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Abstract  

 

This paper examines the size performance of Toda-Yamamoto test for Granger causality in 

case of trivariate integrated-cointegrated VAR systems and relatively small sample size. The 

standard asymptotic distribution theory and the residual-based bootstrap approach are 

applied. A variety of types of distribution of error term is considered. The impact of 

misspecification of initial parameters as well as the influence of increase of sample size and 

number of bootstrap replications on size performance of Toda-Yamamoto test statistics is also 

examined.  

The results of conducted simulation study confirm that standard asymptotic distribution 

theory may often cause significant over-rejection. Application of bootstrap methods usually 

leads to improvement of size performance of Toda-Yamamoto test. However, in some cases 

considered bootstrap method also leads to serious size distortion and performs worse than the 

traditional approach based on  distribution.   

 

1. Introduction 

 

The causal relationship (in Granger sense) between some considered variables is one of the 

most important issues in modern economics. The existence of this type of dynamic link 

guarantees that the knowledge of past values of one considered time series is useful in 

predicting current and future values of another one. Since the development of this concept 

(see [7]) a number of studies examining properties of different testing methods have been 

published. One of the first approaches was the standard Wald test based on asymptotic 

distribution theory. The biggest advantage of this method was its simplicity and clarity. 

However, in case of variables which are integrated of order one (I(1)) or cointegrated, the 

standard asymptotic approach turned out to be an improper tool for testing the causal effects. 

These nonstandard asymptotic properties of Wald test were investigated by Granger and 

Newbold (see [8] for some empirical findings) and Philips ([21] - theoretical framework). As 

a cure for this problem the idea of Vector Error Correction Model (see [6] and [9]) was 

developed. Although theoretically it was a useful tool for testing for causality in integrated-

cointegrated VAR systems, the complicated pretesting procedure (estimation of unit roots, 

analysis of cointegration properties, sensitivity for improper lag establishment) turned out to 

be a serious difficulty in empirical applications. 

 Another solution was proposed by Toda and Yamamoto ([22]). This approach ensures 

that asymptotic distribution theory is valid for VAR systems, regardless the order of 

integration of considered variables or the dimension of cointegration space. Furthermore, the 

important advantage of this method is its simplicity since it is just a small modification of 

* AGH University of Science and Technology, Department of Applications of 
Mathematics in Economics. 

1 

 

                                                           



standard Wald test. The absence of pretesting bias made this procedure one of the most 

widely applied approaches in recent economic research. However, when some standard 

assumptions do not hold (especially concerning the distribution of error term) the Toda-

Yamamoto approach is also likely to fail. The application of bootstrap
1
 approach may often 

provide better results since bootstrapping does not strictly depend on model specification.                

 The properties of augmented Wald test in both the asymptotic and bootstrap variant 

were examined by a number of authors in recent years. Dolado and Lütkepohl [4] conducted a 

simulation exercise to examine the power of considered testing method in case of integrated 

VAR model
2
. Their outcomes show that in high dimensional VARs with a small true lag 

length the significant reduction of power of considered causality test may occur, especially for 

small samples. Mantalos [20] conducted similar studies of size and power properties of eight 

versions of the Granger causality test
3
. His findings indicate that standard asymptotic 

approach may often lead to significant size distortion. The application of residual-based 

bootstrap technique usually improves size and power performance of causality tests. Hacker 

and Hatemi [10] examined size properties of TY (Toda–Yamamoto) test for two-dimensional 

VAR systems. In contrast to previously mentioned authors, they also investigated the simple 

ARCH(1) case for error term series, finding that bootstrap technique performed relatively well 

in all cases. On the other hand they restricted the research only to models without 

cointegration. 

This paper is the generalization of previous studies concentrated on investigation of size 

properties of TY test. The simulation study contained in this article (in both asymptotic and 

bootstrap variants) examines three-dimensional integrated and cointegrated VAR models. All 

possible cointegration ranks are also considered. To check the size properties of investigated 

test (also in cases where some standard assumptions do not hold) a variety of distributions of 

error term is applied in DGP (spherical multivariate normal distribution, highly correlated 

error terms, structural break, mixture of distributions, ARCH(2) effect). The impact of 

misspecification of initial parameters is also examined in each case. Finally, the impact of 

increase of sample size (from small to medium) as well as the influence of increase of number 

of bootstrap replications on size performance of TY test is examined in some specific cases. 

To the knowledge of the author, the results of this kind of study of size performance of TY 

test in both asymptotic and bootstrap variant have not been published so far.               

This paper is organized as follows. The next section contains the main research 

hypotheses to be tested by the simulation study. Section 3 provides details on the 

methodology of TY test, specification of VAR models used for simulation purposes and 

considered bootstrap technique. Section 4 contains results of all conducted simulations. 

Section 5 concludes the paper.    

