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Adaptive trend estimation in financial time series

via multiscale change-point-induced basis recovery

Anna Louise Schröder and Piotr Fryzlewicz∗

Low-frequency financial returns can be modelled as
centered around piecewise-constant trend functions which
change at certain points in time. We propose a new stochas-
tic time series framework which captures this feature. The
main ingredient of our model is a hierarchically-ordered os-
cillatory basis of simple piecewise-constant functions. It dif-
fers from the Fourier-like bases traditionally used in time
series analysis in that it is determined by change-points,
and hence needs to be estimated from the data before it
can be used. The resulting model enables easy simulation
and provides interpretable decomposition of nonstationarity
into short- and long-term components. The model permits
consistent estimation of the multiscale change-point-induced
basis via binary segmentation, which results in a variable-
span moving-average estimator of the current trend, and
allows for short-term forecasting of the average return.

Keywords and phrases: Financial time series, Adaptive
trend estimation, Change-point detection, Binary segmen-
tation, Unbalanced Haar wavelets, Frequency-domain mod-
elling.

1. INTRODUCTION

In this work, we consider the problem of statistical mod-
elling and forecasting of daily financial returns based on
past observations, but the methodology we propose will also
be of relevance to financial data at other frequencies. More
generally, it leads to a new generic approach to statistical
time series analysis, via adaptive oscillatory bases induced
by change-points, which will be of interest in other fields of
application beyond finance.

Given a time series Pt of daily speculative prices on risky
financial instruments, such as equities, equity indices, com-
modities, or currency exchange rates, their daily returns
Xt are defined by Xt = ln(Pt)− ln(Pt−1). Forecasting fu-
ture values of Xt based on its own past is of major interest
to quantitative finance practitioners, but presents an ex-
tremely challenging task due to the perceived low predic-
tive content of past returns with respect to the future. The
importance and difficulty of the problem have led to the
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use of a large number of statistical and data analytic tech-
niques to tackle it. In particular, we mention return fore-
casting based on traditional ARMA time series modelling
with heteroscedastic innovations (Berkowitz and O’Brien,
2002; Garcia et al., 2005), methods stemming from the tech-
nical analysis of price series such as those based on mov-
ing average cross-overs, breakout and other technical signals
(Katz and McCormick, 2000), as well as various machine-
learning techniques such as those based on support vector
machines (Kim, 2003) and neural networks for return fore-
casting (Catalão et al., 2007; Kim and Shin, 2007).

Our approach rests on the observation that the logarith-
mic price ln(Pt) can meaningfully and interpretably be mod-
elled as fluctuating around a trend which started at a certain
unknown time in the past, having a positive or negative lin-
ear slope. The points in time at which the slope changes will
be referred to as change-points. The movements of ln(Pt)
around the trend resemble random walk with heteroscedas-
tic innovations. After differencing, this pattern translates to
a piecewise-constant trend function in the return domain,
plus serially uncorrelated deviations from it. Change-points
in the slope of the linear trend in ln(Pt), or alternatively
in the magnitude of the piecewise-constant trend in Xt,
can be related to structural changes, coinciding for exam-
ple with regulatory alterations, macroeconomic announce-
ments, technological innovation or an economy’s transition
from recovery to recession or vice versa.

Trend detection in financial returns is a much-studied
topic and a range of methods are widely applied in practice;
we mention simple moving-average and other one-sided ker-
nel smoothing of the returns, moving-average cross-overs at
the level of logarithmic prices, L2 and L1 filtering, Kalman
filtering, local polynomial smoothing, spline smoothing and
nonlinear wavelet shrinkage as prime examples. These and
other techniques are reviewed from a practitioner’s perspec-
tive in Bruder et al. (2008); see also the references therein.

One contribution of this paper is to advocate a trend-
detection methodology for financial returns that works by
detecting change-points in the returns series and taking the
current trend estimate to be the average return between the
most recent estimated change-point and the current time.
This amounts to averaging over the current estimated in-
terval of stationarity in the conditional mean; related but
different adaptive procedures for volatility (as opposed to
trend) estimation appeared e.g. in Fryzlewicz, Sapatinas



Figure 1. Daily closing values of the S&P 500 equity index
between January 1990 and June 2013; top: log-price (grey)

and the cumulatively integrated fit
∑t

s=1 f̂s from our model

(black), middle: log-return (grey) and our model fit f̂t (black),
bottom: the same as middle but with a shorter range on the
y-axis. Model fit shown for threshold parameter C = 0.3 and
imposing a minimum change-point distance of 60 days.

and Rao (2006), Spokoiny (2009) and Č́ıžek, Härdle and
Spokoiny (2009). The first stage of our procedure is the seg-
mentation of the returns series. Although many of the avail-
able techniques for time series segmentation could be used
(Boysen et al., 2009; Lavielle and Moulines, 2000; Lebarbier,
2005; Lee, 1995; Pan and Chen, 2006; Yao and Au, 1989),
we propose a modification of the Binary Segmentation pro-
cedure (Bai, 1997; Cho and Fryzlewicz, 2012; Fryzlewicz,
2012; Fryzlewicz and Subba Rao, 2013; Venkatraman, 1992;
Vostrikova, 1981) and justify this choice below. An example
of our model fit, using one particular value of the threshold
parameter, involving daily closing values of the S&P 500
index, is in Figure 1.

However, the contribution of this work goes beyond
merely advocating change-point detection as a useful ap-
proach to local trend estimation in financial returns. Our
main objective is to propose a new approach to statisti-
cal time series analysis, whereby the time series, generically
denoted here by Xt, is spanned by an orthonormal oscilla-
tory basis induced by change-points in the conditional mean
value of Xt. In this paper, the representation basis is as-
sumed to be unknown to the analyst and needs to be esti-
mated from Xt using a change-point detection procedure;
hence we will occasionally refer to such a basis as ‘data-
driven’ or ‘adaptive’. This in contrast to classical spectral
approaches to time series analysis, which use a particular
fixed basis that is known to the user, e.g. the Fourier basis
in the classical spectral theory (Priestley, 1983), or a fixed

wavelet system in Nason, von Sachs and Kroisandt (2000).
The SLEX approach of Ombao et al. (2002), although also
using a data-driven basis principle, is fundamentally differ-
ent from ours in that it models the second-, not the first-
order structure of Xt and is limited to change-points oc-
curring at dyadic locations. In financial applications, spec-
tral analysis has occasionally been related to agents trading
at different time horizons (Baron, Brogaard and Kirilenko,
2012; Gençay, Selçuk and Whitcher, 2001; Hasbrouck and
Sofianos, 1993), although this point of view is of no primary
relevance to us.

The building blocks used in our basis construction are
the Unbalanced Haar (UH) wavelet vectors (Baek and Pipi-
ras, 2009; Delouille, Franke and von Sachs, 2001; Fryzlewicz,
2007; Girardi and Sweldens, 1997; Timmermans, Delsol and
von Sachs, 2012), which have the advantage of being partic-
ularly simple, well-suited to the task of change-point mod-
elling, and hierarchically organised into a multiscale sys-
tem, which is useful for the interpretability of the esti-
mated change-point locations and basis vectors, and facili-
tates their arrangement according to their importance. We
use the UH basis vectors to define the Unbalanced Haar
time series model. Binary Segmentation is a natural tool for
the estimation of UH basis vectors from the data due to the
hierarchical structure of this procedure (Fryzlewicz, 2007),
although we emphasise that other change-point detection
methods could also be used for this purpose.

