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OPERATOR METHODS, ABELIAN PROCESSES AND DYNAMIC

CONDITIONING

CLAUDIO ALBANESE

Abstract. A mathematical framework for Continuous Time Finance based on operator al-
gebraic methods offers a new direct and entirely constructive perspective on the field. It also
leads to new numerical analysis techniques which can take advantage of the emerging massively
parallel GPU architectures which are uniquely suited to execute large matrix manipulations.

This is partly a review paper as it covers and expands on the mathematical framework un-

derlying a series of more applied articles. In addition, this article also presents a few key new
theorems that make the treatment self-contained. Stochastic processes with continuous time
and continuous space variables are defined constructively by establishing new convergence es-
timates for Markov chains on simplicial sequences. We emphasize high precision computability
by numerical linear algebra methods as opposed to the ability of arriving to analytically closed
form expressions in terms of special functions. Path dependent processes adapted to a given
Markov filtration are associated to an operator algebra. If this algebra is commutative, the

corresponding process is named Abelian, a concept which provides a far reaching extension of
the notion of stochastic integral. We recover the classic Cameron-Dyson-Feynman-Girsanov-

Ito-Kac-Martin theorem as a particular case of a broadly general block-diagonalization algo-
rithm. This technique has many applications ranging from the problem of pricing cliquets
to target-redemption-notes and volatility derivatives. Non-Abelian processes are also relevant
and appear in several important applications to for instance snowballs and soft calls. We show
that in these cases one can effectively use block-factorization algorithms. Finally, we discuss
the method of dynamic conditioning that allows one to dynamically correlate over possibly
even hundreds of processes in a numerically noiseless framework while preserving marginal
distributions.
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1. Introduction

The goal of this paper is to attempt to consolidate and present a number of mathematical
methods developed over several years by myself and collaborators while addressing concrete
problems in derivative pricing theory. The results scattered across a number of papers which
are collected here have been complemented with a rigorous ab initio treatment and a few key
theorems which make the framework mathematically self-contained. This results in a quite
comprehensive approach to the theory of Stochastic Processes and Mathematical Finance which
is novel in that it is fully constructive and perhaps has applications beyond the realm of Financial
Engineering.

There are several traditions of Constructive Mathematics. One attempts to re-derive classical
results of real and functional analysis based on a restrictive constructivist logic according to
which no mathematical object can be considered unless one specifies explicitly how to construct
it, see (Bridges and Richman 1987) and (Bishop 1967). Along another tradition, Constructive
Field Theory, see (Glimm and Jaffe 1987), aimed at establishing the existence of interacting
quantum field theories by providing a constructive procedure for computing n-point functions and
demonstrating that they satisfy a set of axioms. Measure theoretic probability and the related
theory of stochastic processes, (Doob 1953), does not seem to be understandable constructively.
The PDE approach in (Feller 1961) and the harmonic analysis approach in (Bochner 1955) are
instead essentially constructive but do not delve into the theory of stochastic integrals and path
dependent processes and into lattice discretization schemes.

The main motivation that guided this research is the creation of an engineering framework for
exotic financial derivatives. Efficient computability on current hardware has been and remains
throughout this article our key motivating concern. To this end, we work towards an algebraiza-
tion of Probability Theory that reduces all calculations to matrix manipulations which can
be performed efficiently and in particular to matrix multiplications. Similarly to the standard
framework of algebraic topology, (Spanier 1966), we consider processes taking values in separable
topological spaces and approximate continuous domains by means of simplicial sequences. To
establish convergence in the continuous limit, we directly estimate convergence rates for proba-
bility transition kernels in the continuous space limit following an approach similar in spirit to
Constructive Lattice Field Theory, see (Glimm and Jaffe 1987). Similarly to constructive field
theory, sets of axioms on n-point functions are used to identify processes and renormalization
group transformations are used to control the continuous limit. Following (Naimark 1959), the
approach is grounded upon the algebraic theory of integration on locally compact Hausdorff
separable topological spaces.

Calculations with stochastic processes are carried out using operator methods developed in
Quantum Mechanics, (Landau and Lifshits 1977) and systematized in Mathematical Physics
references such as (Reed and Simon 1980). In Finance, operator methods have been developed
along two independent and non-overlapping streams of research, one by Ait-Sahalia, Hansen
and Scheinkman who focused on econometric estimations in a series of papers reviewed in (Ait-
Sahalia et al. 2005), see also (Ait-Sahalia 1996), (Hansen et al. 1998), (Hansen and Scheinkman
1995). The second stream of research is by the author and collaborators who instead worked
on derivative pricing for path dependent and correlation derivatives, see (Albanese et al. 2005-
2006b), (Albanese and Chen 2004a), (Albanese and Chen 2004b), (Albanese and Kusnetsov 2005),
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(Albanese and Lawi 2004), (Albanese et al. 2006a), (Albanese and Trovato 2006), (Albanese
and Trovato 2005), (Albanese and Vidler 2007), (Albanese and Jones 2007) and (Albanese and
Osseiran 2007). In this paper, we attempt to systematize the mathematical framework of pricing
theory in the operator formalism from our own viewpoint, reserving to future work the task of
pursuing overlaps with the econometric literature.

