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Abstract

This paper analyses the dynamic consequences of interest rate feedback rules
in a flexible-price model where money enters the utility function. Two alter-
native rules are considered based on past or predicted inflation rates. The
main feature is to consider inflation rates that are selected over a bounded
time horizon. We prove that if the Central Bank’s forecast horizon is not too
long, an active and forward-looking monetary policy is not destabilizing: the
equilibrium trajectory is unique and monotonic. This is an advantage with
respect to active and backward-looking policies that are shown to lead to a
unique but fluctuating dynamic.
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1 Introduction

SinceMcCallum (1981), monetary feedback rules have been studied to reestab-

lish determinacy in monetary models (Bernanke and Woodford, 1997, Wood-

ford, 2003). The choices pertaining to the modeling of the variables’ timing

are particularly important in those models (Carlstrom and Fuerst, 2000,

2001), and recommendations may vary depending on whether a discrete-

or continuous-time representation is chosen (Dupor, 2001, Carlstrom and

Fuerst, 2003, 2005). In this article, we study and extend a framework ini-

tially proposed by Benhabib (2004) that mix both representations.

This is a continuous-time model with flexible prices and money in the

utility function where the current nominal interest rates are set by a Central

Bank according to a feedback rule, as in Benhabib et al. (2001). The main

feature is that interest rate policy is not defined according to the current value

of inflation, nor on its value over an infinite horizon, but on its values over

a finite horizon. With this assumption, the continuous-time model is more

similar to traditional discrete-time models used in the literature. It turns

out to be easier to solve. As recalled by Benhabib (2004), with discrete-time

frameworks, the order of the difference equation that describes the equilib-

rium increases with the number of lagged inflation rates. For instance, the

Taylor rule based on inflation recorded over the last four quarters (Taylor,

1993) implies that dynamics are described by an equation of at least 4th

order, which is difficult to study analytically. In continuous-time, consider-

ing a bounded backward-looking rule leads to a dynamic that is described

by a delay differential equation. We show how to use recent mathematical

results on functional differential equations (d’Albis et al. 2012, 2013) to eas-

ily solve analytically the issue of the determinacy of the equilibrium in the
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framework developed by Benhabib (2004). We also extend his analysis by

considering a forward-looking rule that leads to an advance differential equa-

tion. According to Clarida et al. (1998, 2001), forward-looking rules seem to

be more realistic while Orphanides (2001) show that they provide a better

fit of real time data than current or backward-looking rules. However, ad-

vance differential equations are dramatically different from delay differential

equations. The formers are characterized by an unstable manifold of infinite

dimensions whereas it is the stable manifold of these latter that are of in-

finite dimensions. Moreover, the status of initial variables may change and

the respective roles of backward and forward variables in the dynamics are

different. In d’Albis et al. (2013), we provide distinct theorems that permit

to establish the determinacy properties in both configurations. By applying

them, we are able to compare backward-looking and forward-looking rules in

the same framework.

The results of our study, where consumption and money are assumed to

be complementary in the utility function1, are as follows. When the interest

rate rule is a function of past inflation rates, equilibrium is indeterminate

if the policy is passive and unique if the policy is active. This result holds

whatever the length of the horizon for which inflation rates are taken into

account in the interest rate rule. However, even when the equilibrium is

determinate, the dynamics are characterized by short-term fluctuations that

vanish when the backward horizon of the Central Bank is infinite. Bounding

the backward horizon of the Central Bank creates some dependency to a spe-

cific initial trajectory that influences the dynamics through overreactions of

the nominal interest rate. Those short run fluctuations disappear when the

1Assumptions such that output can be produced with money or that money and con-
sumption are complements in the utility function constitute immediate extensions that we
did not considered in order focusing on the role of bounded horizon in feedback rules.
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Central Bank does not bound its backward horizon and uses all available in-