 

2. Main hypotheses  

 

The main objective of this paper is the investigation of size properties of Toda-Yamamoto test 

for Granger causality. First important point that distinguishes this study from the existing 

literature is the use of trivariate VAR model for simulation purposes
4
. Another important 

point is the fact that this paper examines all possible dimensions of cointegration space. As it 

1
 For more details on bootstrap see [5]. 

2
 In [4] the error term is independently drawn from identical multivariate normal 

distribution. 
3
 In [20] the error term was only ( )20,N I  i.i.d.. 

4
 Most of previous papers examine two-dimensional models. In three-dimensional case 

the structure of causal links may be more extended. 
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was already mentioned former studies concentrated on similar topic provided evidence of 

poor performance of modified Wald procedure in case of nonstationary variables. Thus, it 

seems to be reasonable to formulate:  

 

Hypothesis 1 – Toda-Yamamoto test (asymptotic variant) often tends to over-

reject the null hypothesis for integrated and cointegrated VAR systems (with 

various cointegration ranks). 

 

There are some ways to avoid mentioned problem. One of the possibilities is the application 

of bootstrap methods. This approach has been commonly used in recent years despite its 

numerical complexity. Thus, one may be interested in testing the following hypothesis: 

 

Hypothesis 2 – Residual-based bootstrap method usually improves size 

performance of TY test. 

 

In practice the proper specification of VAR model is often difficult to obtain. One of the most 

common problems is the misspecification of lag parameter. Previous studies
5
 show that in this 

case the size performance of TY test (asymptotic variant) may significantly worsen. It may be 

interesting how bootstrap-based technique performs in this case. Therefore, we should test: 

 

Hypothesis 3 – Misspecification of lag parameter in VAR model leads to 

considerable aggravation of size performance of TY only in asymptotic variant. 

 

Despite the fact that bootstrap methods are often a useful tool to overcome problem of size 

distortion in TY test there are some specific cases where this approach may also fail. One 

important point that distinguishes this study from the existing literature is the fact that in order 

to perform suitable simulation a variety of types of error term distribution was used (also 

covering cases where standard assumptions do not hold
6
). Therefore, this paper contains the 

verification of following:   

     

Hypothesis 4 – Residual-based bootstrap is likely to fail in some specific cases 

and therefore should not be used without second thought. 

 

One of the main problems with the application of standard asymptotic distribution theory is 

the sample size. Previous papers provided empirical proof that the increase of sample size 

may significantly improve size performance of TY test
7
. However, this process may strongly 

depend on model specification (especially the error term structure). Thus, it seems to be 

interesting to test the following hypothesis: 

 

Hypothesis 5 – When standard assumptions hold, the increase of sample size 

improves size performance of TY test (asymptotic variant). 

      

In order to apply bootstrap technique researcher must establish number of bootstrap 

replications. In previous papers this number varied significantly (from dozens to hundreds). It 

may be interesting to investigate if change of number of bootstrap replication may lead to 

5
 See [10] and [20]. 

6
 This paper examines possibilities where some standard assumptions about structure of 

considered VAR models and TY methodology are unfulfilled.  
7
 See [4], [10] and [20]. 
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significant improvement of size performance of TY test in some specific cases (namely, cases 

of relatively significant size distortion). This problem may be captured in verification of 

following: 

 

Hypothesis 6 – There is a relationship between number of bootstrap replication 

and size performance of TY test in some specific cases. 

 

In order to test above research hypotheses some simulation study must be performed. In the 

first step the comprehensive analysis of considered methodology and DGP should be 

presented. The next section contains some essential information concerning methodology and 

data.  

 

3. Methodology and Data Generating Process  

 

In this article the Toda–Yamamoto approach for testing Granger causality is considered. This 

method has been commonly applied in recent studies since it is relatively simple to perform 

and free of complicated pretesting procedures. Another issue worth underlying is the fact that 

this method is useful for integrated and cointegrated systems. To understand the idea of this 

type of causality testing consider the following n-dimensional VAR(p) process: 

 

1

p

t i t i t

i

y c A y ε−
=

= + +∑      (1) 

 

where 
1( ,..., )
t t

n

ty y y ′= ,
1( ,..., )nc c c ′=  and 

1, ,( ,..., )
t t n t
ε ε ε ′= 8

 
are n-dimensional vectors and 

1{ }p

i i
A =  is 

a set of n×n matrices of parameters for appropriate lags. The order p of the process is 

assumed to be known. Furthermore, we shall assume that error vector is an independent white 

noise process with nonsingular covariance matrix εΣ  (which elements are constant over 

time
9
). We also assume that the condition 

2

,

s

k tEε
+
<∞  holds true for all k=1,…,n and some 

s>0. The Toda-Yamamoto (see [22]) idea of testing for causal effects is based on estimating 

the augmented VAR(p+d) model (circumflex indicates OLS estimator of specific parameter): 

