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TERRY ELROD and MICHAEL P KEANE*

Internal market structure analysis infers both brand attributes and
consumer preferences for those attributes from preference or choice
data. The authors exploit a new method for estimating probit models from
panel data to infer market structures that can be displayed in few
dimensions, even though the mode! can represent every possible vector
of purchase probabilities. The resuit outperforms each of several other
models, including Choice Map, SCULPTRE, and Chintagunta's latent
class model in terms of goodness of fit, predictive validity, and face
validity for a detergent data set. Because theirs Is the only market
structure model to outperform the structureless Dirichlet-multinomial
stochastic brand choice model, the other methods cannot claim to have

A Factor-Analytic Probit Model for Representing
the Market Structure in Panel Data

recovered market structure for these data.

a

Market structure, as understood by marketers, is the ex-
planation of consumer brand preferences in terms of the
attributes of brands and consumer preferences for those
attributes. /nternal market structure analysis infers both the
brand attributes and consumer preferences for those attri-
butes from preference or choice data (Elrod 1991), Inferring
market structure from preferences or choices among stimuli
under the researcher’s control has a long history and is still
advancing. Methods for such data that recently have ap-
peared in the literature include, for preferences, GEN-
FOLD?2 (DeSarbo and Rao 1986); for pairwise preferences,
PROSCAL (MacKay and Drésge 1990; MacKay and Zinnes
1986), and for pairwise choices, DeSarbo, De Soete, and
Eliashberg (1987); DeSarbo et al. (1988); and Carroll, De
Soete, and DeSarbo (1990).

In recent years a number of methods have also been de-
veloped that can provide information about market struc-
tures from real world choice data. Such data typically entail
repeated purchases in settings not under the researcher’s
control, so there are limits to the inferences that can be
made. We cannot, for, example, extend the set of attributes
characterizing choice among brands by adding new con-
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cepts to the choice set. Yet, models that successfully recov-
er market structure from real world data help managers un-
derstand current behavior. For example, such models allow
managers to verify the positioning of existing brands and
suggest to them attractive positions for new or repositioned
brands, at least within the set of attributes characterizing ex-
isting choices. Ultimately, we can hope to adapt successful
models for real world data so they can be estimated from
data under the researcher’s control. Then managers could
use a single modeling framework to infer the atiributes that
govern choice in a product category (and the positions of
brands on those attributes) as well as predict the perfor-
mance of new concepts that entail new attributes.

MODELS FOR THE INTERNAL ANALYSIS OF MARKET
STRUCTURE FROM REAL WORLD CHOICE DATA

A review of recently developed methods for the internal
analysis of market structure from all types of preference and
choice data is provided by Elrod (1991). A comparison of
methods that can be applied to real world choice data is pro-
vided in Table 1. The methods differ in terms of the type of
data they require, whether differences in market shares are ex-
plained by the structure (rather than captured by brand-specif-
ic constants), whether they can assess the effects of nonprod-
uct marketing variables (such as price and display), the type of
structure inferred, and how they treat consumer heterogeneity,

Models for Market Share Data

The first three models in Table 1 analyze changes in mar-
ket shares over time, which are presumed to be caused by
fluctuations in a marketing mix variable, such as price.
Structure is inferred from the constraints imposed on cross-
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Table 1
A COMPARISON OF MODELS FOR INFERRING MARKET STRUCTURE FROM REAL WORLD CHOICE DATA
Response Explains Includes Nonproduct Model Consumer
Model Data Market Shares?  Marketing Variables? Structure Heterogeneity
DEFENDER (Shugan 1987; Waans, Carree, Spatial (iwo Uniform or beta
and Wierenga 1991) Market shares Yes Price (required) dimensions) (one dimension)
Competitive Maps (Cooper 1988) Market shares No Price, etc. Spatial Implicit
{one required)
Allenby (1989) Market shares No Price, etc. Nonoverlapping Implicit
{one required) clusters
Grover and Srinivasan (1987); Jain, Bass,
and Chen (1990) Brand switching No No Cluster Latent class
DeSarbo and Hoffman (1986, 1987), DeSarbo Pick-any/n Idiosyncratic or
and Cho (1989); Jedidi and, DeSarbo (1991) (binary) Yes No . Spatial explained
Deterministic methods (correspondence Purchase
analysis; CGS scaling; pick-any) frequencies No No Spatial Idiosyncratic
SCULPTRE (Ramaswamy and DeSarbo Purchase
1990) frequencies Yes No Ultrametric tree Latent class
Choice Map (Elrod 1988a, b) Purchase Yes No Spatial Reduced-rank
frequencies (bivariate) normal
Chintagunta (1994) Disaggregate panel Yes Price, etc. (any Spatial Reduced-rank
number, optional) * latent class
Factor-analytic probit Price, etc. (any Full-rank
(introduced in this paper) Disaggregaie panel Yes number, optional) Spatial multivariate normal

price elasticities. The advantages of these models are: (1)
they include the effects of one or more marketing mix vari-
ables and (2) they avoid the problem brand choice models
have of handling multiple purchases on single shopping oc-
casions by analyzing only aggregate data.

However, the ability to infer consumer heterogeneity
from aggregate data is limited. The models by Allenby
(1989) and Cooper (1988) do not characterize consumer het-
erogeneity. In addition, because brand-specific intercepts
are included in these models, differences in market shares
are not accounted for by the market structures they infer.
This limits their usefulness for product repositioning and
new product development, because a brand's share cannot
be predicted without knowing its intercept, and the market
structure has nothing to say about what that intercept will
be. The DEFENDER model (Hauser and Shugan 1983) does
explain differences in market shares. Shugan’s (1987) adap-
tation of DEFENDER allaws it to be estimated solely from
scanner data, but the researcher must prespecify a distribu-
tion for the household ideal vectors, which are confined o
one dimension. More recently, Waarts, Carree, and Wieren-
ga (1991) allow the shape of the univariate distribution to be
estimated from the data.

Models for Brand Switching Data

A second approach has been to analyze brand switching
matrices using latent class models. Brand switching matri-
ces are constructed by tallying a one in cell (i, j) whenever a
household is observed to purchase brand i followed by brand
j- Latent class models assume that consumers belong to one
of several segments (or classes). The segments are latent be-
cause households are not assigned to segments a priori.

Grover and Srinivasan (1987) and Jain, Bass, and Chea
(1990) both fit switching malrices by pastulating that the
population of consumers is a mixture of segments. In Grover
and Srinivasan’s model, some segments are loyal to a single
brand, whereas others switch symmetrically among all
brands. Although the model is consistent with heterogeneity
within switching segments, the degree of heterogeneity can-
not be estimated from switching data. The model by Jain,
Bass, and Chen (1990} is identical, except that it can allow
for and estimate the degree of heterogeneity within switch-
ing segments because i1 excludes brand-loyal segments.

These versatile models have been shown to attain very
good fits. Switching matrices require only two purchases per
respondent, so they can be constructed for infrequently pur-
chased items while retaining information about consumer
heterogeneity. However, these models possess two impor-
tant limitations that have to do with their structure and the
type of data anatyzed. First, these methods do not explain
differences in market shares, which limits their usefulness.
The only means for predicting share for a new or reposi-
tioned brand is to specify its share for each of the inferred
segments, which is not particularly satisfactory.

Second, although brand switching matrices preserve some
of the information about consumer heterogeneity, they do so
imperfectly and at a price. Because brand switches are ag-
gregated over time, information about the effects of market-
ing mix variables on brand choice is lost. Furthermore,
households that are observed to buy more than twice pose a
problem for the construction of switching matrices. For ex-
ample, a household’s len consecutive purchases can be tal-
lied as nine switches or as five independent pairs of pur-
chases. Either way, this single household that switched nuo-
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merous times is misrepresented as numerous different
households that each switched once, which is statistically
quite different. An extreme solution to this problem is to
record a single switch for each household, but this discards
most of the data for frequently purchased categories.

Models for Pick-Any/n (Binary) Data

A number of models have been developed for analyzing
pick-any/n data. Pick-any/n data are binary preference or
choice data. As with brand choice models, the number (n)
and identity of alternatives evaluated by consumers is as-
sumed to be known. A one (or pick) signifies the preference
or choice of a brand, whereas a zero signifies rejection. There
is no constraint on the number of brands that can be picked.

DeSarbo and Hoffman (1986, 1987) and DeSarbo and
Cho (1989) developed models for pick-any/n data for which
each respondent either‘does or does not prefer or choose a
brand. Jedidi and DeSarbo (1991) extend these madels by
allowing a third mode to the data in addition to respondents
and brands, such as cheice or usage occasion.

