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Abstract

This research aims to construct a model for pricing counterparty credit

risk (CCR) for synthetic collateralized debt obligation (CDO) tranches by

considering the relationship between the counterparty and the credit port-

folio. A stochastic intensity model is adopted to describe the default event

of the counterparty, and a two-factor Gaussian copula model is applied to

account for the relationship between the counterparty and underlying credit

portfolio. By analyzing the data of CDX NA IG index tranches, we find

that the relationship has a significant influence on the credit value adjust-

ment (CVA) for index tranches and, hence, that it should not be ignored

when a contract is initiated. In addition, we discover that the influence has

opposite effects and asymmetrical magnitude with respect to the protection

buyers and protection sellers.
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1 Introduction

Not until the financial tsunami burst in July 2007 did multi-name credit deriva-

tives, such as collateralized debt obligations (CDOs), lose their popularity. Since

then, CDOs have become one of the targets of public criticism for the subprime

mortgage crisis. Watson (2008) gave a detailed review on the origins of this crisis

and mentioned the dark side of such securitized products. Both market practition-

ers and regulators are seeking to find safer ways to trade such over-the-counter

products. Predicting default probabilities by using refined credit-risk models is

a commonly discussed potential solution (see, for example, Chen, Liao, and Lu,

2011).

Among several solutions that have been suggested, managing counterparty

credit risk (CCR) may be the most crucial one. The CCR of a derivative product

refers to the risk that the counterparty will fail to fulfill the obligation specified

by his contract. In the case of synthetic CDOs, the protection buyer, who com-

mits periodic payments and an upfront fee, and the protection seller, who offers

protections for a portfolio of credit default swaps (CDSs) that are within a certain

tranche, are counterparties with respect to each other.

An old Chinese saying goes, “Even brothers keep careful accounts.” Handling

CCR is definitely the most sophisticated way to keep CDOs actively trading in

the market without throwing out the baby with the bathwater. Much research has

been devoted to pricing derivatives with CCR. By using the barrier model, Hull

and White (2000) evaluated CDS contracts with counterparty risk. Jarrow and

Yu (2001) built a correlated intensity model to describe CCR and investigated its

impact on defaultable security pricing. With a firm-value-based default barrier

model, Brigo and Tarenghi (2004) priced CDS and equity swap under CCR. Ap-

plying the approach mentioned by Collin-Dufresne et al. (2002), Leung and Kwok

(2005) priced CDS contracts with counterparty risk.

Another approach called “credit value adjustment” (CVA) has drawn lots of

academic attention in recent years. According to Zhu and Pykhtin (2007), CVA,

which is the portfolio value difference between the risk-free evaluation and the

CCR-considered evaluation, can be used to represent the market value of CCR.

In addition to CCR in CDS, Brigo and Masetti (2006) discussed how to deal
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with CCR in interest-rate swaps and equity-return swaps. Studies that use CVA

to handle CCR in other financial assets can be found in Brigo, Pallavicini, and

Papatheodorou (2009) on interest-rate swaps and Brigo and Bakkar (2009) on

energy and commodity products.

However, little literature is available on the pricing of CCR in synthetic CDO

tranches. This may be because any correlation is more difficult to identify and

even harder to cope with when it comes to cases of multi-name products. The

purpose of this study is to bridge the gap in pricing CCR in over-the-counter

synthetic CDOs. It should be noted that in order to simplify things, we assume

the party who computes the CVA is default free (i.e., we consider a unilateral

case of CCR). Note that such an analysis can be viewed as approximate to the

situation where the party has much better credit quality than the counterparty.

The dependence between the underlying credit portfolio and the counterparty is

the key risk factor modeled in our framework.

In our framework, a stochastic intensity model is adopted to characterize the

default event of the counterparty. To give a detailed analysis of the impact of

this relationship, we introduce a two-factor Gaussian copula model to account for

this relationship between the counterparty and the underlying credit portfolio.

The additional risk factor in the copula model represents the credit quality of the

counterparty. We assume a correlation between this additional risk factor and the

original common factor (i.e., factor correlation) to detect dependence risk.

We analyze the case of the CDX NA IG index tranches to show the applications

of our theoretical results. Practically, people would not classify an index tranche

as a tranche of a synthetic CDO. While the former is a standardized insurance

contract and not funded by a portfolio of CDSs, the latter is a credit-linked note

and funded. Nevertheless, the cash flow of an index tranche is the same as the

corresponding synthetic CDO tranche, and they can be priced by following the

same rule (see, for example, Hull and White, 2004; Wang, Rachev, and Fabozzi,

2006; Hull, 2009).

In our study, we find that dependence has a relevant impact on CVA. This

impact is analyzed by changing values of factor correlation across different tranches

by means of some numerical examples. In addition, we find that the impact
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is different for protection buyers and protection sellers. For protection buyers,

the correlation has a negative impact on CVA, and therefore, they have no need

to worry about wrong-way risk. For protection sellers, on the other hand, the

correlation has a positive impact on CVA. Because they are exposed to wrong-way

risk when selling protection on equity tranches, they have to handle counterparty

risk more carefully. Therefore, we wish to emphasize that the relationship between

the underlying credit portfolio and the counterparty has a significant effect on CVA

for synthetic CDO tranches and should not be ignored.

The organization of this paper is as follows: In section 2, the general valuation

formula of unilateral CCR is reviewed. In section 3, a theoretical framework that

includes the intensity model for default of the counterparty and the copula model

for the underlying credit portfolio is described. Section 4 features an application

of the theoretical model to solve CVA in synthetic CDO. In sections 5 and 6,

model calibration and numerical examples are illustrated, and in the final section,

we present our conclusions.

2 Arbitrage-Free Pricing of Counterparty Credit

Risk

In this section, we briefly review the general pricing theory of CCR. It is

worth mentioning at the onset that whether or not the party valuing CCR takes

his own credit risk into consideration will lead to different values of CCR. If the

party regards himself as default free, the CCR valuation is said to be unilateral;

otherwise, it is said to be bilateral. Throughout this study, we consider the case

of unilateral CCR. For a discussion of general bilateral CCR pricing, please refer

to, for instance, Brigo and Capponi (2009) and Gregory (2009).