 

1

ˆ ˆˆ
p d

t i t i t

i

y c A y ε
+

−
=

= + +∑
     

(2)

 
 

The value of parameter d is equal to the maximum order of integration of considered variables 
1,..., n

y y .We say that the k-th element of yt does not Granger-cause the j-th element of yt  

( , {1,..., }k j n∈ ) if there is no reason for the rejection of following hypothesis: 

 

H0:  0s

jk
a =

 
(3) 

8
 In this paper transpose of matrix M

 
is denoted by .M ′  

9
 In this paper cases where these standard assumptions do not hold are also investigated. 
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for s=1,…,p    

 

where 
, 1,...,

s

s pq p q n
A a

=
 =   

for s=1,…,p. According to Toda and Yamamoto [22] the number of 

extra lags (parameter d) is an unrestricted variable since its role is to guarantee the use of 

asymptotic theory. In order to present the test statistics we shall make use of the following 

compact notation (T denotes the considered sample size): 

 

Table 1: Compact notation used to formulate TY test statistics: 

Object Description 

1: ( ,..., )TY y y=  n×T matrix 

1
ˆ ˆ ˆˆ ˆ: ( , ,..., ,..., )p p dD c A A A +=  n×(1+n(p+d)) matrix 

1

1

1

:

...

t

tt

t p d

y

yZ

y

−

− − +

 
 
 
 =
 
 
  

 

 

 

 

(1+n(p+d))×1 matrix, t=1,…,T 

0 1: ( ,..., )TZ Z Z −=  (1+n(p+d))×T matrix 

1
ˆ ˆ ˆ: ( ,..., )

Tδ ε ε=  n×T matrix 

 

The initial point of considered procedure is the calculation of 
ˆ ˆ

:
US

T

δδ ′
=

 
― the variance-

covariance matrix of residuals from unrestricted augmented model (i.e. model (2)). Then we 

can define 
1: ( , ,..., ,0 )p n ndvec c A Aβ ×=  and 1

ˆ ˆ ˆ ˆˆ: ( , ,..., ,..., )p p dvec c A A Aβ +=  where ( )vec ⋅  denotes 

column stacking operator and 0n nd×  
stands for n×nd matrix filled with zeros. Using this 

notation one can write the Toda-Yamamoto test statistics for testing for causal effects between 

variables in yt in the following form: 

 

( ) ( )( )( ) ( )
1

1ˆ ˆTY:
UC C ZZ S C Cβ β

−−′ ′ ′= ⊗
    

(4) 

 

where ⊗  denotes Kronecker product and C is the matrix of suitable linear restrictions. In our 

case (testing for causality from one variable in yt to another) C is p×(1+n(p+d)) matrix which 

elements take only the value of zero or one. Each of p rows of matrix C corresponds to 

restriction of one parameter in β. The value of every element in each row of C is one if the 

associated parameter in β is zero under the null hypothesis and it is zero otherwise. There is 

no association between matrix C and last n
2
d elements in β. This approach allows us to write 

the null hypothesis of non-Granger causality in the following form: 
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H0: 0Cβ ′= .  (5) 

 

Finally we shall note that the TY test statistics is asymptotically 2χ  distributed with the 

number of degrees of freedom equal the number of restrictions to be tested (in our case this 

value is equal to p). In other words TY test is just a standard Wald test applied for first p lags 

obtained from augmented VAR(p+d) model.  

 In order to examine the size properties of the TY test some I(1) models are considered. 

Causality tests are conducted in case of various cointegration ranks. At this place we shall 

once again consider model (1). This process can be rewritten in the following error correction 

form: 

 
1

1

1

p

t t i t i t

i

y c y y ε
−

− −
=

∆ = +Π + Γ ∆ +∑
   

(6) 

where 
1

p

i

i

I A
=

Π=− +∑ and 
1

p

i j

j i

A
= +

Γ =−∑ . To ensure that yt is integrated of order one the following 

assumptions must hold
10

: 

 

 

• The roots of the characteristic polynomial: 

 
2

1 2 det(  ... )p

n p
I A z A z A z− − − −

    
(7) 

 

are either outside the unit circle or equal to one; 

• The matrix Π  has reduced rank r<n and therefore may be expressed as the product 

αβ ′Π=  where α  and β  are n×r matrices of full column rank r; 

• The matrix α β⊥ ⊥′ Γ  has full rank, where 
1

p

i

i

I
=

Γ= − Γ∑  and where α⊥  and β⊥  are the 

orthogonal complements to α  and β . 

 

 

If the first assumption holds then the considered process is neither explosive (roots in the 

unit circle) or seasonally cointegrated (roots on the boundary of the unit circle different from 

z=1, for more details on this issue see Hylleberg, Engle, Granger, and Yoo [14] or Johansen 

and Schaumburg [15]). The second assumption ensures that there are at least p-r unit roots. 