Our new adaptive basis approach to time series mod-
elling opens up many interesting avenues. It leads to a for-
mal stochastic time series model, used here to model local
trends in financial returns but also applicable more widely,
with interpretable nonstationarities in the autocovariance
structure and in the conditional mean of Xt. It allows for a
decomposition of the nonstationarity in the variance of Xt

into longer-term trends and short-term outbursts of volatil-
ity. Finally, it yields a family of forecasting operators for
Xt, parameterised by a single threshold parameter, which
can be adjusted flexibly depending on the forecast horizon
or the error criterion.

The paper is structured as follows. Section 2 motivates
and defines the model, and studies its probabilistic prop-
erties. Section 3 describes the methodology and theory of
change-point detection and basis recovery, as well as the
implied methodology for current trend estimation and fore-
casting. Section 4 illustrates basis recovery in a numerical
study. Section 5 shows the estimated bases for data exam-
ples from various asset classes and performs a forecasting
competition between our method and the benchmark mov-
ing window approach. Proofs are in the appendix.

2. THE MODEL

2.1 Motivation and basic ingredients

As illustrated in Figure 1, piecewise-linear modelling of
trends in ln(Pt) results in the average of the returns series

450 A. L. Schröder and P. Fryzlewicz



Xt oscillating around zero in a piecewise-constant fashion.
We wish to embed this feature into a rigorous stochastic
framework by formulating a time series model for Xt that
captures this oscillatory behaviour.

Time series modelling using oscillatory building blocks is
a well-established technique in time series analysis. Turning
first to the frequency domain, every covariance-stationary
process Yt admits the Fourier representation

(1) Yt =

∫

(−π,π]

A(ω) exp(iωt)dZ(ω), t ∈ Z,

where exp(iωt) is a complex exponential oscillating at fre-
quency ω, and A(ω) and dZ(ω) are, respectively, the associ-
ated amplitude and the corresponding orthonormal infinites-
imal increment of a stochastic process Z(·). The support
of the complex exponential exp(iωt) is the set of all inte-
gers t and its oscillations exhibit a homogeneous behaviour
over this domain, for all ω. To facilitate similar representa-
tions for covariance-nonstationary processes Yt, efforts have
been made to localise the oscillatory building blocks with re-
spect to time. For example, Nason, von Sachs and Kroisandt
(2000) propose the Locally Stationary Wavelet model

(2) Yt =

∞
∑

j=1

∑

k∈Z

wj,kψ
j
t−kξj,k, t ∈ [1, T ],

where j is the scale parameter, analogous to frequency in
(1), and ψj are compactly-supported wavelet vectors, oscil-
latory in the sense that

∑

u ψ
j
u = 0, and such that the length

of their support increases, but the speed of their oscillation
decreases, with j. The parameters wj,k are amplitudes, lo-
calised over time-location k, and ξj,k are mutually uncorre-
lated increments. We refer the reader to Vidakovic (2009)
and Nason (2008) for overviews of the use of wavelets in
statistical modelling.

The above two approaches could be used to model returns
processes Xt such as that illustrated in Figure 1, but are not
ideal. Our signal of interest, the piecewise-constant average
return, is blocky, and oscillates around zero in an inhomoge-
neous fashion in the sense that there is significant variation
in the lengths of the constant intervals. However, with the
exception of Haar wavelets, which we discuss below, both
complex exponentials and wavelet vectors arise from con-
tinuous functions, and so are ill-suited for our purpose of
modelling piecewise constancy. Also, crucially, both of the
above approaches use bases which are not data-adaptive in
the sense that they are fixed before the analysis rather than
being tailored to, or estimated from, the data. In particu-
lar, one could possibly entertain the thought of using the
piecewise-constant Haar wavelets for our purpose, but they
would only permit change-points at dyadic locations kT2−j ,
j = 1, 2, . . ., k = 1, . . . , 2j − 1, where T is the sample size.

In our data, change-points occur at arbitrary locations
and we hope to be able to capture this feature by the use

of a suitably flexible oscillatory basis that permits adaptive
choice of change-points in the basis vectors, allowing for a
sparse representation of the piecewise-constant trend. Ar-
guably the simplest such construction is furnished by the
Unbalanced Haar (UH) wavelets. With I(·) denoting the in-
dicator function, the generic UH vector ψs,b,e is defined as

ψs,b,e
t =

{

1

b− s+ 1
− 1

e− s+ 1

}1/2

I(s ≤ t ≤ b)

−
{

1

e− b
− 1

e− s+ 1

}1/2

I(b+ 1 ≤ t ≤ e),

where s and e are, respectively, the start- and end-point of
its support, and b is the location of a change-point. ψs,b,e is
constant and positive before the change-point, constant and
negative after the change-point, and such that

∑

t ψ
s,b,e
t = 0

and
∑

t(ψ
s,b,e
t )2 = 1. A set of T − 1 UH vectors plus one

constant vector constitutes an orthonormal basis of RT if
it is constructed as follows: define the first UH basis vector
ψb0,1 = ψ1,b0,1,T ; the change-point b0,1 needs to be chosen
and we later say how. Then, recursively repeat this con-
struction on the two parts of the domain determined by b0,1:
that is, provided that b0,1 ≥ 2, define ψb1,1 = ψ1,b1,1,b0,1 , and
provided that T − b0,1 ≥ 2, define ψb1,2 = ψb0,1+1,b1,2,T . The
recursion then continues in the same manner for as long as
feasible, with each vector ψbj,k having at most two children
vectors ψbj+1,2k−1 and ψbj+1,2k . Additionally, we define a vec-

tor ψb
−1,0 with elements ψ

b
−1,0

l = T−1/2
I(1 ≤ l ≤ T ). The

indices j, k are scale and location parameters, respectively.
Small and large values of j can be thought of as correspond-
ing to coarse and fine scales, respectively, as in the classical
wavelet theory.

Example We consider an example of a set of UH vectors
for T = 6. The rows of the matrix W defined below contain
(from top to bottom) vectors ψb

−1,0 , ψb0,1 , ψb1,2 , ψb2,3 , ψb2,4

and ψb3,7 determined by the following set of change-points:
(b0,1, b1,2, b2,3, b2,4, b3,7) = (1, 3, 2, 5, 4).

W =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1/
√
6 1/

√
6 1/

√
6 1/

√
6 1/

√
6 1/

√
6

√

5/6 −1/
√
30 −1/

√
30 −1/

√
30 −1/

√
30 −1/

√
30

0
√

3/10
√

3/10 −
√

2/15 −
√

2/15 −
√

2/15

0 1/
√
2 −1/

√
2 0 0 0

0 0 0 1/
√
6 1/

√
6 −

√

2/3

0 0 0 1/
√
2 −1/

√
2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

In the above example it is not possible to create further
vectors ψbj,k .

2.2 Definition and examples

Motivated by the above discussion, our model for the re-
turns series Xt is defined as follows.

Definition 2.1. A stochastic process Xt, t = 1, 2, . . . , T is
called the Unbalanced Haar process if it has a representation

(3) Xt = T 1/2
∑

(j,k)∈I

Aj,kψ
bj,k
t + σtεt, t ∈ [1, T ],
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where I is a set of indices, of finite dimensionality |I| =
N+1 < ∞, such that (−1, 0) ∈ I, and connected in the sense
that if a child index (j+1, 2k−1) or (j+1, 2k) is in I, then so
is their parent (j, k). The random variables {Aj,k}(j,k)∈I are
mutually independent, drawn from continuous distributions
and satisfy E(Aj,k) = 0 and E(A2

j,k) < ∞. The vectors ψbj,k

are UH vectors defined in Section 2.1. The constants σt are
such that 0 < σ < σt < σ < ∞, and {εt}t is a sequence of
independent standard normal variables, also independent of
Aj,k.