In what follows, we act as the default-free investor so that the results de-

rived below are from the investor’s viewpoint. We define τC as the default time

of the counterparty, and we suppose that we are in a filtered probability space

(Ω,G,Gt,Q). The filtration Gt comprises all information available up to time t,

and Ft ⊂ Gt, a complete and right-continuous filtration, denotes the default-free

information set. Q is the risk-neutral probability measure.
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Suppose we enter into a derivative contract that has a final maturity T . In the

situation where τC > T , there is no default on the contract, and the obligation

is fulfilled. Where τC < T , the counterparty fails to make payments to the in-

vestor. When the counterparty defaults prior to the final maturity, we assume the

following situation. At the default time τC , the net present value (NPV) of the

remaining cash flows that would be received if the counterparty had not defaulted

is calculated. Whenever the NPV is negative with respect to the investor (and,

correspondingly, positive to the counterparty), this amount is completely paid by

the investor. On the other hand, where the NPV is positive with respect to the

investor (and, thus, negative with respect to the counterparty respectively), the

NPV is partially received as the recovery fraction RECC .

ΠD(t, T ) denotes the theoretical discounted payoff of the financial contract,

and Cashflow(u, s) denotes discounted total cash flows at time u without default

between u and s. NPV (τC) denotes the expected discounted cash flow conditional

on all information available up to τC , so that NPV (τC) := EτC [Cashflow(τC , T )]

and

ΠD(t, T ) = I(τC>T )Cashflow(t, T )

+ I(τC<T )[Cashflow(t, τC)

+D(t, τC)
(

RECC [NPV (τC)]
+ − [−NPV (τC)]

+
)

], (1)

where Et[ , ] denotes the expectation conditioning on all information up to t under

the risk-neutral probability measure, and I( , ) is the indicator function. D(u, s)

is the stochastic discount function at u for maturity s. Notice that this is the

general discounted payoff formula for defaultable financial contracts. The first

term on the right-hand side of the equation is the total discounted cash flow

received, contingent on there not being any default prior to maturity. When an

early default occurs, the payments before the default are received (second term),

and a recovery fraction is received in the case of positive residual NPV (third

term). If, however, the residual NPV is negative, it is completely lost (the last

term). Please note that the expression will reduce to risk-neutral pricing payoff

when the CCR is not considered.

Brigo and Masetti (2006) derive the formula for defaultable security pricing,
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and we summarize their results in the following theorem.

Theorem 2.1. The time t price of a defaultable financial contract with final

maturity T assuming that the counterparty has not defaulted before t is

Et

(

ΠD(t, T )
)

= Et (Π(t, T ))

− (1−RECC)Et

(

I(t<τC<T )D(t, τC)[NPV (τC)]
+
)

,
(2)

where Π(t, T ) is the default-free discounted payoff when counterparty risk is not

taken into account, and the recovery rate RECC is assumed to be deterministic.

The price subject to counterparty risk is the default-free price minus a call option

with zero strike written on the residual NPV giving nonzero values only if τC < T .

For a rigorous proof of this theorem, please see Brigo and Masetti (2006).

The additional amount of the default-free discounted payoff to the discounted

payoff with potential counterparty risk is the default option of the counterparty.

It can be viewed as the price of counterparty risk, and it is often referred to as

counterparty credit risk credit value adjustment (CCR-CVA, or CVA for short). It

is always nonnegative, and it represents the cost of accessing the transaction. Fur-

thermore, we should emphasize that the residual NPV should be calculated based

on information of both market quantities and default event of the counterparty.

This is critical in the situation where the dependence of the payoff on counterparty

credit quality is significant. Such dependence is the so-called “wrong/right-way

risk”.

Note that the CVA can be rewritten as:

CV A(t, T ) = LossCEt

(

I(t<τC<T )D(t, τC)[NPV (τC)]
+
)

= LossC

∫ T

t

Et

(

D(t, u)[NPV (u)]+|τC = u
)

duQ(τC ∈ [t, u]). (3)

where LossC = 1−RECC . In this expression, the term in the integral is computed

based on all information of market quantities up to t and the knowledge that

the counterparty will default at some future time u. If we assume independence

between exposure and the counterparty’s credit quality, equation (3) can be further

simplified as

CV A(t, T ) = LossC

∫ T

t

Et

(

D(t, u)[NPV (u)]+
)

duQ(τC ∈ [t, u]). (4)
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In this case, the term being integrated is called expected exposure, and it is in-

dependent of the counterparty’s credit quality. This independence simplifies the

calculation of CVA, but such a simplification may prove dangerous where the de-

pendence between the payoff and counterparty is too significant to be ignored.

Therefore, for the purpose of this study, we have not simplified our calculation in

this manner.

3 The Modeling Framework

In order to calculate the CVA for synthetic CDO tranches, we have to model

not only the default probabilities of those credits in the credit portfolio underlying

the contract that takes account of the counterparty’s credit quality, but also the

counterparty itself. We have constructed an intensity model and the two-factor

Gaussian copula model for the counterparty and the underlying credit portfolio

respectively. The intensity model is stochastic, and a deterministic function is

added on in order to fit market implied survival probabilities. On the other hand,

the two-factor Gaussian copula model, compared to a traditional one-factor case,

makes use of an additional risk factor to capture the effect of the counterparty’s

credit quality.

