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Abstract 

This paper examines theory and behavior in a two-player game of siege, sequential attack and 
defense.  The attacker’s objective is to successfully win at least one battle while the defender’s 
objective is to win every battle.  Theoretically, the defender either folds immediately or, if his 
valuation is sufficiently high and the number of battles is sufficiently small, then he has a 
constant incentive to fight in each battle.  Attackers respond to defense with diminishing assaults 
over time.  Consistent with theoretical predictions, our experimental results indicate that the 
probability of successful defense increases in the defenders valuation and it decreases in the 
overall number of battles in the contest.  However, the defender engages in the contest 
significantly more often than predicted and the aggregate expenditures by both parties exceed 
predicted levels.  Moreover, both defenders and attackers actually increase the intensity of the 
fight as they approach the end of the contest. 
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1. Introduction 

Environments, such as cyber-security (Moore et al., 2009), pipeline systems (Hirshleifer, 

1983), complex production processes (Kremer, 1993), and anti-terrorism defense (Sandler and 

Enders, 2004) can be characterized as weakest-link systems.  In each of these cases an attacker 

only needs to disrupt one component of the system to create a total failure.  Defenders are forced 

to constantly protect the entire system while attackers are encouraged to seek the weakest point. 

Recently, a number of theoretical papers emerged trying to model the optimal strategies 

of those who wish to protect weakest-link systems and those who wish to destroy them.  Most of 

the theoretical work has been focused on the case where the attacker and the defender 

simultaneously decide how much to invest in each potential target, a variation of the Colonel 

Blotto game.1  For example, Clark and Konrad (2007) and Kovenock and Roberson (2010) both 

provide a theoretical analysis of a multi-battle two-player game where the attacker and the 

defender simultaneously commit resources to concurrent multiple battles in order to win a prize.2  

To receive the prize, the attacker needs to win at least one battle, while the defender must win all 

battles.  Another class of attack and defense games, distinct from the simultaneous multi-battle 

game, assumes that battles proceed sequentially.  Most of such models originated with the 

seminal R&D paper of Fudenberg et al. (1983).3  The theoretical model studied in our paper, 

however, is most closely related to Levitin and Hausken (2010).  Both papers consider a contest 

in which a defender seeks to protect a network and an attacker seeks to destroy it through 

multiple sequential attacks.4  Levitin and Hausken (2010) model the probability of winning a 

given battle with a lottery contest success function.  Due to complexity of their model, most of 

the paper’s theoretical results are based on numerical simulations. In contrast, our paper uses an 

all-pay auction format, allowing us to explore sequential attacks in a weakest-link network 
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theoretically.  We also conduct a series of controlled laboratory experiments and compare 

observed behavior to the theoretical benchmarks. 

Sequential attacks in a weakest-link network can be viewed as a “game of siege” where 

the defender attempts to hold an asset such as a fort or a landing strip against repeated assault.  

Arguably, the most famous siege, whether it is true or not, was the battle of Troy in which the 

Greeks finally ended a prolonged siege by hiding in a wooden horse according to Greek 

mythology.  In this type of game, the attacker and defender decide how much to invest in each 

battle after learning the outcome of any previous battle.  The side making the larger investment 

wins that battle, creating a series of all-pay auctions.  The attacker only needs to be successful 

once, while the defender must repel each successive assault to win, and hence the game has a 

weakest-link structure.  Our theoretical model predicts that if the defender’s valuation is 

sufficiently high and the number of battles is sufficiently small, then the defender has a constant 

incentive to fight in each battle and otherwise he folds immediately. Thus, defenders exhibit a 

response pattern of “fight or flight.”  Attackers respond to defense with diminishing assaults over 

time.  Consistent with theoretical predictions, our experimental results indicate that the 

probability of successful defense increases in the defender’s valuation and it decreases in the 

overall number of battles in the contest.  However, the defender engages in the contest 

significantly more often than predicted and the aggregate expenditures by both parties exceed 

predicted levels.  Also, contrary to theoretical predictions, both the defender and attacker actually 

increase the intensity of the fight as they approach the known end of the game.  

Identifying the predictive success of contest models, such as the one described in the 

current study, is of social value.  However, the usual concerns about unobservable information 

are present with studies of naturally occurring data and conducting field tests could be extremely 
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costly in this context, making laboratory experiments an ideal tool for empirical validation.  Our 

study adds to the experimental literature on multi-battle contests.  To date there are only a few 

experimental studies that investigate games of multiple contests.  Avrahami and Kareev (2009) 

and Chowdhury et al. (2011) test several basic predictions of the original Colonel Blotto game 

and find support for the major theoretical predictions.  Kovenock et al. (2010) study a multi-

battle contest with asymmetric objectives and find support for the theoretical model of Kovenock 

and Roberson (2010) but not Clark and Konrad (2007).  Our study contributes to this literature 

by investigating both theoretically and experimentally the dynamic multi-battle contest which we 

call the “game of siege.” 

 

2. The Game of Siege 

Before introducing the general model of sequential attack and defense (or game of siege), 

it is useful to review the simple one shot contest, or all-pay auction, between two asymmetric 

players as in Baye et al. (1996). Assume that two risk-neutral players compete for a prize in a 

contest. The prize valuation for player 1 is 𝑣1 and for player 2 it is 𝑣2, where 𝑣1 > 𝑣2 > 0. Both 

players expend resources 𝑥1 and 𝑥2, and the player with the highest expenditures wins. In case of 

a tie, the winner is selected randomly. Irrespective of who wins the contest, both players forfeit 

their expenditures. It is well known that there is no pure strategy equilibrium in such a game 

(Hillman and Riley, 1989; Baye et al., 1996). The mixed strategy Nash equilibrium is 

characterized by the following proposition due to Baye et al (1996). 

Proposition 1. In the mixed strategy equilibrium of a contest between two asymmetric 

players, with valuations 𝑣1 > 𝑣2 > 0: 
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(i)  Players randomize over the interval 𝑥 ∈ [0, 𝑣2], according to cumulative distribution 

functions 𝐹1∗(𝑥) = 𝑥𝑣2 and 𝐹2∗(𝑥) = 1 − 𝑣2𝑣1 + 𝑥𝑣1. 

(ii)  Player 1’s expected expenditure is 𝐸(𝑥1) = 𝑣22  and player 2’s is  𝐸(𝑥2) = 𝑣222𝑣1. 