Denote the elements of the sequence {bj,k}(j,k), sorted in
increasing order, by {ηi}Ni=1. We assume that the parameters
ηi are fixed in rescaled time in the sense that for each i, we
have ηi = ⌊Tυi⌋ and {υi}Ni=1 is an increasing sequence of
constants in (0, 1). For completeness, denote η0 = 1, υ0 = 0,
ηN+1 = T , υN+1 = 1.

The model in (3) contains two additive parts, inter-
pretable, respectively, as signal (or trend) and noise. The

signal, T 1/2
∑

(j,k)∈I
Aj,kψ

bj,k
t , is designed to model the

piecewise-constant average return and provides a multiscale
representation of this quantity in terms of the basis func-
tions ψbj,k . Heuristically speaking, it is composed of a con-
stant vector ψb

−1,1 plus N UH vectors ψbj,k , each multiplied
by its own independent amplitude Aj,k. This mimics the
construction used in (1) and (2), in which the process in
question is also composed of oscillatory vectors at differ-
ent frequencies or scales, with random amplitudes. The fact

that I is connected leads to T 1/2
∑

(j,k)∈I
Aj,kψ

bj,k
t being

a random, piecewise-constant signal with N change-points
located at {ηi}Ni=1. As in (1), the basis vectors ψbj,k also
change with the sample size, but our notation does not re-
flect this for simplicity. The factor T 1/2 is required to keep
the scale of the amplitudes Aj,k constant with respect to T .

The noise, σtεt, models the random movements of Xt

around the trend and, for technical simplicity, is assumed
to be Gaussian. In this work, we do not dwell on the issue
of estimating the volatility parameters σt, but treat them
as constant in our theoretical considerations. Naturally, in
practice, they need to be estimated from the data; we later
specify what estimators we use.

Model (3) enables easy simulation of sample paths of
Xt. For example, the simulated sample paths of Xt from
model (3), displayed in Figure 2, use the canonical basis
(see Section 3.2 for details) and σt estimated from the real
data example from Figure 1, and the coefficients Aj,k drawn
from the normal distribution with mean zero and variances
matching the corresponding empirical variances from the
data.

2.3 Unconditional properties of the model

We start by exhibiting and discussing some simple uncon-
ditional probabilistic properties of Xt defined by (3). We use
the term unconditional to mean that we do not condition on
particular values of the random coefficients Aj,k. Were we

Figure 2. Daily closing values of the S&P 500 equity index
(log-price, black line) between January 1990 and June 2013
and simulated sample paths (grey lines) from the estimated

canonical basis {b̂j,k}(j,k); coefficients Aj,k are drawn from
the normal distribution with mean zero and variances
matching the corresponding empirical variances, σt is

estimated from the data. Model estimated with a threshold
parameter C = 0.3 and a minimum change-point distance of

60 days.

to do this, our analysis would amount to considering a par-
ticular, rather than random, piecewise-constant signal plus
noise, a set-up which we investigate in Section 2.4 below.

E(Aj,k) = 0 and E(εt) = 0 imply E(Xt) = 0. The vari-
ance and autocovariance of Xt admit the following decom-
positions:

Var(Xt) = T
∑

(j,k)∈I

E(A2
j,k)(ψ

bj,k
t )2 + σ2

t(4)

Cov(Xt, Xt+τ ) = T
∑

(j,k)∈I

E(A2
j,k)ψ

bj,k
t ψ

bj,k
t+τ , τ �= 0.(5)

A few remarks are in order.

Stationarity Clearly, Xt is stationary in the mean, but is
variance- and covariance-nonstationary. The nonstationarity
in the variance arises not just because of the σ2

t term, but

also because of the term T
∑

(j,k)∈I
E(A2

j,k)(ψ
bj,k
t )2, which

captures the variability of longer-term trends, as opposed to
the daily variability captured by σ2

t . The daily variability
σt could also, in principle, be modelled as a GARCH-type
process with a conditional, rather than unconditional, het-
eroscedasticity, but we do not pursue this option in this work
because of the technical requirement of the boundedness of
σt from above.

Variance Firstly, we observe that ψ
bj,k
t = 0 if t is outside

the support of ψbj,k , and the values of ψ
bj,k
t differ depending

on whether t falls within the positive or the negative part of
the support of ψbj,k ; the shorter the relevant part of the sup-

port, the higher the value of (ψ
bj,k
t )2, and hence formula (4)

452 A. L. Schröder and P. Fryzlewicz



indicates that shorter trends contribute more to the variabil-
ity of Xt. In simple heuristic terms, this can be interpreted
as shorter-term trends being more variable. Secondly, the
average variance admits the following decomposition:

T−1
T
∑

t=1

Var(Xt) =
∑

(j,k)∈I

E(A2
j,k) + T−1

T
∑

t=1

σ2
t ,

due to the fact that
∑

t(ψ
bj,k
t )2 = 1. Therefore, the average

variance of the signal has a simple representation in terms
of the variances of the amplitudes Aj,k.

Autocovariance If both t and t + τ are within the same,
positive or negative, part of the support of ψbj,k , then

ψ
bj,k
t ψ

bj,k
t+τ reduces to (ψ

bj,k
t )2, and by formulae (4) and (5),

the contribution of the term indexed (j, k) to Var(Xt) and

Cov(Xt, Xt+τ ) is the same and equal to E(A2
j,k)(ψ

bj,k
t )2. On

the other hand, if t and t + τ are within the support of
ψbj,k but on two different sides of the change-point bj,k,

then the term E(A2
j,k)ψ

bj,k
t ψ

bj,k
t+τ contributes negatively to

Cov(Xt, Xt+τ ), which reflects the fact that t and t + τ be-
long to two opposing trends at scale j.

Unbalanced Haar spectrum By formulae (4) and (5), the

term T
∑

(j,k)∈I
E(A2

j,k)(ψ
bj,k
t )2 in the variance ofXt as well

as the autocovariance of Xt have a representation in terms
of E(A2

j,k)(j,k)∈I . Therefore, it is natural to introduce a sep-
arate definition for this quantity.

Definition 2.2. Let Xt follow model (3). The sequence
E(A2

j,k)(j,k)∈I is referred to as the Unbalanced Haar spec-

trum of Xt with respect to the basis ψbj,k .

We emphasise that the Unbalanced Haar spectrum is de-
fined with respect to a fixed basis ψbj,k ; a different basis for
the same process Xt would result in a different Unbalanced
Haar spectrum. In particular, if the Unbalanced Haar spec-
tral approach is used to compare two or more time series,
a common basis should be used in order for the comparison
to be meaningful, unless it is of interest to study feature
misalignment between the different series. We do not pur-
sue multivariate Unbalanced Haar processes in this work.
For univariate Unbalanced Haar processes, we discuss the
important issue of basis selection later on.

The Unbalanced Haar spectrum is an analogue of the
spectral density in the Fourier representation (1) and the
wavelet spectrum in the LSW model (2) in the sense that
it also arises as the sequence of variances of the random
amplitudes associated with the oscillatory building blocks
used in the construction of the process. However, the role
of the UH building blocks in model (3) is subtly different
from those of the Fourier exponentials in (1) and wavelets
in (2): the latter two directly model the contribution of the
corresponding oscillations to the autocovariance structures
of the respective processes, while our primary aim in using
the UH building blocks is to model the piecewise-constant

trend in Xt rather than represent the autocovariance of Xt.
The fact that the autocovariance structure of Xt also has a
representation in terms of ψbj,k is nothing but a useful and
interpretable by-product of this modelling approach.

If the basis ψbj,k is known to the analyst, then the Unbal-
anced Haar periodogram, defined below, provides an asymp-
totically unbiased but inconsistent estimate of the Unbal-
anced Haar spectrum, in the same way as the classical pe-
riodogram is asymptotically unbiased but inconsistent for
the spectral density in the classical Fourier theory. The case
of an unknown basis is more delicate and will be discussed
in more detail in Sections 2.4 and 3.2, as will be the issue
of restoring, in a certain sense, the consistency of spectral
estimation in model (3). In the remainder of the paper, 〈·, ·〉
denotes inner product between two vectors.