All these models have two methods for treating consumer
heterogeneity. Ideal points or vectors can be estimated sep-
arately for each household (referred to in Table | as id-
iosyncratic treatment of heterogeneity). Alternatively, the
ideal points or vectors can be constrained to be Linear func-
tions of (i.e., be explained by) observed consumer charac-
teristics. In addition, all the models allow brand attributes to
be either known a priori or else inferred by the model.

Although published applications of these models have
been to questionnaire data, the models could also be applied
to panel data. For example, DeSarbo and Cho (1989} ask
consumers which of 11 popular brands of soft drink they
purchase and consume at least every other week. Compara-
ble information is easily culled from scanner or diary panel
data. However these models require binary data, which re-
tain little information about frequency of purchase.

The Jedidi and DeSarbo (1991) model does best in this re-
gard because the third mode can be shopping occasion, but
the number of occasions analyzed must be the same for all
households. Furthermore, the models also assume that each
consumer’s response for one brand is made independently of
responses for the other brands. Such an assumption is often
appropriate for the type of data for which these models were
designed—checking responses on a questionnaire. Howey-
er, the decision to purchase one brand, particularly on a sin-
gle shopping occasion, surely affects whether other brands
are also purchased.

The models also suffer from a difficulty in estimation
when household-specific parameters such as ideal points or
vectors are estimated. Because the models are estimated by
maximum fikelihood, the parameter estimates are not con-
sistent in the number of households. In fact, for some house-
holds unique maximum liketihood estimates of their param-
eters do not exist,! and the models can obtain estimates of
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those parameters only by terminating the iterative estimation
process before attaining the maximum likelihood. When
household ideal points or vectors are constrained to be lin-
ear functions of observed household characteristics, then all
parameter estimates will generally exist and be consistent,
but there is no guarantee that consumer preferences are ade-
quately explained by such variables.

Models for Purchase Frequencies

A number of models tise information about purchase fre-
quencies, the number of times each household purchased
each brand during an observational period. Thus, purchases
are aggregated over time but not over households. As with
brand switching data, information about marketing mix ef-
fects is Jost in return for model simplification and speedier
estimation. Any model for such data can also analyze brand
switching matrices simply by recoding the switching data as
purchase frequencies and assuming two purchases for each
household.

Deterministic models. Purchase frequencies are amenable
to analysis by deterministic methods such as correspondence
analysis (Hoffman and Franke 1986), CGS scaling {Carroll,
Green, and Schaffer 1986, 1987) and Levine's (1979) pick-
any procedure. Although comespondence analysis has the
best claim to being the appropriate method for summarizing
such data, these methods differ only in their scaling of the di-
mensiens used to represent households and brands.

All these models analyze residuals from a main effects
model, which assumes that each purchase frequency is pro-
portional to its row (household) and column (brand)
marginals. Because the column marginals are market shares,
these methods do not explain market shares but instead re-
move them from the analysis, and brands with very different
market shares may have identical positions in the maps.

Probabilistic models. SCULPTRE (Ramaswamy and De-
Sarbo 1990) and Choice Map (Elrod 1988a, b) are proba-
bilistic models for purchase frequencies that differ in how
they represent market structure and consumer heterogeneity.
Choice Map, in both its vector (Elrod 19883} and ideal point
(Elrod 1988b) versions, infers a spatial structure by assum-
ing that consumer preferences {(whether vectors or ideal
points) are multinormally distributed. Because numerical in-
tegration is utilized to estimate the models, the dimensional-
ity of the space is kept to one or two dimensions.

Elrod and Winer (1991) compare spatial models and
bench mark models (such as the Dirichlet-multinomial) for
purchase frequencies in terms of goodness of fit, predictive
validity, and ease of use. Choice Map performed the best of
the market structure models considered, but the structureless
Dirichlet-multinomial stochastic brand choice model pre-
dicted best of all. Elrod and Winer therefore conclude that
none of the models successfully recovers the structures

thought to undetlie either of the two product categories they
analyzed.

1For vector models (DeSarbo and Cho 1989; Jedidi and DeSarbo 1991),
the likelihood function is maximized by a vector of infinite length whenev-
er all brands chosen by that consumer project higher onto that vector than
all brands not chosen. Furthermore, any such vector maximizes the likeli-
hood function, Thus, the consumer's vector is of infinite length and inde-
terminate direction. This problem will arise for all households that choose

only ene brand, unless that brand lies interior to the other brands, It will
also arise for households that choose two or more brands if those brands lie
1o one side of the brand map. The same househelds that have nonexistent
vectors in the vector models will also have nonexistent ideal points—their
likelihood-mazimizing ideal points will lie at infinity in an indeterminate
direction.



An alternative to spatial representations is a tree structure.
Holman (1972) shows that simple tree structures can capture
what requires many dimensions to capture using a spatial
model. Ramaswamy and DeSarbo (1990) fit a probabilistic
ultrametric tree model called SCULPTRE to one of the
Elrod and Winer data sets and found it outperformed both
Choice Map and the Dirichlet-multinomial models, accord-
ing to the least squares measure of fit and predictive vaidi-
ty used by Elrod and Winer in the first (1988) version of
their working paper. They attribute the apparent superiority
of SCULPTRE to the absence of parametric assumptions
about the distribution of household preferences for brands,
However, it may be that SCULPTRE's success is more the
result of Choice Map’s inability to capture household het-
erogeneity in more than two dimensions,

A Model for (Disaggregate) Panel Data

Finally, we consider a model designed for panel data. Ag-
gregation, whether over households or over time, is avoided,
so all information about marketing variables as well as in-
terhousehold heterogeneity is retained. Models designed for
such data can also be estimated using data on purchase fre-
quencies or brand switching by recoding the data and arbi-
trarily assigning brand choices to purchase occasions.

Most recently, Chintagunta (1994) has developed a latent
class model for inferring market structare from such data.
The mode! is a special case of the latent class model devel-
oped by Kamakura and Russell (1989). Segment-specific
brand intercepts are constrained to lie within a subspace of
few dimensions, with the inferred brand and segment loca-
tions in that space constituting a product-market map, [t par-
takes of the virtues of latent class models, because (1) it is
felatively easy to program, (2) it can be estimated using a
fast personal computer, (3) it readily incorporates marketing
mix effects, and (4) its nonparametric treatment of consumer
heterogeneity is thought to be robust. :

Although latent class models represent an impertant addi-
tion to methods for handling unobserved consumer hetero-
geneity, they are hampered by the coarseness of their ap-
proximation of consumer heterogeneity, particularly in the
usual case in which within-segment heterogeneity is pre-
cluded. For example, Chintagunta (1994) approximates
one-, two-, and three-dimensional distributions using two,
three, and five points, respectively. Kamakura and Russell
(1989) use five points to approximate a four-dimensional
distribution.2

The limited ability of latent class models to adequately
represent heterogeneity distributions has been better recog-
nized in the econometrics literature in which these models
originated. The seminal paper by Laird (1978) notes that
using the latent class approach “gives a very limited picture
of what the underlying distribution looks like,” even for a
univariate distribution. Heckman and Singer (1984), in an
investigation of latent class models for duration data, “find
that the NPMLE [nonparametric maximum likelihood esti-
mator] recovers the structural parameters of the underlying
madels very well but does not accurately estimate the distri-

2They first remove households that are observed to buy only one brand.

Their application of fateat class analysis to the remaining households yicld-
ed five segments.
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bution of unobservables even in very large samples.” In
other words, although latent class models substantially im-
prove estimates of the mean vector of household coefficients
in the presence of heterogeneity, their ability to adequately
characterize the heterogeneity itseif is much less certain.

A NEW, FACTOR-ANALYTIC PROBIT MODEL
FOR PANEL DATA

Examination of Table | shows that existing market struc-
ture models for real world choice data cannot explain differ-
ences in brand market shares, yield inconsistent estimates of
model parameters (those shown in the table as having id-
iosyncratic consumer heterogeneity), and/or preclude
households from having plausible coefficient vectors. We
believe these shoricomings are consequential.

Models that explain consumer heterogeneity force house-
hold parameters to be'a linear function of observed house-
hold characteristics. Latent class models {except for those
for brand switching matrices) force every household to have
one of a handful of parameter vectors. Spatial models use re-
duced-rank characterizations of consumer heterogeneity.
They constrain brand and household parameters to lie with-
in a subspace of few dimensions, a constraint that often is

‘not satisfied in practice (Carroll 1972; Elrod 1988b, 1691).

A vector or ideal point model of market structure can rep-
resent every purchase probability vector only if the dimen-
sionalily of the space is at least one fewer than the number
of brands.? This means that a market for only eight brands
requires a seven-dimensional space, which is hard both to
estimate and portray.

