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Abstract

We study the US city size distribution using the Census places data, without

size restriction, for the period (1900-2010). Also, we use the recently introduced

US City Clustering Algorithm (CCA) data for 1991 and 2000.

We compare the lognormal, two distributions named after Ioannides and Sk-

ouras (2013) and the double Pareto lognormal with two newly introduced distri-

butions. The empirical results are overwhelming: One of the new distributions

widely outperform any of the previously used density functions for each type of

data.

We also develop a theory which generates the new distributions based on the

standard geometric Brownian motion for the population in the short term. We

propose some extensions of the theory in order to deal with the long term empirical

features.
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1 Introduction

The study of city size distribution has a long tradition in urban economics. To cite

just a few examples, see Black and Henderson (2003), Ioannides and Overman (2003),

Soo (2005), Anderson and Ge (2005), Bosker et al. (2008) and the more recent ones of

Giesen et al. (2010) and Ioannides and Skouras (2013).

Along the years, the Pareto distribution (Pareto, 1896) (for the upper tail, subindex

“ut”) has generated a huge amount of research and great acceptance. The normalized

density function for such a distribution reads

fut(x, xm, ζ) =
ζ

x

(xm

x

)ζ

, x > xm ,

where x > xm is the population of the urban centers, xm is the minimum threshold

size and ζ > 0 is the Pareto exponent. 1

In an influential paper regarding city size distribution, Eeckhout (2004) essentially

proposes the lognormal to describe it, using US Census data for the year 2000 of all

unincorporated and incorporated places in his analysis. Lognormal distributions had

been previously proposed by Parr and Suzuki (1973), but one of the main points in the

first reference of this paragraph is that one should take into account the whole set of

cities when studying their distribution. Later, a polemic arises by Levy (2009), who

argued that the upper tail of the city size distribution, and thus most of the population

(for the US places), rather followed a Pareto distribution instead of a lognormal.

On this line of research, the important contribution of Ioannides and Skouras (2013)

has appeared, aiming to reconcile both views by means of the proposal of two distri-

butions (IS1 and IS2 hereafter) which have a lognormal body and above an explicit

threshold, a Pareto power law (IS1) or a linear combination of Pareto and lognormal

(IS2) in the upper tail.

In parallel to the appearance of these works, it has been proposed a distribution

which has a lognormal body and power laws in the tails, but without clearly delineating

between the three behaviors, called the double Pareto lognormal (dPln); see, e.g., Reed

(2002, 2003), Reed and Jorgensen (2004). The fit of such distribution is remarkably

good for a number of countries (see Giesen et al. (2010), for eight countries and the

recent contribution González-Val et al. (2013b) for a more comprehensive data set).

Let us try to motivate in what follows the appropriateness of our approach (see

Section 3 for details). In this context, and summarizing several of the previous con-

1The cumulative distribution function is

cdfut(x, xm, ζ) = 1−
(xm

x

)ζ
, x > xm

so that

1− cdfut(x, xm, ζ) =
(xm

x

)ζ

and

ln(1− cdfut(x, xm, ζ)) = ζ lnxm − ζ lnx

Thus, for a Pareto distribution, the quantity ln(1−cdf) is linear in lnx with negative slope of absolute value

ζ. The case of ζ = 1 corresponds to the well-known Zipf’s law (Zipf, 1949); see the surveys on this subject

by Cheshire (1999), and Gabaix and Ioannides (2004). This is the foundation for the well-known Zipf plots.
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tributions, there is nowadays a certain consensus regarding the study of the city size

distribution in the sense that a combination of Pareto and lognormal provides the best

fit, IS1 and IS2 having a component of Pareto only in the upper tail and dPln having

components of Pareto in the upper and lower tails. We build on this relevant strand of

the literature and go further in two ways. First, proposing two new distributions that

systematically outperform the lognormal, dPln, IS1 and IS2. Second, offering a the-

oretical basis for the newly introduced distributions based on the standard geometric

Brownian motion process for population and the associated forward Kolmogorov or

Fokker–Planck differential equation (Gabaix, 2009, 1999).

For the lower tail (subindex “lt”) of city size distributions it has been observed

by Reed (2001, 2002, 2003) that they indeed follow a power law, plotting the natural

logarithm of cumulative frequencies against that of population.2 Such a fact seems to

be overlooked in the literature, and as we will see below, is one of the important points

one should take into account in order to obtain an excellent overall fit.

Against this background, we have decided to compare in detail the distributions

IS1 and IS2 proposed by Ioannides and Skouras (2013) with the dPln, and, in order to

reconcile both tendencies, we propose two new distributions which take the essence of

both views and go a long way ahead. They are:

• The “threshold double Pareto Singh–Maddala” (tdPSM), which is a distribution

with a Singh–Maddala one (Singh and Maddala, 1976) in the body and with both

tails that follow a power law, but with two thresholds which exactly delineate

the switch between the different behaviors. It is like the IS1 of Ioannides and

Skouras (2013) but with the lower tail modeled as a pure power law and the

body being Singh–Maddala instead of lognormal. As far as we know, the tdPSM

is a completely new distribution.

• The “double mixture Pareto Champernowne Pareto” (dm PChP), which is a dis-

tribution with a Champernowne distribution (Champernowne, 1952) body and

with a linear combination of Champernowne and Pareto in both tails, also with

two population thresholds which exactly delineate the switch between the dif-

ferent behaviors. It is like the IS2 of Ioannides and Skouras (2013) but with the

lower tail modeled as a mixture of Champernowne and power law, and the log-

normal substituted by a Champernowne in general. This is, to the best of our

knowledge, also a new distribution.3

2For the lower tail, we can define the Pareto density function

flt(x, xM , ρ) =
ρ

x

(

x

xM

)ρ

, 0 < x < xM ,

where now xM is the maximum size threshold and ρ > 1 is the Pareto exponent. The cumulative distribution

function is then

cdf lt(x, xM , ρ) =

(

x

xM

)ρ

, 0 < x < xM ,

and therefore ln(cdf lt(x, xM , ρ)) = ρ lnx−ρ lnxM . So, we have that for a lower tail Pareto distribution,

the natural logarithm of cdf gives a straight line in lnx with positive slope ρ. We will plot the previous

quantities in the left panels of Figures 1 and 2.
3The arrival to the previous two distributions is the outcome of a research process in which we have tried
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These distributions yield extremely good, strong and encouraging results, and they

rely on the following important improvements:

• The extremely important need to specifically model the lower tail as a power law

in order to get an overall good fit, as mentioned above.

• The mixtures in the tails become very important when considering some of our

data; this is due to the fact that the tails of such samples are slightly curved on a

log-log plot and so the Pareto needs to be combined with another distribution in

order to improve the fit notably.

• The use of the Singh–Maddala and Champernowne distributions instead of the

lognormal all lead to a very important improvement. This means that the stan-

dard theory (Eeckhout, 2004) generating the lognormal can be enhanced notably.

The article is organised as follows. Section 2 describes the databases used. Sec-

tion 3 motivates the need for the search of new and better distributions. Section 4 shows

the definitions and main properties of the distributions studied. Section 5 shows the de-

tailed results. In Section 6 we develop a theory that accommodates the newly preferred

distributions and in Section 7 we offer a discussion. Finally, Section 8 concludes and

A contains the proofs of statements in Section 6.

2 The databases

We use in this article data of US urban centers from three sources. The first is the

decennial data of the US Census Bureau of “incorporated places” without any size re-

striction, in the period (1900-2000). They include governmental units classified under

state laws as cities, towns, boroughs, or villages. Alaska, Hawaii and Puerto Rico have

not been considered due to data limitations. The data have been collected from the

original documents of the annual census published by the US Census Bureau4. This

data has been first introduced in González-Val (2010), see therein for details, and later

used in other works like González-Val et al. (2013a).

The second source consists of all US urban places, unincorporated and incorpo-

rated, and without size restrictions, as provided as well by the US Census Bureau for

the years 2000 and 2010. The data for the year 2000 has been first used in Eeckhout

(2004) and later in Levy (2009), Eeckhout (2009), Giesen et al. (2010), Ioannides and

Skouras (2013) and Giesen and Suedekum (2013). The two samples have been used as

well in González-Val et al. (2013a).

different ones. We started with the lognormal for the body as it is used in IS1, IS2. But we realized that a

much better performance could be obtained with the Fisk (“Fi”) distribution (Fisk, 1961) for the body and

(the mixtures at) the Pareto tails. Both of the Singh–Maddala and Champernowne distributions generalize

that of Fisk (and have one parameter more) so we tried them as well. For the sake of brevity, we present only

the best results obtained, corresponding to the mentioned new distributions. We have also worked with (with

obvious notation) tdPln, tdPFi, dm PlnP, dm PFiP, dm PSMP that, although all provide better results than the

lognormal, dPln, IS1 and IS2, perform worse than the ones finally presented here.
4http://www.census.gov/prod/www/decennial/ Last accessed: November 1st, 2013.
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Table 1: Descriptive statistics of the US data samples used.

US

Sample Obs. % of US pop. Mean SD Min. Max.

Inc. Places 1900 10,596 46.99 3,376 42,324 7 3,437,202

Inc. Places 1910 14,135 54.90 3,561 49,351 4 4,766,883

Inc. Places 1920 15,481 58.62 4,015 56,782 3 5,620,048

Inc. Places 1930 16,475 62.69 4,642 67,854 1 6,930,446

Inc. Places 1940 16,729 63.75 4,976 71,299 1 7,454,995

Inc. Places 1950 17,113 63.48 5,613 76,064 1 7,891,957

Inc. Places 1960 18,051 64.51 6,409 74,738 1 7,781,984

Inc. Places 1970 18,488 64.51 7,094 75,320 3 7,894,862

Inc. Places 1980 18,923 61.78 7,396 69,170 2 7,071,639

Inc. Places 1990 19,120 61.33 7,978 71,874 2 7,322,564

Inc. Places 2000 19,296 61.49 8,968 78,015 1 8,008,278

All places 2000 25,359 73.98 8,232 68,390 1 8,008,278

All places 2010 28,664 72.73 7,872 61,632 1 8,175,133

CCA 1991 (2000m) 30,201 97.46 8,180 104,954 1 12,511,237

CCA 1991 (3000m) 23,499 97.46 10,513 147,360 1 15,191,634

CCA 1991 (4000m) 19,912 97.46 12,407 180,751 2 17,064,816

CCA 1991 (5000m) 17,569 97.46 14,062 212,084 2 19,439,862

CCA 2000 (2000m) 30,201 96.08 8,977 108,342 1 12,734,150

CCA 2000 (3000m) 23,499 96.08 11,537 154,157 1 15,594,627

CCA 2000 (4000m) 19,912 96.08 13,615 190,528 1 17,567,010

CCA 2000 (5000m) 17,569 96.08 15,431 223,825 1 19,952,762

The third comes from a different and recent approach to defining city centers, de-

scribed in detail in Rozenfeld et al. (2008, 2011). They use a so called “City Clustering

Algorithm” (CCA) to get “an automated and systematic way of building population

clusters based on the geographical location of people.” (loc. cit.) We use their US

clusters data based on the radii of 2, 3, 4, 5 km. and for the years 1991 and 2000. Such

data has been used in Ioannides and Skouras (2013) and Giesen and Suedekum (2013).