(iii) Player 1’s expected payoff is 𝐸(𝜋1) = 𝑣1 − 𝑣2 and player 2’s is 𝐸(𝜋2) = 0. 

(iv)  Player 1’s probability of winning is 𝑝1 = 1 − 𝑣22𝑣1 and player 2’s is 𝑝2 = 𝑣22𝑣1. 

We now turn to the case of two players, attacker and defender, competing in multiple 

sequential contests.  The objective of the attacker 𝐴 is to win a single battle, in which case he 

receives a valuation of 𝑣𝐴. The objective of the defender 𝐷 is to win all 𝑛 battles, in which case 

he receives a valuation of 𝑣𝐷, where 𝑣𝐷 > 𝑣𝐴 > 0.  As the battles occur sequentially, both players 

first simultaneously allocate their respective resources 𝑥𝐴1 and 𝑥𝐷1  in battle 1. If 𝑥𝐴1 > 𝑥𝐷1 , then the 

contest stops and the attacker receives 𝑣𝐴. However, if the defender is successful in battle 1, the 

contest proceeds to battle 2. Again, if 𝑥𝐴2 > 𝑥𝐷2 , then the contest stops and the attackers receives 𝑣𝐴 . This process repeats until either the attacker wins one battle or the defender wins all 𝑛 

battles. The net payoff of player 𝐴  if he wins is equal to the value of the prize minus the 

expenditures spent during the competition in each battle up to that point, e.i. 𝜋𝐴 = 𝑣𝐴 − ∑ 𝑥𝐴𝑘𝑙𝑘=1 , 

where l is the battle won by the attacker.  If player 𝐴 is never successful, this payoff (loss) is the 

negative sum of his expenditures, i.e. 𝜋𝐴 = − ∑ 𝑥𝐴𝑘𝑛𝑘=1 . The payoff to player 𝐷 is similar, i.e. 𝜋𝐷 = 𝑣𝐷 − ∑ 𝑥𝐷𝑘𝑛𝑘=1  if player 𝐷 wins all the battles and 𝜋𝐷 = − ∑ 𝑥𝐷𝑘𝑙𝑘=1  if he loses battle l.  

To analyze this game we apply backward induction and identify the subgame perfect 

equilibrium.  As will be shown, the expected contest winner depends on the size of 𝑛 for a given 𝑣𝐴 and 𝑣𝐷. Specifically, the expected outcome depends on whether 𝑣𝐷 ≥ 𝑛𝑣𝐴, 𝑛𝑣𝐴 > 𝑣𝐷 > (𝑛 −1)𝑣𝐴 or (𝑛 − 1)𝑣𝐴 ≥ 𝑣𝐷.  First, consider the contest in battle 𝑛. In the last battle, the value of 
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winning the contest for player 𝐷 is 𝑣𝐷 and the value for player 𝐴 is 𝑣𝐴, with 𝑣𝐷 > 𝑣𝐴. Therefore, 

this is a simple one-stage contest between two asymmetric players as characterized by 

Proposition 1. In such a contest, the expected expenditure of player 𝐷 in battle 𝑛 is 𝐸(𝑥𝐷𝑛) = 𝑣𝐴2  

and the expenditures of player 𝐴  is 𝐸(𝑥𝐴𝑛) = 𝑣𝐴22𝑣𝐷 . According to Proposition 1, the expected 

payoff of player 𝐷  in battle 𝑛  is 𝐸(𝜋𝐷𝑛) = 𝑣𝐷 − 𝑣𝐴  and the expected payoff of player 𝐴 

is 𝐸(𝜋𝐴𝑛) = 0. 

Next, we consider the contest in the penultimate battle.  The defender’s continuation 

value of winning battle 𝑛 − 1 is 𝑣𝐷 − 𝑣𝐴 (his expected payoff from competing in battle 𝑛) and 

his value of losing is 0 (since the contest stops if the attacker wins even a single battle).  On the 

other hand, the value to the attacker of winning battle 𝑛 − 1 is 𝑣𝐴 (since the attacker only needs a 

single victory) and the value of losing is 0 (the expected payoff from competing in battle 𝑛). 

Given, these expected payoffs, the contest in battle 𝑛 − 1 is again a simple single stage contest 

between two asymmetric players as characterized by Proposition 1.  However, this time the 

continuation value of player 𝐷  is 𝑣𝐷 − 𝑣𝐴  and the value of player 𝐴  is 𝑣𝐴 . If the defender’s 

continuation value is sufficiently higher than the attackers value, i.e. 𝑣𝐷 − 𝑣𝐴 > 𝑣𝐴 , then the 

defender has the advantage and his expected payoff in battle 𝑛 − 1  is 𝑣𝐷 − 2𝑣𝐴 , while the 

attacker’s expected payoff is 0. 

A similar exercise can be performed for battle 𝑛 − 𝑘, the results of which are reported in   

Panel A of Table 1. Note that in generating Panel A of Table 1, we assume that 𝑣𝐷 ≥ 𝑛𝑣𝐴 (or 

alternatively that 𝑛 ≤ 𝑣𝐷𝑣𝐴), i.e. the defender’s valuation is sufficiently high relative to the number 

of battles 𝑛 and attacker’s valuation 𝑣𝐴. In such a case, the defender always randomizes between 

0 and 𝑣𝐴 and the expected expenditure of the defender in each battle 𝑛 − 𝑘 is 𝐸(𝑥𝐷𝑛−𝑘) = 𝑣𝐴2 . On 
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the other hand, the expenditure of the attacker 𝐸(𝑥𝐴𝑛−𝑘) = (𝑣𝐴)22(𝑣𝐷−𝑘𝑣𝐴)  is decreasing in 𝑛 − 𝑘 , 

which means that the attacker’s aggression decreases in number of battles won by the defender.5 

We summarize these findings in the following proposition: 

Proposition 2. In the subgame perfect equilibrium, if 𝑣𝐷 ≥ 𝑛𝑣𝐴, then in battle 𝑛 − 𝑘:  

(i)  Player 𝐷  randomizes over the interval 𝑥𝐷 ∈ [0, 𝑣𝐴] , according to the cumulative 

distribution function 𝐹(𝑥𝐷) = 𝑥𝐷𝑣𝐴, and player 𝐴 randomizes according to the cumulative 

distribution function 𝐹(𝑥𝐴) = 1 − 𝑣𝐴𝑣𝐷−𝑘𝑣𝐴 + 𝑥𝐴𝑣𝐷−𝑘𝑣𝐴. 