3.1 The Shifted Stochastic Intensity Model

In this subsection, we assume default to be a random event that can be

characterized by a Poisson process with stochastic intensity. We use Mt to denote

the Poisson process with stochastic intensity γt, and we define the counterparty

default time τC as the first jump time of the process so that:

τC := inf
t
{Mt > 0}. (5)

Let us now construct the intensity process. We assume γt is Ft adapted ( i.e.,

γt is non-random conditional on the filtration Ft) and denote by Dt the filtration

generated by γ up to time t. In other words, Dt = σ({γs; s ≤ t}). We assume that
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γ is driven by the following stochastic system:

γt = β(t;κ, µ, ν, λ0) + λt,

dλt = κ(µ− λt)dt+ ν
√

λtdWt,
(6)

where β(, ) is a deterministic function of time and the parameter vector (κ, µ, ν, λ0),

and it is assumed to be positive and integrable. Wt represents one-dimensional

Brownian motion under the risk-neutral probability measure Q. This model is

sometimes referred to as the “Shifted Squared Root Diffusion” (SSRD) or “Shifted

Cox, Ingersoll and Ross” (CIR++) model (see, for example, Brigo and Mercurio

(2006)). With this model, we can derive the time t risk-neutral survival probability,

that is, the probability that the counterparty will not default prior to some future

time T , given the information available up to time t. The formula that conveys

this can be rendered more precisely, as follows:

Q(τC > T |Gt) = I(τC>t)Et

[

I(τC>T )

]

= I(τC>t)Et [Q(τC > T |DT )]

= I(τC>t)Et

[

exp

(

−
∫ T

t

γudu

)]

= I(τC>t) exp

(

−
∫ T

t

β(u;κ, µ, ν, λt)du

)

Et

[

exp

(

−
∫ T

t

λudu

)]

= I(τC>t) exp

(

−
∫ T

t

β(u;κ, µ, ν, λt)du

)

Survival(t, T ), (7)

where Survival(t, T ) is the time t survival probability formula for the non-shifted

CIR model. The formula can be solved analytically as follows:

Survival(t, T ) = Survival(t, T ;κ, µ, ν, λt) = A(t, T )e−L(t,T )λt , (8)

where

L(t, T ) =
2(exp[h(T − t)]− 1)

2h+ (κ+ h)(exp[h(T − t)]− 1)
,

A(t, T ) =

(

2hexp[(κ+ h)(T − t)/2]

2h+ (κ+ h)(exp[h(T − t)]− 1)

)
2κµ

ν2

,

h =
√
κ2 + 2ν2.

The above formula enables us to define the cumulative distribution function for

the default time HC( , ) under the risk-neutral probability measure as follows:
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HC(T ) = 1 − Q(τC > T |G0). In the two-factor copula model that we will detail

in the next subsection, this is a key factor in capturing the counterparty credit

quality. Note further that we only need to compute
∫ T

t
β(u;κ, µ, ν, λt)du. rather

than β(u;κ, µ, ν, λt) itself. This will reduce the computation dramatically.

3.2 The Two-Factor Gaussian Copula Model

Let us consider a credit portfolio consisting of M reference credits, and let us

use τi to denote the default time of the i-th credit. We assume the credit pool

is homogeneous, i.e., the reference credits are identical. Similar to our method of

proceeding in the previous subsection, we assume τis to be the first jump time of

the Poisson process Mi(t) with stochastic intensity ht, and we assume ht to follow

the square-root process:

dht = α(θ − ht)dt+ σ
√

htdW
i
t , (9)

where W i
t is a one-dimensional Brownian Motion under the risk-neutral proba-

bility measure Q. It is independent of Wt in equation (6), and for i 6= j, W i
t is

independent of W j
t . We can solve the risk-neutral survival probability for credit

i by equation (8) and define H( , ) as the common risk-neutral cumulative dis-

tribution function conditional on all current available information of τi for all i,

which implies that the random variable Ui = H(τi) is uniformly distributed. To

construct the dependence structure of default times, we can then introduce the

two-factor model:

Xi = a× F + b× C +
√

1− a2 − b2 − 2ρab× Zi, (10)

where we assume a and b to be bounded by the interval [-1,1] and (F,C) to

be common among all reference credits that are bivariate normally distributed

with zero mean, unit variance and correlation coefficient ρ. For i = 1, ...,M ,

Zi are a sequence of independent and identically distributed standard normal

random variables that are uncorrelated with common factors F and C. To connect

marginal default time distributions, we adopt the following copula function C( , ):

C(u1, u2, ..., uM) = ΦM

(

Φ−1(u1),Φ
−1(u2), ...,Φ

−1(uM)
)

. (11)
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Here, ΦM( , ) denotes the M -dimensional cumulative normal distribution function

with mean zero, variance one and pairwise correlation ρX = a2 + b2 + 2ρab. Φ( , )

denotes the univariate standard normal cumulative distribution function. This

means that we can map the marginal distributions to the joint distribution through

a multivariate normal correlation structure. The joint distribution of the default

times can thus be:

Q(τ1 < t1, ..., τM < tM) = ΦM

(

Φ−1[H(t1)], ...,Φ
−1[H(tM)]

)

. (12)

This dependence structure is quite intuitive; the defaults of two underlying

credits are related by the two common factors that can be interpreted as the

macroeconomic factor and the variable representing the counterparty’s credit qual-

ity.

It is easy to check that Xi is standard normally distributed, and the correlation

between different Xis is ρX , which is the default correlation between two under-

lying credits. Furthermore, the default correlation between the counterparty and

underlying credits can be computed as the correlation between Xi and C, which

is aρ + b. It is always bounded by the interval [−1, 1] to reveal the fact that one

should not be perfectly correlated with some portfolio due to the diversification

effect.

The distribution introduced above turns out to be sufficient for the multi-name

default swaps and basket product valuation. However, when it comes to pricing

derivatives depending on the default rate fluctuation, for instance, n-th to default

swap or CDO tranches, we should further specify the default rate distribution at

any time horizon.

In order to make this clearer, let us consider the example of a derivative product

whose payoff depends on the default rate at some future time horizon T . According

to the risk-neutral pricing theory, the current price of the derivative is the risk-

neutral expectation of payoff function divided by the bank account numeraire at

T . This can be represented as follows:

Price(0) =
Price(0)

B(0)
= E0

[

Payoff(n, T )

B(T )

]

, (13)

where Payoff(n, T ) is the payoff function, which depends on the number of de-

faults n, and B(u) denotes the value of a bank account at time u. In order to
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compute the expectation, if the bank account is assumed to be deterministic, we

only need to know the risk-neutral distribution of the default rate at time T . By

(10), we know that conditional on F and C, the Xis are independent of each

other, as are the τis. We can make use of this property to construct the default

rate distribution. Firstly, we should compute the risk-neutral default probability

of reference credit i conditional on the value of F and C:

q(T ) = Q(τi < T |F,C)

= Q(H(τi) < H(T )|F,C)

= Q(Φ(Xi) < H(T )|F,C)

= Φ

(

Φ−1[H(T )]− aF − bC
√

1− a2 − b2 − 2ρab

)

.