Fortunately, it is possible to pertray in a few dimensions
spatial market structures that nonetheless have the capabili-
ty of representing any vector of purchase probabilities. The
methed was first proposed and implemented by J. Douglas
Carroll and coauthors (Carroll, De Soete, and DeSarbo
1990; Winsberg and Carroll 1988). They represent the vari-
ability in consumer vectars in a (J ~ 1)-dimensional space,
where J is the number of brands, as arises from variability
on common factors and brand-specific factors, as in factor
analysis. The market structuze is caplured by the common
factors, which usually number no more than one or two.

We apply the approach of Carroll and associates, while
extending their work in two ways. First, we infer factor-an-
alytic structure from real world choice data, specifically
panel data, in which households make repeated purchases
from sets of J altematives. Previously developed methods
required pairwise dissimilarity judgments from subjects.
Second, the model presented here is part of a probit model-
ing system, which allows the simultaneous investigation of
brand differentiation, marketing mix effects, consumer het-
erogeneity (both observed and unobserved), purchase event
feedback, and nonstationarity over time, all within a randotn
utility framework. A demonstration of many of these prop-
erties of the system is provided by Keane (1994b).

Our purpose is to assess our model's ability, using a con-
strained form of faclor analytic structure, to correctly recov-

3Allowing household-specific rescalings of a space reduces the requisite
aumber of dimensions for that space, but it adds an equal number of di-
mensions for the scaling parameters, so the dimensionality of household-
level parameters remains the same.
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er the market structure in a product category that is well un-
derstood, using a data set that can be analyzed by competing
market structure models for comparison, The alternative
models fit to the data include Chintagunta’s (1994) latent
class model, Choice Map in its vector and ideal-point ver-
sions (Elrod 1988a, b), SCULPTRE {Ramaswamy and De-
Sarbo 1991}, and the Dirichlet-multinomial stochastic brand
choice model (Bass, Jeuland, and Wright 1976). The latter
model is structureless, in that it assumes consumers adhere
to the property of independence of irrelevant alternatives
(ITA) both at the individual level and in aggregate. This
propetty is inconsistent with the existence of market struc-
ture, where some brands compete more closely than others
(Elrod 1988a). Market structure models that describe the
data less adequately than the Dirichlet-multinomial model
cannot be said to have recovered the structure for the prod-
uct category.

FITTING PROBIT MODELS TQ PANEL DATA

The method proposed here is made feasible by a funda-
mental advance in the estimation of probit models from
panel data. Probit madels have much appeal for the repre-
sentation of choice processes. Like all random utility mod-
els, they assume consumers purchase brands with the high-
est utility on each shopping occasion, a conceptualization
that aids in the formulation and interpretation of models of
brand choice behavior. The assumption of normally dis-
tributed errors for utilities is readily justified and familiar to
researchers from other contexts. Furthermore, probit models
can readily represent departures from IIA by allowing the
covariance matrix for the errors to depart from proportional-
ity 1o the identity matrix. Finally, probit models can incor-
porate. in a theorelic thanner, the effects of marketing mix
variables and observed household characteristics.

The implementation of probit models has been hampered
until recently by the lack of sufficiently fast and accurate es-
timation methods. Numerical methods have been used to
evaluate the probability that each brand is chosen, which en-
tails approximating an integral over J - 1 dimensions, where
J is the nember of brands. However, this method is too Lithe-
consuming for parameter estimation if J is larger than three
ot four. An important breakthrough in the estimation of pro-
bit models, termed the method of simulated moments, was
developed by McFadden (1989) for cross-sectional data.
This method uses simulation, rather than numerical integra-
tion, in such a way that few simulates are needed per indi-
vidual. McFadden. shows how his method can be used to
characterize two consecutive purchases per individual from
a set of J brands by treating each of the J2 possible pairs as
a different alternative, the approach taken by Chintagunta
and Honore (1990) and by Chintagunta (1992).

Unfortunately, the method of simulated moments, as orig-
inally developed by McFadden, is not practical for panel
data with more than four or five brands and two time peri-
ods. (For a discussion of this issue, see the Technical Ap-
pendix.) It is also not possible to distinguish among some of
the different sources of error variance, such as between con-
sumer heterogeneity in preferences and autocorrelation in
utilities over tite, using only two periods of data.

5

Keane (1990) describes a practical method for extending
the method of simulated moments to the panet data case, It
is based on recursive simulation of transition probabilities—
the probabilities that each of the J brands are purchased at
time t, given which brands were purchased by a household
on all previous occasions, The method is illustrated here
using choices from a set of eight brands on up to 24 differ-
ent choice occasions. Keane (1994a) proves that the esti-
mates are consistent and asymptotically normal as the num-
ber of simulates increases, but he also shows using simufat-
ed data that the method works well with few simulates per
choice occasion. We provide a more complete discussion in
the Technical Appendix. The reader should consult Keane
(1993) for a thorough exposition of the estimation technolo-
gy; we extend his work by adding a special form of factor-
analytic structure fo the mode] 4

In the next section we develop and justify two factor-ana-
Iytic specifications that are useful for market structure anal-
ysis. One of these is designed to infer market structure,
whereas the other is designed to represent structureless mar-
kets, We then report on the fits of these specifications to a
data set, which is contained in Elrod and Winer (1991) and
consists of purchase frequencies for eight different brands of
household detergent by 100 different households. We find
that a factor-analytic probit model outperforms, in terms of
goodness of fit, predictive validity, and face validity, alter-
native market structure and brand choice models fit to the
same data.

MODEL SPECIFICATION

Probit models are instances of random utility models, As
such, they are consistent with the notion of wility maxi-
mization on the part of consumers. Letting djj equal one if
brand j is purchased by the ith household on the tth purchase
occasion and zero otherwise, our probit model assumes that:

(l) dij' =] if and OHIY Ifﬁ“‘ = max {ﬁiltv---. ni]t)'

where Ty, is the utility of the jth brand (of J brands) to the ith
household on the tth choice occasion. Discrepancies be-
tween what appears lo the researcher to be the highest utili-
ty brand and the brand chosen by a consumer are accounted
for by a random (to the researcher) component to utility,
which captures unobserved and often transient determinants
of utility. Thus, iy, is random, as signified by the tilde ).
The probability that household i chooses brand j on pur-
chase occasion t is equal to the probability that uy, is the
largest element in the J-element column vector = {Gyy, ..
Uil

-

The Factor-Analytic Probit Model

Our factor-analytic probit model can be expressed as

*We should also mention an even more recent advance in inforence for
probit models, that of Gibbs sampling with data augmentation (Albhert and
Chib 1993; Geweke, Keane, and Runkle 1994; McCulloch and Rossi 1994).
In this method, prior distributions are specified for all model parameters,
and the simulations are used to calcufale properties of posterior distribu-
tions. Gibbs sampling provides a simple method for generating simulates
from posterior distributions. A comparison of the method of simulated mo-
ments and Gibbs sampling fics outside the scope of this article, Interested
readers are referred to Geweke, Keane, and Runkle (1994,
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2 Uy = +i; + &,

where & is independently and identically distributed multi-
normaily with zero mean vector and a covariance matrix
proportional to the identity matrix, that is,

3 var(;) = kI

for some posiiive k. The vector « of brand intercepts in this
case is also the average utilities for the brands (averaged
over all households and time periods), and {i; is the differ-
ence between the ith household’s mean brand utilities and
the population mean.

We avoid estimating the household-specific parameters
it;, and the accompanying problems of nonuniqueness or in-
consistency of the estimates by assuming a prior distribution
for these parameters and estimating only the parameters of
the prior distribution. Specifically, we assume that the fi; are
multinormally distributed with covariance matrix 3 and
{without loss of generality) mean vector 0. Multinormality is
a natural choice of prior distribution, because the fi. are log-
ically unbounded, and the multinormal distribution is
uniquely qualified to represent linear structures (Johnson
and Kotz 1972).

We impose a particular factor structure on the covariance
matrix 2, We let

@) Z=LL +xl,

where L is a J X M lower triangular matrix of loadings of
the J brands on M common factors, L' is its transpose, « is
a positive scaler, and [ is a J X J identity matrix. Thus, ! is
a diagonal matrix of brand-specific variances that are con-
strained to all be equal. This constraint makes the brand-spe-
cific variances a property of the product class as a whole,
and therefore it is applicable to new or repositioned brands
once they become established in the marketplace. The con-
straint, if it is consistent with the data, improves parsimony,
interpretability, and usefulness for forecasting for new or
repositioned brands.