Cointegration occurs whenever r>0 and the number of cointegrating vectors is equal to r. To 

restrict the process from being I(2) we shall assume the last condition because together with 

the second one it ensures that the number of unit roots is exactly p-r.     

10 These assumptions are sufficient to prove so-called Johansen-Granger representation 

theorem (for more details see [16] and [17]).  
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In this paper trivariate VAR models are considered. In each case process described by the 

model is integrated of order one and the parameter p is equal to one. Therefore, we consider 

following VAR(1) model which is used as a DGP: 

     

1t t ty c Ay ε−= + +
   

(8) 

 

where ( )0,01 0,01 0,01c ′=  in all cases and matrix A provides specific cointegration 

properties (see previously presented assumptions). For details about matrices used in 

simulation study explore the following table: 

 

Table 2: Specification of trivariate VAR models considered in this paper: 

Matrix form Properties Symbol 

1 0 0

0 1 0

0 0 1

A

 
 = 
  

 

 

No cointegration 

 

A1 

1 0 0,125

0 1 0

0,5 0,5 0,5

A

− 
 = 
  

 

 

Two cointegrating equations 

 

A2 

0,25 0 0,125

0 1 0

0,75 0 0,875

A

− 
 = 
 − 

 

 

One cointegrating equation 

 

A3 

 

 

Directly form table 2 we can obtain some essential information. Namely, in A2 and A3 

models 3
y  is a causal variable for 1

y . Furthermore, in all considered cases 2
y  does not 

Granger cause 1
y  (this will be our null hypothesis for further analysis of size performance

11
). 

Beside various schemes of algebraic structure some specific distributions of error vectors are 

also examined. At this place it should be noted that in previous studies concentrated on 

similar topics the error term was usually ( )2

10 ,n nN Iσ×  distributed (n stands for considered 

dimension) for some positive σ  (see Hacker and Hatemi [10], Dolado and Lütkepohl
12

 [4] or 

Mantalos [20]). In this paper the size properties of TY test are examined for variety of types 

of time structure of error term
13

. Some fundamental information is contained in the following 

table: 

11
 In three-dimensional VAR model the relationship between y

3
 and y

1
 as well as between 

y
3
 and y

2
 may have indirect impact on links between y

2
 and y

1
. 

12
 In [4] authors also consider case of nonzero covariance between components of error 

term. 
13

 In some considered specifications the standard assumptions for TY method do not hold. 
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Table 3: Models used to generate distribution of error term
14

: 

Distribution of error term Parameters Symbol  

( )2

3 1 30 ,N Iσ×

 

 

1σ=  
 

E1 

( ),N µ Σ  

0

0 ,

0

µ
 
 = 
  

1 0 0

0 1 0,9

0 0,9 1

 
 Σ= 
  

 E2

 

( )2

3 1 1 30 , for 1,...,
2

T
N I tσ× =

 

 

( )2

3 1 2 30 , for 1,...,
2

T
N I t Tσ× = +

 
 

 

1 21, 2σ σ= =  
 

E3 

 

1 2(1 ) ,sN s N+ −
 

 

where: 

 

( )2

1 3 1 1 3~ 0 , ,N N Iσ×

  
( )2

2 3 1 2 3~ 0 , ,N N Iσ×

 

 
( 1) , ( 0) 1P s p P s p= = = = −

 

 

1 21, 3σ σ= = , 

0,7p=  

E4 

2 2

, , , 1 , 20,5 0,1 0,4j t j t j t j twε ε ε− −= + +  

,j t
w  –  i.i.d. N(0,1) 

j=1,2,3 

t=1,…,T 
E5 

 

In this paper beside the standard three-dimensional spherical multivariate normal 

distribution (denoted as E1) the situation where vectors 
2,tε  

and 
3,tε  

are highly correlated (E2) 

is also investigated. In this case the variance-covariance matrix 
US

 
is “nearly singular”, which 

may often lead to problems with application of bootstrap methods (see Horovitz [12] or Chou 

and Zhou [1]). Another specification of the distribution of error term series is related to the 

structural break (E3). It is a well known fact that in this case huge size distortions may occur 

while testing for Granger causality. Another question is whether application of bootstrap 

approach may significantly improve investigated size properties. Fourth examined possibility 

(E4) is related to the idea of mixture of distributions. The last considered DGP for error vector 

(E5) is a simple ARCH(2) model with constant unconditional variance (equal to one). Similar 

type of time dependence structure in error term series was examined by Hacker and Hatemi 

(see [10], authors used ARCH(1) model for VAR (1) and VAR(2) processes).   
 