(14)

Due to conditional independence, whether or not defaults prior to time T can be

represented as a sequence of i.i.d. Bernoulli random variables. This implies that

the probability that n will default among M prior to time T conditional on F and

C is:

π(n,M, T ) = Q(n,M, T |F,C) =
M !

n!(M − n)!
[q(T )]n [1− q(T )]M−n . (15)

Once the conditional probability of the default rate is established, we are about

to complete the pricing of the derivative. Let us go back to equation (13) and

rewrite it with the following iterated expectation:

Price(0) = E0

[

Payoff(n, T )

B(T )

]

= E0

(

E0

[

Payoff(n, T )

B(T )
|F,C

])

.

(16)

Equation (16) is valid based on the tower property. However, the price would

differ if we had the information about C. For instance, if we knew that C = c0,

the current price of the derivative would be:

Price(0|c0) = E

(

M
∑

n=0

Payoff(n, T )

B(T )
π(n,M, T )|C = c0

)

=

∫ ∞

−∞

M
∑

n=0

Payoff(n, T )

B(T )
π(n,M, T )g(f |c0)df,

(17)

where g(f |c0) is the conditional density of F given C = c0. The expression can

be solved efficiently by means of either numerical integration or Monte Carlo

simulation.
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We note that, compared to the one-factor Gaussian copula model, a new com-

mon risk factor “C” representing an additional source of uncertainty has been

added on. This allows for more flexibility. When discussing CCR valuation, “C”

serves as a proxy for the impact of the counterparty’s credit quality on the under-

lying portfolio. Formally, we can set this as:

HC(τC) = Φ(C). (18)

This gives us a way to account for the impact of the counterparty whenever de-

fault information is obtained. Our approach is quite innovative in that our model

deals with default rate distribution conditional on the counterparty’s credit quality

rather than on the joint default distribution of reference credits and the counter-

party, which is often considered in the CCR modeling literature. As shown in the

previous section, this conditional distribution combined with the survival probabil-

ity curve of the counterparty is sufficient for the evaluation of CVA. Before closing

this section, we would like to point out that this model can be easily extended to

either non-Gaussian copula assumptions or time-inhomogeneous parameterization.

4 Application to Synthetic CDO Tranches

A synthetic CDO tranche is similar to a CDS in that one party (the pro-

tection seller) offers protection for losses caused by a particular credit event in

exchange for periodic payments and an upfront fee (if any) that is received from

the other party (the protection buyer). The difference is that CDS contracts offer

protection for the credit event of one entity, so that it covers total losses, while

CDO tranches offer protection for only a portion of a portfolio of short position

CDSs. This portion is defined by the attachment point (A) and detachment point

(B). In the following, we briefly review the arbitrage-free pricing formula of CDO

tranches without CCR(in the first subsection) and then move on to discuss the

CVA calculation (in the second subsection).

4.1 Arbitrage-Free Valuation of Synthetic CDO Tranches

We consider a CDO tranche written on a portfolio containingM CDSs with at-

tachment point A, detachment point B, the first reset time T0, and payment times
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[T1, T2, ..., Tb]. Such a contract is quoted in the form of an upfront fee that has to

be paid at the beginning in conjunction with a periodic running spread S (usually

100 or 500 basis points). The principle of pricing swap-like contracts consists in

making the contract “fair” from both parties’ points of view. In the case of CDO

tranches, this amounts to equating the expected cash flows received by both protec-

tion seller and buyer. To this end, we define DefaultA,B(t, T0, Tb) as the expected

discounted protection payment of the protection seller, PremiumA,B(t, T0, Tb) as

the expected discounted periodic payment from the protection buyer when the

running spread is unity, and UA,B(t, T0, Tb) as the upfront fee that needs to be

paid (if it is positive) or received (if it is negative) by the protection buyer. The

contract is said to be fair if and only if:

UA,B(t, T0, Tb) + S × PremiumA,B(t, T0, Tb) = DefaultA,B(t, T0, Tb). (19)

In the following discussion, we assume deterministic interest rates and a constant

recovery rate R. In addition, following Brigo and Mercurio (2006), we adopt a

postponed CDS payoff in order to simplify this calculation. The following theo-

rem formulates the arbitrage-free pricing formula for CDO tranches:

Theorem 4.1. At any time t, the arbitrage-free values for the default and pre-

mium legs of a CDO tranche with attachment point A, detachment point B, first

reset time T0, payment time [T1, ...Tb], and unit notional principal are expressed

by:

DefaultA,B(t, T0, Tb) =
b
∑

w(t)

P (t, Ti) [Et (LA,B[n(Ti)]− LA,B[n(Ti−1)])],

P remiumA,B(t, T0, Tb) =
b
∑

w(t)

P (t, Ti)δi

[

1− Et [LA,B[n(Ti)] + LA,B[n(Ti−1)]]

2

]

.