The descriptive statistics of the data can be seen in Table 1. As Giesen and Suedekum

(2013) indicate, the CCA data comprises a higher percentage of the whole population

than the Census data.

3 Motivation of our approach

As a preliminary analysis, we take the sample of all US places in 2010, in order to

see whether the previous dPln, IS1 and IS2 provide a good fit. For the last two, we

use in advance some of the estimation results in Tables 2 and 3. In Figure 1 we show,

in the left panel, the empirical and estimated (by maximum likelihood, ML) ln(cdf)
against lnx for the lower tail. In the right panel, the analogous quantities ln(1 − cdf)
against lnx for the upper tail.5 In the center panel, we show the usual empirical density

functions (obtained through an adaptive Gaussian kernel) compared to the estimated

density functions, all three for the case of the dPln (estimated previously for all US

5The difference of empirical and estimated quantities are amplified by the fact of taking the natural

logarithms of cdf or (1− cdf) for the lower and upper tails, respectively (González-Val et al., 2013a).
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Figure 1: Left column: Empirical and estimated dPln, IS1 and IS2 ln(cdf) for the lower tail (linear OLS fit in green, empirical in

blue, estimated in red). Center column: Empirical (Gaussian adaptive kernel density) and estimated dPln, IS1 and IS2 density functions

(empirical in blue, estimated in red). Right column: Empirical and estimated dPln, IS1 and IS2 ln(1− cdf) for the upper tail (empirical in

blue, estimated in red).
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places (2010) in González-Val et al. (2013b)) and the IS1, IS2 (firstly estimated in this

work for the same sample).

We see, in the left panel of Figure 1, that all of the dPln, IS1 and IS2 (in red)

are not so linear as the empirical ln(cdf).6 In the middle panel, we observe that the

empirical and estimated densities differ clearly in the body and also in the tails. In

the right panel, corresponding to the upper tails, we see that the fit is also not so good

for the dPln (serious discrepancies starting at lnx > 11, i.e., x > 59874 inhabitants),

and IS1, IS2 performs better than the dPln to this respect.7 Advancing some results

of Table 8, we will see that both of two standard but demanding tests, given the high

sample size, (Kolmogorov–Smirnov (KS) and Cramér-Von Mises (CM)) clearly reject

the cited models.8 Formally, the dPln is slightly more preferred than the IS1 and IS2,

as the Akaike Information Criterium (AIC) and Bayesian Information Criterium (BIC)

values obtained for the latter two are greater (and therefore unfavored) than those for

the former, as Giesen and Suedekum (2013) indicate. This is because IS1 and IS2 fail

to take into account the empirical power law behavior of the lower tail.

Therefore it makes sense to look for one or some distributions that cannot be re-

jected in a majority of cases and that offer a better fit to the data. We will see that this

can be achieved by introducing some simple but significant changes in IS1 and IS2,

which act as our baseline distributions.

4 Description of the distributions used

In this section we will introduce the distributions used along the paper. Firstly, we

define some basic functions which will be employed by the distributions of Ioannides

and Skouras (2013) and our new ones.

We thus set

fln(x, µ, σ) =
1

xσ
√
2π

exp

(

− (lnx− µ)2

2σ2

)

(1)

fSM(x, µ, σ, α) =
α (e−µx)1/σ

xσ(1 + (e−µx)1/σ)1+α
(2)

fCh(x, µ, σ, β) =
sinβ

xβσ((e−µx)−1/σ + (e−µx)1/σ + 2 cosβ)
(3)

g(x, ζ) =
1

x1+ζ
(4)

h(x, ρ) = xρ−1 (5)

where µ, σ > 0 are respectively the mean and the standard deviation of lnx for the

6A linear OLS estimation has been calculated and shown in green, only for reference purposes. Such

estimation might be biased if one wants to obtain an accurate result, and an analysis similar to that of Gabaix

and Ibragimov (2011) for the inverse rank might be necessary. However, our formal estimations will be

performed by the standard maximum likelihood (ML).
7If one wants to quickly compare with our new results, see Figure 2.
8When performing the tests, we take the whole studied sample, and not subsamples, in order to achieve

the maximum power of the KS and CM tests, compare with Giesen and Suedekum (2013).
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lognormal density fln. For the fSM, fCh distributions the corresponding µ, σ > 0
are also related to the mean and standard deviation of lnx (Singh and Maddala, 1976;

Champernowne, 1952).9 The function g(x, ζ) will model the Pareto part of the upper

tail of our distributions and ζ > 0 is the Pareto exponent, and h(x, ρ) corresponds to

the Pareto lower tail, being ρ > 1 the power law exponent. The functions g, h are not

normalized at this stage according to the practice of Ioannides and Skouras (2013).

4.1 The first distribution of Ioannides and Skouras (IS1)

The first distribution studied in Ioannides and Skouras (2013) is a lognormal with a

Pareto upper tail, the transition between the two taking place at an exact threshold

τ > 0. The requirement is that the composite density function be continuous at x = τ
and normalized to unity10. The resulting density function is

f1(x, µ, σ, τ, ζ) =

{

b1 fln(x, µ, σ) 0 < x ≤ τ
b1 a1 g(x, ζ) τ < x

(6)

where a1, b1 are constants (depending on the parameters of the distribution) given by

the following expressions:

a1 =
fln(τ, µ, σ)

g(τ, ζ)
(7)

b−1
1 =

1

2

(

1− erf

(

µ− ln τ√
2σ

))

+
fln(τ, µ, σ)

ζ τ ζ g(τ, ζ)
(8)

where erf denotes the error function associated with the normal distribution. This

distribution depends on four parameters (µ, σ, τ, ζ) to be estimated. It is easy to see11

that f1 → fln when τ → ∞, using the expressions of a1 and b1 given by (7) and (8),

respectively.

4.2 The second distribution of Ioannides and Skouras (IS2)

The second distribution studied in Ioannides and Skouras (2013) is a variant of IS1 in

which the upper tail is a linear combination of lognormal and Pareto distributions, the

parameter θ being the combining coefficient12. The requirement of continuity of the

density function at the threshold point is analogous to that of IS1 as well as that of the

normalization. It is also imposed the condition

a2

∫ ∞

τ

g(x, ζ) dx = c2

∫ ∞

τ

fln(x, µ, σ) dx

9We have taken the Champernowne density (2.4) in Champernowne (1952) with λ = cosβ since this

particular specification covers all the estimated cases in this paper. Also, the fSM is directly related to the

Burr Type XII distribution (Burr, 1942). See also Kleiber and Kotz (2003).
10Composite lognormal-Pareto models have been introduced previously by Cooray and Ananda (2005),

Scollnik (2007), Malevergne et al. (2011) and Bee (2012).
11Details available from the authors upon request.
12The IS2 is referred to as CDGPR in Ioannides and Skouras (2013) because these authors were inspired

by a similar combination used in Combes et al. (2012).

7



in order that the parameter θ controls the proportion of the density in the combination

in the upper tail (Ioannides and Skouras, 2013). The resulting composite density is

given by:

f2(x, µ, σ, τ, ζ, θ) =

{

b2 fln(x, µ, σ) 0 < x ≤ τ
b2 [(1− θ) c2 fln(x, µ, σ) + θ a2 g(x, ζ)] τ < x

(9)

where now the constants are given as follows:

c−1
2 = 1− θ +

ζ τ ζ θ g(τ, ζ)

2fln(τ, µ, σ)

(

1 + erf

(

µ− ln τ√
2σ

))

(10)

a−1
2 =

2(1− θ)

ζ τ ζ
(

1 + erf
(

µ−ln τ√
2σ

)) +
θ g(τ, ζ)

fln(τ, µ, σ)
(11)

b−1
2 =

1

2

(

1− erf

(

µ− ln τ√
2σ

))

+
a2
ζ τ ζ

(12)

This distribution depends on five parameters (µ, σ, τ, ζ, θ) to be estimated. We also

have the obvious relation f2 = f1 when θ = 1.

4.3 The double Pareto lognormal distribution (dPln)

The probability density function of the double Pareto lognormal distribution is (Reed,

2002, 2003; Reed and Jorgensen, 2004):

f3(x, α, β, µ, σ) =
αβ

2x(α+ β)
exp

(

αµ+
α2σ2

2

)

x−α

(

1 + erf

(

lnx− µ− ασ2

√
2σ

))

− αβ

2x(α+ β)
exp

(

−βµ+
β2σ2

2

)

xβ

(

erf

(

lnx− µ+ βσ2

√
2σ

)

− 1

)

(13)

where α, β, µ, σ > 0 are the four distribution parameters to be estimated. The dPln

distribution has the property that it approximates different power laws at its two tails,

namely f3(x) ≈ x−α−1 when x → ∞ and f3(x) ≈ xβ−1 when x → 0, hence the

name of double Pareto. The central part of the distribution is approximately lognormal,

although it is not possible to exactly delineate the lognormal body part and the Pareto

tails (Giesen et al., 2010).

The dPln distribution arises as the steady-state distribution of an evolutionary pro-

cess of a simple stochastic model of settlement formation and growth based on Gibrat’s

law and a Yule process. Mathematically, the dPln is the log version of the convolution

of the normal distribution and the (asymmetric) double Laplace distribution, see Reed

(2002, 2003); Reed and Jorgensen (2004) and references therein for details.

For more recent work on an economic model which incorporates the stochastic

derivation of Reed (2002, 2003), see Giesen and Suedekum (2012, 2013). The key in

this latest model is the endogenous city creation and the resulting age heterogeneity in

cities within the distribution. Giesen and Suedekum (2012, 2013) argue that Eeckhout
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(2004) theoretical framework and the lognormal distribution represent a particular sce-

nario of their model, the case when there is no city creation and all cities have the same

age.

4.4 The threshold double Pareto Singh–Maddala (tdPSM)

We introduce here the first of our distributions. It is a variant of the IS1 in which we

model the lower tail as a Pareto power law and the body as Singh–Maddala instead of

lognormal. Thus, The tdPSM has a Singh–Maddala body and Pareto tails, the three

regions exactly delineated by two thresholds: ϵ > 0 separates the Pareto power law in

the lower tail from the Singh–Maddala body, and τ > ϵ separates the body from the

Pareto power law in the upper tail. We impose continuity of the density function on the

two threshold points and normalization of the former to unity. The resulting density

reads

f4(x, ρ, ϵ, µ, σ, α, τ, ζ) =







b4 e4 h(x, ρ) 0 < x < ϵ
b4 fSM(x, µ, σ, α) ϵ ≤ x ≤ τ

b4 a4 g(x, ζ) τ < x
(14)

where now

e4 =
fSM(ϵ, µ, σ, α)

h(ϵ, ρ)
(15)

a4 =
fSM(τ, µ, σ, α)

g(τ, ζ)
(16)

b−1
4 = e4

ϵρ

ρ
+ eµα/σ((eµ/σ + ϵ1/σ)−α − (eµ/σ + τ1/σ)−α) +

a4
ζ τ ζ

(17)

This distribution depends on seven parameters (ρ, ϵ, µ, σ, α, τ, ζ) to be estimated.