formation on past inflation rates. When the interest rate rule is a function of

future inflation rates, equilibrium remains indeterminate if the policy is pas-

sive; on the other hand, if the policy is active, equilibrium is unique provided

that the Central Bank’s forecast horizon is not too distant. Forward-looking

feedback rules are known to be destabilising (Woodford, 1999, and Benhabib

et al. 2001 or Bernanke and Woodford, 1997) and require aggressive interest

rates policy to guaranty the determinacy of the equilibrium. By limiting the

forecast horizon of the Central Bank, one may obtain the same result. This

drastically reduces the set of equilibria compatible with perfect expectations

to a unique trajectory. This result complements earlier findings from alter-

native monetary models. In a New Keynesian sticky-price model Batini and

Pearlman (2002) and Batini et al. (2004, 2006) show that indeterminacy oc-

curs if the forecast horizon lies too far into the future. They use a graphical

method, the root locus analysis, in order to derive their results but have to

restrict to a very particular feedback rule that depends on expectations on

the inflation rate that will prevail  periods ahead. We therefore consider a

more general rule that take into account all inflation rates over a bounded in-

terval. Moreover, sticky-price models may be different from the flexible price

ones. Fon instance, when the Central Bank’s forecast horizon is unbounded,

we find that the rule is more prone to indeterminacy whereas Levine et al.

(2007) find the contrary in a sticky-price model.

We recognize certain limitations to our study. First of all, we do not

investigate the global dynamics of the system despite the fact that several

studies have demonstrated its importance in interest rate policies (Benhabib

et al. 2003, Eurepi, 2005, Cochrane, 2011). Similarly, we do not study per-

manent oscillations, especially those generated by Hopf bifurcations, despite
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the fact they may appear in this approach. In both instances, we are limited

by the fact that there are no general theorems for the type of equations being

considered.

In Section 2, we present the model whose solution is studied in Sections 3

and 4, where we make the distinction between backward-looking and forward-

looking policies. Our conclusions are discussed in Section 5.

2 Feedback rules over a bounded horizon

We consider a model that is similar to those studied by Benhabib et al. (2001)

and Benhabib (2004). This is a flexible-price model where nominal interest

rates are set by the Central Bank as a function of past or forecasted inflation

rates. The novelty is to consider that backward and forward horizons of the

Central Bank are bounded.

Time is continuous and is denoted by  ∈ R+. Let  ()   () and  () be
respectively real consumption, real balances held for non-production purposes

and real financial wealth. The household’s problem is:

max
{}

Z ∞

0

− ( ()  ()) 



¯̄
¯̄
¯̄
¯̄
¯

0 () = [ ()−  ()]  ()− () () +  −  ()−  () 

 (0)  0 given,

lim→+∞  () −
 
0 [()−()] ≥ 0

(1)

where   0 and   0 denote the rate of time preference and the output,

respectively.  ()   () and  () are perfectly anticipated by the household

and denote the trajectories of the nominal interest rate, the inflation rate

and the real lump-sum taxes. The instant utility function  ( ()  ()) is

strictly increasing (  0,   0) and strictly concave (  0,   0)

in both arguments. Moreover, consumption and real balances are assumed to
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be complementary (  0), which also implies that they are both normal

goods. The cases where real balances are substitutable with consumption

or are productive are immediate extensions of the present work. Finally, we

assume that the fiscal policy is Ricardian.

Letting  () be the Lagrange multiplier associated with the household’s

instant budget constraint, the first order conditions are:

 () =  ( ()  ())  (2)

 () =
 ( ()  ())

 ( ()  ())
 (3)

0 () =  () [ +  ()− ()]  (4)

together with the household’s instant budget constraint given in problem (1)

and the transversality condition:

lim
→+∞

 () −
 
0 [()−()] = 0 (5)

We assume that nominal interest rates are set by the Central Bank according

to the following rule:

 () = 
¡¡
1−  − 

¢
 () +  () +  ()

¢
 (6)

where  () and  () denote backward and forward indicators of inflation

defined respectively by the weighted averages of past and expected future

rates of inflation. The indicators write:

() =

R 
−Ω 

(−) () 
R 0
−Ω 


and () =

R +Ω


−
 (−) () 

R Ω

0
−


 (7)

where Ω  0 and Ω  0 respectively denote the bounded backward and

forward horizon of the Central Bank, where   0 and   0 are the

weights associated to inflation rates within the indicators, and where  ≥ 0
and  ≥ 0, which satisfy  +   1, are the weights given by the Central
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Bank to the backward and forward indicators. Below, we consider either a

backward-looking feedback rule, for  = 0, or a forward-looking one, for

 = 0. Finally, we assume that 0 ()  0 for all  ∈ R+. As in Leeper
(1991), the policy is considered to be active for 0  1 and passive for 0  1.