The references quoted above are all relevant to our undertaking and provided motivations
on many levels. However, in an effort to keep this writing self-contained, we are not going to
assume any previous knowledge of the reader.

To ground the mathematical framework, we obtain sharp pointwise convergence estimates
for probability kernels and its derivatives. More precisely, we show that probability kernels
converge pointwise at rates of order O(h2), where h is the lattice spacing. The result applies to a
large class of diffusion processes and extensions thereof including smooth space inhomogeneities,
regime switching, finite activity jumps and some degree of time inhomogeneities. We also prove
similar convergence results for the fast exponentiation method, our preferred numerical method
for exponentiating Markov generators, showing that errors in this scheme are also of order
O(h2), in the sense of pointwise convergence for the probability kernel. In the particular case of
Brownian motion, we show that similar O(h2) pointwise error estimates apply also to derivatives
of the probability kernels and that the power 2 in the O(h2) bounds is actually sharp.

The interest in convergence estimates was prompted by the desire of understanding the mech-
anisms behind the empirically observed smoothness and robustness in the calculation of price
sensitivities with the methods in our applied papers. We also observed empirically that the
fast exponentiation algorithm is stable under single precision floating point arithmetics. We find
that key to a high precision numerical framework for sensitivities is handling the time coordinate
either as continuous or very finely discretized. A sufficiently fine discretization is defined as one
for which explicit differentiation schemes are stable and typically correspond to a hourly time
scale in applications. Typically, weekly time steps would permit stable implicit differentiation
schemes but would not allow for as much stability in the calculation of price sensitivities and the
probability kernels we require to evaluate and manipulate. This motivates us to avoid implicit
differentiation schemes on coarse time intervals.

Measure changes and time changes are defined constructively and a version of the Fundamen-
tal Theorem of Finance is re-obtained. The Cameron-Martin-Girsanov’s theorem, see (Cameron
and Martin 1949), and Ito’s lemma, see (Ito 1949), are proved twice in different ways with
operator methods. We also derive the Feynman-Kac formula, see (Feynman 1948) and (Kac
1948). One of the key results is an extension of the Feynman-Kac-Ito formula in three different
directions. This formula concerns the characteristic function of a stochastic integral over a diffu-
sion process. In our formalism, this formula becomes a block-diagonalization algorithm for large
matrices associated to path-dependent processes. The extension we discuss (i) covers Markov
processes more general than diffusions, (ii) allows for a class of path-dependent processes we
name Abelian which extends the notion of stochastic integral and (iii) generalizes the harmonic
analysis framework to include extensions of trigonometric Fourier transforms. The theory of
Abelian processes finds numerous practical applications to path dependent options and is appli-
cable to the great majority of path-dependent payoffs, from volatility swaps to cliquets, range
accruals, lookback options, target redemption notes and more. We also give a version of Dyson’s
formula to accelerate the pricing of path-dependent options given by Abelian processes by means
of a moment expansion. Non-Abelian processes are more difficult to handle but we single out
a class admitting block-factorizations (as opposed to a block-diagonalizing transformation) and
which are also amenable to numerical analysis by matrix algebra. Finally, we illustrate the
method of dynamic conditioning that allows one to correlate possibly numerous processes by
means of kernel manipulations while preserving marginals and not incurring into dimensional
explosion.

The mathematical methods in this article are particularly efficient as they lend themselves to
transparent hardware acceleration on the emerging multi-core GPU hardware platforms. These
massively parallel architectures are based on low-cost technologies that have been developed
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for the games and high definition markets and are uniquely suited to implement BLAS Level 3
routines such as matrix-matrix multiplications with high efficiency. See also (Goto and van de
Geijn to appear) for a state of the art account on matrix-matrix multiplication software on
CPUs.