4.5 The double mixture Pareto Champernowne Pareto (dm PChP)

The second distribution we introduce is a variant of the IS2 in the sense that now we

consider linear combinations of the Champernowne and respective Pareto distributions

in the two tails, while maintaining a Champernowne body. The tails and the body are

separated by two exact thresholds ϵ and τ with similar meaning to those of the tdPSM.

For the lower tail, the combining coefficient will be denoted by ν, and θ for the upper

tail as before. We require as usual continuity of the density function at the threshold

points and overall normalization to one. The following conditions are also imposed:

a5

∫ ∞

τ

g(x, ζ) dx = c5

∫ ∞

τ

fCh(x, µ, σ, β) dx

e5

∫ ϵ

0

h(x, ρ) dx = d5

∫ ϵ

0

fCh(x, µ, σ, β) dx

in order that the parameters θ, ν control the proportion of the density in the combination

in the upper (resp. lower) tail, analogously to the θ of the IS2. The resulting composite
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density is given by:

f5(x, ρ, ϵ, ν, µ, σ, β, τ, ζ, θ)

=







b5 [(1− ν) d5 fCh(x, µ, σ, β) + ν e5 h(x, ρ)] 0 < x < ϵ
b5 fCh(x, µ, σ, β) ϵ ≤ x ≤ τ

b5 [(1− θ) c5 fCh(x, µ, σ, β) + θ a5 g(x, ζ)] τ < x
(18)

where now the constants are given as follows:

d−1
5 = 1− ν +

νρ(β − arccot[cotβ + (e−µϵ)1/σ cscβ])h(ϵ, ρ)

ϵρβfCh(ϵ, µ, σ, β)
(19)

e−1
5 =

βϵρ(1− ν)

ρ(β − arccot[cotβ + (e−µϵ)1/σ cscβ])
+

ν h(ϵ, ρ)

fCh(ϵ, µ, σ, β)
(20)

c−1
5 = 1− θ +

θζτ ζ arccot[cotβ + (e−µτ)1/σ cscβ]g(τ, ζ)

βfCh(τ, µ, σ, β)
(21)

a−1
5 =

β(1− θ)

ζτ ζ arccot[cotβ + (e−µτ)1/σ cscβ]
+

θ g(τ, ζ)

fCh(τ, µ, σ, β)
(22)

b−1
5 = e5

ϵρ

ρ
+

1

β
arctan

(

sinβ

(e−µϵ)1/σ + cosβ

)

− 1

β
arctan

(

sinβ

(e−µτ)1/σ + cosβ

)

+
a5
ζ τ ζ

(23)

This distribution depends on nine parameters (ρ, ϵ, ν, µ, σ, β, τ, ζ, θ) to be estimated.

5 Results

5.1 Estimation of the distributions

Maximum likelihood (ML) is a standard technique which allows the estimation of the

parameters of a distribution given a sample of data. For the case of the lognormal

density function, the corresponding ML estimators can be found easily in an exact

closed form (the µ and σ are then the mean and the standard deviation (SD) of the

natural logarithm of the data). However, for the other distributions f1, . . . , f5 used in

this article one must resort to numerical optimization methods in order to find the ML

estimators13. It is worth noting that the threshold population parameters ϵ and τ present

in the cited density functions are to be estimated endogenously by ML, letting the data

“decide” what are the optimum threshold values which maximize the log-likelihood.

Previous work on similar matters include that of Bee (2012), which deals with a

distribution similar to the IS1 with ML. Also, the log-likelihood function of the dPln is

found in Reed and Jorgensen (2004). Of course, Ioannides and Skouras (2013) estimate

their IS1 and IS2 by ML. The other cases of this paper can be dealt with in a similar

fashion.14

13We have used MATLAB in order to perform the ML estimations as Ioannides and Skouras (2013) did.
14More details are available from the authors upon request.
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Table 2: Estimators and 95% confidence intervals of the parameters of the IS1 for the

US (places) samples. The estimators for the lognormal are the mean and the standard

deviation of ln(pop)

US

Sample ln IS1

µ σ µ σ τ ζ
Inc. Places 1900 6.65 1.26 6.31±0.03 0.89±0.03 1,131±196 0.91±0.03

Inc. Places 1910 6.65 1.29 6.26±0.03 0.88±0.02 1,025±148 0.87±0.02

Inc. Places 1920 6.67 1.32 6.29±0.03 0.90±0.02 1,074±157 0.86±0.02

Inc. Places 1930 6.69 1.40 6.30±0.03 0.98±0.02 1,184±203 0.81±0.02

Inc. Places 1940 6.78 1.43 6.38±0.03 1.01±0.02 1,324±215 0.79±0.02

Inc. Places 1950 6.84 1.50 6.51±0.03 1.15±0.02 1,896±321 0.79±0.02

Inc. Places 1960 6.92 1.61 6.61±0.04 1.28±0.03 2,566±445 0.76±0.02

Inc. Places 1970 7.00 1.67 6.74±0.04 1.38±0.03 3,599±680 0.76±0.03

Inc. Places 1980 7.11 1.66 6.86±0.04 1.40±0.03 4,343±832 0.77±0.03

Inc. Places 1990 7.10 1.74 6.90±0.04 1.53±0.03 6,153±1,381 0.78±0.03

Inc. Places 2000 7.18 1.78 7.01±0.04 1.59±0.03 8,063±1,989 0.79±0.04

All places 2000 7.28 1.75 7.26±0.02 1.73±0.02 60,326±35,844 1.25±0.11

All places 2010 7.13 1.83 7.12±0.02 1.82±0.02 93,350±66,640 1.31±0.15

When performing the estimations, not all density functions can be treated always

by our numerical procedure, because it seems that in the corresponding cases the esti-

mators simply do not exist. This may happen when dealing with composite densities,

see, e.g., Bee (2012) for a theoretical discussion in a related sample situation. Specifi-

cally, for the US places data typically the dm PChP cannot be estimated, so for the sake

of comparison and brevity we include only the results of the new distributions which

can be all estimated for each type of data (US places and CCA clusters) and for all

periods, and provide the best performance.

We present such results of the estimation procedure for the US places data in Ta-

bles 2, 3, 4 and 5. For the sample of the US (2000, all places) we essentially replicate

the results of Ioannides and Skouras (2013),15 Giesen et al. (2010) and Giesen and

Suedekum (2013). We have found that the log-likelihood function is smooth near its

maximum in all of the estimated cases, see also Bee (2012).

We see that there are two distributions, apart from the lognormal, for which the

estimates are rather stable or present a soft trend, without, first, “sudden jumps” (for

sudden jumps see, e.g., the estimates of τ for the IS1 and IS2 when passing to all

places), and without, secondly, surprisingly low estimates for the upper threshold τ
(see, e.g., the estimates of τ of IS2 for the samples of US incorporated places in the

whole period 1900-2000), namely the dPln and tdPSM. Of these two, only the last

offer an estimate of the lower (ϵ) and upper (τ ) thresholds (ϵ ∈ (99, 178) and τ ∈
(3405, 55274)). This is an observed first good feature of the tdPSM.

We show next the estimation results for the US CCA samples in Tables 6 and 7. For

these data, we also replicate essentially the results of Ioannides and Skouras (2013) and

Giesen and Suedekum (2013). Moreover, the estimation results yield in general more

15We provide 95% confidence intervals meanwhile Ioannides and Skouras (2013) provide standard errors.

Both quantities are related and give essentially the same information. Also, there are slight differences in the

values of τ but within the confidence intervals.
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Table 3: Estimators and 95% confidence intervals of the parameters of the IS2 for the

US (places) samples

US

Sample IS2

µ σ τ ζ θ
Inc. Places 1900 6.90±0.11 1.05±0.03 395±2 0.81±0.03 0.66±0.05

Inc. Places 1910 7.06±0.11 1.10±0.03 364±2 0.80±0.03 0.67±0.04

Inc. Places 1920 7.01±0.10 1.08±0.03 361±1 0.77±0.03 0.67±0.03

Inc. Places 1930 7.34±0.12 1.25±0.03 384±2 0.78±0.03 0.71±0.03

Inc. Places 1940 7.51±0.11 1.31±0.03 405±2 0.79±0.03 0.67±0.03

Inc. Places 1950 7.44±0.09 1.38±0.02 408±2 0.75±0.03 0.58±0.03

Inc. Places 1960 7.59±0.08 1.50±0.02 399±2 0.74±0.03 0.50±0.03

Inc. Places 1970 7.66±0.08 1.59±0.02 437±2 0.75±0.04 0.44±0.03

Inc. Places 1980 7.76±0.07 1.59±0.02 487±3 0.77±0.04 0.42±0.03

Inc. Places 1990 7.72±0.07 1.69±0.02 481±3 0.78±0.05 0.37±0.04

Inc. Places 2000 7.82±0.07 1.74±0.02 518±4 0.80±0.06 0.34±0.04

All places 2000 7.25±0.02 1.72±0.02 16,111±10,888 0.82±0.16 0.25±0.17

All places 2010 7.11±0.02 1.81±0.02 16,397±11,108 0.80±0.16 0.20±0.15

Table 4: Estimators and 95% confidence intervals of the parameters of the dPln for the

US (places) samples

US

Sample dPln

α β µ σ
Inc. Places 1900 0.92±0.03 2.64±0.27 5.95±0.04 0.58±0.04

Inc. Places 1910 0.89±0.03 2.96±0.35 5.86±0.04 0.61±0.04

Inc. Places 1920 0.87±0.03 2.78±0.27 5.88±0.04 0.60±0.04

Inc. Places 1930 0.80±0.02 2.21±0.14 5.89±0.04 0.57±0.04

Inc. Places 1940 0.79±0.02 2.20±0.15 5.96±0.04 0.61±0.04

Inc. Places 1950 0.80±0.03 2.15±0.17 6.06±0.05 0.78±0.04

Inc. Places 1960 0.80±0.03 2.24±0.26 6.11±0.06 0.96±0.05

Inc. Places 1970 0.83±0.03 2.62±0.22 6.18±0.05 1.13±0.04

Inc. Places 1980 0.86±0.02 3.65±0.02 6.23±0.02 1.19±0.01

Inc. Places 1990 0.87±0.02 3.59±0.01 6.23±0.01 1.31±0.003

Inc. Places 2000 0.87±0.02 3.55±0.01 6.32±0.02 1.36±0.003

All places 2000 1.23±0.03 3.16±0.003 6.78±0.01 1.52±0.002

All places 2010 1.17±0.03 2.97±0.004 6.61±0.01 1.59±0.008
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Table 5: Estimators and 95% confidence intervals of the parameters of the tdPSM for

the US (places) samples

US

Sample tdPSM

ρ ϵ µ σ α τ ζ
Inc. Places 1900 2.32±0.14 172±1 5.64±0.09 0.42±0.06 0.32±0.07 3,405±97 1.02±0.05