It should be noted that the model given by (2)—(4) is un-
deridentified, because the same positive affine transforma-
tion can be applied to all elements of &, without changing
the choice probabilities. By convention, the estimation al go-
rithm identifies the model by constraining, for all i and t, i
= 0 and var (i) = 1, which implies that I} +k + k = |,
These constraints are satisfied by setting k in 54) equal to 1
-1 - , and by setting a; =0, o 121:=0. £ i = 0 and the
Jth row of L equal to zero. Alihough these constraints serve
to idenufy the model, they hinder exposition by destroying
the symmetry in (4). We therefore discuss the factor-analyt-
ic probit model in its symmetric underidentified form given
by (2}-(4), with the understanding that these constraints are
subsequently imposed for model identification. Al refer-
ences to the number of paramelters being estimated take the
identifiability constraints into account.

To make (2)—(4) a market structure model, the brand in-
tercepls (o) must also be explained in terms of the common
brand attributes. This is accomplished by adding the
constraint:

6] o =Lc,

where ¢ is an M-element column vector, Then the modal
given by (2)-(5) allows the estimation of the market share
for a brand without requiring any brand-specific information
other than its values for the M common factors. This is seen
by reexpressing the factor-analytic probit model as

©® Ggge = W, + Ty + 8y,

where |; is the vector of values that the jth brand has for the
M common attributes. None of the other parameters pertain-
ing to (6) are brand specific. The vector of coefficients that
the ith household has for the M common factors %) is
multinormally distributed over houscholds with mean pa-
rameter vector ¢ and an identity covariance matrix; Tijs
which is independently and identically distributed (iid) nor-
mally over brands and households with mean 0 and variance
parameler «; and € is also iid normal over brands, house-
holds, and shopping occasions with zero mean and variance
k. Thus, the model can be used to predict shares for new or
repositioned brands once their positions on the common fac-
tors have been specified. This would not be the case if there
were brand-specific brand intercepts or brand-specific vari-
ances for the unique factors.

Equisimilar Probit: The Case of No Market Structure

When infersing market structure from real world choice
data it is useful to also fit a modet that is structureless. Then,
substantially superior fit by a market structure model assures
the researcher that structure in a market has in fact been
detected,

A prime candidate for a structureless model is the Dirich-
lec-multinomial model (Bass, Jeuland, and Wright 1976). It
is structureless because knowledge of a household's pur-
chase history or purchase probability for a brand provides no
information about the household’s relative probabilities of
purchase for the other brands. Specificatly, for any house-
hold i, brands j # k # k', purchase probability p, and pur-
chase hiSﬁOl’y d'] = (dijl- dijl! aam s dijT)':

. E(p|p) _ Eepeldy) _ E(py
E(e[p) ~ Epeldp ~ By’

Intuitively, (7) implies that information about a household’s
preference for any brand (as signified by its past purchase
history or its purchase probability) provides no information
about its relative preferences (as signified by probabilities of
purchase) for the other brands. In a structured markel, we
would expect, for example, that knowing a household pur-
chases a brand j less often than average means it probably
shies away from brands similar to brand j. With models ad-
hering to (7), the only effect that purchase probabilities have
on each other is through the constraint that the probabilities
must sum to one over all brands, Such models are said to
possess the previously mentioned property of independence
of irrelevant aliernatives (11A).

Elrod and Winer (1991) found that the structureless
Dirichlet-maltinomial model predicted better than any of the
market structure models in the two product categories they
investigated. On the basis of this evidence, they conclude
that none of the market structure methods can claim to have
recovered market structure for these data sets.
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Table 2
PARAMETER ESTIMATES AND STANDARD ERRORS FOR THE
FACTOR-ANALYTIC AND EQUISIMILAR PROBIT MODELS

Probit Equisimitar
Models: Factor-Analytic Probit (M=2) Probit
l’ lz (.l
L1 134 800 015
(133 (.143)
) 052 —-.259 - 474
(.168) (.199) (.176)
L3 -082 -091 -516
(.247) 195 19n
1A - 106 -062 226
{.136) €.053) (.156)
PS5 . 142 035 426
129) (019 (.136)
L6 -.158 -043 -.142
(137 .058) (151)
] 053 ~043 ~081
(.108) (048) (.148)
rs L)) 000 000
[ 062 316
(.122) (.116)
x 2220 4.8%4
700 (1.060)

Note: The standard errors are shown in parentheses. Parameter estimates

that are constrained to equal zero for model identification are shown in
bold.

We assess the fit and predictive validity of the Dirichlet-
multinomial maodel, but it would also be useful to have a
structureless model within the same family as the factor-an-
aiytic probit model. Then, any differences in fit or predictive
validity could be attributed to the presence or absence of
structure, because the difference in performance could not
be accounted for by other differences in model assumptions.
In addition, a structureless probit model could be it to data
with time-varying exogenous varjables, which is not possi-
ble with the Dirichlet-multinomial model,

A structureless market can be modeled using the probit
model as given in (2)-(4) with the additional constraint

) L=0.

Then there are no commeon factors. This is the closest the
probit model cari come to the case of ITA—knowledge of a
consumer’s wtifity for any subset of brands will provide no
additional information about the consumer’s utilities for the
other brands.

Because there are no common factors in the equisimilar
probit model, it is no longer appropriate to constrain the
brand intercepts to be a linear function of them (as in (5.
This would force all brands to have an equal share. There-
fore, (5) is not imposed and the equisimilar probit model is
not an instance of market structure analysis nor even a spe-

cial case of such a model, but it is within the same modeling
family.
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The equisimilar probit model requires the estimation of
only J parameters: k and the J — 1 unconstrained elements of

_ @. The parameter k captures the degree of heterogeneity (or

brand loyalty) in the product category. As x approaches
zero, so does consumer heterogeneity, and no household
will be loyal to any of the brands. At the other extreme, as k
approaches plus infinity, every household becomes abso-
tutely loyal to one of the brands. The Dirichlet-multinomial
model also estimates J parameters. As with the equisimilar
probit model, I — 1 parameters suffice to fit the market
shares, leaving one parameter to capture the degree of brand
loyalty in the product category.

The equisimilar probit model is also very similar to the
equisimilar version of Choice Map investigated by Elrod
(1988a). The latter is identical to the probit version except
that the errors €, were iid double exponential, as in the logit
maodel, rather thin iid standard normal, Elrod found that the
Dirichlet-multinomial model performed almost identically
to the equisimilar version of Choice Map in terms of pre-
dictive validity and goodness of fit. Therefore, we can ex-
pect that the equisimilar probit mode] will yield fits similar
to the Dirichlet-multinomial, with the advantage that it is
within the probit family.

EMPIRICAL ASSESSMENT

We now evaluate the factor-analytic probit model against
several alternative models using a data set reproduced in
Table 2 of Elrod and Winer (1991). The data set consists of
a count of the number of times each of 100 households pur-
chased each of eight brands of laundry detergent in each of
two 6-month time periods. The panel purchased a total of
607 and 592 units in the first and second periods, respec-
tively. The order of the brand purchases is not recorded, nor
are the prices or other attributes of the brands.

Elrod and Winer compare several methods for market
structure analysis. They use knowledge of which brands
were powdered detergents and which were Tiquid to assess
the face validity of the maps. Predictive validity was as-
sessed by fitting models 1o the purchases made in the first
time period and predicting purchase frequencies for the sec-
ond, The performance of the factor-analytic probit modef in
terms of these criteria of predictive and face validity, as well
as on goodness of fit, is reported here.

We include several models in our comparison. First, we
include the vector and ideal point versions of Choice Map.
Elrod and Winer (1991) found that the ideal point version of
Choice Map performed the best of the mapping methods in-
cluded in their study. They also found the vector version per-
formed nearly as well, and it is more similar to the factor-an-
alytic probit model introduced here. In fact, there are only
two differences between the vector version of Choice Map
and the factor-analytic probit model considered here. The
smaller difference is in the choice of distribution for the
error term €;,); Choice Map assumes it is iid double expo-
nential rather than iid normal. The more important differ-
ence is that Choice Map assumes that there are no brand-
specific factors. Specifically, it assumes that k = 0.

We include the Dirichlet-multinomial model, because it
predicted best of the models studied by Elrod and Winer,
even though it assumes that there is no structure in the mar-
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ket. We also include SCULPTRE, by Ramaswamy and De-
Sarbo (1990). SCULPTRE performed better than the
Dirichlet-multinomial model on a data set contained in
Elrod and Winer’s (1991) study, according to least squares
criteria they used in the 1988 version of their working paper.
Here, no deterministic models are included, so it is possible
to compare all models using more satisfactory likelihood-
based criteria. We also compare the models on a somewhat
improved least squares criterion used in the 1991 version of
the Elrod and Winer paper.