The interest rate rule we consider is more general than the one of Benhabib

et al. (2001) who study the limit cases Ω → +∞ and Ω → +∞. It is,
moreover, similar to Benhabib (2004) who assumes  = 0  = 1 and

considers the following indicator:

() =

R −Ω
−∞ 

(−) () 
R −Ω
−∞ 


 (8)

Benhabib (2004) hence assumes that information about past inflation rates

is obtained by the Central Bank after a delay while we assume that, after

some time, information conveyed by past inflation rate is not considered as

relevant by the Central Bank. Formally, the advantage of (8) is that the

functional equation may reduce to a difference equation, which makes the

comparison with discrete time models easier.

In equilibrium, the goods market must clear, which writes:  () = 

By replacing this equilibrium condition in (2) and (3), we obtain:  () =

 ( ())  and () =
(())
(())

 Let us use the latter to define the implicit

function () = ( ()) and replace it in the former. We differentiate with

respect to time the new equation and rearrange using (4) to obtain:

0 () = Λ ( ()) [ ()−  −  ()]  (9)

with

Λ ( ()) ≡  ( ( ()))

 ( ( ()))
−  ( ( ()))

 ( ( ()))
 (10)

The dynamics of the variables  ()   (),  (),  () for all  ∈ R+ are
characterized by a system composed of two algebraic equations given in (7),
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a static equation (6), and a differential equation (9). We remark that the

algebraic equations reduce to differential equations with a discrete delay or a

discrete advance when differentiated once with respect to time.  () and  ()

are forward variables, with  (0+) and  (0+) that are not given. Initial con-

ditions for these two variables hence write: () = ̄ () ∈ 
¡
[−Ω 0)R+

¢

given and () = ̄() ∈ 
¡
[−Ω 0)R+

¢
given. In principle, we also have

that () = ̄() ∈ 
¡
[−Ω 0)R+

¢
  (0−) given. However, using the

first equation of (7) computed for  = 0, we see that  () is a backward

variable whose initial condition is now: () = ̄() given for  ∈
£
−Ω 0

¤

and where (0+) is given by the algebraic equation. This implies that ̄()

may be discontinuous at  = 0. Conversely, using (6) computed at  = 0,

we see that  () is a forward variable with the following initial condition:

() = ̄() ∈ 
¡
[−Ω 0)R+

¢
given.  (0+) will have to be determined

and will be possibly different from  (0−).

For the perfect-foresight equilibrium we consider, it is implicitly assumed

that the initial price level is given. More precisely, for all  ∈ [−Ω 0), the

price level, denoted  ()  solves:

 () = 
¡
−Ω

¢

 0
−Ω () (11)

Hence, this is  (0+) (which is allowed to be different from  (0−)) that

is arbitrarily chosen in our framework. It is well known since Sargent and

Wallace (1975) that the initial price level cannot be determined in this type

of model.

As in Benhabib et al. (2001), we are going to study the trajectories for

which the inflation rate converges to a constant. We provide a local analysis

of these trajectories and, therefore, restrict ourselves to neighborhoods of a

steady-state defined as a collection (∗ ∗ ∗ 

∗) that solves ∗ = ∗ =
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∗ = ∗ −  and

 (∗)− ∗ −  = 0 (12)

We assume2 there exists a steady-state that satisfies: 0 (∗) 6=
¡
1−  − 

¢−1
.

It is also important (Benhabib et al. 2002 and Cochrane, 2011) to assume

the uniqueness of the steady-state.

Since we consider functional equations, the Hartman-Grobman theorem

does not apply to our problem, and we have to prove that studying the

linearized system is not misleading. This is done by establishing the following

result.