Inc. Places 1910 2.48±0.15 147±1 5.62±0.06 0.44±0.04 0.34±0.05 8,190±308 1.09±0.06

Inc. Places 1920 2.36±0.12 167±1 5.60±0.08 0.45±0.05 0.33±0.06 4,310±127 0.98±0.04

Inc. Places 1930 2.06±0.09 178±1 5.52±0.06 0.45±0.05 0.31±0.05 8,465±222 1.00±0.05

Inc. Places 1940 2.01±0.09 177±1 5.53±0.06 0.44±0.05 0.28±0.05 10,359±229 1.06±0.05

Inc. Places 1950 1.89±0.09 150±1 5.62±0.08 0.54±0.06 0.34±0.05 11,741±382 1.06±0.05

Inc. Places 1960 1.72±0.07 148±1 5.55±0.09 0.61±0.07 0.32±0.06 13,917±405 1.07±0.05

Inc. Places 1970 1.60±0.07 141±1 5.71±0.10 0.69±0.07 0.38±0.06 25,937±682 1.18±0.07

Inc. Places 1980 1.69±0.08 129±1 5.84±0.10 0.69±0.06 0.38±0.05 34,196±571 1.30±0.08

Inc. Places 1990 1.51±0.06 140±1 5.91±0.14 0.85±0.08 0.48±0.08 41,945±1,003 1.31±0.08

Inc. Places 2000 1.60±0.08 99±1 5.88±0.11 0.79±0.06 0.40±0.05 47,386±851 1.35±0.08

All places 2000 1.46±0.06 127±1 6.80±0.24 1.14±0.08 0.82±0.14 36,081±746 1.33±0.07

All places 2010 1.31±0.04 133±1 6.84±0.28 1.31±0.11 1.00±0.18 55,274±1,063 1.45±0.09

stable and precise values. The estimation process is smoother than for the places data,

and the distribution dm PChP can be estimated for all of these samples. This is a re-

markable feature of the cluster data: The City Clustering Algorithm considers as an ur-

ban center an actual agglomeration of people within a prescribed radius, irrespectively

of legally established borders, giving an economic and physical entity to the considered

clusters. This fact seems to reflect in the obtained data, which allows the estimation of

more density functions and, in general, with narrower confidence intervals. For the dm

PChP ϵ varies between 1118 and 2671 and τ between 14253 and 20381.

We have used the graphical tools in Section 3 to introduce the need of going further

in the search of distributions with better fit. But when performing a high precision

exercise, such graphical tools can be misleading in assessing the quality of fit, see

González-Val et al. (2013a). So we resort to standard statistical tests and information

criteria to see when the hypothesized distributions offer a good fit and what model is

the selected one amongst the studied ones. This is done in the following subsections.

5.2 Standard statistical tests

In this subsection we provide independent tests in order to verify the goodness of fit

in all of the studied cases. As in González-Val et al. (2013b) we have chosen the

Kolmogorov–Smirnov (KS) test, which is also mentioned in Giesen et al. (2010),

Giesen and Suedekum (2012, 2013) and is standard in the literature; also the Cramér-

von Mises (CM) test, cited in turn in Ioannides and Skouras (2013).

Moreover, the KS and CM tests have similar power: It is quite low for small sample

sizes but very high for large sample sizes (Razali and Wah, 2011). Both tests are

extremely precise for large and very large sample sizes as the ones used in this paper,

for which the non rejections only occur if the deviations (statistics) are extremely small.

Significance level is chosen to be always 5%. Non rejections are indicated in boldface.
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Table 6: Estimators and 95% confidence intervals of the parameters of the IS1, IS2 and

dPln for the US CCA clusters samples. The estimators for the lognormal are the mean

and the standard deviation of ln(pop)

US

Sample ln IS1

µ σ µ σ τ ζ
CCA 1991 (2000m) 8.33 0.85 8.29±0.01 0.77±0.01 29,944±1,223 1.02±0.08

CCA 1991 (3000m) 8.32 0.89 8.26±0.01 0.75±0.01 25,709±990 0.88±0.06

CCA 1991 (4000m) 8.32 0.92 8.24±0.01 0.75±0.01 23,207±886 0.85±0.06

CCA 1991 (5000m) 8.33 0.95 8.23±0.01 0.75±0.01 21,891±856 0.85±0.06

CCA 2000 (2000m) 8.44 0.87 8.40±0.01 0.80±0.01 37,224±1,667 1.03±0.09

CCA 2000 (3000m) 8.43 0.91 8.37±0.01 0.79±0.01 30,635±1,262 0.92±0.07

CCA 2000 (4000m) 8.42 0.94 8.34±0.01 0.78±0.01 27,571±1,125 0.87±0.06

CCA 2000 (5000m) 8.42 0.97 8.33±0.01 0.79±0.01 26,679±1,125 0.85±0.06

US

Sample IS2

µ σ τ ζ θ
CCA 1991 (2000m) 8.29±0.01 0.77±0.01 28,121±1,481 0.98±0.11 0.93±0.07

CCA 1991 (3000m) 8.26±0.01 0.75±0.01 27,191±1,229 0.93±0.09 1.06±0.05

CCA 1991 (4000m) 8.24±0.11 0.75±0.01 23,880±1,107 0.86±0.08 1.02±0.05

CCA 1991 (5000m) 8.23±0.01 0.76±0.01 21,202±1,039 0.83±0.08 0.97±0.06

CCA 2000 (2000m) 8.40±0.01 0.80±0.01 34,321±1,978 0.98±0.12 0.92±0.08

CCA 2000 (3000m) 8.37±0.01 0.79±0.01 30,906±1,550 0.92±0.10 1.01±0.06

CCA 2000 (4000m) 8.34±0.01 0.78±0.01 27,433±1,371 0.87±0.09 1.00±0.06

CCA 2000 (5000m) 8.33±0.01 0.79±0.01 26,608±1,362 0.85±0.08 1.00±0.06

US

Sample dPln

α β µ σ
CCA 1991 (2000m) 1.95±0.04 1.85±0.03 8.36±0.01 0.14±0.02

CCA 1991 (3000m) 1.76±0.04 1.86±0.04 8.29±0.01 0.11±0.02

CCA 1991 (4000m) 1.64±0.03 1.88±0.04 8.25±0.01 0.10±0.02

CCA 1991 (5000m) 1.54±0.03 1.87±0.05 8.22±0.01 0.10±0.03

CCA 2000 (2000m) 1.86±0.04 1.82±0.03 8.45±0.01 0.18±0.02

CCA 2000 (3000m) 1.66±0.03 1.83±0.04 8.37±0.01 0.16±0.02

CCA 2000 (4000m) 1.55±0.03 1.84±0.05 8.32±0.02 0.15±0.03

CCA 2000 (5000m) 1.46±0.03 1.83±0.05 8.29±0.02 0.14±0.03
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Table 7: Estimators and 95% confidence intervals of the parameters of the dm PChP for the US CCA clusters samples

US

Sample dm PChP

ρ ϵ ν µ σ β τ ζ θ
CCA 1991 (2000m) 0.59±0.07 2,091±136 0.22±0.04 8.35±0.01 0.37±0.02 1.29±0.22 17,171±898 0.96±0.11 0.78±0.10

CCA 1991 (3000m) 0.63±0.09 2,134±161 0.19±0.05 8.31±0.01 0.37±0.02 1.31±0.24 16,903±853 0.87±0.08 0.90±0.08

CCA 1991 (4000m) 0.63±0.11 1,963±173 0.18±0.06 8.29±0.01 0.39±0.03 1.45±0.24 16,495±864 0.83±0.08 0.92±0.08

CCA 1991 (5000m) 0.57±0.12 2,671±314 0.09±0.03 8.27±0.01 0.42±0.03 1.62±0.21 15,773±852 0.83±0.08 0.92±0.09

CCA 2000 (2000m) 0.54±0.07 1,371±114 0.36±0.07 8.44±0.01 0.39±0.02 1.13±0.24 20,381±1,231 0.95±0.12 0.69±0.11

CCA 2000 (3000m) 0.56±0.09 1,323±134 0.32±0.08 8.40±0.01 0.40±0.02 1.21±0.25 19,912±1,122 0.87±0.09 0.84±0.10

CCA 2000 (4000m) 0.57±0.11 1,118±140 0.33±0.09 8.38±0.01 0.42±0.02 1.36±0.24 20,083±1,173 0.84±0.09 0.89±0.10

CCA 2000 (5000m) 0.58±0.12 1,279±166 0.26±0.09 8.35±0.01 0.42±0.03 1.26±0.30 14,253±797 0.71±0.08 0.71±0.08

1
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Table 8: Results of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests

for the US places samples and the used density functions. Non-rejections are marked

in boldface

US

Sample ln IS1

KS CM KS CM

Inc. Places 1900 0 (0.07) 0 (17.22) 0.04 (0.01) 0.02 (0.62)

Inc. Places 1910 0 (0.07) 0 (21.81) 0 (0.02) 0.003 (1.10)

Inc. Places 1920 0 (0.07) 0 (25.87) 0.002 (0.02) 0.003 (1.09)

Inc. Places 1930 0 (0.07) 0 (27.59) 0.001 (0.02) 0 (1.34)

Inc. Places 1940 0 (0.07) 0 (25.59) 0 (0.021) 0 (1.86)

Inc. Places 1950 0 (0.06) 0 (17.55) 0 (0.020) 0 (1.91)

Inc. Places 1960 0 (0.05) 0 (14.26) 0 (0.026) 0 (2.82)

Inc. Places 1970 0 (0.05) 0 (12.88) 0 (0.026) 0 (2.85)

Inc. Places 1980 0 (0.04) 0 (11.36) 0 (0.027) 0 (3.24)

Inc. Places 1990 0 (0.04) 0 (9.10) 0 (0.027) 0 (3.24)

Inc. Places 2000 0 (0.04) 0 (9.35) 0 (0.030) 0 (3.72)

All places 2000 0 (0.02) 0 (2.69) 0 (0.02) 0 (2.31)

All places 2010 0 (0.02) 0 (1.41) 0 (0.03) 0 (4.53)

US

Sample IS2 dPln

KS CM KS CM

Inc. Places 1900 0.28 (0.01) 0.29 (0.19) 0.03 (0.01) 0.07 (0.42)

Inc. Places 1910 0.07 (0.01) 0.19 (0.25) 0.001 (0.02) 0.02 (0.66)