Finally, we include the latent class market structure model
by Chintagunta (1994), which is similar to the vector ver-
sion of Choice Map except that (1) consumer heterogeneity
is represented using a number of homogeneous segments in-
stead of the bivariate normal distribution, (2) it may incor-
porate the effects of exogenous variables, and (3) it is not re-
stricted to twio dimensions, although in practice it is limited
to perhaps three. However, it shares with Choice Map the as-
sumption that every household’s vector of expected utilities
for the J brands (corresponding for the ith household to
a« + fi; in (2)) is confined to an M-dimensional subspace,
where M is the number of dimensions in the map and typi-
cally is far less than J. The factor-analytic model can mirror
this assumplion by assuming that there are no brand-specif-
ic factors; that is, by assuming k = 0.

Chintagunta (1994) describes his model as employing a
factor structure. However, although his model allows for
common factors, it does not contain brand-specific factors.
Because ordinary factor analysis requires the existence of
unique factors, we would describe his method as using prin-
cipal components analysis. The distinction is more than se-
mantic, because models that constrain expected utilities to
lie within an M-dimensional subspace have asserted that
there is zero probability of households possessing expected
utilities in any of the other J - M — 1 feasible dimensions. By
including unique (in this case, brand specific) factors and
employing a continuous distribution for utilities, we assign
a positive probability to every possible vector of expected
brand utilities. We seek to demonstrate that assigning zero
probabilities to an infinite number of expected utility vectors
is a mispecification that is substantial enough to prevent all
models that share this assumption from recovering market
structure.

Finally, we include in our comparison the factor-analytic
and equisimilar probit models. The former is estimated with
two dimensions. Experience with Choice Map has shown
that one dimension does not suffice to capture household
heterogeneity and differences in market shares. The equi-
similar probit model, if it performs similarly to the Dirich-
let-multinomial model, may serve as a bench mark for eval-
uating the appropriateness of the factor-analytic probit
model for a given data set.

Notes on Estimation Procedures

The factor-analytic models were estimated using a main-
frame computer that ran a specially written FORTRAN pro-
gram. Because Ramaswamy and DeSarbo (1990) fit their
model to the same data set used here, we had no need to
reestimate their SCULPTRE model, but we use the esti-

JOURNAL OF MARKETING RESEARCH, FEBRUARY 1995

mates reported in their paper to assess their model on the
performance criteria reported here.

The latent class model (Chintagunta 1994) was estimated
using modifications of the program supplied by the author.
We generalized the program to allow estimation of a two-di-
mensional map for any number of segments and brands in
the case of data without marketing mix covariates. We also
investigated the matter of local optima in the maximum like-
lihood estimation routine by estimating-the model 50 differ-
ent times for each number of segments using random start-
ing values.

The results showed sensitivity to starting values that in-
creases with the number of segments. For instance, only the
four best-fiting maps of 50 yielded essentially identical
maps for the three-segment solution. We chose three seg-
inents as a starting number because it was the number used
by the author to generate iwo-dimensional solutions,

We also estimated maps using five, seven, eight, nine, len,
and eleven segments. The best-fitting solutions for all these
cases failed (o terminate normally, because some of the pa-
rameters being estimated were iterating toward infinite val-
ues. We therefore introduced a constraint to yield finite esti-
mates for these cases,

Estimation for the latent class model can fait when either
a brand location or a segment’s impontance weights iterate
toward infinity. The feast arbitrary constraint appeared to be
to require that every segment have a probability of buying
each brand that is no less than 102, a constraint that was
binding for all maps involving five or more segments.

Beginning with the len-segment solution, the 50 random
starting values yielded maps with worse fit than the best-fit-
ling nine-segment solution, indicating that none of the 50
solutions was globally optimal. Therefore, we used another
variation of the program that utilized a well-fitting map of
fewer segments as a starting solution. This yielded a ten-seg-
ment map with slightly better fit but with worse BIC and
AIC scores. Using the same procedure for an 11-segment
solution yielded no improvement in fit. Examination of the
estimaies for that case showed it had simply split one of the
ten segments in two.

The two Choice Map models were also fit 50 times using
random starting values, and the best solutions were retained
for evaluation. Local optima were as problematic as they
were for the latent class models, but no constraints were
necessary to yield maximum likelihood estimates. Chinta-
gunta (1994), in his comparison of Choice Map and his la-
tent class model, does not specify how he handled the mat-
ter of starting values. His program for the Choice Map
modet also used a different numerical integration routine
than that given in Elrod (1988a).

The Probit Model Estimates

The parameter estimates and standard errors for our two
probit models are provided in Table 2. As in factor analysis,
no test for significance of single parameters is meaningful
with the exception of the parameter «, which is highly sta-
tistically significant for both models. Its estimate is smaller
for the factor-analytic probit model than for the equisimilar
probit model. That is to be expected, because as is shown in
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Figure 1
DISPLAY OF THE FACTOR-ANALYTIC PROBIT MAP

04 1

Mean Importance
03 4 Vector

02 +

01 1 s

=L1 =P8

alL§ ap7
0T wf A4

Liquids “L3
Powders
01 +

02 + =pP2

0.3 } t } -
-0.2 0.1 0 0.1 0.2

(4), when L is constrained 1o equal a zero matrix, k alone
must approximate the covariance matrix .

Information about market structure is provided by the
loadings of the brands on the common factors, that is, by the
estimates of the matrix L. of the two-factor model. The
meaning of the estimates is best conveyed by plotting them
in Figure 1. (The brand locations in the figure have been
mean centered.) Elrod and Winer (1991) do not provide
brand names by agreement with the provider of the data, but
liquid detergents are distinguished from powders by the let-
ters L and P in their psendonyms.

It appears from Figure 1 thal the model recovers a liquid-
powder distinction that roughly costesponds to the horizon-
tal axis. The near orthogonality of the mean vector to the lig-
uid-powder dimensions confirms the need for two dimen-
sions. We have no basis for interpreting the vertical axis, but
its strong relationship to the mean importance vector sug-
gests that it has something to do with how established the
brands are in the market. We tum now to more formal as-
sessments of this model and its competitors.

Predictive Validity

Elrod and Winer (1991) divided each household’s pur-
chasing data into two G-month time periods. We estimated
all models on the first time period, and the estimates were
then used to assess the fit of each model to the holdout data.

Derivation of the loglikelihood predictive criterion. The
Dirichlet-multinomial model, SCULPTRE, and Choice Map
all assume that every household has a constant probability of
choosing each brand on each choice occasion and that these
choices are made independently across households and
choice occasions. The factor-analytic probit algorithm is de-
signed to model the effects of time-varying eX0genous vari-
ables, past purchases, past error terms, and household char-
acteristics, but because the Elrod and Winer data consist
simply of a count of the number of times each brand was
bought by each household, its reduced form also assumes
that each household has a constant probability of purchasing
each brand.5 Therefore, al} the models are consistent with
the multinomial distribution for the number of purchases of
each brand. The multinomial probability of observing pur-
chase frequencies y; = [y, ¥i3,..., ¥;;]' (where yi=2 0 dy
for the ith household possessing purchase probabilities pi=
[p“, Piz2 KN pij]'. 1s giVCI‘I by:

T

9) d ; =( 1 ) 4,

( Priyi{p) 0,55 jll M

Using the symbol # to denote the holdout data, for any

model the likelihood for the holdout data of the parameters
estimated from the calibration data is:

N
(10) exp (L) =TT [ Pty L ppecpibhap.

where L*®) is the loglikelihood for the holdout data, Pr(") is
the multinomial probability of the holdout frequencies for
the ith household having purchase probabilities P given by
(9), and () is the density of the purchase probabilities in-
ferred by fitting the model to the calibration data. All the
models included in our comparison differ only in their
choice of f(-), the heterogeneity distribution. Equation (10}
is also simply the probability of observing holdout frequen-
cies Y# = {y{,...y},...y% ), assuming that the choice of het-
erogeneity distribution f(-) and of the estimates 8 is correct,

Table 3 summarizes the performance of the models on
their predictive validity for the holdout data, on their good-
niess of fit to the estimation data, and on face validity. The
models are ranked in tlle table from best to worst, according
to their values for -LLA(0). (The measures AIC, HQ, BIC, and
CAIC are ali based on -L#(8).) Comparisons across mea-
sures for the holdout and estimation data sets are simplified
by reporting standardized values in the table. Raw values for
the measures may be reconstructed using the means and
standard deviations (with the divisor = 12) for the raw vai-

SBecause the factor-analytic probit algerithm is designed to analyze
cross-sectional time series data, it was applied to a random ordering of the
detergent data purchases. The resultant likelihood was then multiplied by
the multinomial coefficients 1o make the likelihood comparable 1o the like-
lihoods of the other models.