As a cure for the effect of start-up values 50 presample observations of yt are generated 

for each simulation study. Some of these data points (based on random draw from N(0,1) 

14
  Random draw for error term is always based on i.i.d. variables (normal, discrete 

uniform).  
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distribution) are used as the initial observations for VAR models. To make the results of 

presented research more comparable the same random draw from N(0,1) distribution is also 

used for every type of the error term analyzed. Namely, to create 
2 2, 1,...,( )

t t T
E E ==  series the 

following transformation of 
1 1, 1,...,( )

t t T
E E ==  series is applied: 

 

2, 1,t t
E ZE=

   
(9)

 

 

where t=1,…,T and ZZ ′=Σ  (Cholesky decomposition). The values of 1E  series are also used 

in process of generation of 
4E
 
series and 

3E
 
series (for first 

2

T
 observations). In order to 

generate 5E
 
series initial observations are once again drawn from N(0,1) distribution and 

( )1, 2, 3, 1,t t t t
w w w E′=

 
for t=1,…,T. 

To examine the size properties of considered test a set of simulated observations is 

generated each time (using model (1) with specific 
iA  and

j
E ) and the TY test statistics is 

calculated to test the hypothesis that 2
y  does not Granger cause 1

y . Typical significance 

levels (namely, 1%, 5% and 10%) are considered and both the asymptotic distribution theory 

(as noted by Toda and Yamamoto) and a residual-based bootstrap approach are used to get 

suitable critical values. 

Let me now discuss shortly bootstrap methods used in this paper. All bootstrap 

simulations conducted for the use of this article are based on resampling leveraged residuals. 

The application of leverages is the simple modification of regression raw residuals which 

helps to stabilize their variance
15

. First considered augmented VAR model (2) is estimated 

through OLS methodology with the null hypothesis assumed (that is: 2
y  does not Granger 

cause 1
y ). In the next step regression raw residuals are transformed with the use of leverages 

(modified residuals will be denoted as 1,...,
ˆ{ }m

i i Tε = ). Finally, the following algorithm is 

conducted: 

 

• Draw randomly with replacement (each point has probability measure equal to 
1

T
) from 

the set 1,...,
ˆ{ }m

i i T
ε =  (as a result we get  the set 

**

1,...,
ˆ{ }

i i Tε = ); 

• Subtract the mean to guarantee the mean of bootstrap residuals is zero (this way we 

create the set 
*

1,...,
ˆ{ }i i Tε =  , such that 

**

,

1* **

, ,

ˆ

ˆ ˆ , 1,..., , 1,2,3

T

k j

j

k i k i
i T k

T

ε
ε ε == − = =

∑
); 

15 For more details on this issue see Davison and Hinkley [3] and Hacker and Hatemi [10]. 
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• Generate the simulated data 
*

1,...,{ }i i Ty = through the use of original data (
1,...,{ }

i i T
y = ), 

coefficient estimates from the regression ( 1,...,
ˆˆ,{ }i i p dc A = + ) and the bootstrap  

residuals 
*

1,...,
ˆ{ }i i Tε = ); 

• Calculate the TY test statistics. 

 

After repeating this procedure N=250 times it is possible to create the empirical distribution of 

TY test statistics and get empirical critical values (bootstrap critical values) next. The suitable 

procedure (which allows to conduct every type of simulation presented in this article) written 

in Gretl is available from the author upon request. 

 

4. Empirical results 

 

In this section results of conducted causality tests are presented. The following tables contain 

the rejection rates obtained while testing the null hypothesis in TY test with the application of 

both standard asymptotic distribution theory and residual-based bootstrap approach. In recent 

years the problem of establishment of adequate significance levels for diagnostic applications 

has been intensively discussed. Some researchers recommended relatively large levels  

(Maddala [19]) while others argued that typical values are the best choice (MacKinnon [18]). 

As it was already mentioned in this article typical significance levels are considered. Thus the 

results of presented simulations are more comparable with the similar research conducted by 

Hacker and Hatemi [10] and Mantalos [20]. To judge whether empirical rejection rates are 

significantly different from considered nominal sizes for each significance level the 95% two-

sided confidence intervals were created by the following expression: 

 

(1 )
2

r

Ts Ts
Ts

N

−
±

   

(10)
 

 

where Ts denotes considered nominal size (1%, 5%, 10%) and Nr=1000 stands for number of 

repetitions
16

. This is how the intervals [0,4%;1,6%], [3,6%;6,4%], [8,1%;11,9%] were 

established for 1%, 5% and 10% significance levels respectively.
 
This approach leads to the 

criteria of bad performance, namely, actual test size is significantly distorted whenever it lies 

outside the suitable confidence interval. In the following tables these findings are indicated by 

shaded areas. In each case the parameter d (maximal order of integration of considered 

variables) is equal to one (properly specified). For tables 4-9 the considered sample size is 

T=40 (small sample size). 