(20)

Here, P (u, s) denotes the time u price of a zero-coupon bond maturing at s, δi is

the year fraction of the interval [Ti−1, Ti], and w(t) returns the first i such that Ti

is the first payment time following t. The tranche loss, LA,B[n(u)], is defined as:

LA,B[n(u)] =

[

(B − A)I
(
n(u)×(1−R)

M
<A)

+ (B − n(u)× (1−R)

M
)I

(A≤
n(u)×(1−R)

M
≤B)

]

/(B − A),

where n(u) denotes the number of defaults at time u.
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From the protection seller’s point of view, the value of the CDO tranche is

calculated by: 1

S × PremiumA,B(t, T0, Tb)−DefaultA,B(t, T0, Tb). (21)

It is clear that, in this expression, the only unknown quantity is the expected

tranche outstanding notional principal. This quantity can be calculated based on

the two-factor Gaussian copula model proposed above or through more complex

dynamic models. 2

4.2 Credit Value Adjustment for Synthetic CDO Tranches

In this subsection, we will focus on how to compute the CVA for a CDO

tranche. First, we suppose that the investor has entered into a CDO contract

with first reset date T0, payment dates [T1, ...Tb], attachment point A, detachment

point B, and notional principal I . We further assume that the investor is acting

as the protection seller; that is, he offers protection to some counterparty C on

a loss of A% to B% until the final maturity Tb or until the portfolio loss exceeds

B% if party C does not default. He bears the risk that party C defaults before

the final payment date Tb. A similar approach can be applied if we are from the

protection buyer’s point of view. To save space, we omit the case of the protection

buyer in the following deductions.

If you recall the CVA formula reviewed in section 2 (expression (4)), you will

see that all we need to compute is the expectation in the integral. The expectation

can be evaluated by using the two-factor Gaussian copula model found in equations

(10) and (11) and the arbitrage-free formula for CDO tranches (equation (20)).

We are now able to derive the NPV quantity for the expectation. It is the time

t value of the CDO tranche given all information available up to time t. The

1For the protection buyer, the value of the same CDO tranche is simply the negative of the

value for the protection seller; that is:

DefaultA,B(t, T0, Tb)− S × PremiumA,B(t, T0, Tb).

2 See, for example, Hull and White (2008) and Brigo, Pallavicini, and Torresetti (2011) for

dynamic models of multi-name credit derivatives.
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information set must contain the default information for all credits underlying the

portfolio. That is to say, we need to know how many credits have defaulted before

time t. The following lemma provides the formula needed to determine this.

Lemma 4.1. The NPV for CDO conditioning on the information that m credits

defaulted before time t is:

NPV (t,m) = S × PremiumA,B(t, T0, Tb)−DefaultA,B(t, T0, Tb),

where the Default(t, T0, Tb) and Premium(t, T0, Tb) are given by (20) and,

Et [LA,B[n(u)]] =
M
∑

n(u)=m

LA,B[n(u)]π(n(u),M, u|m, t),

π(n(u),M, u|m, t) = E

[

(M −m)!

(n(u)−m)!(M − n(u))!
q(u|t)n(u)−m[1− q(u|t)]M−n(u),

]

in that:

q(u|t) = Φ

(

Φ−1[1− Q(τi>u)
Q(τi>t)

]− aF − bC
√

1− a2 − b2 − 2ρab

)

.

The proof for this is as follows: From the protection seller’s point of view,

the NPV of the CDO contract is equal to the expectation of discounted cash flows

received minus cash flows paid; this yields the first equation. Furthermore, in equa-

tion (20), the only unknown quantity is the expected tranche loss Et[LA,B[n(u)]];

however, it could be solved by the following equation:

Et [LA,B[n(u)]] =
M
∑

n(u)=m

LA,B[n(u)]Q(n(u) default by u|m default by t).

The risk-neutral probability of n defaults by u, given that m credits default before

time t, should be handled with caution. Knowing the information that m cred-

its default before time t is equivalent to knowing that there are M − m credits

remaining in the portfolio and all of them are alive at t. Therefore, we have to

compute the conditional default probability for each name. This can be calculated

as follows:

Q(τi < u|τi > t) =
Q(t < τi < u)

Q(τi > t)

=
Q(τi > t)−Q(τi > u)

Q(τi > t)

= 1− Q(τi > u)

Q(τi > t)
.
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The survival probability Q(τi <, ) can be computed using (8). This is referred to as

the conditional default probability for each surviving credit, and we can construct

the default dependence structure between these surviving credits by using the two-

factor Gaussian copula model discussed in section 3.2. This leads to a default rate

distribution conditional on F and C as follows:

π(n(u),M, u|m, t, F, C) =
(M −m)!

(n(u)−m)!(M − n(u))!
q(u|t)n(u)−m[1− q(u|t)]M−n(u),

where

q(u|t) = Φ

(

Φ−1[1− Q(τi>u)
Q(τi>t)

]− aF − bC
√

1− a2 − b2 − 2ρab

)

,

By taking the expectation of π(n(u),M, u|m, t, F, C), we can complete the proof

for Lemma 4.1.

Once we have obtained the formula for NPV, we are ready to complete the

calculation for CVA. If we go back to the CVA formula (equation (3)), we are

left with the need to determine the expectation for the integral. To solve this, we

can apply the two-factor Gaussian copula model once again in order to compute

the probability that m will default prior to time t conditional on the information

available currently and on the default time of the counterparty. The following

theorem formulates the results:

Theorem 4.2. The CVA for the CDO contract considered above from the pro-

tection seller’s point of view is given by:

CV A(0, Tb) = LossC

∫ Tb

0

E0

(

D(0, t)[NPV (t)]+|τC = t
)

dtQ(τC ≤ t),

and the expectation for the integral is represented as:

E0

(

D(0, t)[NPV (t)]+|τC = t
)

=
M
∑

m=0

P (0, t)NPV (t,m)+π(m, t|C = Φ−1[HC(t)]),

where:

π(m, t|C = Φ−1[HC(t)]) =

∫ ∞

−∞

q(m, t|f,Φ−1[HC(t)])g(f |Φ−1[HC(t)])df,

and:

q(m, t|f, c) = Φ

(

Φ−1[1−Q(τi < t)]− a× f − b× c
√

1− a2 − b2 − 2ρab

)

,

g(f |c) = 1
√

2π(1− ρ2)
exp

[

−(f − ρc)2

2(1− ρ2)

]

.
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This is proven as follows: We begin with the expectation. Since the NPV de-

pends entirely on the default rate distribution conditioning on the counterparty’s

default time information, we can express the expectation as follows:

M
∑

m=0

NPV (t,m)+ ×Q(m default before t|τC = t).