Lemma 1. In the neighborhood of the steady-state, the dynamics of the

system of equations (6), (7) and (9) behave similarly to those of its linearized

counterpart, provided that the latter is hyperbolic.

Proof. See Appendix.

The condition in Lemma 1 will be satisfied below. We now compare

the dynamics induced by the choice of the Central Bank to follow either a

backward-looking interest rate rule or a forward-looking one.

3 Backward-looking feedback rules

We consider the case where nominal interest rates are set by the Central

Bank as a function of past and present inflation rates. For  = 0, the

2Equivalently, we could have given straightforward conditions on the limits of function
 that would be sufficient for existence of a real solution to (12). Note also that since
0  0, existence implies uniqueness.
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perfect-foresight equilibrium satisfies:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 () = Λ ( ())

∙
 ()−  − −1(())−()

(1−)

¸


() =
 
−Ω 

(−)[−1(())−()]
(1−)

 0
−Ω 




() = ̄() given for  ∈
£
−Ω 0

¤


lim→+∞ () = ∗, lim→+∞ () = ∗.

(13)

The system (13) is defined as a two dimensional system composed by an

ordinary differential equation and an algebraic equation with a continuum

of delays, which reduces to a delay differential equation when differentiated

once with respect to time. There is one forward variable, (), and one

backward variable,  (), for which a discontinuity is allowed at  = 0, as

(0+) is given by the algebraic equation.

We are going to study the local existence and uniqueness of solutions a

such a system by applying Theorem 1 in d’Albis et al. (2013). Let us denote

by + the number of roots with positive real parts of the characteristic equa-

tion associated with the linearized counterpart of system (13). We remark

that if +  0, then 0   ≤ +, where  is the dimension of the unstable

eigenspace.

Lemma 2. The characteristic equation associated with the linearized coun-

terpart of system (13) has + = 0 if 0 (∗) ∈ (0 1), and + = 1 if

0 (∗)  1

Proof. See Appendix.

By applying Theorem 1 in d’Albis et al. (2013), we conclude that the

equilibrium is locally indeterminate if the monetary policy is passive while

it is locally unique if the policy is active. In other words, if the policy is
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passive the steady-state is stable in the sense that there is a continuum of

 (0+) that initiate a converging trajectory. If the policy is active, there is a

unique solution for  (0+) and the steady-state is saddle-point stable. This

confirms and extends the results obtained by Benhabib (2004) for the case

where recent and contemporaneous inflation rates are not included in the

rule. Benhabib found that following a passive policy is a sufficient condition

for local indeterminacy whereas an active policy is a necessary condition for

uniqueness. With Lemma 2, we show that an active policy is also a sufficient

condition for local uniqueness.

To see the importance of the bounded backward horizon on this result,

we now consider the case where Ω → +∞, which is also studied in Benhabib
(2004) who considers the limit case of no informational delay. The system

(13) reduces to a system of two ordinary differential equations. The next

Lemma studies the roots of the corresponding characteristic function.

Lemma 3. Assume that Ω → +∞. The characteristic equation has + = 0
if 0 (∗) ∈ (0 1), and + = 1 if 0 (∗)  1

Proof. See Appendix.

We see that the determinacy property is the same as in Lemma 2: there

are multiple equilibria if the policy is passive but the equilibrium is unique

if the policy is active. The finite delay has, thus, no impact on the determi-

nacy of the equilibrium. This result generalizes what Benhabib et al. (2001)

showed about the determinacy condition being the same for current-looking

rules and backward-looking rules with an infinite horizon. However, the dy-

namics are qualitatively quite different. In the case where the policy is active,

the dynamics converge with exponentially decreasing fluctuations toward the

steady-state if Ω is finite whereas they are monotonic if Ω is infinite. This
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difference is due to the complex roots that generically emerge when using de-

lay differential equations (see e.g. Boucekkine et al. 2004). As fluctuations

in  () lead to fluctuations in the instantaneous utility of the representative

household, a welfare analysis would lead us to recommend an infinite horizon

rule rather than a finite one.