First we shall focus on cases where parameter p was chosen properly. Suitable results 

are contained in tables 4 – 6: 

 

 

16
 Nr=1000 was also used in [4], [10] and [20]. Considered type of confidence intervals 

was used in [4] and [20]. 
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Table 4: Size of TY test for Granger causality – no-cointegration case: 

Algebraic  

structure 

Distribution  

of error term 
Lag p 

2χ  distribution Bootstrap distribution 

1% 5% 10% 1% 5% 10% 

A1 

E1 1 1,7% 6,1% 13,2% 0,8% 4,6% 10,9% 

E2 1 1,9% 5,6% 11,6% 0,4% 2,9% 7,7% 

E3 1 7,7% 15,3% 20,6% 2,8% 7,4% 10,8% 

E4 1 1,7% 7,8% 12,4% 0,6% 4,2% 9,6% 

E5 1 1,4% 6,5% 11,2% 0,8% 5,2% 9,1% 

 

Table 5: Size of TY test for Granger causality – case of two cointegrating vectors: 

Algebraic  

structure 

Distribution  

of error term 
Lag p 

2χ  distribution Bootstrap distribution 

1% 5% 10% 1% 5% 10% 

A2 

E1 1 0,8% 3,5% 10,8% 0,9% 4,8% 9,9% 

E2 1 1,2% 5,5% 14% 1% 4,9% 11% 

E3 1 5% 14% 25% 3,6% 8,9% 18% 

E4 1 1,9% 6,7% 14% 1,1% 5,3% 12% 

E5 1 1,5% 6,8% 11% 1,1% 4,7% 10,5% 

Table 6: Size of TY test for Granger causality – case of one cointegrating vector: 

Algebraic  

structure 

Distribution  

of error term 
Lag p 

2χ  distribution Bootstrap distribution 

1% 5% 10% 1% 5% 10% 

A3 

E1 1 1,2% 7,4% 11,5% 0,9% 6,1% 10,6% 

E2 1 2,6% 5,8% 14,7% 0,2% 2,1% 5,2% 

E3 1 6,7% 11,6% 26% 2,4% 5,9% 11,4% 

E4 1 2,5% 8% 15,6% 0,8% 4,7% 10,6% 

E5 1 1,5% 5,9% 12,6% 0,7% 4,2% 9% 

 

After analyzing results contained in table 4 one can easily see that asymptotic 

distribution theory was found to cause serious size distortions in almost all cases. The largest 

distortions were indicated in case of structural change in error term distribution (E3). 

Furthermore, it should be noted that whenever critical values were taken from suitable 2χ  
distribution the over-rejection was indicated, which seems to prove that Hypothesis 1 is true.  

The application of bootstrap method improved the size properties of TY test for all 

significance levels in case of E1, E4 and E5 distribution. These results provided strong basis for 

claiming that Hypothesis 2 is also true. Although the significant over-rejection was still found 

for E3 error distribution (except 10% level), size distortions were much smaller than in non-

bootstrap approach. However, one must note that bootstrap test was found to under-reject the 

null hypothesis in case of E2 distribution, which led to significant size distortions for 5% and 

10% significance levels (even worse performance than for 2χ  distribution). The outcomes 

obtained by Hacker and Hatemi [10] in corresponding research conducted for similar two-
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dimensional cases (A1 model, E1 and E5 error term) are in line with results presented in  

table 4.    

The outcomes contained in table 5 and 6 also lead to some interesting regularities and 

provide no significant reason for rejection of Hypothesis 1 or Hypothesis 2. Firstly, they 

confirmed the hypothesis that TY test based on asymptotic distribution theory tends to over-

reject the null hypothesis also when there exist cointegration between considered variables
17

. 

Secondly, they provided basis for claiming that the application of bootstrap methods leads to 

reduction of actual test size in comparison to asymptotic method. However, this reduction is 

still insufficient for A2 algebraic structure and E3 error distribution scheme (still over-

rejection) and too intensive for A3 and E2 case (under-rejection, worse performance in 

comparison to 2χ  distribution on 5% and 10% significance levels).     