Definition 2.3. Let Xt follow model (3) and denote X =
(X1, . . . , XT ). The sequence of statistics defined by

(6) Ij,k = T−1〈X,ψbj,k〉2 = T−1

(

T
∑

t=1

Xtψ
bj,k
t

)2

is called the Unbalanced Haar periodogram of Xt with re-
spect to the basis ψbj,k .

The following result quantifies the asymptotic unbiasedness
of Ij,k for E(A2

j,k).

Proposition 2.1. We have

|E(Ij,k)− E(A2
j,k)| ≤ σ2T−1.

2.4 Properties of the model conditional

on Aj,k

Having observed a sample path of Xt, it is of interest
to establish the number and locations of change-points in

the observed signal T 1/2
∑

(j,k)∈I
Aj,kψ

bj,k
t . From the point

of view of this task, it is helpful to treat Aj,k as already
observed, and therefore carry out the change-point analysis
conditioning on their values Aj,k = aj,k, for all (j, k) ∈ I.
Define ft = T 1/2

∑

(j,k)∈I
aj,kψ

bj,k
t , suppressing the depen-

dence of ft on aj,k and bj,k, for simplicity of notation. In
fact, neither aj,k nor bj,k are observed directly, but instead
we observe a noisy version of ft, that is

Xt = ft + σtεt,(7)

as in model (3) conditional on Aj,k = aj,k. We now briefly
discuss some properties of ft. Let PA be the probability
measure induced by the random variables Aj,k, (j, k) ∈ I.
The signal ft satisfies the following properties.

Property 2.1. (i) ft is piecewise-constant with at most
N change-points, and bounded.

(ii) The magnitude of the ith change-point in ft is of the
form |∑j,k αj,k,iaj,k|, where αj,k,i are scalars.
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(iii) Let A0 be the set of N + 1-tuples of those values of
aj,k, (j, k) ∈ I, for which ft has fewer than N change-
points. We have PA(A0) = 0.

(iv) With probability one with respect to PA, change-points
in ft are located at bj,k; sorted in increasing order, their
locations are {ηi}Ni=1.

Naturally, conditioning on Aj,k changes the first-
and second-order properties of Xt. From (7), we have
E(Xt|Aj,k = aj,k) = ft, Var(Xt|Aj,k = aj,k) = σ2

t and
Cov(Xt, Xt+τ |Aj,k = aj,k) = 0 for τ �= 0.

The following section discusses the estimation of various
aspects of the conditional signal ft.

3. ESTIMATION AND FORECASTING

3.1 Change-point detection

Given observations from the conditional model (7), it is
of interest to estimate the number N and locations {ηi}Ni=1

of change-points in ft. Multiple change-point detection has
been widely studied in literature, and some of the exist-
ing techniques reviewed in Section 1 could be used for this
purpose, possibly with some modifications. We propose the
use of the Binary Segmentation method, mainly because it
allows for simultaneous estimation of the canonical basis,
which is discussed in Section 3.2 below. Another benefit of
Binary Segmentation is rate optimality for the estimators of
change-point locations in the particular setting of the spac-
ing between change-points being of order O(T ), as is the
case in our model. The Binary Segmentation algorithm is
best defined recursively and hence described by pseudocode.
We first define

X̃b
s,e = 〈X,ψs,b,e〉

σ̃e
s =

(

1

e− s+ 1

e
∑

t=s

σ2
t

)1/2

.

The main function is defined as follows.

function BinSeg(s, e, ζT )
if e− s < 1 then

STOP
else

b0 := argmaxb |X̃b
s,e|

if |X̃b0
s,e|/σ̃e

s > ζT then

add b0 to the set of estimated change-points
BinSeg(s, b0, ζT )
BinSeg(b0 + 1, e, ζT )

else

STOP
end if

end if

end function

The standard Binary Segmentation procedure is launched
by the call BinSeg(1, T , ζT ), where ζT is a threshold param-
eter. We have the following result regarding the consistency

of the Binary Segmentation procedure for the number and
locations of change-points.

Theorem 3.1. Let ft in (7) be constructed with param-
eters aj,k lying outside set A0 from Property 2.1. Let N
and η1, . . . , ηN denote, respectively, the number and loca-
tions of change-points in ft. Let N̂ denote the number, and
η̂1, . . . , η̂N the locations, sorted in increasing order, of the
change-point estimates obtained by the Binary Segmentation
algorithm. Let the threshold parameter satisfy ζT ≥ c1 log

p T
(p > 1/2) and ζT ≤ c2T

θ (θ < 1/2), for any positive con-
stants c1, c2. Then there exists a positive constant C1 such
that P (AT ) → 1, where

AT = {N̂ = N ; max
i=1,...,N

|η̂i − ηi| ≤ C1ǫT }

with ǫT = O(log T ), where P (·) is the probability measure
induced by {εt}t.

3.2 Basis recovery

Given any piecewise-constant signal ft with N > 1
change-points at {ηi}Ni=1, there is no unique way to rep-
resent it in a UH basis ψbj,k , as any of the N change-points
can be assigned to scale j = 0; that is, there are N mutually
exclusive possibilities: b0,1 = η1, b0,1 = η2, . . . , b0,1 = ηN . If
N > 2, then there is similar choice at the following scales
j = 1, 2, . . ..

Some of the possible UH bases are more interpretable
and useful than others. Here, we define and focus on one
particular type of UH basis, termed the canonical UH basis,
which enables the partial ordering of the change-points {ηi}i
according to what can be interpreted as their importance.

Recall the construction of any UH basis, described in Sec-
tion 2.1. Given a current interval of interest [s, e], a basis
selection procedure will be completely specified if one spec-
ifies how to choose bj,k on that interval. The canonical basis
is defined as follows.

Definition 3.1. Given a piecewise-constant signal ft, t =
1, . . . , T withN > 0 change-points at η1, . . . , ηN , a canonical
UH basis is one for which bj,k on the current interval [s, e]
(on which ft is non-constant) is assigned as

bj,k = arg max
ηi∈[s,e],i=1,...,N

|〈f, ψs,ηi,e〉|,

where f = (f1, . . . , fT ). If there is more than one such bases,
any of them is referred to as canonical.

In other words, applying Definition 3.1 sequentially, a
canonical basis for ft is chosen as follows. At scale 0, b0,1
is chosen as the ηi that maximises |〈f, ψ1,ηi,T 〉|; that is, the
ηi which defines the step function with one change-point
that fits ft best in the least-squares sense. Such ηi is not
necessarily unique; however, ties are not an issue for us as
we clarify further below. Having identified b0,1, canonical
basis selection then proceeds sequentially as described in
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Section 2.1, at each scale fitting the best approximation in
the L2 sense to ft on the relevant interval [s, e] by means of a
step function with one change-point, until all change-points
in ft have been accounted for.

We now give a result that specifies the uniqueness of a
canonical basis for ft from model (7).

Proposition 3.1. There is a set B0 of N + 1-tuples
aj,k, (j, k) ∈ I with PA(B0) = 0 such that for {aj,k}j,k from
outside B0, ft from model (7) has a unique canonical basis.

Summarising the above discussion, for a signal ft defined
by model (7), there exists a unique canonical UH basis for it
with probability 1 with respect to PA. The unique canonical
basis partially orders the change-points in ft according to
their importance in terms of explaining ft in the L2 sense.
The change-point b0,1 can be interpreted as the most im-
portant, with change-points as subsequent finer scales being
interpretable as gradually less important.