The paper is organized as follows. In Section 2, we introduce the notion of simplicial sequence
which is key to devising approximation schemes for continuous valued process by means of a
sequence of Markov chains. In Section 3, we consider a general definition of path functional and
in Section 4 we give a general description of a stochastic process by means of an n-point function.
Markov Processes are introduced in Section 5, martingales and monotonic processes in Section 6.
In Section 7, we derive the Fundamental Theorem of Arbitrage Free Pricing Theory. The classical
results on weak convergence of Markov generators by Bernstein, Bochner, Kyntchine and Levy
are re-obtained in Section 8. Time homogeneous Markov Processes, fast exponentiation and
spectral methods are described in Section 9. In Section 10, we carry out a constructive analysis
of Brownian motion and prove convergence estimates. In Section 11, we study the spectrum of
diffusion generators. Sharp pointwise kernel estimates are extended to general diffusion processes
in Section 12. In Section 13, we give estimates for the convergence rate of time discretisation
schemes of the type we advocate for applications, i.e. based on fast exponentiation. Section
14 reviews the derivation of hypergeometric Brownian motion and particular cases such as the
CEV model. In Section 15, we study stochastic integrals and obtain Ito’s formula for diffusion
processes and of Girsanov’s theorem. Section 16 contains a derivation of the Feynman-Kac
formula for bridges over general Markov processes. The general notion of Abelian process in
continuous time is introduced in Section 17. In Section 18, we discuss the discrete time case. In
this section, we introduce also the notion of non-resonant block-diagonalisation scheme which
provides a numerically useful extension of Fourier analysis based on trigonometric functions.
Dyson’s formula and moment expansions are in Section 19, covering the uni-variate case, and
Section 20, covering the multivariate case. These two sections include applications to exotic
volatility derivatives. Block factorizations and applications to snowballs and soft calls are in
Section 21. Dynamic conditioning and multi-factor correlation modeling is discussed in Section
22. Conclusions end the paper.

2. Measure Theory on Simplicial Sequences

Let d > 0 be an integer, consider the space R
d and the sequence of lattices hmZ

d where
hm = 2−m.

Definition 1. (Lattices.) If A ⊂ hmZ
d, the convex hull of A in R

d is denoted by Hull(A).
The interior of A ⊂ hmZ

d is denoted with Int(A) and is defined as the set of all sites x ∈ A
contained in A along with each one its neighbors in hmZ

d at distance hm.

Definition 2. (Simplicial Sequences.) A bounded simplicial sequence is given by an integer
m0 > 0, and a sequence of subsets Am ∈ hmZ

d defined for all m > m0 such that

• Hull(Am) ⊂ Hull(Am′) whenever m < m′.
• for all m > 0 and all internal points x ∈ Int(Am) there is a M > 0 and an ǫ > 0 such

that, for all m′ > M and for all y ∈ hm′Z
d with d(x, y) < ǫ we have that y ∈ Am′ .

We follow a constructivist logic paradigm according to which in order to identify a set or
a sequence of sets one has to explicitly state how to construct it, possibly with a recursive
algorithm, and it must be possible to decide each step of the recursion in a finite number of
logical steps.

Definition 3. (Lattice Functions.) Let A = (Am), m ≥ m0 be a bounded simplicial sequence.
A real valued simplicial function, denoted by f : A → R, is defined as a sequence of functions
fm : Am → R such that fm′(x) = fm(x) for all m′ > m ≥ m0 and all x ∈ Int(Am). The function
f : A → R is said uniformly bounded if there is a constant c > 0 such that |fm(x)|< c for all
x ∈ Am. The function f : A → R is uniformly continuous if it is uniformly bounded and for all
ǫ > 0 there is a δ > 0 such that if x, y ∈ hmZ and d(x, y) < δ we have that |f(x) − f(y)|< ǫ.
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Definition 4. (Equivalence of Lattice Functions.) Let A = (Am), m ≥ m0, be a bounded
simplicial sequence and f = (fm) and g = (gm) are two uniformly continuous real valued func-
tions on A. We say that these series provide equivalent representations of the same function in
case, for all m > 0 and all all x ∈ hmZ we have that limm′→∞|fm′(x) − gm′(x)|= 0.

Let C(A) be the set of all continuous functions on A endowed with the natural structure of C∗

algebra given by the operations of sum, multiplication by a scalar and pointwise multiplication.

Definition 5. (Integrals.) Let A = (Am), m ≥ m0, be a bounded simplicial sequence. An
integral is given by a sequence I = (Im) where Im is a linear functional on the linear space of
functions fm : Am → R such that

• Im(fm) ≥ 0 whenever fm(x) ≥ 0 for all x ∈ Am.
• The following limit exists for all continuous functions f = (fm) ∈ C(A):

(2.1) I(f) ≡ lim
m→∞

Im(fm)

• The functionals Im(fm) defined above satisfies the following bound:

(2.2) Im(fm) ≤ c||fm||∞
for some constant c > 0 and all functions fm.

An integral is said to correspond to a probability measure if Im(1) = 1.

Definition 6. (Equivalent Integrals.) Let A = (Am), m ≥ m0, be a bounded simplicial
sequence and let (Im) and (Jm) be two integrals. We say that these series provide equivalent rep-
resentations of the same integral I if limm→∞|Im(fm)−Jm(fm)|= 0 for all uniformly continuous
functions (fm).