Inc. Places 1920 0.045 (0.012) 0.10 (0.35) 0.02 (0.013) 0.09 (0.37)

Inc. Places 1930 0.03 (0.012) 0.04 (0.52) 0 (0.017) 0 (1.19)

Inc. Places 1940 0.04 (0.011) 0.05 (0.45) 0 (0.021) 0 (1.60)

Inc. Places 1950 0.068 (0.010) 0.06 (0.44) 0 (0.021) 0 (1.64)

Inc. Places 1960 0.049 (0.011) 0.054 (0.45) 0 (0.024) 0 (2.02)

Inc. Places 1970 0.029 (0.011) 0.037 (0.51) 0 (0.021) 0 (1.75)

Inc. Places 1980 0.10 (0.009) 0.071 (0.40) 0 (0.021) 0 (1.99)

Inc. Places 1990 0.11 (0.009) 0.070 (0.40) 0 (0.021) 0 (2.03)

Inc. Places 2000 0.02 (0.012) 0.080 (0.38) 0 (0.020) 0 (2.28)

All places 2000 0 (0.02) 0 (2.25) 0.005 (0.01) 0.005 (1.00)

All places 2010 0 (0.02) 0 (3.93) 0 (0.02) 0 (1.83)

US

Sample tdPSM

KS CM

Inc. Places 1900 0.99 (0.005) 0.97 (0.03)

Inc. Places 1910 0.62 (0.007) 0.84 (0.06)

Inc. Places 1920 0.50 (0.007) 0.65 (0.09)

Inc. Places 1930 0.96 (0.004) 0.97 (0.03)

Inc. Places 1940 0.90 (0.005) 0.96 (0.03)

Inc. Places 1950 0.87 (0.005) 0.78 (0.06)

Inc. Places 1960 0.93 (0.004) 0.85 (0.05)

Inc. Places 1970 0.94 (0.004) 0.96 (0.03)

Inc. Places 1980 0.54 (0.006) 0.48 (0.12)

Inc. Places 1990 0.71 (0.006) 0.75 (0.07)

Inc. Places 2000 0.88 (0.005) 0.90 (0.05)

All places 2000 0.65 (0.005) 0.47 (0.13)

All places 2010 0.17 (0.007) 0.29 (0.19)
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Table 9: Results of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests

for the US CCA clusters samples and the used density functions. Non-rejections are

marked in boldface

US

Sample ln IS1 IS2

KS CM KS CM KS CM

CCA 1991 (2000m) 0 (0.09) 0 (92.70) 0 (0.09) 0 (66.53) 0 (0.09) 0 (65.57)

CCA 1991 (3000m) 0 (0.10) 0 (86.75) 0 (0.08) 0 (43.14) 0 (0.08) 0 (45.35)

CCA 1991 (4000m) 0 (0.11) 0 (78.08) 0 (0.08) 0 (35.06) 0 (0.08) 0 (33.26)

CCA 1991 (5000m) 0 (0.11) 0 (74.02) 0 (0.08) 0 (28.57) 0 (0.07) 0 (27.85)

CCA 2000 (2000m) 0 (0.09) 0 (73.26) 0 (0.08) 0 (49.12) 0 (0.08) 0 (49.37)

CCA 2000 (3000m) 0 (0.09) 0 (71.00) 0 (0.07) 0 (33.92) 0 (0.07) 0 (33.44)

CCA 2000 (4000m) 0 (0.09) 0 (62.27) 0 (0.07) 0 (23.98) 0 (0.07) 0 (24.97)

CCA 2000 (5000m) 0 (0.10) 0 (58.44) 0 (0.07) 0 (20.50) 0 (0.07) 0 (20.27)

US

Sample dPln dm PChP

KS CM KS CM

CCA 1991 (2000m) 0 (0.02) 0 (1.84) 0.86 (0.004) 0.82 (0.06)

CCA 1991 (3000m) 0 (0.02) 0 (2.42) 0.64 (0.005) 0.74 (0.07)

CCA 1991 (4000m) 0 (0.03) 0 (2.46) 0.86 (0.005) 0.69 (0.08)

CCA 1991 (5000m) 0 (0.03) 0 (2.21) 0.61 (0.006) 0.60 (0.10)

CCA 2000 (2000m) 0 (0.02) 0.003 (1.09) 0.58 (0.005) 0.73 (0.07)

CCA 2000 (3000m) 0 (0.02) 0 (1.18) 0.55 (0.006) 0.43 (0.14)

CCA 2000 (4000m) 0 (0.04) 0 (1.79) 0.36 (0.007) 0.28 (0.19)

CCA 2000 (5000m) 0 (0.05) 0 (2.22) 0.46 (0.007) 0.51 (0.12)

We show in Table 8 the results for the samples of US places. We offer the p-values

of the tests jointly with the values of the statistics (in parentheses). A first observation

is that the lognormal model is very strongly rejected for all samples, and the IS1 is

as well rejected always although with a lower value of the tests’ statistics than for the

lognormal. The dPln is as well rejected in almost all cases (two exception). The IS2

in turn is not rejected the 53.84% of the cases: The mixing lognormal-Pareto in the

upper tail means an improvement. And a big jump in performance is obtained with the

tdPSM. Indeed, such distribution is not rejected 100% of the cases. Thus, modeling

both tails as a pure Pareto and the body as the Singh–Maddala distribution means a

striking better improvement. Thus, the tdPSM reveals itself as an excellent and robust

specification for the US places size distribution.

We move to the results of the tests for the US CCA clusters in Table 9. Again, we

show the p-values and the tests’ statistics in parentheses. Here, the lognormal is again

strongly rejected always and also the IS1 and IS2. The dPln is rejected always as well

(with lower values of the tests’ statistics). Again, a wide jump is obtained when consid-

ering the dm PChP: It is not rejected 100% of all instances. This means that modeling

the two tails as a mixing of Pareto-Champernowne and the body as Champernowne

leads to an excellent fit. These final results are robust to the different radii the clusters

are constructed with (2, 3, 4 and 5 km.), and to the years studied (1991 and 2000). We

obtain in this way an excellent model for the US CCA clusters size distribution: The

dm PChP.
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In the next subsection we study the distributions with the information criteria.

5.3 Information criteria

In order to select a model between the studied distributions, we follow another ap-

proach: To compute two information criteria very well suited to the maximum likeli-

hood method which we have used in order to estimate the parameters of the distribu-

tions studied: Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) (see, e.g., Burnham and Anderson (2002, 2004); Giesen et al. (2010) and ref-

erences therein). In the first two of these references it is argued, theoretically and by

means of simulations, that the AIC is preferable to the BIC, and in case of discrepancy

between the two information criteria, we prefer to follow the outcome of the former.

We show in Table 10 the results for the US places samples and the presented dis-

tributions. We obtain a similar result to those of the KS and CM tests: Choosing an

ordering of ascending values of the AIC for each sample (the results with the BIC are

almost exactly the same) we obtain a robust ordering of the distributions (the lower the

value of AIC, the more preferred the distribution). For the US incorporated places and

all places samples in the period (1900-2010) we have

AICtdPSM < AICdPln < AICIS2 < AICIS1 < AICln

Therefore, the selected model is the tdPSM 100% of the samples. This, jointly with

the outcomes of the KS and CM tests, yields a new and strong result: The US city size

distribution (incorporated places and all places) can be safely taken as the new tdPSM.

For the US CCA cluster samples, we refer to Table 11. We have again strong reg-

ularities. The ordering of the distributions by ascending values of AIC is (the ordering

by BIC is practically the same)

AICdmPChP < AICdPln < AICIS1 < AICIS2 < AICln

The difference between IS1 and IS2 is very small (they are tied in two out of the

eight samples). And it is striking the result that our new distribution dm PChP is

systematically preferred to others known up to now in the literature. In short, we have

that the selected model (amongst those studied here and others not shown for the sake

of brevity) is the dm PChP the 100% of the cases, with values of the AIC and BIC

quite lower than for the other previously know distributions. This, jointly with the

results of the KS and CM tests, yields a second strong and new result: The US city size

distribution (CCA clusters) can be safely taken as the new dm PChP.

In both of the cases of US places and CCA clusters samples, we have another result:

To achieve an exceptional performance, it seems to be essential to model both tails as

a Pareto distribution, in a pure form (places), with Singh–Maddala body, or as part of a

mixing with the Champernowne distribution (clusters), with body of the same type of

the latter.

As a complement of the KS, CM, AIC and BIC results, we show in Figure 2 an

informal graphical approximation of the obtained fits in two different cases: The first

row for the sample of all US places (2010) and the tdPSM, and the second for the

18



Table 10: Maximum log-likelihoods, AIC and BIC for the used distributions and the

US places data. The lowest values of AIC and BIC for each sample are marked in

boldface

US

Sample ln IS1

log-likelihood AIC BIC log-likelihood AIC BIC

Inc. Places 1900 -87,943 175,891 175,905 -87,290 174,588 174,617

Inc. Places 1910 -117,640 235,284 235,299 -116,769 233,546 233,576

Inc. Places 1920 -129,580 259,164 259,179 -128,576 257,160 257,191

Inc. Places 1930 -139,194 278,392 278,407 -138,254 276,516 276,547

Inc. Places 1940 -143,097 286,198 286,213 -142,289 284,586 284,617

Inc. Places 1950 -148,254 296,512 296,528 -147,679 295,366 295,397

Inc. Places 1960 -159,142 318,288 318,304 -158,758 317,524 317,555

Inc. Places 1970 -165,171 330,346 330,362 -164,907 329,822 329,853

Inc. Places 1980 -171,088 342,180 342,196 -170,864 341,736 341,767

Inc. Places 1990 -173,472 346,948 346,964 -173,333 346,674 346,705

Inc. Places 2000 -177,127 354,258 354,274 -177,031 354,070 354,101

All places 2000 -234,773 469,550 469,566 -234,756 469,519 469,552

All places 2010 -262,440 524,884 524,901 -262,433 524,874 524,907

US

Sample IS2 dPln

log-likelihood AIC BIC log-likelihood AIC BIC

Inc. Places 1900 -87,273 174,555 174,592 -87,254 174,516 174,545

Inc. Places 1910 -116,732 233,474 233,512 -116,727 233,462 233,492

Inc. Places 1920 -128,539 257,088 257,126 -128,521 257,050 257,081

Inc. Places 1930 -138,164 276,338 276,377 -138,129 276,266 276,297

Inc. Places 1940 -142,174 284,358 284,397 -142,179 284,366 284,397

Inc. Places 1950 -147,574 295,158 295,197 -147,593 295,194 295,225

Inc. Places 1960 -158,605 317,220 317,259 -158,679 317,366 317,397

Inc. Places 1970 -164,741 329,492 329,531 -164,831 329,670 329,701

Inc. Places 1980 -170,682 341,374 341,413 -170,777 341,562 341,593

Inc. Places 1990 -173,152 346,314 346,353 -173,243 346,494 346,525

Inc. Places 2000 -176,827 353,664 353,703 -176,931 353,870 353,901

All places 2000 -234,750 469,510 469,551 -234,710 469,428 469,461

All places 2010 -262,427 524,864 524,905 -262,375 524,758 524,791

US

Sample tdPSM

log-likelihood AIC BIC

Inc. Places 1900 -87,232 174,478 174,529

Inc. Places 1910 -116,690 233,393 233,446

Inc. Places 1920 -128,485 256,983 257,037

Inc. Places 1930 -138,060 276,134 276,188

Inc. Places 1940 -142,074 284,162 284,216

Inc. Places 1950 -147,486 294,986 295,040

Inc. Places 1960 -158,530 317,073 317,128

Inc. Places 1970 -164,680 329,375 329,430

Inc. Places 1980 -170,625 341,265 341,320

Inc. Places 1990 -173,106 346,226 346,281

Inc. Places 2000 -176,775 353,563 353,618

All places 2000 -234,633 469,280 469,337

All places 2010 -262,252 524,518 524,576
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Table 11: Maximum log-likelihoods, AIC and BIC for the used distributions and the

