) 

54.7

(41.5) 
Fuel efficiency  0.204 

(0.036) 
0.296

(0.103) 
0.278

(0.059) 
0.335 
(0.154) 

0.301

(0.029) 
Pub. cost p. Pass. 
km 

0.10 
(0.04) 

0.10

(0.06) 
0.12

(0.06) 
0.03 
(0.02) 

0.08

(0.04) 
Prvt. Cost p. Pass. 
Km 

  0.32

(0.15) 
0.37

(0.12) 
0.19 
(0.11) 

0.36

(0.09) 
Fuel price    0.024

(0.015) 
0.026

(0.011) 
0.020 
(0.020) 

Pub. Seat km p. Cap.    3,507

(2,281) 
3,614

(2,299) 
3,276 
(2,224) 

8,602

(4,802) 
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Table 3. OLS Regression results. Private transport energy consumption dependent variable. 
Cross‐section  1990  1995 2001

Regression  I  II  III IV V VI VII  VIII

GDP p.cap.  0.310** 
(0.143) 

0.162* 
(0.091) 

0.483***

(0.086) 
0.407***

(0.048) 
0.466***

(0.077) 
0.461*** 
(0.048) 

0.679*** 
(0.118) 

0.699***

(0.096) 
Population  1.035*** 

(0.055) 
1.025*** 
(0.048) 

1.065***

(0.051) 
1.096***

(0.042) 
1.063***

(0.041) 
1.063*** 
(0.041) 

0.992*** 
(0.038) 

0.997***

(0.035) 
Urban 
density 

‐0.513*** 
(0.066) 

‐0.523*** 
(0.067) 

‐0.525***
(0.078) 

‐0.561***
(0.053) 

‐0.533***
(0.060) 

‐0.534*** 
(0.055) 

‐0.273** 
(0.106) 

‐0.293***
(0.092) 

Fuel 
efficiency 

‐0.866** 
(0.330) 

‐0.915** 
(0.347) 

‐0.717***
(0.171) 

‐0.723***
(0.147) 

‐0.567***
(0.133) 

‐0.566*** 
(0.132) 

‐1.226*** 
(0.378) 

‐1.260***
(0.369) 

Pub. cost p. 
Pass. km 

‐0.266 
(0.170) 

  ‐0.0142
(0.069) 

‐0.00736
(0.070) 

0.0337 
(0.082) 

Prvt. Cost p. 
Pass. Km 

    ‐0.145
(0.164) 

‐0.888*** 
(0.186) 

‐0.863***
(0.181) 

Fuel price      ‐0.163**
(0.070) 

‐0.162** 
(0.068) 

 

Pub. Seat km 
p. Cap. 

    ‐0.144***
(0.055) 

‐0.148***
(0.047) 

‐0.107**
(0.047) 

‐0.107** 
(0.048) 

‐0.141** 
(0.065) 

‐0.153**
(0.060) 

       
Adj. R2  0.93  0.93  0.94 0.93 0.94 0.94 0.95  0.96

VIF 
(avg./max) 

  1.3/1.4  2.0/2.7 2.3/2.7    2.1/3.6

N  35  35  84 85 84 84 46  47

Notes: White heteroscedasticity‐consistent standard errors in parentheses. Statistical significance is 
indicated by:  *** p <0.01, ** p <0.05, and * p<0.10. 
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Table 4. OLS Regression results with the 1995 cross-section split according to 

income/development level. Private transport energy consumption dependent variable. 
OECD/ most developed countries

Regression  IX 
0.362*** 
(0.081) 
0.976*** 
(0.029) 

‐0.375*** 
(0.060) 

‐0.870*** 
(0.148) 
‐0.141* 
(0.071) 

‐0.470*** 
(0.131) 

X XI

GDP p.cap.  0.240***

(0.083) 
0.220***

(0.065) 
Population  0.999***

(0.028) 
1.000***

(0.027) 
Urban density  ‐0.428***

(0.053) 
‐0.428***
(0.052) 

Fuel efficiency  ‐0.383**
(0.1177) 

‐0.373**
(0.175) 

Pub. cost p. Pass. km  ‐0.037
(0.081) 

Prvt. Cost p. Pass. Km 

Fuel price    ‐0.399***
(0.095) 

‐0.411***
(0.094) 

Pub. Seat km p. Cap.  ‐0.144***
(0.036) 

  
0.98 

1.9/3.4 
58 

‐0.125***
(0.035) 

‐0.126***
(0.034) 

 
Adj. R2  0.98 0.98

VIF (avg./max)  2.2/4.3

N  58 58

   
Less developed countries

Regression  XII  XIII XIV XV

GDP p.cap.  0.563*** 
(0.171) 

0.539***

(0.106) 
0.603***

(0.141) 
0.632***

(0.117) 
Population  1.207*** 

(0.167) 
1.335***

(0.140) 
1.188***

(0.151) 
1.219***

(0.118) 
Urban density  ‐0.606** 

(0.253) 
‐0.758***
(0.187) 

‐0.600**
(0.210) 

‐0.679***
(0.164) 

Fuel efficiency  ‐0.342 
(0.321) 

‐0.136
(0.299) 

Pub. cost p. Pass. km  0.068 
(0.104) 

0.051

(0.102) 
Prvt. Cost p. Pass. 
Km 

‐0.116 
(0.212) 