 In practice it is often difficult to establish the lag parameter properly before estimating 

VAR model. Despite the variety of econometric methods (AIC, BIC, FPE information 

criteria, more recent Hatemi’s [11] criterion) many researchers are still struggling to decide 

what value of lag length chose for further analysis. In the context of our investigation this 

problem was examined by the repetition of all causality tests in case of misspecified value of 

parameter p (set at the level of 2). For clarity it should be mentioned that true DGP was 

unchanged. The results are shown in tables 7-9: 

Table 7: Size of TY test for Granger causality – no-cointegration case, misspecified  

parameter p  

Algebraic  

structure 

Distribution  

of error term 
Lag p 

2χ  distribution Bootstrap distribution 

1% 5% 10% 1% 5% 10% 

A1 

E1 2 2,1% 10,6% 16% 0,9% 4,5% 10,2% 

E2 2 1,8% 6,5% 13,5% 0,8% 3,1% 7,1% 

E3 2 9% 19% 33% 4,5% 9,1% 18,5% 

E4 2 1,8% 9% 15,5% 0,9% 4,6% 9,5% 

E5 2 1,4% 4,6% 14% 0,7% 4,1% 9,3% 

 

Table 8: Size of TY test for Granger causality – case of two cointegrating vectors, 

misspecified parameter p 

Algebraic  

structure 

Distribution  

of error term 
Lag p 

2χ  distribution Bootstrap distribution 

1% 5% 10% 1% 5% 10% 

A2 

E1 2 1,3% 6,1% 12,8% 1,2% 4,6% 9,4% 

E2 2 1,4% 7,2% 13,6% 0,8% 4,8% 9,6% 

E3 2 8,5% 20% 27% 6,1% 14% 19,7% 

E4 2 2,8% 6,8% 17,1% 0,8% 4,8% 13,4% 

E5 2 2,1% 8,4% 12,7% 1,1% 5,6% 9,7% 

 

17
 In [4] and [20] cointegration rank is no greater than one. 
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Table 9: Size of TY test for Granger causality – case of one cointegrating vector, 

misspecified parameter p 

Algebraic  

structure 

Distribution  

of error term 
Lag p 

2χ  distribution Bootstrap distribution 

1% 5% 10% 1% 5% 10% 

A3 

E1 2 1,4% 6,3% 14,1% 0,9% 4,8% 10,3% 

E2 2 3,9% 8,2% 14,8% 0,1% 1,9% 5,1% 

E3 2 7,6% 13,6% 29% 3,9% 8,3% 14,7% 

E4 2 2,8% 9,2% 17,6% 1,1% 4,4% 11,3% 

E5 2 2,2% 8,5% 13,9% 0,8% 4,6% 9,5% 

 

It seems to be obvious that results contained in tables 7-9 should be analyzed together 

with corresponding outcomes from previously presented cases (contained in tables 4-6 

respectively). After analyzing results contained in table 7 (no-cointegration case) one can 

easily see that standard approach (based on 2χ  distribution) causes even stronger over-

rejection (higher rejection rates and more shaded areas) than in corresponding case (table 4). 

On the other hand the results obtained with application of bootstrap method belong to suitable 

confidence intervals in all except for one case (in comparison to corresponding case). For 

model with two cointegrating vectors (A2) the actual test size (case of 2χ  distribution) is too 

high in all except for 3 cases. This means that misspecification of parameter p considerably 

worsens size performance of TY test. Furthermore, actual size of bootstrap test was found to 

lie outside confidence interval for exactly the same combination of considered significance 

levels and error term schemes like in corresponding case (table 5). The standard asymptotic 

approach was also found to cause serious over-rejection for A3 structure in almost all cases. 

On the other hand actual test size based on bootstrap method was distorted only for E2 (under-

rejection) and E3 (over-rejection) case. In general, size performance of TY test worsened 

significantly only for asymptotic variant, which allows us to claim that Hypothesis 3 is true. 

Furthermore, the results contained in tables 4-6 as well as in tables 7-9 strongly indicate that 

Hypothesis 4 is also true (see results obtained for E2 and E3 case).         

Additionally, to examine the size performance of TY test in both considered variants 

causality tests were conducted for longer sample. One should expect standard asymptotic 

approach to perform relatively better in this case. Suitable tests were conducted for sample 

size T=100 and no-cointegration model with parameter p=1 and p=2 
18

. For comparability 

with previous results (obtained for T=40) first 40 data points were exactly the same. Once 

again the true value of parameter d was assumed to be known. The results are presented in 

table 10. For clarity it should be noted that values in parentheses denote the rejection rates 

obtained in similar investigation conducted for small sample (T=40): 

 

18 In [10] considered sample size is also equal to T=40 (small sample) and T=100 
(medium sample). 
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Table 10: Impact of increase of sample size on size properties of TY test for Granger 

causality – no-cointegration case 

 

Algebraic  

Structure 

Distribution  

of error term 
Lag p 

2χ  distribution Bootstrap distribution 

1% 5% 10% 1% 5% 10% 

A1 

E1 1 1,1% 

(1,7%) 

6,2% 

(6,1%) 

12% 

(13,2%) 

0,9% 

(0,8%) 

4,2% 

(4,6%) 

9,5% 

(10,9%) 

E1 2 1,3% 

(2,1%) 

5,6% 

(10,6%) 

13,5% 

(16%) 

1,1% 

(0,9%) 

4,9% 

(4,5%) 

10,3% 

(10,7%) 

 

The analysis of above table confirmed the hypothesis that size properties of TY test for 

Granger causality are improving with the increase of sample size. Although for 10% 

significance level the actual size of tests still lies outside the 95% confidence interval, the 

increase of sample size moved actual size closer to the nominal one. Furthermore, the actual 

size of bootstrap tests was again found to lie in suitable confidence intervals in all cases. On 

the other hand it should be noted that for other considered distributions of error term  

(
2 3 4 5
, , ,E E E E ) such significant improvement of size performance was not found in considered 

algebraic specification (
1

A ). All these facts confirm that there is no significant reason for the 

rejection of Hypothesis 5.   