Given an integral I on the simplicial sequence A, for all p ≥ 1, one defines the following
semi-norm on the space of continuous functions C(A):

(2.3) ||f ||p= (I(|f |p))1/p.
Let Lp(A; I) be the linear space obtained by completing C(A) with respect to the semi-norm
||f ||I,p and identifying equivalence classes of functions at zero distance. More precisely, Lp(A; I)
is the linear space of the Cauchy sequences (fm) in C(A) with respect to the norm ||f ||I,p modulo
the linear space of the Cauchy sequences converging to a limit of zero Lp-norm.

Definition 7. (Summable Functions.) A function is called summable if it is in L1(A; I) and
square summable if it is in L2(A; I).

Theorem 1. (Monotonic Sequences.) Let fk be a non-decreasing sequence of summable
functions and consider the function f = limk→∞ fk and the limit Ī = limk→∞ I(fk). Then
either Ī = ∞ or f is summable and Ī = I(f).

Proof. If Ī <∞, then whenever k > j we have that ||fk − fj ||1= I(fk − fj). Since the sequence
I(fk) is uniformly increasing, it is Cauchy. Hence the sequence fk is Cauchy in L1(A; I). Its
limit f therefore belongs to L1(A; I) since this space is complete. �

Definition 8. (Measurable Functions.) A function is called measurable if it can be repre-
sented as the limit of a non-decreasing sequence of summable functions.

Theorem 2. (Dominated Convergence.) Let fk be a sequence of measurable functions,
suppose there is a summable function g such that |fk(x)|≤ |g(x)| and suppose also that the
limit f(x) = limk→∞ fk(x) exists in a pointwise sense. Then f is a summable function and
I(f) = limk→∞ I(fk).

Proof. Consider the sequence uk constructed iteratively so that u1 = min(u1, f) and uk =
max(uk−1,min(fk, f)). The sequence uk is uniformly non-decreasing and converges to f(x).
Furthermore, I(|uk|) ≤ I(|g|) for all k. Hence f is summable and I(f) = limk→∞ I(fk). �
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Let V be the linear space of all functions which can be expressed as the limit of a non-
decreasing sequence of continuous functions f(x) = limk→∞ fk(x) such that the following norm
is finite

(2.4) ||f ||∞= lim
k→∞

||fk||∞.

L∞(A; I) is defined as the completion of the linear space V with respect to the uniform norm.

Definition 9. (Essentially Bounded Functions.) A function is called essentially bounded if
it is in L∞(A; I).

Definition 10. (Absolute Continuity.) Let I and J be two integrals on the simplicial sequence
A = (Am). I is said absolutely continuous with respect to J if these two integrals admit simplicial
representations I = (Im) and J = (Jm) and there exists a J−summable function g = (gm) such
that Im(fm) = Jm(gmfm) for all I−summable functions f = (fm).

3. Path Functionals

To introduce processes we need to specify the notion of measure on a set of paths. One
could possibly introduce simplicial sequences in space-time but we refrain from doing so and
consider instead the time coordinate as a continuous variable. In the time direction, we are only
going to be using Riemann integrals for piecewise smooth functions, so that the underlying time
discretisation one might possibly imagine is quite straightforward and keeping track of it would
only lead to notational complexities.

Let us consider a bounded simplicial sequence A = (Am) and let [T, T ′] ⊂ R be a fixed finite
time interval. Let us consider the sequence Λ = (Λm) where Λm = Am × [T, T ′].

Given an integer q ≥ 0, let Hq
m denote the set of all functions y· : [T, T ′] → Am which are

constant on a family of q mutually disjoint sub-intervals of the form [tki
, tki+1), i = 0, ..q with

tk0 = 0 and tkq+1 = T ′, spanning the interval [T, T ′]. Notice that (Hq
m) for q fixed is itself a

finite dimensional manifold with boundaries. In fact, a function y ∈ Hq
m is characterized by the

ordered sequence t0 = T ≤ t1 ≤ .... ≤ tq+1 = T ′ of time points between which yt is constant and
a set of values y0, ...yq−1 such that, ys = yi for all s ∈ [ti, ti+1) and for all i = 0, ..q − 1.

The path spaces Hq
m for q = 0, 1, ... can be regarded as nested into each other H0(T, T

′) ⊂
H1(T, T

′) ⊂ .... In fact, a path yt in Hq
m is also a path in Hm′(T, T ′) if m < m′. Let H(T, T ′) =

∪m=0,1,..Hq
m be the union of all path spaces containing paths with a finite number of jumps.

Definition 11. (Function Algebras.) Let us denote with C
q(Λ), the C∗ algebra of all uni-

formly continuous sequences of simplicial functions F = Fm : Hq
m → R endowed with the

operations of sum, multiplication and with respect to the uniform norm defined as follows:

(3.1) ||F ||∞= lim
m→∞

sup
y·∈Hq

m

|F (y·)|.