There is an assumption that is important in our setting. We assume that

contemporaneous inflation is necessarily included in the interest rate rule,

which formally comes from assumption:   1. Conversely, if it is assumed

that  = 1, the rule (6) becomes  () = 
¡
 ()

¢
and the problem is signif-

icantly modified as the nominal interest rate becomes a backward variable.

Moreover, using (7) and (9), the dynamics reduce to a single equation that

writes:

 () = 

⎛
⎝
R 
−Ω 

(−)
h
 ()− 0()

Λ(())

i


R 0
−Ω 


− 

⎞
⎠  (14)

This is a delay differential equation of neutral type and theorems in d’Albis

et al. (2013) do not cover this kind of equation3.

4 Forward-looking feedback rules

We now consider the case where nominal interest rates are set by the Central

Bank as a function of expected and present inflation rates. For  = 0, the

perfect-foresight equilibrium satisfies:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 () = Λ ( ())

∙
 ()−  − −1(())− ()

(1−)

¸


() =
 +Ω
 −

 (−)[−1(())− ()]

(1−)
 Ω
0 −



lim→+∞ () = ∗, lim→+∞ () = ∗.

(15)

3A possibility would be to use optimal control as in Boucekkine, Fabbri and Pintus
(2012).
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System (15) is similar to system (13) except that the algebraic equation

includes advances rather than delays. Moreover, the two variables,  () and

(), are forward. To study the local existence and uniqueness of solutions of

(15), Theorem 2 in d’Albis et al. (2013) can easily be applied to its linearized

counterpart. Using their Corollary 2, we conclude that there exists at least

one solution to system (15). The next Lemma studies local uniqueness of

the equilibrium. We denote by − the number of roots of the characteristic

equation that have negative real parts.

Lemma 4. Let ̄
 ≡ Λ (∗) and assume that 

  ̄

. The characteristic

equation associated with the linearized counterpart of system (15) has − = 1

if 0 (∗) ∈ (0 1), and − = 0 if 0 (∗)  1

Proof. See Appendix.

Lemma 4 states that if the weight associated to future inflation rates is

sufficiently low the determinacy typology of the equilibrium is the same as

the one obtained with backward-looking feedback rules. If  is above a

finite threshold, there exists a unique equilibrium if the policy is active (the

steady-state is unstable and both  () and  () jump to their long-run

values) while the equilibrium is locally indeterminate if the policy is passive.

This result can be interpreted by a continuity argument by noticing that in

the limit case where  → 0, one gets a current-looking rule. Contrarily

to backward-looking feedback rules, there are no exponentially decreasing

fluctuations in the dynamics. Moreover, as  () = ∗ and  () = ∗ for all

, the welfare of the representative household does not depend on parameters
¡
  Ω̄

¢
.

The threshold ̄

constitutes a standard limit to the size of feedback on

forward feedback. For low discount factors (i.e. for   ̄

), the characteri-
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zation of the roots is tedious but other situations may arise. For instance, it

can be shown that there exist sets of parameters such that the equilibrium

is indeterminate whatever the value of 0 (∗) and others that exhibit pure

imaginary roots. This confirms previous results on the destabilizing effects of

forward-looking feedback rules (Woodford, 1999, and Benhabib et al. 2001

or Bernanke and Woodford, 1997, in a discrete time model).

Nevertheless, in our setting, a natural way to reduce the weight associated

to future inflation rates can be obtained by modifying the upper bound of

the integral, Ω . This is studied in the next Lemma.

Lemma 5. There exists Ω̄  0 such that for Ω  Ω̄ , the characteristic

equation associated with the linearized counterpart of system (15) has − ≥ 1
if 0 (∗) ∈ (0 1), and − = 0 if 0 (∗)  1

Proof. See Appendix.

Lemma 5 implies that local indeterminacy of active monetary policies

with a forward-looking feedback rule are ruled out by choosing a not too

long forecasting horizon. This result can also be interpreted by continuity.

Indeed, for Ω = 0, one gets a current-looking rule. Conversely, the case of an

infinite horizon (which was analyzed by Benhabib et al. 2001) our sufficient

condition is not satisfied and one may find multiple equilibria. This case is

studied in the next Lemma.