(ii)  Player 𝐷’s expected expenditure is 𝐸(𝑥𝐷𝑛−𝑘) = 𝑣𝐴2  and player 𝐴’s expected expenditure is 

𝐸(𝑥𝐴𝑛−𝑘) = (𝑣𝐴)22(𝑣𝐷−𝑘𝑣𝐴). 
Proposition 2 is based on the assumption that the defender has a relatively high 

valuation.6 Now consider the case that 𝑛𝑣𝐴 > 𝑣𝐷 > (𝑛 − 1)𝑣𝐴 (or alternatively that  
𝑣𝐷𝑣𝐴 < 𝑛 <

𝑣𝐷𝑣𝐴 + 1). As shown in Panel B of Table 1, in this special case, the disadvantaged defender in 

battle 1 receives expected payoff of zero. The attacker, on the other hand, receives positive 

expected payoff of 𝑛𝑣𝐴 − 𝑣𝐷 and should attack. Although the defender does not entirely give up 

in this case, his expected expenditures in battle 1 are lower than the expenditures of the attacker.  

Should the defender win this initial battle, he would have the advantageous position in battle 2 

and all subsequent battles and the game would progress as in Proposition 2. 

If the player 𝐷’s valuation 𝑣𝐷 is sufficiently small or the number of battles is sufficiently 

high, then the defender will give up, by expending 0 resources in the first battle.7 To demonstrate 

this, assume that in battle 2 the continuation value of the defender 𝑣𝐷 − (𝑛 − 2)𝑣𝐴 is not enough 

to cover the current valuation of the attacker 𝑣𝐴, i.e. 𝑣𝐷 − (𝑛 − 2)𝑣𝐴 ≤ 𝑣𝐴 (or alternatively that 
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(𝑛 − 1)𝑣𝐴 ≥ 𝑣𝐷 or 𝑛 ≥ 𝑣𝐷𝑣𝐴 + 1). In such a case, the attacker has an advantage in battle 2 over the 

defender. According to Proposition 1, the expected payoff to the attacker is (𝑛 − 1)𝑣𝐴 − 𝑣𝐷 , 

which for now assume is strictly positive, and the expected value to the defender is 0. Therefore, 

when making a decision in battle 1, the defender is expecting to receive 0 payoff in battle 2. 

Obviously, in such a case, the defender has a strictly dominant strategy to make no expenditure 

in battle 1 assuring a payoff of 0 rather than incurring a costly bid that will result either in a 

defeat yielding a reward of 0 or a continuation of the game yielding an expected subsequent 

payoff of 0.8 On the other hand the attacker’s valuation of winning is still 𝑣𝐴. If ties are broken 

randomly, then the attacker should make any minimal possible expenditure 𝜀 (0.1 francs in our 

experiment) to guarantee the victory.9 We summarize these results in Panel C of Table 1 and in 

the following proposition: 

Proposition 3. In the subgame equilibrium, if (𝑛 − 1)𝑣𝐴 ≥ 𝑣𝐷, then in battle 1:  

(i)  Player 𝐷 makes an expenditure of 0 and player 𝐴 makes a minimal expenditure of 𝜀. 

(ii)  Player 𝐷’s expected payoff is 0 and player 𝐴’s expected payoff is 𝑣𝐴 − 𝜀. 

A straight forward implication of Proposition 3 is that for any values the two players 

have, there is some critical number of battles, 𝑛∗, above which the defender should immediately 

fold.10  This is formalized in the following corollary: 

Corollary 1: For any contest with at least  𝑛∗ = 𝑣𝐷𝑣𝐴 + 1 battles, player 𝐴 wins in battle 1 

in equilibrium.   

Another result that springs from Propositions 2 and 3 along with the intermediate case 

discussed above is that attackers never give up.  This is formalized in the following corollary:    

Corollary 2: For any finite contest, in equilibrium, player 𝐴  attacks with positive 

probability in every battle until the ultimate outcome is resolved. 
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To summarize, the main prediction of our model is that the attacker always engages in 

each battle. The defender engages in the battle only if 𝑣𝐷 > (𝑛 − 1)𝑣𝐴. However, if the number 

of battles 𝑛 is sufficiently high or the defender’s valuation 𝑣𝐷  is sufficiently small, i.e. (𝑛 −1)𝑣𝐴 ≥ 𝑣𝐷, then the defender gives up with probability one, by expending zero resources in the 

first battle.  Stated another way, for a given set of values 𝑣𝐷 >  𝑣𝐴, if the horizon is sufficiently 

short then the defender will fight while the attacks grow weaker, but if the horizon is long the 

defender will simply give up.  The number of battles the defender is willing to endure is 

determined by the relative size of 𝑣𝐷 and 𝑣𝐴, with the defender’s endurance increasing in 𝑣𝐷.  

Our model is for a game with a finite horizon, but we now briefly consider the case of an 

infinite horizon game.  As it turns out, in an infinite horizon game the defender will surrender 

immediately.  While this result matches the finite story well, the reasoning is somewhat different.  

The intuition is that winning a battle results in the defender being in the same value position as 

he was prior to the battle and losing results in a negative payoff, since fighting is costly, while 

surrender yields a certain profit of 0.  The defender’s position is thus characterized by a Bellman 

equation where the optimal choice is to surrender.  The attacker’s behavior is characterized by a 

similar Bellman equation and the attacker will find it optimal to attack in a battle if 𝑣𝐴 > 0.11   

Given that our model suggests that extended contests favor attackers, why don’t we 

observe more attacks in naturally occurring settings?  One possible explanation is that our 

players face no resource constraint, nor are there any costs that are non-productive in the sense of 

not increasing the likelihood of winning, nor are there any alterative targets for attack.  It is 

important to keep in mind that the parameters in our model can be interpreted as economic 

profits and costs, which account for opportunity costs.  In practice, the relative value of 𝑣𝐴 to 
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𝑣𝐷 may be quite small.  Based on the expected bids shown in Panel A of Table 1, as 𝑣𝐴 → 0 the 

expected bids of both players approach 0 so long as the defender finds it optimal to defend. 