In this setting, we now state that it is possible to use
Binary Segmentation to reconstruct the canonical basis bj,k
of ft from the noisy observations defined by model (7), as
well as the corresponding canonical basis coefficients āj,k.
The latter fact can be interpreted as the conditional con-
sistency of spectral estimation in model (3) with respect to
each unique canonical basis.

Theorem 3.2. Let ft in (7) be constructed with parameters
aj,k lying outside set A0∪B0. Let N and η1, . . . , ηN denote,
respectively, the number and locations of change-points in
ft, and let bj,k define the canonical basis of ft, ordered ac-
cording to increasing j, and with the bj,k’s within each scale
j sorted in increasing order. Let āj,k be the UH coefficients

with respect to bj,k; that is, āj,k = T−1/2〈f, ψbj,k〉. Let N̂
denote the number, and η̂1, . . . , η̂N the locations, sorted in
increasing order, of the change-point estimates obtained by
the Binary Segmentation algorithm, and let b̂j,k be the es-
timated change-points in the order returned by the Binary

Segmentation algorithm. Let âj,k = T−1/2〈X,ψb̂j,k〉. Let the
threshold parameter satisfy ζT ≥ c1 log

p T (p > 1/2) and
ζT ≤ c2T

θ (θ < 1/2), for any positive constants c1, c2. Then
there exist positive constants C1, C2 such that P (AT ) → 1,
where

AT = {N̂ = N ; max
(j,k)∈I

|b̂j,k − bj,k| ≤ C1ǫT ;

max
(j,k)∈I

|âj,k − āj,k| ≤ C2T
−1/2 log1/2 T}

with ǫT = O(log T ).

The result of Theorem 3.2 goes one step further than the
change-point detection result of Theorem 3.1. It states that
it is not only possible to detect the number and location of
the change-points, but also their importance as defined by
the partial ordering specified by the canonical basis, as well
as the coefficient values with respect to that basis. Another
way of viewing this result is that the canonical basis ψbj,k

can be estimated from the noisy observations Xt. The im-
plication of this result is that Binary Segmentation can be
used to estimate not only the change-points in ft, but also
their relative importance with respect to each other. This is
attractive from the point of view of both the interpretability
of the detected change-points, and their use in forecasting,
as we demonstrate further below.

We end this section by remarking that although it is
tempting to attempt to define a “canonical UH spectrum”
in model (3), this does not appear to be a straightforward
task. The reason for this is that the canonical basis is de-
fined for each ft separately, and therefore two different sets
of {aj,k}, leading to two different realisations of ft, can re-
sult in two different canonical bases. Therefore, there is no
such thing as a single specific canonical basis for the random

generator T 1/2
∑

(j,k)∈I
Aj,kψ

bj,k
t of signal ft. Hence, defin-

ing a canonical UH spectrum, being the set of variances of
Aj,k with respect to a canonical basis, is not particularly
obvious here.

3.3 Forecasting

We define our forecasting task in model (3) as follows.
Having observed X1, . . . , XT , we are interested in predicting
the value of fT+h, the conditional mean of XT+h, where
h ≥ 1 is the forecasting horizon. However, we note that if
h is small with respect to T , which we formally quantify as
h = o(T ), then our model guarantees that fT+h = fT . This
is because the change-points locations ηi in our model satisfy
ηi = ⌊Tυi⌋ where the υi’s are constants, so the next change-
point after ηN is not expected until T (1+δ) > T +h, with δ
being a positive constant. Therefore, the task of forecasting
fT+h in model (3) is equivalent to the task of estimating fT .

The condition fT = fT+h for h = o(T ) carries an implicit
assumption that the asset modelled by Xt is of a trend fol-
lowing type: we assume that the current average return fT
will not change in the near future. However, our framework
may also be a useful starting point for the modelling and
forecasting of mean-reverting assets, in which fT+h is likely
to be different from fT ; perhaps negative if fT > 0, or vice
versa. In the latter case, one possibility is to assume that
fT+h = g(fT ) where g is possibly different from identity
and needs to be estimated from the data. Although rigorous
treatment of this case is beyond the scope of this work as it
is not technically covered by our modelling framework, we
discuss it from the practical point of view in Section 5.

Representing ft in its canonical basis, we obtain

ft = T 1/2
∑

(j,k)∈I

āj,kψ
bj,k
t =

∑

(j,k)∈I

〈f, ψbj,k〉ψbj,k
t .

A natural estimator for ft is

f̂t = T 1/2
∑

(j,k)∈Î

âj,kψ
b̂j,k
t =

∑

(j,k)∈Î

〈X,ψb̂j,k〉ψb̂j,k
t ,
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where Î is the set of estimated indices of the estimated
change-points; note that by Theorem 3.2, we have Î = I
with high probability. Therefore, f̂t is the orthogonal pro-
jection of the data X onto the space spanned by the es-

timated canonical UH vectors ψb̂j,k . Hence, f̂T reduces
to

f̂T =
1

T − η̂N

T
∑

t=η̂N+1

Xt,

where η̂N is the most recent estimated change-point. Thus,
f̂T can be interpreted as an adaptive, as opposed to fixed-
span, moving average of the recent values of Xt, where the
adaptation is with respect to the estimated change-point
structure in the data.

Our estimation procedure is parameterised by the thresh-
old parameter ζT . The permitted theoretical range of ζT is
specified in Theorem 3.2, and the practical choice of the con-
stants in ζT is discussed in Section 5. The lower the value of
ζT , the later the Binary Segmentation procedure is likely to
stop, and therefore the closer to T the final detected change-
point η̂N is likely to lie. Therefore, lower (higher) values of
ζT are likely to lead to shorter (longer) average spans T−η̂N .
In other words, recalling the importance interpretation of
the detected change-points discussed earlier, higher values
of ζT lead to forecasts based on more important detected
change-points, whereas the lower the value of ζT , the higher
the chance of basing the forecasts on less important detected
change-points.

4. SIMULATION STUDY

In this section, we briefly exhibit the change-point de-
tection and canonical basis recovery capabilities of our Bi-
nary Segmentation algorithm. We generate trends {ft}Tt=1,
with T = 1, 000, as follows. For each trend, the number N
of change-points is drawn from the Poisson(5) distribution
and their locations ηi are drawn uniformly on [1, T ]. The
jump sizes are simulated independently as N(0, Vηi

). We re-
peat the trend generation 100 times for Vηi

= 1 and 100
times for Vηi

= 2. We denote the canonical basis of ft by
{bj,k}(j,k). For each trend ft, we simulate 1,000 sample paths
of Xt = ft + σtεt with σt = 1. The resulting sample paths
tend to have low signal-to-noise ratios and are challenging
from the point of view of change-point detection.

In the Binary Segmentation algorithm, we use the thresh-
old ζT =

√
C logp T with p = 1/2, which is the lower end

of the permitted theoretical range from Theorem 3.2. The
study is repeated for C = {0.5, 0.75, 1, 1.25, 1.5, 2}. For ro-
bustness, we estimate the local volatility σ̃e

s using the Me-
dian Absolute Deviation estimator for the Gaussian distri-
bution, both here and in the remainder of the paper. The
estimated number of change-points is denoted by N̂ .