Lemma 6. Let ̂
 ≡ ̄


h

1
0∗(∗)

−
¡
1− 

¢i
and assume that Ω → +∞.

For 0 (∗) ∈ (0 1), the characteristic equation has − = 1. For 0 (∗)  1,

the characteristic equation has − = 2 if   ̂

, and − = 0 if   ̂


.

Proof. See Appendix.

To eliminate local indeterminacy, Lemma 6 suggests that the Central
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Bank should follow a very active (i.e. choose a large 0∗ (∗)) monetary pol-

icy or a large  if Ω is infinite. With Lemmas 5 and 6, we conclude that

reducing the forecasting horizon can be an alternative to an aggressive mon-

etary policy. This limit for the degree of forward-lookingness is similar to

some results that we have seen in discrete-time models with sticky prices by

Batini and Nelson (2001), Batini and Pearlman (2002), Batini et al. (2004)

and Batini et al. (2006). The main message we can take from this is that

feedback should be at a horizon less than where equilibrium is reached.

5 Conclusion

In this article, we used recent stability theorems for functional differential

equations in order to analyze the local dynamics of a flexible price and money-

in-the-utility-function model with backward- or forward-looking interest rate

rules. We showed that the horizon over which the inflation rates are selected

may play an important role in the determinacy of the equilibrium. With

backward-looking feedback rules, an active policy leads to short-run fluctua-

tions of nominal interest rates if the horizon is bounded. Those fluctuations

vanish if the horizon is infinite. With forward-looking feedback-rules, an ac-

tive policy leads to determinacy provided that the forecasting horizon is not

too long.

As an extension of this work, it could be interesting to turn to normative

considerations and define the optimal rule that allows the Central Bank to

achieve its objectives.
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Appendix

Proof of Lemma 1. The system composed by equations (6), (7) and (9) rewrites

as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 () = Λ ( ())
h
 ()−  − −1(())−()− ()

1−−
i


() =
 
−Ω 

(−)[−1(())−()− ()]
(1−−)

 0
−Ω 




() =
 +Ω
 −

 (−)[−1(())−()− ()]

(1−−)
 Ω
0 −



(16)

A Taylor approximation on the neighborhood of the steady-state transforms

the previous system into:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 () = Λ∗

∙µ
1− 1

0∗(1−−)

¶
 () + ()+ ()

1−−

¸

+M
¡
() () ()

¢


() =

 
−Ω 

(−)

()

0∗
−()− ()




(1−−)
 0
−Ω 


+

 
−Ω 

(−)N (())

(1−−)
 0
−Ω 




() =

 +Ω
 −

 (−)

()

0∗
−()− ()




(1−−)
 Ω
0 −

+
 +Ω
 −

 (−)N (())

(1−−)
 Ω
0 −



(17)

where Λ∗ ≡ Λ (∗), and 0∗ ≡ 0 (∗), and where the nonlinearities write:

M
¡
  

¢
= [Λ (+∗)− Λ (∗)]

∙
−


0∗
−−

1−−

¸

−Λ(+∗)N ()
1−− 

N () = −1(∗ +)− −1(∗)− 
0∗


D’Albis et al. (2012) provide a linearization theorem for hyperbolic systems

of differential-algebraic equations. Some conditions are standard and obvi-

ously satisfied for system (16). More importantly, both the linear and the
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non linear parts of the algebraic equations should reduce to functional dif-

ferential equations when differentiated a finite number of times, which can

easily be checked here by differentiating once with respect to time. Third,

the non linear part and its first derivatives with respect to
¡
  

¢
should

vanish for
¡
  

¢
= (0 0 0), which is also satisfied. ¤

Proof of Lemma 2. The linearized counterpart of system (13) is obtained by

substituting  = 0 in the linear parts of the first two equations of system

(17). We obtain:

⎧
⎪⎪⎨
⎪⎪⎩

0() = Λ∗

∙µ
1− 1

0∗(1−)

¶
 () + 

1−
 ()