It can be difficult to handle the information that the counterparty defaults exactly

at time t. However, thanks to the two-factor Gaussian copula model proposed

above, it is easy to convey this information by means of the default rate distribution

(18):

{τC = t} ≡ C = Φ−1[HC(t)] = Φ−1[1−Q(τC ≤ t)].

Consequently, the probability given the default information is transformed into the

probability given the value of C. This can be solved by evaluating the conditional

expectation of equation (15). Note that given that (F,C) is bivariate normally

distributed with zero mean, unit variance and correlation coefficient ρ, the condi-

tional density of F given C is again a normal distribution with mean ρ × C and

variance 1− ρ2. As a result, the conditional expectation can be evaluated by:

π(m, t|C = Φ−1[HC(t)]) =

∫ ∞

−∞

q(m, t|f,Φ−1[HC(t)])g(f |Φ−1[HC(t)])df.

We have now completed our derivation of CVA for synthetic CDO tranches,

and the integral in the formula can be approximated by a sufficiently small time

partition in the Riemann sense. We defer the default of the counterparty to the

first bucket time following it if it occurs between the bucket dates. Note that the

above framework is not appropriate for the case that payment dates are included

in the bucket dates. A more general case is discussed in the appendix.

5 Model Calibration and Implementation

Before we begin our numerical analysis, it should prove useful to briefly discuss

our methods of model calibration and implementation. In this section, we first

address how our model should be calibrated. Following that, we suggest a model-

implementation procedure that can be used in order to compute CVAs for CDOs.
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5.1 Model Calibration

Let us first consider the Shifted Squared Root Diffusion (SSRD) stochastic

intensity model introduced in the previous section. In order to calibrate our model,

it is necessary that we know the survival probabilities implied in the market. In

general, these probabilities can be determined by considering the quotes of CDSs

referencing the counterparty or by referring to the corporate bond market. In our

case, we chose the former method.

Consider a CDS written on the counterparty that starts at T0 and has a run-

ning spread (RCDS) that matures at Tr. If we assume that the interest rate is

deterministic, the price of a CDS can be expressed as:

CDS(0, T0, Tr, RECC) = RCDS

(

−
∫ Tr

T0

P (0, u)(u− Tω(u)−1)duQ(τC ≥ u)

+
r
∑

k=1

P (0, Tk)δiQ(τC ≥ Tk)

)

+ (1−RECC)

∫ Tr

T0

P (0, u)duQ(τC ≥ u), (22)

where Tω(u)−1 is the closest Tk prior to u, and δk is the time frame between time

Tk−1 and Tk. This formula is model independent, which allows us to extract sur-

vival probabilities from market CDS quotes without following any particular model

specification. To calibrate the intensity model, we must specify the following:

• the functional form of
∫ T

t
β(u;κ, µ, ν, λ0)du, thereby ensuring that the in-

tensity model exactly fits the survival probabilities we extract from market

CDS quotes, and

• the value of (κ, µ, ν, λ0) such that the implied volatility surface reproduced

by the model is as close as possible to the market implied volatility surface

of single name credit derivatives.

LetQmkt(τC > t) denote the survival probability that has been extracted from CDS

quotes. We select
∫ t

0
β(u;κ, µ, ν, λ0)du such that Qmkt(τC > t) = Q(τC > t|G0).

This implies the following specific formulation:

∫ t

0

β(u;κ, µ, ν, λ0)du = ln
Survival(0, t;κ, µ, ν, λ0)

Qmkt(τC > t)
. (23)
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In this way, our intensity model is exactly calibrated to the market implied survival

probabilities. We can then make use of the remaining parameters to calibrate the

single name default option data. However, this may prove to be a dangerous move

if the options market is not liquid enough. In that case, we should either refer to

complex index derivatives or consider those quotes with caution. In order to avoid

parameter instability, we have chosen not to refer to further option data here. To

specify our parameters, we set some possible values of (κ, µ, ν, λ0) such that the

model can produce reasonable option-implied volatilities.

Calibration of the two-factor Gaussian copula model may prove problematic

owing to the difficulty of calibrating ρ. The only possible proxies for the correla-

tion parameter ρ would be the contingent CDS (CCDS) or related products, and

calibration would be easier if the CCDS or related instruments were liquid. How-

ever, this is often not the case. To calibrate our model without these contingent

products, we have attempted to ensure that our model matches the liquid prices of

CDX NA IG index swaps and standardized CDX NA IG index tranches as much

as possible. Therefore, we have calibrated our model according to the following

steps:

• Set C = c0, where c0 is large enough such that Φ(c0) is close to 1 (we set

c0 = 3). This means that we regard the quoted prices as default-free prices.3

• Set ρ = 0. This is reasonable when the counterparty is assumed to have no

default risk. The infinite default time is not dependent on any risk factors.

• Adjust α, θ, σ, h0, a, and b so that the model prices fit the market quotes

of tranches and other liquid index swaps as much as possible.

• Select a for each tranche so that the model price is the same as the market

price. Note that we have not referred to a base correlation in our two-

factor model, since it is often not feasible to find a base correlation for each

detachment point.

3The bid-offer spreads of CDO quotes from dealers should be able to cover funding cost,

liquidity premium, and CCR. At this stage, we have decreased the bid-offer spread to 0 in order

to place ourselves in a milieu that does not take funding cost or liquidity risk into consideration

and that assumes a default-free counterparty.
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Once the model has been calibrated to the market instruments, we can select a

suitable ρ for the counterparty. This is not easy to do; it is often selected based

on the acquired knowledge of experienced risk managers.

5.2 Model Implementation

In this subsection, we would like to give some recommendations to risk man-

agers who carry out the valuation of the CCR of synthetic CDO tranches. When

a risk manager is responsible for calculating the CVA of a tranche, we suggest the

following procedure:

• Calibrate the model following the steps suggested in the previous subsection.

• Select an appropriate value for the factor correlation, ρ. This often proves

to be difficult, since there is no proxy for this parameter. The manager’s

personal experience and professionalism may help. 4

• Apply the formulas discussed in the previous section and in the appendix in

order to compute the CVA.