Fuel price   
 

‐0.242*
(0.121) 

‐0.224**
(0.090) 

Pub. Seat km p. Cap.  ‐0.061 
(0.141) 

0.053

(0.163) 
   
Adj. R2  0.84  0.85 0.85 0.87

VIF (avg./max)    2.4/3.2 2.2/3.0

N  27  28 27 27

Notes: White heteroscedasticity‐consistent standard errors in parentheses. Statistical significance is 
indicated by:  *** p <0.01, ** p <0.05, and * p<0.10. 
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Figure 1. The economic importance of cities. The ratio of city per capita GDP to the 

corresponding country per capita GDP is plotted against that corresponding country per capita 

GDP for 160 world cities. Logarithmic trend line also shown.  
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Figure 2. The relationships between urban private transport energy use per capita for 160 world 

cities and both urban density (upper graph) and the corresponding national urbanization level 

(lower graph). Power-based trend lines and corresponding R-squared values shown. 
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Figure 3. The average urban density by geographic/cultural group for the 167 cities considered in 

the study. In addition to the average density, the figure displays each groups’ 99% confidence 

bounds (the error bars). Thus, the difference between any two groups’ average is statistically 

significant (at the 0.01 level) if one group’s upper error bound is outside another group’s lower 

error bound. The Australia, Canada, and US (Aus, Can, US) group also contains Wellington, NZ 

(from 1995). The rest of world (ROW) group contains cities from Africa (6), Middle East (4), 

and South America (6). All but two ROW observations are from 1995. 
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Appendix Table A-1. Cities included in each dataset/cross-section. 
1990 (35 total)  1995 (85 total) 2001 (47 total)

Boston  Amsterdam  Atlanta Amsterdam Brisbane Amsterdam  Stockholm

Chicago  Brussels  Calgary Athens Melbourne Athens  Stuttgart

Denver  Copenhagen  Chicago Barcelona Perth Barcelona  Turin

Detroit  Frankfurt Denver Berlin Sydney Berlin  Valencia

Houston  Hamburg Houston Berne Wellington Bern  Vienna

Los Angeles  London  Los Angeles Bologna Bilbao  Warsaw

New York  Munich  Montreal Brussels Bogota Bologna  Zurich

Phoenix  Paris  New York Budapest Cairo Brussels 
San Francisco  Stockholm  Ottawa Copenhagen Cape Town Budapest  Chicago

Toronto  Vienna  Phoenix Dusseldorf Curitiba Copenhagen  Dubai

Washington  Zurich  San Diego Frankfurt Dakar Geneva  Honk Kong
    San Francisco Geneva Harare Ghent  Melbourne

Bangkok  Adelaide  Toronto Glasgow Johannesburg Glasgow  Sao Paulo
Hong Kong  Brisbane  Vancouver Graz Mexico City Graz  Singapore

Jakarta  Melbourne  Washington Hamburg Rio de Janeiro Hamburg 
Kuala Lumpur  Perth    Helsinki Riyadh Helsinki 

Manila  Sydney  Bangkok Krakow Sao Paulo Krakow 
Seoul    Beijing London Tehran Lille 

Singapore    Chennai Lyon Tel Aviv Lisbon 
Tokyo    Guangzhou Madrid Tunis London 

    Ho Chi Minh City Manchester Lyons 
    Hong Kong Marseille Madrid 
    Jakarta Milan Manchester 
    Kuala Lumpur Munich Marseilles 
    Manila Nantes Moscow 
    Mumbai Newcastle Munich 
    Osaka Oslo Nantes 
    Sapporo Paris Newcastle 
    Seoul Prague Oslo 
    Shanghai Rome Paris 
    Singapore Stockholm Prague 
    Taipei Stuttgart Rome 
    Tokyo Vienna Rotterdam 
      Zurich Seville 

Note: Cities are listed in alphabetical order within the following regional groupings: North 

America (Canada and US), Asia, Europe, and Oceania/other, except for the 2001 cross-section in 

which only two groupings are used: Europe and other. 
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Appendix Table A-2. 95% confidence intervals for GDP per capita and population for each 

regression.  
Regression Cross-section GDP per capita Population 

I 1990 [0.019 0.602] [0.923 1.147] 

II 1990 [-0.023 0.348] [0.926 1.124] 

III 1995 [0.311 0.655] [0.963 1.166] 

IV 1995 [0.311 0.503] [1.013 1.180] 

V 1995 [0.313 0.619] [0.980 1.145] 

VI 1995 [0.366 0.556] [0.982 1.145] 

VII 2001 [0.441 0.917] [0.916 1.069] 

VIII 2001 [0.505 0.893] [0.925 1.069] 

IX 1995, OECD/most developed [0.200 0.524] [0.918 1.035] 

X 1995, OECD/most developed [0.072 0.407] [0.943 1.054] 

XI 1995, OECD/most developed [0.089 0.351] [0.946 1.054] 

XII 1995, less developed [0.117 0.876] [0.906 1.613] 

XIII 1995, less developed [0.249 0.682] [1.096 1.673] 

XIV 1995, less developed [0.192 0.874] [0.915 1.559] 

XV 1995, less developed [0.305 0.825] [1.024 1.508] 

 Notes: Interval bounds with overlap between GDP per capita and population are in bold and 

boxed; population intervals that exclude 1.0 are in bold.  