10

JOURNAL OF MARKETING RESEARCH, FEBRUARY 1995

Table 3
AGREEMENT OF MODELS WITH THE ESTIMATION AND HOLDOUT DETERGENT DATA SETSa
Number Holdout data Estimation data Face
of validity
Model parameiers -L#8) M3E; —L@) AlCe H(#® BICH CAICY errors
FAPc 16 <-1.48 <-0.64 <-0.70 <-0.89 <-0.96 <-1.02 <-1.03
DM 8 -L09 -1 - -5 -94 -1L16 -1.26 NA
ESF&___"‘_______“_E}________ i_f}‘_%.-_ <-~0.66 <-.28 <0.69 <-0.88 <1.11 <-1.21 NA
SCULPTRE >17 ~34 -4 24 >0.09 000 »o10 . =016 '
LClod 40 -.29 -41 -.65 -16 09 43 62 1
LCod 37 -28 -.36 -.63 =23 -.02 27 43 2
LCad 34 ~-13 -.28 -.55 ~24 -.06 17 30 2
LCH k| 28 -5 -3 -1 02 19 28 ]
CM-IP 18 42 -.51 —-41 -.51 -.55 ~.58 -.358
S.'M-y___-__ . _}f 45 -12 ~07 -.28 =38 -.50 -56
Lese s 83 108 67 s 71 n T I 3
LC3 19 2.52 2.95 3.07 3.02 289 Y7 242 3
Mean 564.26 131.85 52035 1085.54 1109.17 1143.94 116635
Std. Dev. 42.37 25.10 36.15 71.19 73.04 78.51 83.51
*Designations of preferred measures are shown in bold

similar probit), LCs (Chintagunta’s latent class model with s segtnents), CM-IP (Choice Map, ideal point
¥This measure is designed to choose among nested models. Because none of the models here is a special case

an approximate indicator only,

Because the factor-analylic and equisimilar probit models are not estimated by maxinum likelihood, all likelihpod-b
the holdout and estimation data sets (all measures except MSEy) understate the performance of these models.

9This latent class model required imposition of a constraint to yield finite maximum likelihood estimates of its
that every segment have a probability of buying every brand of at least 10-12,

ues shown at the bottom of the table, Horizontal broken lines
in the table divide the models into groups so that those hi gh-
er in the table dominate the lower groups on all (or nearly
all) measures. The best measure for each criterion is shown
in bold.

The table shows that the factor-analytic probit model
(FAP) with two common factors outpredicted all other mod-
els on the holdout loglikelihood criterion, including the two
structureless models: the Dirichlet-multinomial (DM) and
the equisimilar probit (EP). Therefore, we can conclude that
the loglikelihood criterion of predictive validity supports the
ability of the factor-analytic probit model to recover market
structure for these data, a conclusion that is not supported
for any of the other market structure models. This occurred
despite the loglikelihood measure understating the perfor-
mance of the factor-analytic probit model. (Unlike the other
models, the probit models are not fit by maximum
likelihood.)

We also see by this criterion that SCULPTRE outper-
formed all the Choice Map and latent class models. Latent
class models with only three or five segments performed
worst, but maps with seven or more segments performed
better than the two Choice Map models, which performed
similarly. The equisimilar probit model performed similarly
to the Dirichlet-multinomial model, particularly when one
considers that its fit is understated by this measure.

A weighted least squares criterion for predictive validity,
At the suggestion of a reviewer, we also show a weighted
least squares measure of predictive validity, the one used by
Elrod and Winer (1991). Except for a scaling constant their
criterion was,

-analytic probit), DM (Dirichlei-multinomial), EP (equi-
version), and CM-¥Y (Choice Map, vector version).
of any of the others, it must be regarded as

ased measures of agreement with

parameters. The constraint imposed was

N
an MSE":Z Z T:(P; —511')2-
i=lj=l

where p; is the observed proportion of purchases of brand j
made by the ith household during the holdout period
(= y;fl":), and ﬁj is a model's prediction of the household’s
probability of buying brand j.6 For each of the models in-
cluded here we use for p;; the mean of the posterior distri-
bution of each household’s purchase probability; that is,

(t2) By = Eip; i) = [pyPrcys | picpiddp.

We do not favor MSE;; for three reasons that are made ap-
parent by comparing it ta the muliinomial distribution. First,
it ignores that the variance of an observed proportion is a
function of the true proportion. Second, it ignores that the
distribution of an observed proportion about its true value is
skewed. And finally, it ignores the substantial variability in
the true proportion pjj. Elrod and Winer had no choice but to
use a measure such as MSE, because most of the modetls in-
cluded in their study were deterministic and yielded many
predicted probabilities of zero, so a measure such as (10
could not be used. Despite the measure’s shortcomings, we
see from Table 3 that a number of findings are preserved. Al-
though the factor-analytic model is marginally outperformed
by the two structureless models on the MSE, criterion, it
still outperforms all the other market structure models.

6Elrod and Winer (1991) also used a criterion that assessed each model’s
ability to fit the brand market shares,
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We should point out that {11} differs from the criterion
used in the 1988 version of the Elrod and Winer working
paper cited by Ramaswamy and DeSarbo (1990), in which
they computed the squared differences between observed
and predicted frequencies; that is, their measure was (except
for a scaling constant)

N ) N J

X Yoy -Tihp=) R

i=lj= i=1j=
Under the multinomial distribution, observed proportions
have a variance that is inversely proportional to the number
of purchase occasions, so squared errors should be weight-
ed by T*, as in (11), and not by (T%)2. Unlike (11), (13) as
signs too much weight to households that purchase many
units during the holdout period. This accounts for the appar-
ent discrepancy between our results and those of Ra-
maswamy apd DeSarbo (1990), who found that SCULPTRE
outperformed the Dirichlet-multinomial model when evalu-
ating predictive fit using (13).

Goodness of Fit

The fourth column of the table shows minus the loglikeli-
hooed that resulls when each model’s estimates are applied lo
the estimation data (L(8)). This criterion does not take into
account the number of parameters estimated, so models that
involve more parameters are favored, Furthermore, we can-
not use likelihood ratio tests for the significance of addi-
tional parameters, because our models are not nested. How-
ever, the likelihood function still allows a partial ranking of
methods. Some evidence for a model’s superiority for these
data is obtained whenever it fits better than a competing
model that estimates the same number or more parameters.

Thus, on the loglikefihcod criterion, the factor-analytic
probit model with 16 paramelers fit better than all other
models, including those that estimated as many at 40 addi-
lional parameters. The structureless models also performed
well. considering they estimate only eight parameters, but
some models that estimate many more parameters fit the
data better. What remains in doubt, however, is whether the
better fit to the estimation data obtained by the factor-ana-
lytic probit model warrants the estimation of eight more pa-
rameters than are estimated by the structureless models.

To attempt Lo answer o this question, we use a number of
measures that attempt to correct for the number of parame-
ters estimated by a model. All these measures were devel-
oped to choose among nested models for which the errors
are independently and identically distributed across obser-
vations. None of thése conditions apply to any of the mod-
els considered here. Therefore, they are offered here tenta-
tively and in lieu of better measures for such models, so the
fits to the holdout data must be considered primary.
Nonetheless, such measures are of value because re-
searchers will often be reluctant 1o set aside a substantial
part of available data to use for holdout criteria. Further-
more, these measures aid in our comparison of the different
models, because the measures are based on additional data
{the estimation rather than the holdout data). The measures
are shown in Table 3 in order of the increasing penalty im-
posed for estimating additional parameters. Perhaps the best

1A

known of such measures is the Akaike Information
Criterion;

(14) AIC = 2L(B) + 2k,

where L(ﬁ) is the loglikelihood for the estimation data and k
is the number of parameters estimated by the model.

We see that this criterion identifies the FAP model as the
best, followed by the DM and EP models. A lower bound is
shown for SCULPTRE, which requires a brief explanation.
SCULPTRE seeks an ultrameltric tree representation of a
market. Ultrametric trees must satisfy ulirametric inequali-
ties,” some of which are binding and some not. Ramaswamy
and DeSarbo (1990) provide an upper bound on the number
of free parameters, which for these data is 47, It is also pos-
sible to obtain a lower bound,

Given a choice of tree structure, there are still free pa-
rameters that must be estimated. Specifically, the model
must determine the height of each node in the tree (except
the lowest, which is arbitrary) and the size of each customer
segment (except one, because segment sizes must sum to
one). For these data, this implies 17 free parameters. Be-
cause SCULPTRE does not require prespecification of a
tree structure, but instead seeks that tree that best represents
the data, the true number of free parameters lies somewhere
between these two bounds.