¸


() = 
R 
−Ω 

(−)
h
()
0∗
−  ()

i


where we recall that Λ∗ ≡ Λ (∗), and 0∗ ≡ 0 (∗) and where we introduce

 ≡ 1
h¡
1− 

¢ R 0
−Ω 


i
 The characteristic function of this system,

denoted  (), is defined such that  () = det (I ()) where:

I () =

⎡
⎢⎢⎣

 − Λ∗

µ
1− 1

0∗(1−)

¶
−Λ∗ 

1−

−

0∗

R 0
−Ω 

(+) 1 + 
R 0
−Ω 

(+)

⎤
⎥⎥⎦

Thus:

 () = ( − Λ∗)

µ


Z 0

−Ω
(

+) + 1

¶
+

Λ∗
0∗(1− )

 (18)

To prove the lemma, we proceed in two steps. 1/ we show there exists a

unique positive real root if 0∗  1 and that there is no positive real root if

0∗ ∈ (0 1). 2/ we show there is no complex root with positive real parts.
1/ Real roots of  () = 0 Observe first that if  − Λ∗ ≥ 0 one has

 ()  0 and that if  − Λ∗  0 one has 0 ()  0. Moreover, for  ∈
(0Λ∗), one has  (0)   ()   (Λ∗) with  (0) = Λ∗ (1− 0∗) 

0
∗(1 − )
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and  (Λ∗) = Λ∗0∗(1 − ) Hence, if 1 − 0∗  0, there exists a real root

 ∈ (0Λ∗) such that  () = 0 and if 1 − 0∗  0, there is no real root

 ∈ (0Λ∗) such that  () = 0
2/ Complex roots of  () = 0 Let us denote the complex roots by  =

+ . We first prove that there are no complex roots with positive real part

that satisfy   Λ∗ by showing that | ()|  0 For   Λ∗ one has:

| ()| 

¯̄
¯̄ Λ∗
0∗(1− )

− |(Λ∗ − )|

¯̄
¯̄
µ


Z 0

−Ω
(

+) + 1

¶¯̄
¯̄
¯̄
¯̄ 

Then, it is sufficient to observe that the right-hand-side of the above inequal-

ity is greater than  ()  0 to conclude. Let us now consider the roots

whose real parts belong to (0Λ∗). We are going to show that in this case:

Im ( ())    0 One has:

Im ( ()) = 

∙


Z 0

−Ω
(

+) cos() + 1

¸

−(− Λ∗)

Z −Ω

0

(
+) sin()

Thus:

Im ( ())  

∙


Z 0

−Ω
(

+) [ cos() +  sin()]  + 1

¸


Since:

 cos() +  sin() =

∙¡
2 + 2

¢ Z 0



 sin () − 

¸
−

one has:

Im ( ())  

∙


Z 0

−Ω




∙¡
2 + 2

¢ Z 0



 sin () − 

¸
 + 1

¸


Using the fact that
R 
0
(

+) sin()  0 for   0 suffices to complete

the proof. ¤
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Proof of Lemma 3. When Ω → +∞ the characteristic function (18) be-

comes

 () = 2 + 

∙


(1− )
+ Λ∗

µ
1− 0∗(1− )

0∗(1− )

¶¸
+

Λ∗


(1− )

µ
1− 0∗
0∗

¶


for all   −. One has:


¡
−

¢
= − 

(1− )

¡
 + Λ∗

¢
 0

 (0) =
Λ∗



(1− )

µ
1− 0∗
0∗

¶

Hence, there is one real root that belongs to
¡
− 0

¢
if 0∗  1 and that is

positive if 0∗  1. The other real root is lower than −, but the projection
on the eigenvector related to this latter root is zero according to the definition

of  (0+). ¤

Proof of Lemma 4. The linearized counterpart of system (13) is obtained by

substituting  = 0 in the linear parts of the first and the third equations of

system (17). We obtain:
⎧
⎪⎪⎨
⎪⎪⎩

0 () = Λ∗

∙µ
1− 1

0∗(1−)

¶
 () + 

1− 
 ()