Definition 12. (Path Functionals.) A path functional is a sequence F = (F q), q = 0, 1, ... of
continuous simplicial functions F q = (F qm) ∈ Cq(Λ) satisfying the following mutual compatibility
condition:

(3.2) F q
′

m (y·) = F qm(y·), for all y· ∈ Hq
m and all q′ > q.

Definition 13. (Non-anticipatory Path Functionals.) Let F (y·, t) = (F q(y·, t)) t ∈ [T, T ′]
be a one-parameter family of path functionals. One says that this is a non anticipatory path
functional if

(3.3) F qm(y·, t) = F qm(y′·, t)

whenever ys = y′s for all s ≤ t.

Intuitively, non-anticipatory path functionals are indifferent to information about the re-
alization of the path y· in the argument at future times s > t. An elementary example of
non-anticipatory path functional is given by a function of two arguments

(3.4) F qm(y·, t) = F0(yt, t)
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where F0 : A∞ × [T, T ′] → R is a piecewise smooth one-parameter family of functions. Ap-
plications typically call for functions F0(y, t) which are piecewise smooth in t for each y ∈ Λ
with possibly a discrete set of jump discontinuities. We follow the usual convention according
to which if jumps occur, then the discontinuity is of cadlag type, i.e. right continuous and with
a left limit.

A less elementary example of non-anticipatory path functional one often encounters is given
by integrals of the form:

(3.5) F qm(y·, t) ≡
∫ t

T

ds1...

∫ t

sk−1

dsna(t; s1, ....sk)F1(ys1 , s1)...Fk(ysk
, sk).

where the Fj : A∞ × [T, T ′] → R, j = 1, ...k, are one-parameter families of lattice functions and
also a(t; s0, ....sk) is a function of the time coordinates. Applications typically call for functions
Fj(y, t) which are piecewise smooth in t for each y ∈ Λ with possibly a discrete set of jump
discontinuities. Also in this case, we follow the convention according to which at the points of
jump discontinuity the function is cadlag. The same regularity assumptions will be postulated
for the functions a(t; s0, ....sk) with respect to each of its arguments. Although the regularity
assumption for these path functionals is sufficient for applications, they are not strictly needed
and can be relaxed by taking limits.

4. n-point Functions

Definition 14. (Filtered Probability Spaces.) Consider the C∗ algebra P generated by
the functionals of form (3.4) and (3.5) by taking linear combinations of finite products and
completing the resulting normed space. A filtered probability space upon the lattice Λ is defined
as a bounded linear functional on the C∗−algebra P.

A constructive definition of a stochastic process can be given with various degrees of gener-
ality. We don’t aim here at the utmost generality but instead at pedagogical simplicity and at
ultimately explaining how to frame the theory of Markov processes. As a step toward this goal,
we introduce here a family of time ordered n−point functions

(4.1) Φm(y1, t1; ...; yn, tn|y0)
defined for y1, ...yn ∈ Am and t1, ...tn ∈ [T, T ′] which is assumed to be piecewise differentiable
in the time coordinates. In addition, we assume that the following properties hold for all T <
t1 ≤ ... ≤ tn ≤ T ′:

(SP1) Φ(y1, t1; ...; yn, tn|y0) ≥ 0 ∀y0, y1, ..yn ∈ Λ,

(SP2)
∑

y1,...yn∈Λ

Φ(y1, t1; ...; yn, tn|y0) = 1 ∀y0 ∈ Λ,

(SP3) Φ(y1, t1; ...; yi, ti; yi+1, ti+1; ...; yn, tn|y0) = 0

if ti = ti+1 for some i = 1...n− 1 and if yi 6= yi+1

(SP4)
∑

yi

Φ(y1, t1; ...; yi−1, ti−1; yi, ti; yi+1, ti+1; ...; yn, tn|y0) =

Φ(y1, t1; ...; yi−1, ti−1; yi+1, ti+1; ...; yn, tn|y0) ∀y1, ..yn ∈ Λ.

Notice that for each fixed starting point y0 and fixed sequence T < t1 ≤ ... ≤ tn ≤ T ′, the
function Φm(y1, t1; ...; yn, tn|y0) is a probability distribution function in the arguments y1, ...yn.
This is interpreted as the probability distribution density for paths starting from the site y0 at
time T and achieving the values y1, ...yn at times t1, ...tn.

Definition 15. (Stochastic Processes.) An adapted (stochastic) process is given by a non-
anticipatory path functional F ∈ P and a measure on P defined by a family of n−point functions
(Φ)n=1,2...
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Given an adapted process of the form Ft ≡ F (yt, t) ∈ P and given a t > T , the expectation
subject to the initial condition yT = y0 of the value attained by the process Ft at time t is given
by

(4.2) E
[

Ft|yT = y0
]

=
∑

y1∈Λ

Φ(y1, t|y0)F (y1, t).