US CCA clusters data. The lowest values of AIC and BIC for each sample are marked

in boldface

US

Sample ln IS1

log-likelihood AIC BIC log-likelihood AIC BIC

CCA 1991 (2000m) -289,460 578,923 578,940 -288,236 576,481 576,514

CCA 1991 (3000m) -226,140 452,284 452,300 -224,434 448,876 448,908

CCA 1991 (4000m) -192,249 384,502 384,518 -190,431 380,871 380,902

CCA 1991 (5000m) -170,343 340,690 340,706 -168,608 337,224 337,255

CCA 2000 (2000m) -293,311 586,627 586,643 -292,300 584,608 584,641

CCA 2000 (3000m) -229,171 458,347 458,363 -227,733 455,474 455,507

CCA 2000 (4000m) -194,701 389,406 389,422 -193,134 386,277 386,309

CCA 2000 (5000m) -172,389 344,783 344,798 -170,864 341,735 341,766

US

Sample IS2 dPln

log-likelihood AIC BIC log-likelihood AIC BIC

CCA 1991 (2000m) -288,236 576,482 576,523 -284,288 568,584 568,617

CCA 1991 (3000m) -224,433 448,876 448,916 -221,851 443,710 443,742

CCA 1991 (4000m) -190,431 380,872 380,912 -188,584 377,177 377,209

CCA 1991 (5000m) -168,608 337,225 337,264 -167,096 334,201 334,232

CCA 2000 (2000m) -292,299 584,608 584,650 -288,879 577,765 577,798

CCA 2000 (3000m) -227,733 455,476 455,516 -225,494 450,996 451,028

CCA 2000 (4000m) -193,134 386,279 386,318 -191,552 383,112 383,143

CCA 2000 (5000m) -170,864 341,737 341,776 -169,586 339,179 339,211

US

Sample dm PChP

log-likelihood AIC BIC

CCA 1991 (2000m) -283,584 567,186 567,261

CCA 1991 (3000m) -221,218 442,454 442,526

CCA 1991 (4000m) -188,065 376,148 376,219

CCA 1991 (5000m) -166,669 333,356 333,426

CCA 2000 (2000m) -288,309 576,635 576,710

CCA 2000 (3000m) -225,020 450,057 450,130

CCA 2000 (4000m) -191,176 382,370 382,441

CCA 2000 (5000m) -169,277 338,572 338,642
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sample of US CCA clusters (2000, 2km.). We see that the lower tail of the first sample

fits nicely (the empirical ln(cdf) of that of clusters is not so linear), for the upper tails

the fit is quite remarkable in the two cases, and for the middle panel it is very hard to

see discrepancies between the empirical and estimated density functions, compare with

Figure 1.

Table 12: Percentages of population and urban units (places, clusters) in the tails and

the body of the tdPSM for places and the dm PChP for clusters. For the definition of

tails and body we use in each case the corresponding thresholds ϵ and τ of Table 5 for

places and Table 7 for clusters

Population Units

Lower tail Body Upper tail Lower tail Body Upper tail

Inc. Places 1900 0,3% 20,8% 78,9% 7,4% 81% 11,6%

Inc. Places 1910 0,2% 29,5% 70,3% 5,7% 89% 5,3%

Inc. Places 1920 0,2% 19,6% 80,2% 7,5% 82,2% 10,3%

Inc. Places 1930 0,3% 23,5% 76,2% 9,9% 83,7% 6,4%

Inc. Places 1940 0,2% 25,6% 74,2% 9,2% 84,8% 6%

Inc. Places 1950 0,1% 25,4% 74,5% 7,7% 86,1% 6,2%

Inc. Places 1960 0,1% 26% 73,9% 8,5% 84,9% 6,6%

Inc. Places 1970 0,1% 33,8% 66,1% 8,2% 87,5% 4,3%

Inc. Places 1980 0,1% 39,5% 60,4% 6,2% 90,2% 3,6%

Inc. Places 1990 0,1% 41,2% 58,7% 8,6% 88,2% 3,2%

Inc. Places 2000 0% 41,4% 58,6% 5,2% 91,5% 3,3%

All places 2000 0,1% 42,9% 57% 7,1% 89% 3,9%

All places 2010 0,1% 50,9% 49% 9,9% 87,7% 2,4%

CCA 1991 (2000m) 2% 53,2% 44,8% 12,3% 84,5% 3,2%

CCA 1991 (3000m) 1,8% 39,3% 58,9% 13,9% 82,2% 3,9%

CCA 1991 (4000m) 1,3% 32,7% 66% 12,3% 83,2% 4,5%

CCA 1991 (5000m) 3,1% 26,2% 70,7% 24,6% 70% 5,4%

CCA 2000 (2000m) 0,4% 56,7% 42,9% 4,7% 92,2% 3,1%

CCA 2000 (3000m) 0,3% 42,2% 57,5% 4,8% 91,3% 3,9%

CCA 2000 (4000m) 0,2% 35,1% 64,7% 3,7% 92% 4,3%

CCA 2000 (5000m) 0,3% 27,7% 72% 5% 87,6% 7,4%

We also show in Table 12 the percentages of population and urban units in the tails

and the body of the selected distributions for each type of data (places and clusters). As

an approximation, we classify urban units in the lower tail as those having a population

less than the value of the ϵ threshold, those in the upper tail having a population greater

than the τ threshold, and the body is formed by urban units with population between

ϵ and τ . The values of these thresholds for places are those of Table 5 and for clusters

those of Table 7. It is observed that although the percentages of population in the

lower tails are generally quite low, the percentages of urban units in the lower tail are

comparable to or even higher than those in the upper tail. This fact explains the need

of taking into account the appropriate modeling of the lower tail in order to obtain an

excellent overall fit.
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Figure 2: Left column: Empirical and estimated tdPSM and dm PChP ln(cdf) for the lower tail. Center column: Empirical (Gaussian

adaptive kernel density) and estimated tdPSM and dm PChP density functions. Right column: Empirical and estimated tdPSM and dm

PChP ln(1 − cdf) for the upper tail. First row: US all places (2010). Second row: US CCA clusters (2000, 2km.). Empirical in blue,

estimated in red in all cases.
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6 Theoretical underpinnings

We develop in this section a theory yielding the distributions of this paper with best

performance, namely the tdPSM for the US incorporated places and all places in the

period (1900-2010), and the dm PChP for the US CCA clusters. We build on previous

concepts used by many authors, for example Gabaix (1999, 2009) and also Reed (2002,

2003), amongst others.

Namely, consider a continuous time model in which the (natural logarithm of the)

sizes Xt obeys the stochastic differential equation

dXt = a(t)Xt dt+ b(t)Xt dBt (24)

where a(t), b(t) are functions of time t and Bt is a Brownian motion. Such an equation

is sometimes considered as an implementation of the Gibrat’s law, see Gabaix (1999,

2009) and references therein. The probability density function of the variable x (in our

paper, population of urban nuclei), depending also on time, namely f(x, t), obeys the

forward Kolmogorov equation, also known as Fokker–Planck equation, which is the

partial differential equation:

∂f(x, t)

∂t
= − ∂

∂x
(a(t)xf(x, t)) +

∂2

∂x2

(

1

2
x2b(t)2f(x, t)

)

(25)

See Payne (1967) for a concise and rather complete exposition16.

The equation (25) has several well-known solutions, like the (time-dependent) log-

normal, see, e.g., the recent work of Toda (2012) and references therein, or the upper

tail Pareto distribution (with a lower threshold), see Gabaix (1999, 2009).

Now, in order to accommodate the preferred models obtained in previous sections,

we should first investigate under which conditions the building blocks of such dis-

tributions, the (lower and upper tail) Pareto, the Singh–Maddala and Champernowne

distributions are itself solutions of (25). We begin with the Pareto distributions.

Proposition 1 The (time-dependent) lower tail Pareto distribution A(t)h(x, ρ(t)) is a

solution of the equation (25) if and only if

ρ′(t) = 0 ⇒ ρ(t) = ρ

A(t) = exp

(
∫ t

0

1

2
ρ((1 + ρ)b(s)2 − 2a(s)) ds

)

Likewise, the (time-dependent) upper tail Pareto distribution C(t)g(x, ζ(t)) is a solu-

tion of the equation (25) if and only if

ζ ′(t) = 0 ⇒ ζ(t) = ζ

C(t) = exp

(
∫ t

0

1

2
ζ((ζ − 1)b(s)2 + 2a(s)) ds

)

16Strictly speaking, the f(x, t) of (25) is a probability density function conditional on the initial data. We

will simply take the obtained solutions of (25) evaluated at t = 0 as the initial conditions.

23



Proof . See appendix.

The second part of this last result is related to a derivation of Gabaix (1999, 2009)

of the Pareto distribution as a stationary solution of (25). It is remarkable that the Pareto

exponents ρ and ζ must be constants in order that the Pareto distributions be solutions

of the equation (25). Note as well that these two Pareto distributions satisfy (25) also

in the case of having b(t) = 0. We continue next with the Singh–Maddala distribution.

Proposition 2 The (time-dependent) Singh–Maddala distribution D(t)fSM(x, µ(t), σ(t), α(t))
is a solution of the equation (25) if

µ′(t) = a(t) ⇒ µ(t) =

∫ t

0

a(s) ds

σ′(t) = 0 ⇒ σ(t) = σ

α′(t) = 0 ⇒ α(t) = α

D′(t) = 0 ⇒ D(t) = D

b(t) = 0

Proof . See appendix.