 

3. Experimental Design and Procedures 

Our experimental design employs three treatments, by manipulating the number of battles 

and the valuation of the defender. In all treatments, the valuation of the attacker is kept constant 

at 𝑣𝐴 = 50 experimental francs, the experimental currency. In the baseline treatment N3-V150, 

the number of battles is 𝑛 = 3 and the defender’s valuation is 𝑣𝐷 = 150 francs. The subgame 

perfect equilibrium prediction for this treatment is that the defender engages in the competition 

with the attacker, and the defender wins the contest with probability 0.31, the joint probability of 

winning all three battles. 

The other two treatments are designed to increase the attacker’s advantage.  In treatment 

N4-V150, the number of battles is increased to 𝑛 = 4.  The defender should not be willing to 

fight four battles and thus should invest 0 in battle 1 and concede the contest.  Should this not 

occur, and the defender actually wins the first battle 1, then behavior in battle 1 + 𝑘 in N4-V150 

should be identical to behavior in battle 𝑘  in N3-V150 for 𝑘 ∈ {1,2,3} .  Obviously, in the 

subgame perfect equilibrium the defender’s joint probability of winning all three battles is 0, but 

should behavior not follow the subgame perfect equilibrium path during the first battle, it is 

expected to follow the equilibrium path from that point forward creating the identical predictions 

for the last three battles, should they occur.  The third treatment is N3-V100, which is similar to 

the baseline N3-V150 except that the defender’s value is reduced from 𝑣𝐷 = 150 to 𝑣𝐷 = 100 

francs.  This has the effect of reducing the continuation value of the defender in every battle just 

as if extra battles had been inserted into the contest.  With these values, defenders should be 
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unwilling to engage in three battles and give up in battle 1, but would have the upper hand and 

fight should the contest reach battle 2.  Our choice of a 50 franc reduction was so that the 

strategic situation was the same in battle 𝑘 in N3-V100 as in battle 𝑘 − 1 in N3-V150, when it 

exists, and battle 𝑘  in N4-150.  The predicted average investment, expected payoff, and 

probability of winning the contest are reported in Table 2 for all three treatments. 

The experiment was conducted at the Economic Science Institute at Chapman University. 

The computerized experimental sessions were run using z-Tree (Fischbacher, 2007). Six sessions 

each involving 16 undergraduates were run, for a total of 96 unique participants.  Some students 

had participated in other economics experiments that were unrelated to this research.   

Each experimental session involved subjects playing 20 contests each in one of the three 

treatments, thus we have a between subjects design.  This was done to give the subjects 

maximum experience with a set of parameters during the sixty minute session given the 

sophisticated backwards induction required to solve this game.  Before the first contest in each 

session subjects were randomly and anonymously assigned as attacker or defender, which we 

called participant 1 and participant 2.12 All subjects remained in the same role assignment for the 

first 10 contests and then changed their assignment for the last 10 contests. Subjects of opposite 

assignments were randomly and anonymously re-paired each contest to form a new two-player 

group. In each contest, subjects were asked to choose how many francs to allocate in a given 

battle, which we called a round. Subjects were not allowed to allocate more than the value of the 

reward in any battle and were informed that regardless of who won the contest, both participants 

would have to pay their allocations.13 At the end of each battle, the computer displayed one’s 

own allocation, one’s opponent’s allocation, and the winner of that battle. The contest ended 

when the attacker won one battle or the defender won all the battles. 



 11 

At the end of the experiment, 2 out of the first 10 contests and 2 out of the last 10 

contests were randomly selected for payment.  The sum of the earnings for these 4 contests was 

exchanged at rate of 25 francs = $1. Due to institutional constraints, actual losses cannot be 

extracted from subjects.  This creates the potential for loss of experimental control as a subject is 

indifferent between small and large losses.  We follow the standard procedure of endowing 

subjects with money from which losses can be deducted, in this case $20.14  Subjects were paid 

privately in cash and the earnings varied from $13.25 to $27.5. 

 

4. Results 

4.1. Treatment Effects 

Table 2 provides the aggregate results of the experiment. We start our analysis with the 

general description of treatment effects. The model predicts the probability of the defender 

winning the contest decreases with the defender’s value. Under the parameters used in our 

experiment, the equilibrium probability the defender wins the contest is 0.31 in the N3-V150 

treatment and it is 0 in the N3-V100 treatment. The observed probabilities in the experiment are 

0.41 and 0.29, respectively.  Although the observed probabilities are inconsistent with the 

theoretical point predictions, they comply with comparative statics predictions.  Specifically, 

consistent with theoretical predictions, the probability of successful defense is higher in the N3-

V150 treatment than in the N3-V100 treatment.  This difference is significant based on the 

estimation of a random effect probit model where the dependent variable is the defender winning 

the contest and the independent variables are a period trend and a treatment dummy-variable (p-

value < 0.05).15 
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Result 1: Consistent with theoretical predictions, the probability of successful defense 

increases in the defender’s valuation. 

The theory also predicts the probability of the defender winning the contest decreases in 

the number of battles. The equilibrium probability of the defender winning the contest is 0.31 in 

the N3-V150 treatment and it is 0 in the N4-V150 treatment. The observed probabilities in the 

experiment were 0.41 and 0.27, respectively.  Again, despite off theoretical point predictions, 

qualitatively, this difference is in the predicted direction and significant based on the estimation 

of a random effect probit model similar to the one described above (p-value < 0.05). 

Result 2: Consistent with theoretical predictions, the probability of successful defense 

decreases in the number of battles. 

 

4.2. Within Treatment Behavior 

Although the qualitative predictions of the theory are supported by the data, the 

quantitative predictions are clearly rejected. One notable feature of the data is the considerable 

over-expenditure in all treatments. This can be seen from the fact that both the attacker and the 

defender earn significantly lower payoffs than predicted.16 Such significant over-expenditure is 

not uncommon in experimental literature on contests and all-pay auctions (Davis and Reilly, 

1998; Potters et al., 1998; Gneezy and Smorodinsky, 2006; Lugovskyy, et al., 2010; Sheremeta, 

2010a, 2010b, 2011).  Still, we rarely observe defenders spending more in the contest (over all 

three rounds) than the value of winning.  In fact, such over-dissipation by defenders only occurs 

in 1% of the contests in N3-V150 and N3-V100 and 4% of the contests in N4-V150.  For 

attackers the rate is higher, although still not large at 4% in N3-V100 and 15% in N3-V150 and 
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N4-V150.  This difference in attackers and defenders is unsurprising given that the value of 

winning is much higher for defenders. 