We can also apply this model to evaluate CVA for tranches with non-standard

attachment or detachment points and non-standard maturity. Furthermore, the

model can be applied to a netted portfolio of CDO tranches that references the

same credit portfolio.

6 Numerical Examples

In this section, we would like to consider some numerical examples in order

to test the impact of the correlation coefficient ρ (factor correlation) on synthetic

CDO tranches across different attachment and detachment points. First of all,

4One may view the factor correlation as the correlation between the macroeconomic state and

the counterparty’s credit quality. However, it should not be estimated historically by calculating

the relationship between some economic variable and the variable mirroring the counterparty’s

credit quality. This is because the model works in terms of a risk-neutral probability measure

rather than in terms of a physical or real world probability measure.
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please note that an increase in factor correlation results in an increase in default

correlation between underlying credit and the counterparty. In order to calculate

wrong-way risk, we used two hypothetical default probability term structures for

the counterparty. This is shown in Table 1. The intensity model is calibrated to

these survival term structures.

On the other hand, we calibrated our two-factor Gaussian copula model using

the CDX NA IG series 15 tranche quotes from March 9, 2011, using the procedure

suggested in the previous section. Due to the difficulty of fitting super senior

tranches, for our calibration inputs, we chose to use only prices of 0% - 3%, 3% -

7%, and 7% - 15% with maturities 3, 5, and 7 years.

Let us consider the case of a default-free investor who acts as a protection

buyer, while her counterparty acts as a protection seller. In this case, the investor

exposes herself to the risk that the counterparty will fail to provide protection

on the portfolio loss. Table 2 and Figure 1 report the numerical results of CVA

associated with different values of factor correlations across different attachment

and detachment points. As the table makes clear, the factor correlation has a

significant impact on the CVA, and ignoring the correlation may lead to a mises-

timation of CCR. In particular, factor correlation has a negative impact on CVA.

This may be because a higher factor correlation, or a higher default correlation, is

associated with a higher probability that all credits will default at the same time.

In other words, an increase in factor correlation involves a corresponding decrease

in the probability that a small number of credits will default at once. Table 3

shows the impact of factor correlation on the default rate density when n ≤ 7.

Because equity tranche is responsible for the losses of the first three entities, this

correlation is critical for equity tranche valuation and for the corresponding CVA.

The lower the default probabilities are, the lower is the expected residual NPV

from the viewpoint of the protection buyer. Consequently, the default option for

the counterparty becomes more out-of-the-money, and the option value (i.e., the

CVA) decreases as correlation increases.

Note further that when the counterparty’s quality deteriorates, i.e., when the

probability of default increases significantly, (as when the term structure of default

probability shifts from “Low Risk” to “High Risk” in Table 1), the CVA associated
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with higher factor correlations increases less than the CVA associated with lower

or negative factor correlations. This means that in the case of a higher default

correlation between the counterparty and their underlying credits, (the counter-

party and the underlying credits are more likely to default together), counterparty

exposure decreases and thus renders CCR less relevant.

We then consider the case of a default-free investor who acts as a protection

seller, while her counterparty acts as a protection buyer. In this situation, the

the protection seller is likely to worry that the counterparty will fail to pay their

protection fee. Table 4 and Figure 2 report the results of CVA. We found that these

CVAs are generally smaller than those of the protection buyers except with regard

to the senior tranche (7%-15%). This may indicate that the upfront payment acts

as a deterrent, preventing the protection seller from suffering the results of the

default of the protection buyer. However, for senior tranches, since the upfront

fee is often small or negative, this effect does not exist. Factor correlation is

not as important in this case as it is in the case of the protection buyer with the

exception of the case of the equity tranche, which has a positive influence on CVA.

This positive effect is due to the fact that default rate probabilities decrease when

correlations increase. The lower the default rate probabilities are, the higher is

the expected residual NPV. The default option of the counterparty becomes more

in-the-money, and thus, the CVA increases. Note that where there is a very high

level of factor correlation (ρ = 0.99), the CVA for the equity tranche increases

more significantly, as in the case of counterparty deterioration. This suggests

that selling protection on the most risky equity tranches exposes the seller to the

default risk of underlying credits as well as to wrong-way risk. For this reason, it

is necessary to proceed with caution when dealing with such tranches.

7 Conclusions

In this study, we have proposed a way to evaluate CCR for synthetic CDO

tranches. Our approach is quite innovative in that we consider CCR with respect

to the interrelationship between the portfolio and the counterparty. We have

characterized these effects based on the two-factor Gaussian copula model and the
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SSRD stochastic intensity model. Our framework provides an analytical approxi-

mation for CVAs for CDO tranches. This has the benefit of reducing computation

times. At the same time, the modeling framework we suggested is also beneficial

in that it is always a viable choice for analyzing counterparty risk with regard to

other multi-name credit derivatives. Finally, we have presented some numerical

tests that are designed to examine the impact of default correlation on the CVA

of the CDX NA IG index tranches.

We found that the results of our numerical tests differed based on whether

we considered the data from the point of view of protection buyers or protection

sellers. For protection buyers, we discovered that the default correlation greatly

impacts the valuation of CCR. In particular, we found that this relationship has a

negative influence on CVA. This suggests that CCR is less relevant when there is

a high degree of positive correlation between the counterparty and the underlying

credit. On the other hand, for protection sellers, this correlation does not appear

to have such a significant impact, except in the case of equity tranches. With

respect to equity tranches, an extremely positive correlation has a positive impact

on the CVA, and the CVA increases even more significantly when the counterparty

deteriorates. This suggests that one should deal with CCR with caution if one is

selling protection for the most risky type of tranche.
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Appendix

We would like to consider another general case for the computation of CVA

for CDO tranches. Suppose that we have the following bucket dates [t1, ...tn], and

assume that some of these are the payment dates, i.e., [t1, ...tn] ∩ [T1, ..., Tb] 6= φ.