We have found that using 17 as the number of free pa-
rameters in SCULPTRE makes all the measures of fit in-
volving sample size agree better with the holdout loglikeli-
hood results than any other choice of k in the interval
[17,44]. It also overstates the performance of the model on
these measures.

Although the AIC critetion is information-theoretic, it has
been criticized on the grounds that it will always lead to the
choice of the most general of a sct of nested maodels given a
sample of infinite size, a phenomenon that is termed dimen-
sion inconsistency in the model selection literature
(Terisvirta and Mellin 1989). Dimension refers to the num-
ber of freec parameters estimated by a model. A model selec-
tion criterion is termed dimension consistent if, in a com-
parison of a series of nested models of which the most par-
simonious is the correct one, the measure correctly identifies
the true model, with probability one as the sample size goes
to infinity. Neither AIC nor the sequential application of log-
likelihood ratio tests possesses this property,

This criticism has led to the development of three other
measures shown in the table that are dimension consistent.
All these measures impose a penalty for additional parame-
ters that increases with sample size, and for these data the
penalties are greater than those imposed by AIC. The first of

these measures is offered by Hannan and Quinn (1979) and
is given by

(15) HQ = -2L(B) + 2KIn[In(Ny],

where N is the number of iid observations in the data. We
see from Table 3 that on this criterion the factor-analytic

TUltrametric inequalities are defined as follows, Let dy; be the distance
between segment s and brand j in an ultrametric tree. (This distance is de-
fined as the height of their least common ancestor} Then for all segments
T # sand brands j # k, it must be true that d; S max {dg, dy, dy ).
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probit model marginally outperforms the structureless mod-
els and substantially outperforms alt others.

Perhaps best known to marketers is the Bayes Information
Criterion (Schwarz 1978) ’

(16) BIC = -2L(f) + KInN.

Ancther criterion that imposes an even greater penalty for
additional parameters than BIC is the consistent Akaike in-
formation criterion (CAIC) developed by Bozdogan (1987)

an CAIC = -2L(8) + k(nN + 1).

We see that by the BIC and CAIC criteria the structureless
models are to be preferred to the factor-analytic probit
model, with the poorer performance of the other models
unchanged.

Of the five measures of fit shown in Table 3, the factor-
arfalytic probit model is preferred on three and the Dirichlet-
multinomial model on two. However, the measures are not
of equal value for choosing among models. The unadjusted
loglikelihood is of the least value and, in our opinion, the
HQ measure is of the greatest value. The HQ measure was
derived by Hannan and Quinn (1979) in the context of au-
toregressive models to minimize the penalty for extra pa-
rameters while preserving the property of dimension consis-
tency. An overemphasis on dimension consistency is un-
wise, because for finite samples it increases the risk of in-
correctly accepting a model that contains too few parame-
ters. It can be argued that it is better to run the risk of se-
lecting a model with too many parameters, because at least
it is not misspecified. Criteria such as BIC and CAIC im-
pose a greater penalty for extra parameters than the proper-
ty of dimension consistency requires, whereas HQ does not.

Our preference for HQ on theoretical grounds is support-
ed by its agreement with the loglikelihood fits to the holdout
data. The HQ measures in Table 3 correlate .90 with the
holdout loglikelihoods; AIC is almost as highly correlated at
-89. The BIC and CAIC measutes are correlated .87 and .84,
respectively. Finally, the loglikelihood fit to the estimation
data is correlated .83.

We should note that the dimension-consistent measures
were computed using a value for N equal to the number of
households, because all the measures that use N assume that
the observations are independently distributed, and all of the
models evalvated in Table 3 regard households as being
sampled independently of the population. This choice of N
is supported by the data: Any choice of N greater than 100
reduces the correlation of all measures involving N with the
holdout loglikelikood,

Face Validity

Elrod and Winer (1991) hypothesized a priori that the de-
tergent category would show some degree of loyalty to prod-
uct form. They expected mapping methods to distinguish
between liquid and powdered detergents. Therefore, we
evaluate the models on their ability to recover the liquid-
powder distinction.

In hierarchical tree structures such as those produced by
SCULPTRE, it is trivial to determine the success of this dis-
tinction because the uppermost branch in the tree divides the
brands into two groups. With spatial models, it is less obvi-
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ous how best to determine a map’s consistency with the lig-
uid-powder distinction.

We wrote a computer program to find for each spatial
model the partitioning of the eight brands into two groups
that minimized total within-group variance. For all types of
models, the number of incorrect assignments of brands is
then defined as the minimum number of brand reassign-
ments required to attain the liquid-powder distinction. We
see from the last column of Table 3 that the factor-analytic
probit model correctly attained the distinction, Of the 162
different ways of partitioning eight brands into two groups,
only two are consistent with the hypothesis, so the probabil-
ity of the correct partitioning occurring by chance is 2/162 =
0123,

Every other markel structure method except the Choice
Map models misassigned at least one brand. Of course, it is
possible that the liquid-powder partitioning hypothesized by
Elrod and Winer is wrong, but the models that disagree with
this partitioning do not agree among themselves on an alter-
native partitioning of the market.

Conclusions Concerning the Empirical Assessment

Table 3 provides eight measures desigaed to assess the
ability of the factor-analytic and competing models to ex-
plain the detergent data. Before focusing on the individual
measures, we wanl Lo emphasize conclusions arrived at by
the measures as a whole,

First, the first group of three models listed in the table
outperforms all of the other models on all criteria except
their likelihoods for the estimation data. The second group
of seven models outperforms Chintagunta’s five-segment
model on all measures, which in turn outperforms the three-
segment model on all measures. The measures disagree only
on the ordering of the models within those groups. Because
the best performing group includes both structureless mod-
els, the measures agree that the competing market structure
models fail to recover market structure for these data. The
estimation loglikelihood does not contradict this conclusion,
because the models that fit the estimation data better than
the first three models require many more parameters.

Second, we find that within the first group of models
every measure places the factor-analytic probit model either
first or last. Thus, regardless of the choice of measure, the
same conclusion about whether the factor-analylic probit
model has or has not detected struciure within a market
would be reached by comparing that model’s performance
to the equisimilar probit model or to the Dirichlet-multino-
mial model.

Therefore, it appears that tests for market structure may
remain within the probit modeling family. This is imponant
because the equisimilar probit maodel may, like the factor-
analytic probit model, include many other effects on choice,
such as those of previous brand choices, exogenous vari-
ables, autocorrelated errors, and household characteristics,
The Dirichlet-multinomial model, which is a stochastic
brand choice model, cannot assess any of these other eifccts.
We now have a basis for believing that the equisimilar pro-
bit model may be relied upon to test for market structure
even in the presence of these other effects.
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Finally, we see that the Dirichlet-multinomial model
slightly outperformed the equisimilar probit model on all
criteria. This is to be expected, because the two models have
a very similar structure, yet the Dirichlet-multinomial model
was estimated by the more efficient method of maximum
likelihood. Because the method of simulated moments is
asymptoticaliy as efficient (in the number of households) as
maximum likelihood, the apparent difference in petfor-
marice of the two models will be reduced for panel data sets
of a more usual size. The relative performance of the factor-
analytic probit model will also be improved.

The eight measures disagree on whether the factor-ana-
Iytic probit model has recovered market structure for these
data; five indicate that it has and three that it has not. The
criterion of face validity indicates that it has, as does the
more theoretic of the two criteria for predictive validity.
Three of the five measures of fit to the estimation data also
support the factor-analytic probit model, including what we
argue is the most defensible measure, HQ (Hannan and
Quinn 1979), Thus, it appears that the factor-analytic probit
model has in fact recovered market structure for these data,
Certainly the Choice Map, latent class, and SCULPTRE
models can make no such claim.

SUMMARY AND CONCLUSION

We have proposed and evaluated a new factor-analytic
probit model for inferring market structure from panel data.
It explains and predicts choice market shares for brands on
the basis of knowledge regarding their location on a few
common dimensions, All other parameters of the model are
properties of the product class as a whole,

The ability of the model to recover the market structure
for a data set is assessed on three criteria: predictive validi-
1y, goodness of fit, and face validity. Our model performs
best among all models that are considered on all three crite-
ria. Furthermore, becaue it is the only model to outperform
the structureless models on either predictive validity or
goodness of fit, we conclude that it is the only successful
market structure model among those considered for these
data.

We now offer some speculations about why the different
models performed as they did. First, we note that the three
best performing models (the Dirichlet-multinomial and the
two probit models) ascribe a positive probability to every
possible purchase probability vector. We believe the other
models perform substantially worse in part because they
necessarily preclude many purchase probability vectors.
SCULPTRE assumes that there are only as many distinct
purchase probability vectors as there are segments (six in
this case). The Choice Map models require that the distribu-
tion of household ideal points or vectors, which underlie the
purchase probabilities, vary in at most a two-dimensional
subspace of the full J - 1 { = 7) dimensions, Finally, Chinta-
gunta’s latent class model imposes both types of restrictions,
Neither set of constraints is supported by the data.