Result 3: Contrary to theoretical predictions, there is considerable aggregate over-

expenditure in all treatments by both attackers and defenders. 

One explanation for the over-expenditure is that subjects fall prey to a sunk cost fallacy. 

For the payoff maximization problem, expenditures in previous battles are sunk costs and should 

be ignored, but evidence from various behavioral studies suggests people incorporate sunk costs 

in their decision-making (Friedman et al. 2007).17  Several other possible explanations, proposed 

in the literature, include subjects having a non-monetary value of winning (Sheremeta, 2010a, 

2010b; Price and Sheremeta, 2011), having spiteful preferences (Herrmann and Orzen, 2008) or 

making mistakes (Potters et al., 1998; Sheremeta, 2011) and judgmental biases (Sheremeta and 

Zhang, 2010).  

Camerer (2003) argues that subjects can learn to play equilibrium strategies with 

experience. Figure 1 shows the total expenditure (sum of expenditures in all battles) over time. 

There is no clear trend in any of the three treatments, suggesting that on aggregate subjects 

consistently employ similar strategies across all periods of the experiment. A regression of the 

total expenditure on a time trend, estimated separately for each treatment, shows that there is no 

significant relationship between the two variables (p-values > 0.10). Separating the data by 

player type and battle, we again find no consistent patterns (see Figures A1, A2, and A3 in the 

online appendix).18 

Another readily apparent feature of the data is that defenders do not surrender in the first 

battle in N3-V100 or N4-V150, see Panel B of Table 1.  While the average investment is lower 

in these two periods than in the subsequent periods, it is not 0.  In fact, defenders spend 0 in less 
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than 5% of the battles in which they are predicted to do so. 19   Defenders’ behavior is 

counteracted by attackers who invest more than the minimal amount predicted in equilibrium.  A 

simple random effect model, estimated separately for each treatment, finds that the average bid 

in the first battle is significantly higher than 0 for both the attacker and the defender (p-values < 

0.05). 

Result 4: Contrary to theoretical predictions, the defenders do not give up and the 

attackers expend substantial resources in the first battle. 

In all other battles the expected expenditure by defenders should be the same.  However, 

defenders are actually increasing their defenses as the end of the contest approaches.  Attackers 

also increase the intensity of their assault as the end of the contest approaches, the exact opposite 

of the pattern predicted by the theory.  These trends are statistically significant based on the 

estimation of the panel regression models.20  Moreover, such patterns persist throughout all 20 

periods of the experiment, as indicated by Figures A1, A2 and A3 in the online appendix. 

Result 5: Contrary to theoretical predictions, both defenders and attackers increase the 

intensity of the fight as they approach the end of the contest. 

Results 4 and 5 are clearly inconsistent with the theoretical predictions, which are largely 

based on a well-known phenomena in the all-pay auction literature – a “discouragement 

effect.”21 In particular, the defender should be discouraged in the first battle in treatments N3-

V100 and N4-V150 because his relative valuation is so much lower than the valuation of the 

attacker. This discouragement effect also causes the attacker’s aggression to decrease in the 

number of battles won by the defender.22 Although our results are clearly inconsistent with these 

predictions, we do find some support for a discouragement effect. In particular, consistent with 



 15 

the theoretical predictions, we find the probability of the attacker winning each consecutive 

battle decreases, while the probability of the defender wining increases (p-values < 0.05).23 

Result 6: Consistent with theoretical predictions, with each successful defense, the 

probability of the defender winning the next battle increases, while for the attacker it decreases. 

 

4.3. Guerillas In Our Midst  

While it is clear that subjects are not behaving in strict accordance with the theoretical 

predictions, is there some consistency to how they behave?  For attackers, there is anecdotal 

evidence to suggest that many people are behaving like guerillas, focusing their investments on 

one intense attack.  Figure 2 plots the largest and second largest attacks for every contest lasting 

at least three battles for each treatment.24  Nearly half of these contests are such that the largest 

attack is at least 10 times greater than the next largest attack.25  For comparison, the ratio of the 

largest defense to the second largest defense is less than 2 for more than 90% of these same 

contests.  Kovenock et al. (2010) also report behavior consistent with guerilla attacks in the 

simultaneous weakest-link contest.  Chowdhury et al. (2011) report similar behavior in constant-

sum Colonel Blotto games between asymmetric players.  Together these results suggest such 

behavior is a robust strategy when attacking weakest-link systems.   

 

5. Conclusions 

Numerous systems in society can be described as weakest-link networks, where a single 

breach can destroy the entire system.  For example, in preventing airplane hijackings, passenger 

screening inside the terminal at Los Angeles International Airport (LAX) is only valuable if a 

terrorist cannot freely walk up to planes on the tarmac at Northwest Arkansas Regional Airport 
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(XNA).  Recently, attention has been given to modeling the optimal strategies of those who wish 

to protect weakest-link systems and those who wish to destroy them.  However, that work has 

been focused on the case where the attacker is deciding among targets and the defender has to 

protect all potential targets concurrently.  In this paper we consider the case where battles occur 

sequentially, a game of siege.  For example, an employer has to retain its skilled employees 

every period and it is not enough for the army to prevent the overthrow of the government once.  

In our model, a battle is won by the party investing more, but the defender has to win the 

entire series of battles to win the contest while the attacker needs to win only once.  Within this 

structure, the continuation value of the defender is increasing within each battle won as the 

number of future battles that must be won is decreasing.  If the horizon is too long, the defender 

should optimally choose to concede in the first battle.  If the horizon is sufficiently short, then 

the defender will put up a fight in every battle, but the intensity of the defense should not change 

as the end approaches.  Thus, the decision of defenders when they first come under assault is one 

of “fight or flight.”  Somewhat counter intuitively, when facing a fight the intensity of the assault 

should decrease over time.  These predictions are dramatically different from the existing 

literature on simultaneous battle contest where attackers concentrate on a single target and 

defenders are forced to randomize their protection of each target. 

This study also reports the results of a series of laboratory experiments designed to test 

the theoretical predictions of our model.  In our baseline treatment, defenders should fight.  Our 

two alternative treatments have either more battles or a lower payoff to the defender for winning, 

both of which should cause defenders to prefer flight.  We find that contest outcomes are largely 

consistent with the theory.  Results 1 and 2, respectively, show that defenders are more likely to 

be successful when the defender’s value is larger and as the number of battles in the contest is 
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smaller.  Result 6 shows that defenders are more likely to win battles as the contest progresses.  