In the case of ti = Tj, for some i and j, the expectation for the integral cannot be

computed as formulated in section 4.2, since the NPV contains discounted future

cash flows as well as cash flows received today. In order to compute the cash

flow received today, we need to know the default rate information for the previous

payment date. For this reason, we should compute the NPV of CDO tranches

whenever k defaults by Tw(ti)−1 and m defaults by Tw(ti) for all k ≤ m. In formal

terms, this expectation can be evaluated by:

M
∑

m=0

m
∑

k=0

D(0, t)NPV (t,m, k)+Q(k by Tw(ti)−1,m by Tw(ti)|τC = Tw(ti)), (24)

and the probability Q(k by v,m by u|τC = u) can be expressed as:

Q(m by u|k by v, τC = u)Q(k by v|τC = u).

Thanks to the two-factor Gaussian copula model, this probability can be evaluated

easily and quickly (see section 4.2). On the other hand, the NPV will be divided

into two parts; these are the exact amount received today and and cash flows

anticipated to be received in the future. Given k defaults before Tw(ti)−1 and m

defaults before Tw(ti), the amount received today is:

S × Premium−Default,

and:

Default = LA,B[n(Tw(ti))]− LA,B[n(Tw(ti)−1)],

P remium = δw(ti)

[

1− LA,B[n(Tw(ti)−1)] + LA,B[n(Tw(ti))]

2

]

.

The cash flows anticipated to be received in the future could be calculated similarly

to the NPV introduced in section 4.2, except that we would have to start counting

cashflow at Tw(ti)+1.

Payment dates should be included in the bucket dates. It is often the case that

the counterparty defaults right before a payment date; therefore, the procedure

introduced here should be applied.
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Table 1: Default Probability Term Structure

Maturity Low Risk (%) High Risk (%)

6 months 0.47 0.47

1 year 0.91 0.91

2 years 3.38 8.00

3 years 6.75 12.00

4 years 11.83 22.00

5 years 17.98 31.00

7 years 27.55 45.00

10 years 39.52 57.00

This table presents the default probabilities term structure associated with coun-

terparties that have low (first column) and high (second column) default risk.
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Table 2: Protection Buyer’s CVA for 3-year CDX NA IG Tranches

ρ 0%− 3% 3%− 7% 7%− 15%

ind CVA 39.1688(79.431) 27.2634(55.9197) 1.20605(2.4981)

-0.99 74.2662(152.898) 39.1291(80.2551) 2.40226(4.66442)

-0.5 55.6249(114.409) 33.7388(69.032) 2.12456(4.18265)

0.0 37.8679(76.7223) 28.6001(58.3073) 1.86851(3.7284)

0.5 22.4033(42.2808) 23.8625(48.3781) 1.62904(3.3004)

0.99 10.3074(16.0528) 19.6463(39.4787) 1.4161(2.91209)

The table presents credit value adjustmenst for 3-year CDX NA IG tranches given

the assumption that the investor is the protection buyer. Each row reports the

CVA associated with the corresponding ρ of each tranche for both low and high

(in round brackets) counterparty default risk. The “ind CVA,” (first row) reports

CVA without considering dependence as shown in equation (4).
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Table 3: Default Rate Probabilities

Default Rate Probability (%)

Maturity n ρ = −0.99 ρ = −0.5 ρ = 0.0 ρ = 0.5 ρ = 0.99

T1 1 0.052 0.041 0.028 0.014 0.005

2 0.005 0.006 0.005 0.003 0.003

3 0.001 0.002 0.002 0.002 0.002

4 0.000 0.001 0.001 0.001 0.001

5 0.000 0.000 0.001 0.001 0.001

6 0.000 0.000 0.000 0.001 0.000

T2 1 1.721 1.195 0.764 0.421 0.185

2 0.413 0.321 0.227 0.139 0.080

3 0.178 0.150 0.114 0.080 0.053

4 0.102 0.091 0.074 0.058 0.039

5 0.067 0.063 0.055 0.045 0.029

6 0.046 0.047 0.042 0.034 0.022

T3 1 4.060 2.839 1.849 1.087 0.506

2 1.263 0.936 0.652 0.404 0.202

3 0.597 0.473 0.347 0.224 0.117

4 0.336 0.285 0.219 0.149 0.078

5 0.211 0.189 0.153 0.108 0.057

6 0.143 0.133 0.112 0.081 0.044

The above table shows default rate probabilities computed from the two-factor

Gaussian copula model along with the corresponding number of defaults (n), at

maturity T1 (21 May, 2011), T2 (20 Jun, 2011), and T3 (20 Sep, 2011), and different

factor correlations ρ.
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Table 4: Protection Seller’s CVA for 3-year CDX NA IG Tranches

ρ 0%− 3% 3%− 7% 7%− 15%

ind CVA 9.85274(11.6853) 2.74797(3.25961) 8.86679(15.6942)

-0.99 4.80741(5.82627) 2.09725(2.53459) 8.14524(14.3843)

-0.5 6.43261(7.79901) 2.31539(2.79879) 8.31242(14.7746)

0.0 9.00959(10.9262) 2.54913(3.08137) 8.47738(15.1452)

0.5 13.0899(15.9328) 2.81326(3.40115) 8.62691(15.4794)

0.99 18.8355(25.8811) 3.12521(3.77889) 8.76546(15.7799)

The table presents credit value adjustments for 3-year CDX NA IG tranches given

the assumption that the investor is the protection seller. Each row reports the

CVA associated with the corresponding ρ of each tranche for both low and high

(in round brackets) counterparty default risk. The “ind CVA,” (first row) reports

CVA without considering dependence as shown in equation (4).

29



Figure 1: Protection Buyer’s CVA of CDX NA IG Tranches

Here we see CVAs of 0% - 3% (top graph), 3% - 7% (middle graph), and 7% - 15%

(bottom graph) tranches associated with different values of factor correlation as

seen from the protection buyer’s view..
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Figure 2: Protection Seller’s CVA of CDX NA IG Tranches

Here we see CVAs of 0% - 3% (top graph), 3% - 7% (middle graph), and 7% - 15%

(bottom graph) tranches associated with different values of factor correlation as

seen from the protection seller’s view..
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