For an adapted process of the form (3.5) instead, the conditional expectation is given by
(4.3)

E
[

Ft|yT = y0
]

=
∑

y1,..yn

∫ t

T

ds1...

∫ t

sn−1

dsnΦ(y1, s1; ...; yn, sn|y0)a(t; s1, ...sn)F1(y1, s1)...Fn(yn, sn).

Also higher moments can be computed. To keep expressions simple, consider a path functional
of the form

(4.4) Ft ≡
∫ t

T

ds1a(t; s1)F1(ys1 , s1).

The variance of this process at a future point in time conditional to the starting point at time
T is given by
(4.5)

E
[

F 2
t |yT = y0

]

= 2
∑

y1,y2

∫ t

T

ds1

∫ t

s1

ds2Φ(y1, s1; y2, s2|y0)a(t; s1)a(t; s2)F1(y1, s1)F1(y2, s2).

Notice that the factor 2 compensates for the time-ordering needed to recast the expression in
such a way that we can apply to it a 2-point function. This expression and its generalizations
are used extensively in the applications to path-dependent options discussed below.

More generally, consider two path functionals Ft and Gt ∈ L1(H(T, T ′), µ), where Ft is defined
as in (3.5) and

(4.6) Gt ≡
∫ t

T

ds1...

∫ t

sq−1

dsqb(t; s1, ....sq)G1(ys1 , s1)...Gq(ysq
, sq).

Then we can compute a mixed moment as follows:

E
[

FtGt|yT = y0
]

=
∑

y1,..yn+q

∫ t

T

ds1...

∫ t

sn+q−1

dsn+q Φ(y1, s1; ....; yn+q, sn+q)

∑

π

a(t; sπ(1), ....sπ(n))F1(yπ(1), sπ(1))...Fn(yπ(n), sπ(n))

b(t; sπ(n+1), ....sπ(n+q))G1(yπ(n+1), sπ(n+1))...Gq(yπ(n+q), sπ(n+q)),

where the sum ranges over all the permutations π of the time ordered sequence s1 ≤ ... ≤ sn+q

such that sπ(1) ≤ ... ≤ sπ(n) and sπ(n+1) ≤ ... ≤ sπ(n+q). Higher conditional moments of any
path functional of the form above can be evaluated in a similar way.
n-point functions Φ(y1, s1; ...; yn, sn|y0) are conditioned to the starting point y0. It is straight-

forward to define variations of these n-point functions which reflect conditioning on an initial
stretch of a path ys for s ∈ [T, t), where t > T . Conditioning to a past history is equivalent
to restricting the integral over each manifold H(T, T ′) to a sub-manifold which is part of its
boundary. In general, this results in rather clumsy expressions which are difficult to compute.
In the next section we specialize to the Markovian case for the underlying lattice process and in
this case there are no memory effects and conditioning is more straightforward.

Definition 16. (Radon-Nykodim Derivative.) Consider two sequences of n-point functions
on the simplicial sequence Am Φ1

m(y1, t1; ...; yn, tn|y0) and Φ2
m(y1, t1; ...; yn, tn|y0) , where m =

1, 2, .... The Radon-Nykodim derivative of Φ1 with respect to Φ2 is given by the path functional
defined as follows:

(4.7) ρ(y·) = lim
n→∞

Φ1
m(yt1 , t1; ...; ytn , tn|y0)

Φ2
m(yt1 , t1; ...; ytn , tn|y0)
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where ti = T + i
n (T ′ − T ). Notice that the Radon-Nykodim derivative might possibly be infinite

on some paths.
The measure in path space given by (Φ1

m) is said to be absolutely continuous with respect to
(Φ2

m) if the Radon-Nykodim derivative is finite and summable.

Finally, a word on stopping times.

Definition 17. (Stopping Times.) A stopping time is an adapted process τt = τ(y·, t) which
can take only two values, by convention 0 and 1.

Stopping times are often used in conjunction with other adapted processes Ft to construct
stopped versions of it. If Ft = F (y·, t) is an adapted process and Rt = R(y·, t) is a second
process, then a stopped version of Ft corresponds to the adapted process of function F̄ (y·, t),
where F̄ (y·, t) = F (y·, t) if τt = 0 and F̄ (y·, t) = R(y·, t) if τt = 1.