However, Results 3, 4, and 5, which deal with individual behavior, are not consistent with the 

theoretical predictions.  What we observe is that subjects in both roles tend to over invest, 

driving profits down (Result 3).  Further, defenders are reluctant to flight when they should 

(Result 4) and tend to actually increase their effort as the contest progresses (Result 5).  

Attackers also increase their investments as the contest progresses (Result 5), contrary to the 

theoretical predictions.  It also appears that attackers engage in concentrated assaults suggesting 

that the guerilla behavior reported by Kovenock et al. (2010) and Chowdhury et al. (2011) is a 

robust phenomenon when people are attacking weakest-link systems. 

We believe that the connection between behavior and theory is an important area for 

future research. A partial explanation of observed behavior for which there is some support from 

previous laboratory experiments (Sheremeta, 2010a, 2010b; Price and Sheremeta, 2011) is that 

subjects place a positive value on “winning” battles distinct from the prize money even when no 

one receives public recognition for victories.  Such motivation could explain why defenders are 

reluctant to flight, but cannot explain guerilla attacks since a utility for winning simply shifts 

payoffs.  Another way in which subjects may differ from the bidders in the model is in their risk 

attitudes.  While the theory assumes risk neutral agents, many laboratory studies have found that 

people behave as if they are risk averse (Holt and Laury, 2002; Sheremeta and Zhang, 2010; 

Sheremeta, 2011).  However, risk aversion should encourage defenders to flight and not to fight.  

Similarly, previous experiments have found that people have difficulty backwards inducting in 

new situations, but typically learn to do so with modest experience (Camerer, 2003).  However, 

we do not observe improved performance with experience.  Observed behavior may be due to 

some form of a gambler’s fallacy or spitefulness, both of which are commonly observed in the 
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field and in the laboratory experiments (Croson and Sundali, 2005; Sheremeta and Zhang, 2010).  

Another potential explanation may be that bidders act as if they or their opponent have a resource 

constraint across all battles in a contest.26  For example, due to psychological reasons bidders 

may be unwilling to spend more in total than the value of the contest.  These conjectures are 

intriguing and they suggest a number of avenues for future theoretical work. 
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Appendix: Tables and Figures 

Table 1: Equilibrium Payoffs and Expenditures  

Battle Expected Payoff Expected Expenditure Probability of Winning 

 Player 𝐷 Player 𝐴 Player 𝐷 Player 𝐴 Player 𝐷 

 
Panel A: Battle n − k for 𝑣𝐷 ≥ 𝑛𝑣𝐴 

 𝑛 − 𝑘 𝑣𝐷 − (𝑘 + 1)𝑣𝐴 0 
𝑣𝐴2  

(𝑣𝐴)22(𝑣𝐷 − 𝑘𝑣𝐴) 1 − 𝑣𝐴2(𝑣𝐷 − 𝑘𝑣𝐴) 

 
Panel B:  Battle 1 for 𝑛𝑣𝐴 > 𝑣𝐷 > (𝑛 − 1)𝑣𝐴 

 1 0 𝑛𝑣𝐴 − 𝑣𝐷 
(𝑣𝐷 − (𝑛 − 1)𝑣𝐴)22𝑣𝐴  

𝑣𝐷 − (𝑛 − 1)𝑣𝐴2  
𝑣𝐴2(𝑣𝐷 − (𝑛 − 1)𝑣𝐴) 

 
Panel C:  Battle 1 for (𝑛 − 1)𝑣𝐴 ≥ 𝑣𝐷  

 1 0 𝑣𝐴 − 𝜀 0 𝜀 0 
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Table 2: Equilibrium Predictions and Aggregate Statistics 

Treatment 
(𝑛, 𝑣𝐷, 𝑣𝐴) 

Battle 
Number 

Average Allocation Payoff 
Probability of 

Winning a Battle 
Probability of 

Winning the Game 

Equili- 
brium 

Actual 
Equili- 
brium 

Actual 
Equili- 
brium 

Actual 
Equili- 
brium 

Actual 

  D A D A D A D A D D D D 

N3-V100 
(3, 100, 50) 

1 0.0 0.1 15.0 12.4 

0 50 -7.5 11.6 

0.00 0.55 

0.00 0.29 2 25.0 25.0 20.1 11.1 0.50 0.70 

3 25.0 12.5 26.7 14.6 0.75 0.75 

N3-V150 
(3, 150, 50) 

1 25.0 25.0 26.8 18.0 

0 0 -6.7 -6.0 

0.50 0.65 

0.31 0.41 2 25.0 12.5 32.6 13.0 0.75 0.79 

3 25.0 8.3 39.2 17.0 0.83 0.80 

N4-V150 
(4, 150, 50) 

1 0.0 0.1 18.4 13.1 

0 50 -17.4 3.2 

0.00 0.63 

0.00 0.27 
2 25.0 25.0 22.5 12.0 0.50 0.74 

3 25.0 12.5 28.6 15.2 0.75 0.73 

4 25.0 8.3 34.8 16.8 0.83 0.79 
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Figure 1: Total Expenditure across All Periods (All Treatments) 
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Figure 2:  Attacks Lasting for at least Two Battles by Treatment  
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Online Appendix A: Additional Figures 
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Figure A1: Expenditures in Each Battle across All Periods (N3-V100 Treatment)  
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Figure A2: Expenditures in Each Battle across All Periods (N3-V150 Treatment) 
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Figure A3: Expenditures in Each Battle across All Periods (N4-V150 Treatment)   
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Online Appendix B: Instructions for N3-V100 
 
General Instructions  
This is an experiment in the economics of decision making.  Various research agencies have provided the funds for 
this research.  The instructions are simple and if you follow them closely and make careful decisions, you can make 
an appreciable amount of money.   
The currency used in the experiments is called Francs.  At the end of the experiment your Francs will be converted 
to US Dollars at the rate 25 Franks = US $1.  You are being given a $20 participation payment.  Any gains you 
make will be added to this amount, while any losses will be deducted from it.  You will be paid privately in cash at 
the end of the experiment.     
It is very important that you do not communicate with others or look at their computer screens.  If you have 
questions, or need assistance of any kind, please raise your hand and an experimenter will approach you.  If you talk 
or make other noises during the experiment you will be asked to leave and you will not be paid.  
 