To judge the quality of change-point detection and basis
recovery, we use three statistics, one of which is N − N̂ . To

gauge the distance between the estimated and true canoni-
cal bases, we take all those sample paths for which N̂ = N .
For those sample paths, we define the ‘Not Assigned’ (NA)
and ‘Scale Difference’ (SD) statistics, which measure, re-
spectively, the number of estimated change-points that can-
not be assigned to any true one in terms of their loca-
tion, and the sum of differences in scales between the es-
timated and true change-points if assignment is possible.
Define B̂j,k = {b̂i,l : b̂i,l ∈ (bj,k − ΔT , bj,k + ΔT )}, where
ΔT = 5, and let Υ denote the set of all estimated change-
points b̂j,k. Set SD = 0. For all (j, k), from coarser to finer

scales and from left to right, if |B̂j,k| = 1, then the match-

ing for that (j, k) is completed. If |B̂j,k| > 1, choose as the

closest match the b̂i,l ∈ B̂j,k that minimises |i − j|. If there
are multiple such b̂i,l’s, choose the one closest to bj,k. Delete
the matched estimated change-point from Υ. Add |i− j| to
SD. After considering all (j, k)’s, set NA = |Υ|.

Table 1 summarizes the results over various parameter
specifications. As expected, N̂ is closer to N if jump sizes
have a larger variance Vηi

. If ζT is too small, many spurious
change-points are detected, while if it is too large, too few
are identified. The average NA and SD measures are small in
value, which shows the closeness of the true and estimated
canonical bases, provided N̂ is estimated correctly.

5. DATA ANALYSIS

5.1 Data

We analyse the performance of our model in terms of ba-
sis recovery and forecasting in an application to 16 financial
time series, 4 from each of the 4 asset classes: equity indices,
single-name stocks, foreign exchange rates and commodity
futures. We consider their daily closing prices between 1
January 1990 and 21 June 2013, obtained from Bloomberg.
Details of the assets are provided in Table 4. We ignore days
on which no price data are available. Correspondingly, we
obtain T ∗

a ∈ [4, 774, . . . , 6, 124] data points per each asset a.

5.2 Interpretation of change-point

importance

Figure 3 shows log-price series and our integrated model
fit

∑t
s=1 f̂s for one asset from each asset class (General Elec-

tric, GBP-USD exchange rate, WTI crude oil) apart from
equity indices (S&P 500), for which we refer back to Fig-
ure 1. While the patterns exhibited in the three series from
Figure 3 differ, two of the more pronounced trend changes
take place for all three series at the start of the global finan-
cial crisis in early 2008 and following the dot-com bubble
burst in 2000/2001. However, the estimated canonical bases
reveal that both of these events were more important in the
evolution of the General Electric share price than in those
of the GBP-USD exchange rate or the crude oil: the earliest
change-point in the General Electric price series that can be
attributed to the recent global financial crises is estimated

456 A. L. Schröder and P. Fryzlewicz



Table 1. Simulation results for various Vηi
and C; the numbers are averages over all signals and sample paths. Columns 3–5

show the proportion of the number of estimated change-points N̂ that equal or fall within a small range of N . Columns 6 and
7 show N − N̂ and |N − N̂ |, respectively. Columns 8 and 9 show the NA and SD measures, respectively

Vηi
C Prop Prop N̂ in Prop N̂ in Avg Avg Avg Avg

N̂ = N [N − 1, N + 1] [N − 2, N + 2] (N − N̂) (|N − N̂ |) NA SD

1 0.50 0.02 0.05 0.08 −15.47 15.52 2.29 0.29
0.75 0.13 0.35 0.51 −3.15 3.75 2.21 0.40
1.00 0.22 0.56 0.76 −0.14 1.76 1.85 0.42
1.25 0.22 0.57 0.78 0.96 1.57 1.49 0.38
1.50 0.20 0.51 0.74 1.47 1.71 1.18 0.33
2.00 0.16 0.42 0.66 1.97 2.02 0.83 0.25

2 0.50 0.01 0.03 0.05 −17.15 17.17 1.20 0.15
0.75 0.12 0.29 0.43 −4.25 4.48 1.25 0.25
1.00 0.26 0.60 0.77 −1.09 1.79 1.11 0.31
1.25 0.32 0.71 0.88 0.05 1.18 0.91 0.32
1.50 0.33 0.73 0.90 0.58 1.08 0.74 0.33
2.00 0.30 0.67 0.87 1.05 1.20 0.51 0.31

Figure 3. Daily closing values of the General Electric share
price, the GBP-USD exchange rate and WTI crude oil

between January 1990 and June 2013; log-price (grey) and

the cumulatively integrated fit
∑t

s=1 f̂s from our model
(black), shown for threshold parameter C = 0.3 and imposing
a minimum distance between change-points of 60 trading

days.

at scale j = 2 of the canonical basis, while corresponding

change-points for GBP-USD and crude oil only appear at

scales j = 7 and j = 8, respectively. The dot-com burst cor-

responds to the change-point at scale j = 1 for the GE data

and hence this event can be interpreted as the most impor-

tant for this series. For the GBP-USD exchange rate, other

events are more important: the change-point at scale j = 1

is detected in 1990, corresponding to the British currency’s
joining of the European Exchange Rate Mechanism. For the
oil price, the most important change-point is detected early
in time and can be related to the price shock due to the
Iraqi invasion of Kuwait in the summer of 1990. Outside of
the period 1990/1991, the Asian financial crisis in 1997/1998
triggered some important changes in the oil price trend.

5.3 Forecast evaluation

Our model’s ability to predict returns is evaluated in
a rolling window forecast analysis conducted for each of
the 16 assets. Formally, for observed returns on each as-
set a ending at time T̄ + s, we evaluate the h-day cu-
mulative return forecast f̂a,h

s,T̄
=

∑h
t=1 f̂

a
s+T̄+t

= hf̂a
s+T̄

, and

compare it to the observed return Xa,h

s,T̄
=

∑h
t=1 X

a
s+T̄+t

. To

avoid overlapping forecast windows, the forecasts are eval-
uated for s = {1, 1 + h, 1 + 2h, . . . , 1 + (Ha,h − 1)h}, where
Ha,h = ⌊(T ∗

a − T̄ )/h⌋ is a function of the forecast horizon
h = {1, 2, 5, 10, 15, 20, 40}. The length of the estimation pe-
riod is set to T̄ = 1, 750 days, or around 7 trading years,
which roughly corresponds to the typical length of a US busi-
ness cycle since 1980 (NBER, 2013). The parameters of the
Binary Segmentation procedure are as in Section 4, with the
threshold constant C taking values in the set {0.1, 0.2, . . . 3}.

In the following, the index a is suppressed and it is
understood that the forecast performance is evaluated for
each asset a. The forecast f̂h

s,T̄
equals h-times the mov-

ing average of the most recent observations Xt, with a
span T̄ + s − η̂N̂ chosen data-adaptively from the data
as described in Section 3.3. Hence, a natural benchmark
is a non-adaptive moving-average estimator that forecasts

f̃h
s,T̄ ,w

= h/w
∑s+T̄

t=s+T̄−w+1 Xt. As the choice of w will

clearly affect the performance, we compare our model’s fore-
cast f̂h

s,T̄
with an optimized threshold constant C against the
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Table 2. Relative success ratio RSR in percent for our model with optimized threshold value and the benchmark model with
optimized moving average window length. If the relative success ratio has the same sign for both models, the larger absolute
value is in bold. Forecast horizons are grouped with h = 1, 2, h = 5, 10, 15 and h = 20, 40 representing short-, medium- and

long-term forecasts, respectively

h = 1, 2, 5, 10, 15, 20, 40 h = 1, 2 h = 5, 10, 15 h = 20, 40
Model Benchmark Model Benchmark Model Benchmark Model Benchmark

DAX 6.8 6.8 3.0 2.2 7.1 6.1 10.0 12.6

FTSE 5.6 2.6 1.7 −1.9 5.0 −0.4 10.4 11.6

HSI 2.5 4.6 1.6 3.0 4.2 4.2 0.7 6.9

S&P 7.2 6.2 2.4 0.2 7.7 6.6 11.3 11.5

LHA −0.1 4.4 −2.0 0.6 0.1 5.9 1.4 6.0

GE −1.1 −3.4 −2.3 −2.0 −1.2 −0.8 0.2 −8.9
JNJ −1.2 0.9 −1.7 −1.7 −1.4 0.4 −0.2 4.1
MSFT −1.8 −1.7 −2.1 −0.3 −2.2 0.1 −1.0 −5.8