Also, the result for the Champernowne distribution is similar:

Proposition 3 The (time-dependent) Champernowne distribution E(t)fCh(x, µ(t), σ(t), β(t))
is a solution of the equation (25) if

µ′(t) = a(t) ⇒ µ(t) =

∫ t

0

a(s) ds

σ′(t) = 0 ⇒ σ(t) = σ

β′(t) = 0 ⇒ β(t) = β

E′(t) = 0 ⇒ E(t) = E

b(t) = 0

Proof . See appendix.

The main novelty of these last two results is that a necessary condition for the

(time-dependent) Singh–Maddala and Champernowne density functions to be always

a solution of the equation (25) is that b(t) = 0, namely, the diffusion term in (25) van-

ishes and also the stochastic term in (24) vanishes. We will comment on the economic

meaning of such a requirement later.

Because of the importance of the selected models obtained in previous sections, it

is worth studying the case of b(t) = 0 in more detail. We have that in such a case the

equation (25) reduces to

∂f(x, t)

∂t
= − ∂

∂x
(a(t)xf(x, t)) (26)
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which can be written as

∂f(x, t)

∂t
+ a(t)x

∂f(x, t)

∂x
= −a(t)f(x, t) (27)

namely, a first-order linear partial differential equation in two variables, tractable with

standard methods. We have the following result:

Proposition 4 The general solution of the equations (26) or (27) can be expressed as

f(x, t) =
1

x
j

(

lnx−
∫ t

0

a(s) ds

)

where j(·) is an arbitrary function of its argument (positive and differentiable almost

everywhere).

Proof . See appendix.

This last result shows that the probability density functions which satisfy the equa-

tion (26) are inversely proportional to x, with a multiplying function which depends

on x and t only through the combination lnx −
∫ t

0
a(s) ds. Such a simple result is

essential in what follows, since our preferred models will fit into such a framework.

Corresponding to the selected distribution for US incorporated places and all places,

the tdPSM, we have the following result:

Theorem 1 The time-dependent function associated to the tdPSM

f4t(x, t) =







b4(t) e4(t)h(x, ρ(t)) 0 < x < ϵ(t)
b4(t) fSM(x, µ(t), σ(t), α(t)) ϵ(t) ≤ x ≤ τ(t)

b4(t) a4(t) g(x, ζ(t)) τ(t) < x
(28)

is a solution of the equation (26) if and only if the following conditions hold:

µ(t) =

∫ t

0

a(s) ds , σ(t) = const.

b4(t) = const. , α(t) = const.

e−µ(t)ϵ(t) = const. , e−µ(t)τ(t) = const.

ρ(t) = const. , e4(t)e
ρ(t)µ(t) = const.

ζ(t) = const. , a4(t)e
−ζ(t)µ(t) = const.

Proof . See appendix.

Likewise, correspondingly to the selected model in the case of US CCA clusters,

the dm PChP, we have the following result:
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Theorem 2 The time-dependent function associated to the dm PChP

f5t(x, t)

=







b5(t) [(1− ν(t)) d5(t) fCh(x, µ(t), σ(t), β(t)) + ν(t) e5(t)h(x, ρ(t))] 0 < x < ϵ(t)
b5(t) fCh(x, µ(t), σ(t), β(t)) ϵ(t) ≤ x ≤ τ(t)

b5(t) [(1− θ(t)) c5(t) fCh(x, µ(t), σ(t), β(t)) + θ(t) a5(t) g(x, ζ(t))] τ(t) < x

(29)

is a solution of the equation (26) if and only if the following conditions hold:

µ(t) =

∫ t

0

a(s) ds , σ(t) = const.

b5(t) = const. , β(t) = const.

e−µ(t)ϵ(t) = const. , e−µ(t)τ(t) = const.

(1− ν(t))d5(t) = const. , (1− θ(t))c5(t) = const.

ρ(t) = const. , ν(t)e5(t)e
ρ(t)µ(t) = const.

ζ(t) = const. , θ(t)a5(t)e
−ζ(t)µ(t) = const.

Proof . See appendix.

Thus, our preferred models are able to satisfy equation (26) provided the relation

µ(t) =
∫ t

0
a(s) ds holds and some other quantities remain constant. The parameter

σ(t) is a constant as well as b4(t) or b5(t). These results could be anticipated from our

preliminary study of the Singh–Maddala or Champernowne distributions as a solution

of (25). Also, it is also predicted that the Pareto exponents ρ(t), ζ(t) remain constant

(the individual Pareto distributions yielded the same results). And there are other con-

stants arising from the fact of having a composition/mixing of the distributions. The

most remarkable are those relating the threshold parameters e−µ(t)ϵ(t) = const. and

e−µ(t)τ(t) = const. It is worth noting that this theory does not predict the precise

value of the Pareto exponents ρ, ζ, only that they remain constant. To predict the value

of ζ, other approaches (using as well a version of equation (25)) exist (Gabaix, 1999,

2009), so our theory can be regarded as complementary to the cited references.

As an informal test on how well our theory works, we have computed the values of

the presumed constants for the empirical results corresponding to the samples of US in-

corporated and all places in the period (1900-2010) and that of US CCA clusters, using

the estimated parameters by ML and the expressions (15), (16), (17) of the constants

(constants in the sense of Section 4) e4, a4, b4 in the first case and (19), (20), (21),

(22), (23), of d5, e5, c5, a5, b5 in the second case. The results are shown in Tables 13

and 14.

For the US incorporated and all places, we see that σ increases, even quite slowly,

so one of the basic assumptions of our theory, the absence of diffusion, is not exactly

satisfied. There exists diffusion, although very small in the short term (say, one decade).

The quantity b4 remains in the interval (1.04, 1.13). The parameter α is in the interval
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(0.28, 1). The lower tail Pareto exponent ρ decreases slowly with time from 2.32 in

1900 to 1.31 in 2010. Likewise, the upper tail Pareto exponent ζ increases slowly

from 1.02 in 1900 to 1.45 in 2010. Both variations are due to the effective existence

of diffusion in practice. The quantity e−µϵ varies more, in the interval (0.14, 0.71).
The analogous relation for the upper tail threshold τ leads to a strong variation of the

presumed “constant”. It is to be remarked that the number of places in these samples

increases greatly with time, cf. Table 1.

In turn, for the US CCA clusters, the variations are in general smaller in all cases

but we have to take into account that only a nine-year period is studied with these data.

Also, for these data the number of observations is the same for each pair of samples of

1991 and 2000.

In short, the results suggest that when the short term is considered (say, one decade),

the theory works well, and if the number of observations is constant, slightly better. In

the long term, and if the number of observations varies along time, the theory shows its

limitations.

Table 13: Values of the quantities obtained in Theorem 1 for the US incorporated and

all places samples corresponding to the tdPSM

US

Sample

σ b4 α e−µϵ e−µτ ρ e4eρµ ζ a4e−ζµ

Inc. Places 1900 0.42 1.05 0.32 0.61 12.06 2.32 0.52 1.02 1.44

Inc. Places 1910 0.44 1.04 0.34 0.53 29.68 2.48 0.66 1.09 2.21

Inc. Places 1920 0.45 1.06 0.33 0.62 15.93 2.36 0.53 0.98 1.45

Inc. Places 1930 0.45 1.05 0.31 0.71 33.74 2.05 0.39 1 2.06

Inc. Places 1940 0.44 1.05 0.28 0.7 41.14 2.01 0.35 1.06 3.14

Inc. Places 1950 0.55 1.06 0.34 0.54 42.6 1.89 0.43 1.06 3.22

Inc. Places 1960 0.61 1.09 0.32 0.57 54.01 1.71 0.35 1.07 4.55

Inc. Places 1970 0.69 1.08 0.38 0.47 86.13 1.6 0.42 1.19 9.44

Inc. Places 1980 0.69 1.07 0.38 0.37 99.13 1.69 0.52 1.3 17.04

Inc. Places 1990 0.85 1.09 0.48 0.38 113.39 1.51 0.52 1.31 19.32

Inc. Places 2000 0.79 1.08 0.4 0.28 132.98 1.6 0.61 1.35 30.08

All Places 2000 1.14 1.10 0.82 0.14 40.27 1.46 1.67 1.33 6.48

All Places 2010 1.31 1.13 1 0.14 59.42 1.31 1.45 1.45 11.8

7 Discussion

We have just seen that two newly introduced here density functions perform better than

some of the previously known: The lognormal used by Eeckhout (2004) and others, the

IS1 and IS2 of Ioannides and Skouras (2013); the dPln of Reed (2002, 2003); Giesen

et al. (2010) and others, when fitting US city data. Specifically, the tdPSM is the pre-

ferred model for US incorporated and all places data and the dm PChP is the preferred

density function for the US CCA clusters of Rozenfeld et al. (2008, 2011). We have

developed as well a theory that can generate the cited preferred models, and when com-

paring to the empirical results, it follows that when the short-term is considered (one

decade) and the number of observations (urban centers) is almost constant, the theory
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Table 14: Values of the quantities obtained in Theorem 2 for the US CCA clusters samples and the dm PChP

US

Sample

σ b5 β e−µϵ e−µτ (1− ν)d5 (1− θ)c5 ρ νe5eρµ ζ θa5e−ζµ

CCA 1991 (2000m) 0.37 0.96 1.29 0.5 4.07 0.94 0.44 0.59 0.03 0.96 0.1

CCA 2000 (2000m) 0.39 0.97 1.13 0.3 4.39 0.89 0.55 0.54 0.02 0.95 0.08

CCA 1991 (3000m) 0.37 0.96 1.31 0.53 4.16 0.94 0.25 0.63 0.03 0.87 0.11

CCA 2000 (3000m) 0.4 0.97 1.21 0.3 4.47 0.9 0.36 0.56 0.02 0.87 0.11

CCA 1991 (4000m) 0.39 0.96 1.45 0.5 4.16 0.95 0.2 0.63 0.02 0.83 0.12

CCA 2000 (4000m) 0.42 0.97 1.36 0.26 4.63 0.89 0.26 0.57 0.02 0.84 0.12

CCA 1991 (5000m) 0.42 0.95 1.62 0.68 4.03 0.98 0.2 0.57 0.02 0.83 0.14

CCA 2000 (5000m) 0.42 0.96 1.26 0.3 3.35 0.92 0.55 0.58 0.02 0.79 0.11
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is rather reasonable. However, in the long term (say, one century) and with varying

number of observations, the theory shows its limitations.

The basic assumption of our theory in the previous section is that the stochas-

tic term be zero, or at least negligible. Otherwise, we cannot assure that the Singh–

Maddala/Champernowne (part of the) distribution be an exact solution of the Fokker–

Planck equation. The economic meaning of this outcome is clear: The population and

hierarchical structure of cities is very stable in time, at least in the short term (Black

and Henderson, 1999; Kim, 2000; Beeson et al., 2001). And this stability or persis-

tence is even corroborated when the cities suffer strong temporal shocks, like the US

Civil War (Sanso-Navarro et al., 2013), the IIWW atomic bombing in Japan (Davis and

Weinstein, 2002), the IIWW bombing in Germany (Brakman et al., 2004; Bosker et al.,

2008), the US bombing in Vietnam (Miguel and Roland, 2011), or the urban terrorism

(Glaeser and Shapiro, 2002). This is the interpretation associated to the theoretical

condition that the diffusion term needs to be zero in the Fokker–Planck equation to

guarantee that the tdPSM and the dm PChP are exact solutions of that equation.