One of the initial arbitrary decisions in every bootstrap application is the establishment 

of number of replications. In previous research concentrated on similar investigation this 

value varied significantly. Horovitz [13] used 100 replications, Mantalos [20] ― 200, Hacker 

and Hatemi [10] ― 800 while Davidson and MacKinnon [2] used 1000 replications to create 

bootstrap distribution each time. Increase of number of replications may often have important 

impact on improvement of performance of TY test size. However in some situations bootstrap 

methods are likely to fail, regardless the number of replications used (see Horovitz [12]). This 

paper takes part in the discussion of mentioned problem as it contains results of some 

simulations based on different number of bootstrap replications. The investigation covers two 

specific cases in which the size distortion of bootstrap distribution was relatively largest and 

far away from 95% confidence intervals (namely, high correlation and structural change 

cases). It should be noted that for the comparability with previously presented outcomes 

(conducted for 250 bootstrap replications) the same series of random numbers were used to 

generate the data. Therefore, the actual size of TY test conducted with application of 2χ  

distribution was unchanged. Parameter d was again assumed to be known (d=1). The 

examined number of bootstrap replications was denoted by N. Table 11 contains results of 

suitable simulations: 
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Table 11: Size of TY test for Granger causality – different number of bootstrap replications in 

specific cointegrated systems 

Algebraic 

structure 

Distribution 

of error term 
Lag p 

2χ  distribution Bootstrap distribution 
N 

1% 5% 10% 1% 5% 10% 

A2 E3 2 8,5% 

 

20% 

 

27% 

9,1% 19,6% 24% 100 

5,2% 16,3% 22,1% 200 

6,1% 13,5% 20,1% 300 

A3 E2 2 3,9% 8,2% 

 

14,8% 

 

0% 3% 3,4% 100 

0,5% 2,5% 5,5% 200 

0,6% 1,2% 3,5% 300 

 

 

Results contained in table 11 confirmed that the increase of number of bootstrap 

replications caused decrease of actual test size for A2 model on 5% and 10% significance 

levels. However, the intensity of this process turned out to be insufficient and actual size still 

lied outside confidence intervals in all cases. The similar effect (decrease of actual size) was 

found for A3 model on 5% significance level, but this time the size performance had worsened 

while N increased. Finally, it should be noted that for A3 model the actual size was found to 

grow with an increase of N on 1% significance level (relatively good performance was found 

for N=200 an N=300 replications).  Summarizing, these outcomes provided no clear evidence 

of whether Hypothesis 6 is true or false. However, they provided strong basis for claiming 

that Hypothesis 4 is indeed true.  

 

5. Concluding remarks 

 

The aim of this paper was to examine the size properties of Toda-Yamamoto test for 

Granger causality in case of relatively small sample size. The simulation study was conducted 

for integrated order-1 trivariate VAR models, a variety of distribution of error vector was also 

considered during computation. In order to perform suitable research both the standard 

asymptotic distribution theory as well as the residual-based bootstrap technique were used. 

The results of conducted simulation study in case of properly specified lag parameters 

indicate that standard asymptotic approach causes significant over-rejection in almost all 

considered cases. The application of residual-based bootstrap method improved the size 

performance of TY test, however, in the case of structural break and high correlation the 

actual size was still far away from nominal one. 

The misspecification of lag parameter caused much worse performance of TY test when 

asymptotic theory was applied. In general the performance of the bootstrap method has not 

worsened in such significant way.  

The results contained in this paper support the hypothesis that asymptotic distribution 

theory performs better for longer time series. However, except for the case of spherical 

multivariate normal distribution of error term, this type of significant improvement has not 

been observed. Furthermore, test results obtained in cases of high size distortion of bootstrap-

based technique brought no clear suggestion about the relationship between number of 

bootstrap replications and actual size of test. 
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The outcomes contained in this article should be useful tips for other researchers using 

considered variants of Toda-Yamamoto test in their practical applications. The presented 

results ensure that bootstrap based on leveraged residuals is often an effective tool for 

Granger causality testing which allows avoiding the problem of over-rejection of the 

considered null hypothesis. However, conducted simulation study confirms that this method 

cannot be used without a second thought since it is likely to fail for specific models.      
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