5. Markov Processes

Definition 18. (Markov Propagator.) A Markov propagator on the simplicial sequence
Am,m ≥ m0 is defined as a sequence of functions Um(y1, t1; y2, t2) where y1, y2 ∈ Am and
T ≤ t1 ≤ t2 ≤ T ′ satisfying the following Chapman-Kolmogorov axioms:

(CK1) Um(y1, t1; y2, t2) ≥ 0 ∀y1, y2 ∈ Λ, ∀t1 ≤ t2 ∈ R,

(CK2) Um(y1, t1; y2, t1) = δy1y2 ∀y1, y2 ∈ Λ, ∀t1 ∈ R,

(CK3)
∑

y2∈Λ

Um(y1, t1; y2, t2)Um(y2, t2; y3, t3) = Um(y1, t1; y3, t3)

∀y1, y3 ∈ Λ, ∀t1 ≤ t2 ≤ t3 ∈ R.

Given a Markov propagator Um(y1, t1; y2, t2), one can define a sequence of n−point function
having all the necessary properties by setting

(5.1) Φm(y1, t1; ...; yn, tn|y0) =
∏

j=1..n

Um(yj−1, tj−1; yj , tj).

where t0 = T .

Definition 19. (Markov Process.) A filtered probability space generated by a Markov propa-
gator is called Markovian and the corresponding stochastic process is called Markov process.

Definition 20. (Markov Generator.) If the matrix elements Um(y1, t1; y2, t2) are differen-
tiable functions of the time parameter t2 in a right neighborhood of t1, then one defines the
Markov generator at time t1 as the following right derivative:

(5.2) Lm(y1, y2; t1) = lim
t2↓t1

d

dt2
Um(y1, t1; y2, t2)

Proposition 1. If Lm(y1, y2; t1) is a Markov generator, then for all pairs y1, y2 ∈ Am the
following two properties hold:

(MG1) Lm(y1, y2; t) ≥ 0 if y1 6= y2,(5.3)

(MG2) Lm(y1, y1; t) = −
∑

y2 6=y1
Lm(y1, y2; t).(5.4)

Viceversa, if Lm(y1, y2; t) is a differentiable one-parameter family of matrices satisfying condi-
tions (A) and (B) above, then the differential equation (5.2) admits one and only one solution
satisfying the initial condition Um(y1, t; y2, t) = δy1y2 .

The propagator Um(y1, t1; y2, t2) defined by the differential equation in (5.2) can be repre-
sented by means of a so-called path-exponential defined as follows. Let N > 0 be an integer and
let us consider the product

(5.5) UNm (y1, t1; y2, t2) =

(

1 + δtNLm(t1)

)

· .... ·
(

1 + δtNLm(tN )

)
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where δtN = t2−t1
N . If N is so large that

(5.6) (δt)N < min
y∈Λ,t∈[t1,t2]

Lm(y, y; t)−1,

then the operator product UNm (y1, t1; y2, t2) in equation (5.5) is a probability kernel. Passing to
the limit N → ∞, we find

(5.7) lim
N→∞

UNm (y1, t1; y2, t2) = Um(y1, t1; y2, t2).

By expanding the product in (5.5) and passing to the limit, we arrive at the following:

Theorem 3. (Dyson expansion.) The probability kernel can be represented as the following
convergent series:
(5.8)

Um(y1, t1; y2, t2) =

(

1 +
∞
∑

n=1

∫ t2

t1

ds1

∫ t2

s1

ds2...

∫ t2

sn−1

dsnLm(s1)Lm(s2)....Lm(sn)

)

(y1, y2).

By differentiating with respect to the two time coordinates in the Dyson expansion, we also
find the following two equations:

Theorem 4. (Forward and backward equations.) The probability kernel satisfies the back-
ward equation

(5.9)
∂

∂t1
Um(t1; t2) + Lm(t1)Um(t1; t2) = 0

as well as the forward equation

(5.10)
∂

∂t2
Um(t1; t2) = Um(t1; t2)Lm(t2).

A handy notation for this expansion is given by the following:

Definition 21. (Path-ordered Exponential.) The equation (5.8) is written as a path ordered
exponential

(5.11) Um(y1, t1; y2, t2) = Pexp

(∫ t2

t1

Lm(s)ds

)

(y1, y2)

where the operator P formally acts as follows:

(5.12) P

(∫ t2

t1

Lm(s)ds

)n

= n!

∫ t2

t1

ds1

∫ t2

s1

ds2...

∫ t2

sn−1

dsnLm(s1)Lm(s2)....Lm(sn).

Using the Dyson expansion for the path-ordered exponential, one finds a path-integral repre-
sentation of the probability kernel. Let us set the following definition:

Definition 22. (Symbolic Path.) A symbolic path γ = {γ0, γ1, γ2, ....} is an infinite sequence
of sites in hmZ such that γj 6= γj−1 for all j = 1, .... Let Γm be the set of all symbolic paths in
hmZ.