In the long term it is also shown that things become different, and another (perhaps

more general) theory should be adopted, for which we provide some ideas below. In the

extreme long-term situation, we have the contribution of Batty (2006), which defends

that the changes in the internal hierarchy of cities can be very important, although the

aggregate distribution appears to be quite stable. This is not incompatible with the short

term persistence literature, because Batty’s temporal horizon is very large (world data

from 430 BC.).

As mentioned, the population evolves in the long term in such a way that our theory

does not work so well (for US places it is observed, which is our long term database;

for US CCA clusters we do not have enough data samples). Since the hypothesized

model of the city size distribution (for US places) can be taken robustly in the whole

period (1900-2010) as the tdPSM, we conjecture that it is the evolution equation (26)

the one that should be reconsidered. We think of three main variations:

• It is to be added the term −k(t)f(x, t) (or other terms) to the right hand side

of (26) in order to model the entry of new urban centers in the sample (Gabaix,

2009, 1999). The specification of k(t) (or of the alternative terms) seems to be

delicate. Perhaps the previous work on the distribution of entrant cities (González-

Val, 2010; Giesen and Suedekum, 2013) may help in this task.

• The equation to be used is (25) with b(t) ̸= 0. Then, we cannot assure that the

distribution tdPSM be an exact solution of such an equation. We would enter

in the realm of approximate solutions, see, e.g., Grasman and van Herwaarden

(1999). Additionally, this could be combined as well with the extension exposed

in the first item of this list.

• The equation to be used is not (25), but possibly a non-linear Fokker–Planck

equation, see, e.g., Frank (1991). This approach seems to be more difficult as

one should find a nonlinear Fokker–Planck equation allowing a composite of two

Pareto and Singh–Maddala distributions as a solution, and moreover yielding a

better agreement with empirical results than the theory exposed here. It would
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be a theoretical treasure if the cited equation does exist.

We leave these topics for future research.

8 Conclusions

Elsewhere, since the work of Eeckhout (2004) the risks have been demonstrated of

considering only the largest cities; that is, only the upper tail. One of the main lessons

of such work is that, when possible, one should use city data without minimum size

restrictions.17 In turn, if the availability of data allows it, the analysis of city size distri-

bution should be done as a long-term analysis. With both considerations as premises,

this article uses US Census data for the period (1900-2010), in decades, and all the

incorporated/all places. Also, we use the US City Clustering Algorithm (CCA) clus-

ters data of Rozenfeld et al. (2008, 2011) for the years 1991 and 2000 and radii of the

clusters of 2, 3, 4 and 5 km.

This work has minutely examined seven density functions: Lognormal, IS1, IS2

and dPln, known in the field of urban economics, and we have thereby explicitly intro-

duced in Section 4 two new density functions, which we call tdPSM and dm PChP, for

which the essential point is the modeling of both tails as a Pareto distribution with or

without mixing with the Singh–Maddala or Champernowne distributions.

These two new distributions are associated to two “philosophical” principles:

i) For the US it seems to be necessary to pay attention to the lower tail of the

distribution, despite of representing a small percentage of the population, in order

to obtain an excellent overall fit. In a nutshell, small nuclei do matter.

ii) The body of the distribution is better described by a Singh–Maddala or Champer-

nowne distribution rather than a lognormal. This constitutes a relevant difference

to the evidence accumulated so far.

After estimating the parameters of all of the distributions by maximum likelihood

(ML), we have tested the fit provided by each distribution using the Kolmogorov–

Smirnov (KS) and Cramér-von Mises (CM) tests. Afterwards, we have computed the

AIC and BIC information criteria.

The results are extremely robust and regular. The two new density functions im-

prove notably the performance of the lognormal, IS1, IS2 and dPln. In particular, the

tdPSM is a distribution not rejected 100% of the cases by both of the KS and CM, and

is the selected model (out of the six distributions studied) by both AIC and BIC for the

whole period (1900-2010) of samples of US incorporated and all places. Likewise, the

17In this work we have not shown the results corresponding to the data of the so called Metropolitan and

Micropolitan areas (MMA), see, e.g., Ioannides and Skouras (2013) for their definition, because in them it

is imposed a not small minimum threshold size (about 13,000 inhabitants). We simply mention that the KS

and CM tests for a truncated version of all of the distributions used in this paper yield rejection, even having

that the sample sizes of MMA data are much lower than for US places or CCA clusters (less than 1,000

observations). This means that the modeling of the MMA size distribution is much more demanding than for

the US places or CCA clusters, possibly due to the cut-off imposed to such data.
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dm PChP is a distribution not rejected 100% of the instances of CCA clusters by both

KS and CM tests, being the selected model for all these samples by both AIC and BIC.

In short, we find empirically that the US city size distribution for places can be

safely taken as a Singh–Maddala body with pure Pareto tails, the three regions sepa-

rated by two exact thresholds. For US CCA clusters, an analogous situation occurs but

where the body is Champernowne and in the tails it is advantageous to mix the Pareto

distributions with the Champernowne one. Moreover, we have given a theoretical sup-

port for these distributions, a theory which works reasonably well in the short term and

when the number of cities is constant. We have provided some ideas for the search of

a theory that would be satisfactory also for the long term and varying number of urban

nuclei.

A Proofs of Section 6

Proof of Proposition 1. Inserting f(x, t) = A(t)h(x, ρ(t)) into (25) written in the

following way

∂f(x, t)

∂t
+

∂

∂x
(a(t)xf(x, t))− ∂2

∂x2

(

1

2
x2b(t)2f(x, t)

)

= 0

yields
(

a(t)ρ(t) +
A′(t)

A(t)
− 1

2
b(t)2ρ(t)(ρ(t) + 1) + ln(x)ρ′(t)

)

A(t)h(x, ρ(t)) = 0

Thus, the expression in the big left parentheses has to be zero. But firstly, the only

dependence on x appears in one term with lnx. In order to the equation to be consistent,

it should happen that ρ′(t) = 0 ⇒ ρ(t) = ρ. Imposing this condition it follows

a(t)ρ+
A′(t)

A(t)
− 1

2
b(t)2ρ(ρ+ 1) = 0

which is a simple differential equation for A(t). Integrating, the thesis follows. The

analysis for f(x, t) = C(t)g(x, ζ(t)) is analogous and is omitted.

Proof of Proposition 2. It is similar to the proof of Proposition 1, but the expres-

sions that appear are very long, so for the sake of brevity we will omit them. We

have performed the calculations with the program MATHEMATICA: A notebook file is

avalaible from the authors upon request.

Proof of Proposition 3. Again, the procedure is analogous to that of Propositions 1

and 2. The expressions which appear are very long and for the sake of brevity we will

omit them. A MATHEMATICA notebook with the calculations is available from the

authors upon request.

Proof of Proposition 4. It is an application of standard results, see Theorem 2.5.1

and Example 2.5.1 of Myint-U and Debnath (2007). According to this reference, the

equation
∂f(x, t)

∂t
+ a(t)x

∂f(x, t)

∂x
= −a(t)f(x, t)
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has the associated characteristic equations (loc. cit.)

dt

1
=

dx

a(t)x
=

df

−a(t)f
(30)

Equating the first and second members of (30) we have

dt =
dx

a(t)x
⇔ a(t)dt =

dx

x

and integrating we have that C1 = lnx −
∫ t

0
a(s) ds is the first associated family of

characteristic curves of the system, where C1 is a constant. Equating the second and

third members of (30), we have

dx

a(t)x
=

df

−a(t)f
⇔ dx

x
= −df

f

and therefore the second family of characteristic curves is C3 = eC2 = xf , where C2 is

a constant and C3 is its exponential. As x > 0 it follows that f > 0 as well, something

that is necessary for a probability density function. Thus, the general solution of the

equation is expressed as an arbitrary function k of the expressions of C1, C3 equated

to zero:

k

(

lnx−
∫ t

0

a(s) ds, xf

)

= 0

and therefore, solving for f (loc. cit.),

f(x, t) =
1

x
j

(

lnx−
∫ t

0

a(s) ds

)

where j is an arbitrary function of its argument (positive and differentiable almost

everywhere).

Proof of Theorem 1. The result is achieved writing the function f4t as follows:

f4t(x, t) = b4(t)(1−H(x− ϵ(t)))e4(t)h(x, ρ(t)) +

b4(t)H(x− ϵ(t))(1−H(x− τ(t)))fSM(x, µ(t), σ(t), α(t)) +

b4(t)H(x− τ(t)) a4(t) g(x, ζ(t))

where H(y) is the Heaviside step function. We apply then the Proposition 4 directly.

First, we deal with the arguments of the Heaviside functions. We have

x− ϵ(t) = eln x−µ(t)eµ(t) − ϵ(t) = eµ(t)(eln x−µ(t) − e−µ(t)ϵ(t))

Thus,

H(x− ϵ(t)) = H(eln x−µ(t) − e−µ(t)ϵ(t))

because eµ(t) > 0 and the Heaviside function depends only on the sign of its argument.

Then, we see that this function is of the form j
(

lnx−
∫ t

0
a(s) ds

)

18 if we choose

18The 1/x factor is included in the distributions that accompany the Heaviside functions. Also, the Heav-

iside function is discontinuous at only one point. However, our composite density functions are continuous

at the threshold switching points.
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µ(t) =
∫ t

0
a(s) ds, and it follows that e−µ(t)ϵ(t) = const. An analogous reasoning for

the Heaviside function with τ(t) yields e−µ(t)τ(t) = const. We move then to the fSM
term. From the definition (2) we see immediately that b4(t)fSM(x, µ(t), σ(t), α(t)) is

of the form 1
xj

(

lnx−
∫ t

0
a(s) ds

)

choosing (consistently) µ(t) =
∫ t

0
a(s) ds, and it

is necessary that σ(t) = const., α(t) = const. and b4(t) = const. Now, we analyze

the lower tail term. Letting aside the b4 factor, which as we have seen must be constant,

we have

e4(t)h(x, ρ(t)) = e4(t)
1

x
xρ(t) = e4(t)

1

x
eρ(t)(ln x−µ(t))eρ(t)µ(t)

thus, in order to have again a function of the form 1
xj

(

lnx−
∫ t

0
a(s) ds

)

it is neces-

sary that µ(t) =
∫ t

0
a(s) ds, ρ(t) = const. and e4(t)e

ρ(t)µ(t) = const. The reasoning

for the upper tail part is analogous, yielding ζ(t) = const. and a4(t)e
−ζ(t)µ(t) =

const.

Proof of Theorem 2. The result is obtained in a similar way as in the proof of

Theorem 1.
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