GBPUSD −4.6 −3.2 −1.3 −0.1 −3.9 −3.3 −8.9 −6.0
USDJPY 0.2 1.7 −1.5 −0.1 1.8 1.7 −0.5 3.4
AUDUSD 3.9 4.8 2.1 −0.3 3.3 4.5 6.6 10.3

USDMXN −4.1 −0.4 −2.3 1.7 −5.4 1.0 −4.2 −4.6

Oil 6.6 1.8 2.9 0.1 6.2 1.7 10.8 3.5
Gold 2.5 1.6 3.3 −2.2 4.1 0.1 −0.6 7.4
Live Cattle 2.0 −6.1 −1.7 −2.9 0.8 −5.8 7.5 −9.7
Sugar −2.8 3.4 −2.0 0.3 −1.5 4.1 −5.5 5.5

best forecast from a range of moving-average models with
w = {h, 2h, . . . 10h} for each forecast horizon h.

Our success criterion is sign predictability, defined as the
proportion of correctly predicted signs. Some authors, e.g.
Leitch and Tanner (1991), argue that this approach pro-
vides more robust results than statistics based on the level
of predicted returns and provide evidence that in finan-
cial applications under the objective of profit maximization,
the proportion of correctly predicted signs beats, amongst
others, the mean square prediction error as a criterion for
choosing forecasts. We define the ‘Relative Success Ra-
tio’ for a model with forecast ḟh at forecast horizon h as
RSRh = 1/Hh

∑Hh−1
i=0 I(Xh

1+ih,T̄
ḟh
1+ih,T̄

> 0)− 0.5.

A large positive RSRh provides evidence for predictability
and can be expected if an asset behaves in a trend following
way. However, as mentioned in Section 3.3, a large nega-
tive RSRh can be related to mean reverting behaviour and
also provides a meaningful trading signal. We only compare
the two models in terms of their RSRh’s if both provide
the same directional signal, that is if both suggest trend
following or mean reversion. Table 2 summarizes the gen-
eral results as well as results for forecast horizons grouped
into short, medium and long term. The results are individ-
ually optimized in terms of the threshold constant C (for
our model) and the moving average span w (for the bench-
mark) for each forecast horizon to yield the largest absolute
RSRh, i.e. the model fit with the proportion of predicted
signs deviating furthest from 0.5.

Over all forecast horizons combined, our model and the
benchmark are performing comparably well, with our model
offering better performance for 7 assets, ahead of the bench-
mark, which performs better for 5 assets. The difference in

performance appears to be due to commodities, where the
sign predictability of our model is clearly more pronounced
for gold and oil, which show trend-following behaviour. Con-
sidering forecast horizons in more detail, our model tends
to outperform the benchmark in short- and medium-term
prediction, but performs worse in long-run predictions. Ta-
ble 3 summarizes the RSR’s during times of strong move-
ments. We classify time periods as containing strong move-
ments if their h-day cumulative return lies in the top or
bottom 10% of their historic distribution. Formally, we con-
sider only those forecasts for which Xh

s,T̄−h+1
< Q10%

s,T̄ ,h or

Xh
s,T̄−h+1

> Q90%
s,T̄ ,h with Qc%

s,T̄ ,h denoting the c-percentile of

non-overlapping h-day returns in the period [s, s + T̄ ]. In
this subset our model does well particularly in currencies,
where the apparent mean-reverting behaviour can be cap-
tured better by our adaptive predictor. Otherwise the pat-
tern is similar to that in Table 2, but even more favourable
to our adaptive predictor. In particular, for the long-term
forecasts, our model now performs comparably well to the
benchmark.

APPENDIX A. PROOFS

Proof of Proposition 2.1. Using the orthonormality of the
basis ψbj,k , we have

E(Ij,k) =T−1E

⎛

⎝T 1/2
∑

(i,l)∈I

Ai,l

T
∑

t=1

ψ
bi,l
t ψ

bj,k
t

+

T
∑

t=1

σtεtψ
bj,k
t

)2
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Table 3. Relative success ratio RSR in percent for our model with optimized threshold value and the benchmark model with
optimized moving average window length. If the relative success ratio has the same sign for both models, the larger absolute
value is in bold. Results for forecasts taking place when the most recent h-day cumulative return is in the top or bottom decile
of its historical distribution. Forecast horizons are grouped with h = 1, 2, h = 5, 10, 15 and h = 20, 40 representing short-,

medium- and long-term forecasts, respectively

h = 1, 2, 5, 10, 15, 20, 40 h = 1, 2 h = 5, 10, 15 h = 20, 40
Model Benchmark Model Benchmark Model Benchmark Model Benchmark

DAX 7.0 3.0 −0.1 2.6 7.7 4.7 13.1 0.9
FTSE 2.4 −3.4 −2.7 −2.4 3.0 −7.6 6.8 1.9
HSI 3.0 9.5 4.0 3.2 2.9 9.1 2.1 16.4

S&P 0.9 4.3 −4.1 −4.4 2.2 4.3 3.8 12.9

LHA −4.2 0.1 −3.5 3.4 −10.1 −6.0 3.8 5.8

GE −3.1 −2.3 −0.7 −0.3 −5.4 −5.4 −2.1 0.5
JNJ −0.3 2.1 −4.4 −6.2 1.4 −1.0 1.2 15.0

MSFT −3.4 2.2 −3.4 4.4 −2.8 2.1 −4.4 0.3

GBPUSD −7.4 −2.0 −3.4 0.2 −4.2 2.4 −16.4 −11.0
USDJPY −2.1 −0.4 −0.4 0.0 −1.9 −0.6 −3.9 −0.7
AUDUSD 1.3 −2.3 −0.6 −4.3 3.4 −1.3 0.0 −1.8

USDMXN −3.1 −2.1 −0.5 3.8 −3.0 0.3 −5.7 −11.4

Oil 4.5 4.4 0.7 −1.4 5.3 10.4 6.9 1.3
Gold −5.6 −5.3 3.3 −0.7 −6.9 −0.6 −12.8 −16.8

Live Cattle −5.4 −6.1 −2.1 −2.5 −9.1 −4.1 −3.0 −12.8

Sugar −1.9 5.8 −3.8 −3.2 3.4 8.8 −8.0 10.4

=T−1E

(

T 1/2Aj,k +

T
∑

t=1

σtεtψ
bj,k
t

)2

=E(A2
j,k) + T−1E

(

T
∑

t=1

σtεtψ
bj,k
t

)2

,

which gives

|E(Ij,k)− E(A2
j,k)| ≤ T−1σ2

T
∑

t=1

(ψ
bj,k
t )2 = σ2T−1.

Proof of Property 2.1. (i) results from the fact that ft is a
realisation of a piecewise-constant random process with at
most N change-points and that by (ii), their magnitudes
are |∑j,k αj,k,iaj,k|, which is a finite quantity. For (ii), note

that ft − ft−1 = T 1/2
∑

(j,k)∈I
aj,k(ψ

bj,k
t − ψ

bj,k
t−1) and that

T 1/2|ψbj,k
t − ψ

bj,k
t−1| is bounded in T as ψ

bj,k
t = O(T−1/2) due

to the fact that the spacings between change-points satisfy
mini=1,...,N+1 |ηi − ηi−1| = O(T ). (iii) is implied by the fact
that PA(|∑j,k αj,k,iAj,k| = 0) = 0 since the distributions of
Aj,k are continuous and mutually independent. Outside of
the set A0, (iv) holds because ft can only have change-points
at bj,k as this is where the change-points in the basis vectors
ψbj,k are located and the ends of their supports coincide with
their parents’ change-points as the set I is connected.