¸

() = 
R +Ω


−
 (−)

h
()
0∗
−  ()

i


where we recall that Λ∗ ≡ Λ (∗), and 0∗ ≡ 0 (∗) and where we introduce

 ≡ 1
h¡
1− 

¢ R Ω

0
−


i
. The characteristic function of this system,

denoted  (), is defined such that  () = det (I ()) where:

I () =

⎛
⎜⎝

 − Λ∗

µ
1− 1

0∗(1−)

¶
−Λ∗ 

1−

−

0∗

R Ω

0
(−

 ) 1 + 
R Ω

0
(−

 )

⎞
⎟⎠ 

which gives:

 () = ( − Λ∗)

Ã


Z Ω

0

(−
 ) + 1

!

+
Λ∗

0∗ (1− )
 (19)
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Let us define ̄
 ≡ Λ∗. We restrict to the case 

 ≥ ̄

and proceed in two

steps by showing: 1/ there exists one negative real root if 0∗ ∈ (0 1) and no
negative real root if 0∗  1; 2/ there are no complex roots with negative real

parts.

1/ Real roots of  () = 0. Let us compute the derivative of (19):

0 () = 1 + Ω(−
 )Ω +

¡
 − Λ∗

¢


Z Ω

0

(−
 ) (20)

For  ≥ ̄

, one has 0 ()  0 Since lim→−∞  () = −∞ and  (0) =

Λ∗(1−0∗)
0∗(1−)

 we conclude that there exists a unique negative real root if 0∗ ∈
(0 1) and no negative real root if 0∗  1.

2/ Complex roots of  () = 0 Let us denote the complex roots by  = +.

One has:

| ()| 

¯̄
¯̄
µ
1− 

µ
1 +

 − Λ∗
 − 

¶³
1− (−

 )Ω
´¶

+
Λ∗

0∗(1− )

¯̄
¯̄ 

We conclude that for  ≥ ̄

, one has: | ()|  | ()|  0 ¤

Proof of Lemma 5. We show that for Ω small enough there exists one nega-

tive real root if 0∗ ∈ (0 1) and no root with negative real part if 0∗  1. We
proceed in three steps:

1/ There is a unique real root to  () = 0 that is negative if 0∗ ∈ (0 1)
and positive if 0∗  1. For Ω small, 0 ()  0 (where 0 () is given by

(20)). We conclude with lim→−∞  () = −∞ lim→+∞  () = +∞ and

 (0) = Λ∗(1−0∗)
0∗(1−)

.

2/ For 0∗  1, the positive real root, denoted 1, is smaller than Λ∗. For

Ω = 0 the characteristic function (19) rewrites (by applying l’Hôpital’s

Rule):

 () =
1

1− 

∙
 − Λ∗

µ
1− 1

0∗

¶¸
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For Ω small, 1 is close to Λ∗
³
1− 1

0∗

´
and is thus smaller than Λ∗ for 0∗  1.

3/ For 0∗  1, there is no complex root  =  + , with real part smaller

than 1 One has:

Re ( ()) = Re

Ã

( − 1)


Z Ω

0

³
(−

 ) − (1−
 )
´


!

+Re

Ã

(1 − Λ∗)


Z Ω

0

(−
 )

!

+Re (( − 1)) 

Using the fact that 1  Λ∗, we conclude that, for Ω small, Re ( ())  0

for all   1 ¤

Proof of Lemma 6. For Ω → +∞, the characteristic function (19) is defined
for  ∈

¡
−∞ 

¢
and writes:

 () = −2 + 

(1− )

∙
 − Λ∗

∙
1

0∗
−
¡
1− 

¢¸¸
+

µ
1

0∗
− 1
¶

Λ∗


(1− )


Since lim→−∞  () = −∞ and  (0) =
³
1−0∗
0∗

´
Λ∗

(1−)
we conclude there is

one negative real root if 0∗ ∈ (0 1) and either zero or two roots with negative
real parts if 0∗  1. The condition that excludes roots with negative real

parts is 0 (0)  0, or equivalently   Λ∗
h
1
0∗
−
¡
1− 

¢i
. ¤
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