Instructions for the Experiment 
The experiment consists of 20 decision tasks.  At the beginning of the first task you will be randomly assigned the 
role of participant 1 or participant 2.  You will remain in this role for the first 10 decision tasks and then change 
your role assignment for the last 10 tasks of the experiment. For each task you will be randomly paired with another 
participant in the experiment who is in the opposite role.  There are 16 participants in the experiment so 8 are in 
each role.  For each task you are equally likely to be paired with any of the 8 participants in the other role, but no 
participant will be able to identify if or when he or she has been paired with a specific person. 
 
The Decision Task 
For each decision task there is a reward in Francs for participant 1 and a reward in Francs for participant 2.  These 
rewards are not the same for the two participants.  Only one of the participants will receive the reward for a given 
task.  The reward to participant 1 is 100 Francs and the reward to participant 2 is 50 Francs. 
Each task involves up to 3 rounds.  In each round, both participants allocate Francs, and whoever allocates more 
Francs wins that round with ties being broken randomly.  A participant’s allocation cannot exceed his or her reward 
so allocations can be anything from [0, 0.1, 0.2, …, the reward].  So for example, if participant 1 allocates 11.4 
Francs and participant 2 allocates 11.3 francs, then participant 1 will win the round. 
To enter your allocation, you simply type it in the box on your screen and press OK.  After both participants have 
done this, each person will be informed of both allocations and who won the round. 
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 Your Earnings  
If participant 1 wins all 3 rounds then he or she receives the reward.  However, if participant 2 wins any round, then 
participant 2 receives the reward.  Since participant 2 only needs to win a single round, the task will end if this 
occurs.  Notice that a single reward is received for the whole task; there is not a reward for each round.   
Any Francs allocated in a round are deducted from your payment regardless of whether or not you won the round or 
the reward.  This means that if both participants allocate Francs in a task, then one will lose Francs.  This is why 
each participant is being given a participation payment of $20, which corresponds to 500 Francs.    
Consider the following example where the reward to participant 1 is 100 and the reward to participant 2 is 50 and 
the task involves 3 potential rounds.  If participant 1 allocates 15 Francs in round 1 and participant 2 allocates 5 
Francs in round 1 then participant 1 wins the round and both participants lose their allocations.  If in the second 
round participant 1 allocates 10 Francs and participant 2 allocates 15 Francs then participant 2 wins the round and 
hence receives the reward.  Participant 1’s earnings for the task would be –15 – 10 = –25 Francs and Participant 2’s 
earnings for the task would be 50 – 5 – 15 = 30 Francs.  

 
After each task, you will be shown your payoff (positive or negative) in francs for that task.  You should record this 
information on your Personal Record Sheet.  At the conclusion of the experiment, 2 out of the first 10 tasks and 2 
out of the last 10 tasks will be randomly selected.  Your experimental earnings will be the sum of your earnings on 
those four tasks.  This amount will be added to your participation payment.    
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Notes 
 
1 For a review of the literature see Roberson (2006). Some examples of simultaneous games of 

attack and defense are Gross (1950), Cooper and Restrepo (1967), Shubik and Weber (1981), 

Snyder (1989), Coughlin (1992), Szentes and Rosenthal (2003), Bier et al. (2007), Kvasov 

(2007), and Hart (2008). 

2 The main distinction between the two papers is that Clark and Konrad (2007) assume the 

probability of winning a given battle is proportional to investment, while Kovenock and 

Roberson (2010) assume that victory is deterministic. 

3 The subsequent papers of Harris and Vickers (1985, 1987), Leininger (1991), Budd et al. 

(1993), and Konrad and Kovenock (2009) investigate different factors that affect behavior in the 

sequential multi-battle contests. 

4 Similar problems have been studied in the “shoot-look-shoot problem” literature (for a review 

see Glazebrook and Washburn, 2004). However, those models assume that the probability of 

winning a battle does not depend on the defender’s and the attacker’s efforts. 

5  This is mainly because the defender’s valuation of the overall contest in early battles is 

relatively low, since the defender has to be successful in each battle and there are still many 

battles to go. However, as the defender wins early battles, his valuation for continuing the contest 

increases and thus the attacker becomes discouraged. As a result, the probability of winning 

future battles by the attacker decreases, while the probability of winning future battles by the 

defender increases. 

6 It is interesting to compare our results to the simultaneous battle game of attack and defense by 

Kovenock and Roberson (2010). In particular, when 𝑣𝐷 ≥ 𝑛𝑣𝐴 , the expected payoffs of the 

attacker and the defender are exactly the same under sequential and simultaneous structures. 
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Nevertheless, the strategic behavior in two games is quite different. In particular, Kovenock and 

Roberson (2010) find that the attacker utilizes a stochastic guerilla warfare strategy in which, 

with probability one, the attacker engages in only one single battle. On the contrary, in our 

model, the attacker always has an incentive to fight in each battle. 

7 Konrad and Kovenock (2009) call such a break point a ‘separating state.’ Their theoretical 

model of a contest with intermediate prizes is more general than the model studied in the current 

paper. In fact, some of the results provided in our paper can be derived from Konrad and 

Kovenock (2009).  

8 Note that this is never the case in the simultaneous game of attack and defense by Kovenock 

and Roberson (2010). In particular, under all parameters, the optimal strategy for the defender is 

to stochastically fight with positive probability in all battles, allocating random, but positive, 

resource levels in each battle. On the contrary, in our model, when (𝑛 − 1)𝑣𝐴 ≥ 𝑣𝐷, the defender 

gives up with probability one, by allocating zero resources in the first battle. 