Second, we obtain some information about the relative
performance of parametric and nonparametric treatments of
heterogeneity. Clearly, reliance on parametric distributions
for heterogeneity is not a critical shortcoming of a model,
because the three best models are all parametric. However,
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by comparing the Choice Map and latent class models we
can obtain some indication of how the two approaches com-
pare while controlling for the dimensionality of the map.
Because we rank-order the models by their predictive log-
likelihoods, the Choice Map models appear to perform
worse than latent class models with seven or more segments,
However, the ideal point version of Choice Map performs
the best of all previously existing market structure models
on six of the eight criteria, and it is surpassed on the likeli-
hood criterion only by models that estimate many more
parameters,

The vector version of Choice Map performs better than
these other models on five of the criteria. Thus, it appears
that a parametric approach to market structure analysis is
not a hindrance to model performance. This is not surpris-
ing, piven the degree of latency of the distribution of con-
sumer heterogeneity. Remember, only choices are observed.
The distributions for heterogeneity apply only to the expect-
ed values of the random variables that underlie these
choices.

Finally, we should point out what the models included in
our comparison have in common. First, all are probabilistic.
The two Choice Map models were found by Elrod and
Winer’s (1991) study to outperform the three other mapping
methods, which were deterministic. Those methods were
correspondence analysis (Hoffman and Franke 1986), which
was assessed only on face validity, CGS scaling (Carroll,
Green, and Schaffer 1986), and a variant of singular value
decomposition. Thus, it appears that probabilistic models
offer the best prospects for understanding real world choice
data,

Second, all the models considered are examples of empir-
ical Bayes methods (Casella 1985; Morris 1983). That is, all
of them avoid estimating parameters at the household level
but instead recognize that households differ in their prefer-
ences and that the models estimate the parameters of the dis-
tribution of these preferences. (The SCULPTRE and latent
class models accomplish this nonparametrically.)

Current research with the factor-analytic probit model ex-
ploits its ability to incorporate as well the effects of ob-
served brand characteristics, observed household character-
istics, and their interactions, alon g with purchase event feed-
back and nonstationarity in consumer prefetences over time
{Keane 1994b). The breakthrough in the estimation of pro-
bit models from panel data means that many effects which
are thought to be important determinants of buying behavior
may now be incorporated simultaneously in a single model-
ing system,

TECHNICAL APPENDIX

This appendix describes a method developed by Keane
(1990) for estimating probit models on panel data. We begin
with a description of McFadden'’s (1989) method of simu-
lated moments (MSM), which was designed to estimate pro-
bit models from cross-sectional data.

Estimating Probit Models from Cross-Sectional Data

Following McFadden (1989), suppose we observe for a
sample of households a single choice from a choice set con-
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taining J altemnatives. Let i index the household and j index
the alternative, let di; = 1 if household i chose brand § (and
zero otherwise), let py; be the probability that the ith house-
hold would ctioose the jih altemative, and let 8 be 4 vector
of unknown parameters (none of which are household spe-

cific). Then the score associated with the loglikelihood func-
tion L (8) is

D aumvae=31 31 50mip,va6).

A maximum likelibood (ML} estimator can be obtained by
finding that value of 6, which makes the score equal to the
2ero veetor. For the probit modal in general, choice proba-
bilities (and functions of these probabilities) are hard to
compute, making ML estimation infeasible for all but the
«Simplest cases. However, 2 method of mements estimator
can be obtained from {A1) by exploiting that cheice proba-
bilities over mutually exclusive altematives necessarily sum

to one; that is, st ; Bjj = 1, which implics

{A2) Z;ﬂ (Op,/00) = 0.

Because Qupfdf = (dp/o8)ipy, we can substitwe

P;Binp /0 for op;/ob in (Aé) and then subtract the resulr
from both sides of (A1) to obtain

&3 L{B)O = Zf'x 1 Zfs 1 WS- P,
where
(Ad} wy = dlop38 = (Fpyfot)py

An estimator of 8 that sets the expressions ia {A3) egual
1o zero is known as a method of moments (MOM) estimator,
because it sets to zevo the (weighted) difference between the
observed rtesponses {d;) and their expecied vakues (pp.
Given optima} weighis (A4), MOM estimalors are asymp-
totically equivalent to ML esitmators. Given weights that are
correlated with those in (A4) and uncorrelated with the
residuals in (A3} yields MOM estimates that are consistent
apd asymptotically normal but not efficient.

The method of simulated moments (MSM) simulates the
p's in (A3). This is very useful for probit models, because no
closed-form expression for the choice probabililies exists
for more than 1wo alternatives. For given weights, the equa-
tions in (A3) are Hinear in the cheice probabilities, so errors
in the simulation of those probabilities tend to cancel over
households. No such cancellation occurs when using simu-
fates in ML estimation, so MSM estimation allows much
less intenstve simulation of the purchase probabilities. The
MSM estimales are consistent for a fixed number of simu-
Jates per household, which is not the case for simulated ML
estimation.

The optimal weights (A4) are also functions of the choice
probabilities, but the weights need not be exact nor do they
need to be updated on every iteration. Instead, am initial
method of simulated moments (MSM) estimator is found,
which sets {A3) approximately equal to zero for an initial
choice of weights, after which the weights are updated and
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a more efficient MOM estimator is found. The pricnary lim-
itation 1o this approach is that small probabilities are hard to
estimate accurately by simulation, and weights involving
smali probabilities i their denominator can be far from op-
Limal. But the method is feasible for 20 or so alternatives,
which is a great improvement over previous methods.

Estimating Probit Models from Cross-Sectional Time Series
(FPanelf Data

McFadden's MSM is designed for cross-sectional da,

When households ase observed to make more than one
choice, the problem becomes more complicated because
purchase prababilitics are not independent over time, That
is, bouseholds observed to have chosen a brand in the past
are more likely than other households to choose it again,
. McFadden (1989) suggesied 2 method for using MSM 10
fit probi{ models to panel data of minimal dimension. His
idea is to reexpress panet data in cross-sectional form. For
instance, if households are observed to choose from five dif-
ferent brands on two occasions, these data can be reex-
pressed as a single choice from 25 alternatives. In general,
with J brands and T choice accasions, there are JT different
choice sequences. Application of McFadden’s procedure te-
quires that the probability of éach of these sequences be
simulated. For farge J and/or T, this will invoive an unfeasi-
bly large number of calculations, Thus, this approach be-
comes unfeasible unless both ¥ and T are small.

Keane (1990} developed a method for estimating probit
models on panel data that is feasible for large ¥ and T. The
approach is based on a rewriting of (A3) and {A4) in terims
of transition probabilities. In essence, the probability that a
household makes a pasticular sequence of choices can be de-
composed as the product of conditional probabilities. Let-
ting C, = j signify that the ith household selected alternative
j on the tth choice occasion, then (A3) and {A4) can be re-
expressed for panel data as

(A3} JL(OV0 :Z:L: Zf‘g ; Z;= | Wiy ~p)

ijt

and

L * *
(AG) wij = @R, !89)/;').ljl ,
where

7)) B, =Prob (g = 11Dy

and Dy, _; denotes all choices made by the household before
the tth choice occasion. Note that now the nunber of prob-
abilities that must be simulated per household is IT mther
than JT, Also note that none of the probabilities on the right-
hand side of {(AS»{A7) involves choices from sets larger
than ], 50 the problem of simulating very smail probabilities
{rom very large choice sets is avoided.

This new approach generates o new problen: Specifical-
1y, simulation of the transition probabilities in (A7) is much
more difficult than simatation of the unconditional probabil-
ities in (A3). However, Keane (1990) developed a highly ef-
ficient algorithm for the simulation of transition probabili-
ties. Algorithms of the same mathematical form were also
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developed independently by Geweke (1991) and Hajivassil-
ion and McFadden (1990). This method has been termed the
Geweke-Hajivassiliou-Keane (GHK) simulator by Hajivas-
siliou, McFadden, and Rund (1992).

The GHK simulator provides accurate simulations of
transition probabilities on the basis of simulates generated
from truncated normal distributions. Details are provided by
Keane (1993, 1994a). The GHK simulator is exploited in
this paper to simulate the transition probabilities in (A7).
This enabled us to fit the factor-analytic probit model to the
detergent data, which includes households that made as

many as 24 repeated choices from the set of eight
alternatives,
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