Proof of Theorem 3.1. The proof is based on the proof of
Theorem 3.1 from Fryzlewicz (2012). Firstly, we observe that
our conditional signal ft satisfies the assumptions of that
Theorem, since {aj,k}j,k �∈ A0. Further, Lemmas A.1 and
A.2 from Fryzlewicz (2012) hold if λ1 in those Lemmas is
replaced by σλ1. Lemma A.3 holds with λ2 = O(log T ) and

ǫT = O(log T ) since in our case, δT = O(T ). Lemmas A.4
and A.5 hold with the respective changes to λ1, λ2 and ǫT , as
above. Hence, the proof of Theorem 3.1 proceeds in the same
way as the proof of Theorem 3.1 in Fryzlewicz (2012).

Proof of Proposition 3.1. The proof proceeds similarly to
that of Property 2.1 (iii) by noting that 〈f, ψe,ηi,e〉 is a lin-
ear combination of {aj,k}j,k, different for each i such that
ηi ∈ [s, e].

Proof of Theorem 3.2. The proof is a straightforward mod-
ification of the proof of Theorem 3.1, which itself uses the
proof of Theorem 3.1 from Fryzlewicz (2012). It is suffi-
cient to observe that in our context, a stronger version of
Lemma A.2 in the latter work holds, whereby ηp0+r achieves
the unique maximum of |〈f, ψs,η,e〉| over η ∈ [s, e]. This is
because if the unique maximum were achieved by ηp0+q �=
ηp0+r, then |〈f, ψs,ηp0+q,e〉| > |〈f, ψs,ηp0+r,e〉| = O(T 1/2) by
Lemma 1 of Cho and Fryzlewicz (2012), and therefore the b
maximising |〈X,ψs,b,e〉| would have to fall near ηp0+q, rather
than ηp0+r by Lemma A.1 from Fryzlewicz (2012).

For the estimation of āj,k, we have

|âj,k − āj,k|=T−1/2|〈f, ψbj,k〉 − 〈X,ψb̂j,k〉|

≤T−1/2
{

|〈f, ψbj,k〉 − 〈f, ψb̂j,k〉|

+ |〈X,ψb̂j,k〉 − 〈f, ψb̂j,k〉|
}

≤T−1/2
{

O(ǫtT
−1/2) +O(log1/2 T )

}

=O(T−1/2 log1/2 T ),
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Table 4. Data series used in the empirical evaluation; data provider: Bloomberg; number of observations corresponds to
number of days for which a quote is available between 1 January 1990 and 21 June 2013

Asset Class Asset Bloomberg Ticker Primary Quote/Trading Venue Observations

Equity Index Dax Index DAX Index Germany - DB 5,936
Equity Index FTSE 100 Index UKX Index United Kingdom - LSE 5,930
Equity Index Hang Seng Index HSI Index Hong Kong - HKSE 5,802
Equity Index S&P 500 Index SPX Index United States - NYSE 5,915
Equity Deutsche Lufthansa LHA GR Equity Germany - Xetra 5,891
Equity General Electric GE US Equity United States - NYSE 5,915
Equity Johnson & Johnson JNJ US Equity United States - NYSE 5,915
Equity Microsoft MSFT US Equity United States - Nasdaq 5,915
Currency AUD/USD Spot rate AUDUSD Curncy London Composite 6,124
Currency GBP/USD Spot rate GBPUSD Curncy London Composite 6,124
Currency USD/JPY Spot rate USDJPY Curncy London Composite 6,124
Currency USD/MXN Spot rate USDMXN Curncy London Composite 6,124
Commodity Future Crude Oil CL1 Comdty New York Mercantile Exchange 5,895
Commodity Future Gold GC1 Comdty CMX-Commodity Exchange 5,895
Commodity Future Live Cattle LC1 Comdty Chicago Mercantile Exchange 5,923
Commodity Future Sugar SB1 Comdty NYB-ICE Futures US Softs 5,880

where we use, respectively, the triangle inequality, a tech-
nique as in Lemma 2 of Cho and Fryzlewicz (2012) and
Lemma A.1 of Fryzlewicz (2012).

APPENDIX B. DATA

Details of the assets used are in Table 4.
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Indian Journal of Statistics Series A 63 328–366. MR1897046

Fryzlewicz, P. (2007). Unbalanced Haar technique for nonparametric
function estimation. Journal of the American Statistical Association

102 1318–1327. MR2412552

Fryzlewicz, P. (2012). Wild Binary Segmentation for multiple
change-point detection. Preprint.

Fryzlewicz, P., Sapatinas, T. and Rao, S. S. (2006). A Haar-Fisz
technique for locally stationary volatility estimation. Biometrika 93

687–704. MR2261451

Fryzlewicz, P. and Subba Rao, S. (2013). BaSTA: Consistent mul-
tiscale multiple change-point detection. Preprint.

Garcia, R. C., Contreras, J., van Akkeren, M. and Gar-

cia, J. B. C. (2005). A GARCH forecasting model to predict day-
ahead electricity prices. IEEE Transactions on Power Systems 20

867–874.
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460 A. L. Schröder and P. Fryzlewicz



Lee, C. B. (1995). Estimating the number of change points in a se-
quence of independent normal random variables. Statistics & Prob-

ability Letters 25 241–248. MR1369518

Leitch, G. and Tanner, J. E. (1991). Economic forecast evaluation:
Profits versus the conventional error measures. American Economic

Review 81 580–590.

Nason, G. P. (2008). Wavelet Methods in Statistics with R. Springer.
MR2445580

Nason, G. P., von Sachs, R. and Kroisandt, G. (2000). Wavelet
processes and adaptive estimation of the evolutionary wavelet spec-
trum. Journal of the Royal Statistical Society: Series B 62 271-292.
MR1749539

NBER (2013). US Business Cycle Expansions and Contractions. Na-
tional Bureau of Economic Research.

Ombao, H., Raz, J., von Sachs, R. and Guo, W. (2002). The SLEX
model of a non-stationary random process. Annals of the Institute

of Statistical Mathematics 54 171–200. MR1893549

Pan, J. and Chen, J. (2006). Application of modified information cri-
terion to multiple change point problems. Journal of Multivariate

Analysis 97 2221–2241. MR2301636

Priestley, M. B. (1983). Spectral Analysis and Time Series. Aca-
demic Press.

Spokoiny, V. (2009). Multiscale local change point detection with
applications to value-at-risk. Annals of Statistics 37 1405–1436.
MR2509078

Timmermans, C.,Delsol, L. and von Sachs, R. (2012). Using Bagidis
in nonparametric functional data analysis: Predicting from curves
with sharp local features. Journal of Multivariate Analysis 115 421–
444. MR3004568
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Department of Statistics

London School of Economics

London WC2A 2AE

United Kingdom

E-mail address: a.m.schroeder@lse.ac.uk

Piotr Fryzlewicz

Department of Statistics

London School of Economics

London WC2A 2AE

United Kingdom

E-mail address: p.fryzlewicz@lse.ac.uk

Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery 461


	Introduction
	The model
	Motivation and basic ingredients
	Definition and examples
	Unconditional properties of the model
	Properties of the model conditional on Aj,k

	Estimation and forecasting
	Change-point detection
	Basis recovery
	Forecasting

	Simulation study
	Data analysis
	Data
	Interpretation of change-point importance
	Forecast evaluation

	Proofs
	Data
	Acknowledgements
	References
	Authors' addresses