9 To demonstrate that (0, 𝜀) is a Nash equilibrium strategy profile for players 𝐷 and 𝐴, see that 

the expected payoff in battle 2 for player 𝐷 is 0 and the expected payoff for player 𝐴 is positive, 

i.e. 𝑣 = (𝑛 − 1)𝑣𝐴 − 𝑣𝐷 > 0. Therefore, in battle 1, players 𝐷 and 𝐴 compete in a simultaneous 

move all-pay auction, where player 𝐷’s value is 0 and player 𝐴’s value is 𝑣. It is a strictly 

dominant strategy for player 𝐷  to make an expenditure of 0, which assures that played 𝐷 

receives a payoff of 0. Making any expenditure 𝜀 > 0 guarantees a sure loss of 𝜀, because losing 

the battle yields no benefit and costs 𝜀 and winning the battle has an expected value of 0 and the 

cost is still 𝜀. On the other hand, player 𝐴’s dominant strategy is to assure the victory of the prize 

value 𝑣 at the lowest possible cost 𝜀. The expenditure of 0 (instead of 𝜀) would be a strictly 
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dominant strategy for player 𝐴 if the rule was to allocate a victory to player 𝐴 with certainty in 

case of a tie (Roberson, 2006; Konrad and Kovenock, 2009). However, given that ties are broken 

randomly, player 𝐴’s dominant strategy is to make the lowest possible expenditure of 𝜀 > 0 (0.1 

francs in our experiment) to guarantee the payoff of 𝑣 at the minimal cost of 𝜀. This choice is 

better than making an expenditure of 0 and receiving an expected payoff of 𝑣/2, i.e. 𝑣 − 𝜀 >𝑣/2. Therefore, neither of the players has an incentive to deviate from the equilibrium profile (0, 𝜀). 

10 This suggests that attackers want to stretch out the duration of the contest.  Indeed, this tactic 

has often been applied in historic games of siege.  However, various constraints such as a food 

supply or weather often prevent he attacker from forcing the contest to continue indefinitely.   

11 For the defender, the value of being at period 𝑡 is 𝑣𝐷𝑡 = 𝑚𝑎𝑥{0, 𝑝𝑣𝐷𝑡+1 + (1 − 𝑝)0 − 𝑑}, where 𝑝 denotes the chance of the defender winning the battle given both players’ investments and 𝑑 

denotes the expected investment by the defender.  Since 𝑣𝐷𝑡 = 𝑣𝐷𝑡+1 this equation implies that 𝑣𝐷𝑡 = 𝑣𝐷𝑡+1 = 0 and the defender should surrender so that 𝑝 = 0.  For the attacker, the value of 

being at period 𝑡  is 𝑣𝐴𝑡 = 𝑚𝑎𝑥{0, 𝑝𝑣𝐴𝑡+1 + (1 − 𝑝)𝑣𝐴 − 𝑎}, where 𝑎 is the attacker’s expected 

investment.  The attacker will choose to attack if 𝑣𝐴𝑡  is positive, which is the same condition as 𝑣𝐴 being positive since 𝑝 = 0 and 𝑎 ≥ 0 can be arbitrarily small.              

12 The experimental instructions used context neutral language.  The instructions are available in 

an online appendix. 

13 Placing a theoretically nonbinding upper limit on bids may have some psychological impact on 

behavior (Sheremeta, 2011; Price and Sheremeta, 2011); however concerns regarding the 
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potential loss of control due to bankruptcy (as described at the end of this section) were 

considered to be more important.  

14 By randomly selecting periods for payment, the size of the endowment is smaller than it would 

be if subjects were paid for each contest.  Given the restriction that bids could not exceed value 

in any round and the other features of the experimental design it was not possible for subjects to 

go bankrupt.   

15 We used two different variables for a period trend, one for the first 10 periods and one for the 

last 10 periods of the experiment. The two variables were used since subjects changed their role 

assignments after the first 10 periods of the experiment. 

16  A standard Wald test, conducted on estimates of panel regression models, rejects the 

hypothesis that the average payoffs in N3-V100, N3-V150, and N4-V150 treatments are equal to 

the predicted theoretical values in Table 4 (p-values < 0.05). The panel regression models 

included a random effects error structure, with a random effect for each individual subject, to 

account for the repeated measures nature of the data. The standard errors were clustered at the 

session level to account for session effects. The two separate period trends were used to control 

for learning for the first 10 periods and the last 10 periods of the experiment. 

17 In our experiment, subjects who get to the last battle have already made some expenditures in 

the previous battles. If the sunk cost hypothesis is true, it will entail that subjects who expend 

more in previous battles are also more likely to expend more in the last battle – to recoup some 

of their expenditure. A simple random effect model finds that for the defender there is a positive 

relationship between expenditure in battle 3 and total expenditure in the previous battles 1 and 2 

(p-value < 0.05). However, for the attacker such correlation is negative (p-value < 0.05). 
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Therefore, we conclude that the sunk cost fallacy is not likely to be the main consistent force 

driving the over-expenditures in our experiment. 

18 Of course, it may be that changes to behavior due to learning require more experience than 

provided in our experiment.   

19 A reluctance to bid 0 could be due to the active participation hypothesis (see Lei et al., 2001), 

which argues that subjects who come to laboratory experiments want to do something. 

20 We estimate a panel regression model separately for each treatment and player type. Each 

model included random effects for each individual subject and standard errors were clustered at 

the session level. The two separate period trends were used to control for learning for the first 10 

periods and the last 10 periods of the experiment. The independent variable is bid and the main 

dependent variable is the battle number. For the defender, the battle number variable is positive 

and significant in all treatments (p-values < 0.05). For the attacker, the battle number variable is 

positive and significant in treatments N3-V100 and N4-V150 (p-values < 0.05), but not in 

treatment N3-V150.   

21 Theoretically, this discouragement effect is the driving force behind the predictions of our 

model (Baye et al., 1996). The idea behind the discouragement effect is straightforward: the 

player with the higher valuation imposes a strong discouragement effect on the player with the 

lower valuation. As the result, the player with the lower valuation reduces his expenditures. 

22 The defender’s valuation for continuing the contest increases in the number of battles won and 

thus the attacker becomes discouraged. 

23 We estimate a probit panel regression model separately for each treatment, using subject 

random effects and two period trends. The independent variable is an indicator whether the 
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defender won the battle and the main dependent variable is the battle number. The battle number 

variable is positive and significant in all treatments (p-values < 0.05). Obviously, the probability 

of the attacker winning each battle is simply one minus the probability of winning that battle by 

the defender. So, the same statistical conclusions carry on to the attackers. 

24 Any contest that ends after the first battle is trivially consistent with a guerilla attack.  Also, 

any attacker following the equilibrium strategy in N3-V100 or N4-V150 and winning the second 

battle would appear to be a guerrilla based upon the metric used in Figure 2.  Therefore the three 

panels in Figure 2 only include contests that lasted at least 3 battles, although they are 

qualitatively unchanged if contests lasting for only two battles are included.   

25 For defenders, individual behavior is similar to the aggregate pattern discussed above where 

defense tends to increase with each successive battle. 

26 We thank a reviewer for suggesting this explanation. 