Theorem 5. (Path-Integral Representation.) The propagator admits the following repre-
sentation:

Um(x, T ; y, T ′) =
∞
∑

q=1

∑

γ∈Γm:γ0=x,γq=y

∫ T ′

T

ds1

∫ T ′

s1

ds2...

∫ T ′

sq−1

dsq

(5.13)

exp

(∫ s1

0

Lm(γ0, γ0; v0)dv0

) q
∏

j=1

Lm(γj−1, γj ; sj) exp

(∫ sj+1

sj

Lm(γj , γj ; vj)dvj

)

(5.14)

where tq+1 = T .
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Notice that the total mass of the sector of path space Hq
m(y0, T ;T ′) consisting of lattice paths

originating from y0 ∈ Λ at time T and attaining at most q different values by time T ′ is given
by

µ(Hq
m(y0, T ;T ′)) =

∑

γ∈Γm:γ0=x

∫ T ′

T

ds1

∫ T ′

s1

ds2...

∫ T ′

sq−1

dsq exp

(∫ s1

T

Lm(γ0, γ0; v0)dv0

)

q
∏

j=1

Lm(γj−1, γj ; sj) exp

(∫ sj+1

sj

Lm(γj , γj ; vj)dvj

)

.

where sm+1 = T ′. If λm = maxx∈Am
|Lm(x, x)| and c = supt∈[T,T ′]||Lm(t)|| is the operator norm

of the matrix Lm(t), then we have that

(5.15) µ
[

Hq
m(y0, T ;T ′)

]

≤ cq(T ′ − T )q

q!
e−λm(T ′−T )

This expression reaches a maximum as a function of q at q ≈ c(T ′−T ) and then declines at super-
exponential rate. Hence, by discretizing the space coordinate, we ensure that the probability
mass of the set of paths with q changes decreases faster than any exponential in the limit as
q → ∞. This convergence is however not uniform as m→ ∞ and hm → 0.

Definition 23. (Inverse lattice.) Let us consider the following lattice:

(5.16) Bm =

{

−2m−1π

L
+
kπ

L
, k = 0, ..2m − 1

}

also called Brillouin zone or inverse lattice with respect to Am.

Definition 24. (Pseudo-differential Symbols.) The symbol of a Markov generator is defined
as follows:

(5.17) L̂m(x, p; t) =
∑

y∈Am

Lm(x, y)eip(y−x)

where p ∈ Bm.

Two particularly important special examples of Markov processes are given by monotonic
processes and diffusions.

Definition 25. (Monotonic process.) A Markov process of generator Lm(x, y) on the sim-
plicial sequence Am is said monotonic non-decreasing if

(5.18) Lm(x, y) = 0 whenever y < x.

and monotonic non-increasing if

(5.19) Lm(x, y) = 0 whenever y > x.

Definition 26. (Diffusion Process.) A diffusion process is a Markov process with generator
of the form

(5.20) Lm(x, y; t) = µm(x; t)∇hm
(x, y) +

σm(x; t)2

2
∆hm

(x, y)

where

(5.21) ∇h(x, y) =
δy,x+h − δy,x−h

2h
and ∆h(x, y) =

δy,x+h + δy,x−h − 2δy,x
h2

.

and µ(x; t) = (µm(x; t)) and σ(x; t) = (σm(x; t)) are two simplicial functions which, for simplic-
ity, we assume smooth in both arguments.

Proposition 2. (i) The symbol of a diffusion process is given by

(5.22) L̂m(x, p; t) = µm(x; t)
sin ph

ih
+
σm(x; t)2

2

cos ph− 1

h2
.
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(ii) The path integral representation for a diffusion process has the form

Um(x, T ; y, T ′) =

∞
∑

q=1

2−q
∑

γ ∈ Γm : γ0 = x, γq = y
|γj − γj−1|= 1 ∀j ≥ 1

Wm(γ, q;T, T ′)(5.23)

where

Wm(γ, q;T, T ′) =

∫ T ′

T

ds1

∫ T ′

s1

ds2...

∫ T ′

sq−1

dsq

e
∫

T ′

sq
Lm(y,y,vq)dvq

q−1
∏

j=0

(

e
∫ sj+1

sj
Lm(γj ,γj ,vj)dvj 2Lm(γj , γj+1)

)

(5.24)

and s0 = T .

6. Martingales and Monotonic Processes

In this section we introduce the notion of piecewise smooth Markov process which covers
a large family of models useful for applications. In this context, we define martingales and
monotonic Markov processes.

Definition 27. (Piecewise Smooth Markov Processes.) Consider the time interval [T, T ′],
the simplicial sequence Am, m ≥ m0 and a finite number of time points T = t0 < t1 < .. < tn =
T ′. A piecewise smooth Markov process is given by a family of Markov generators Lim(y1, y2; t)
defined on each half open time interval [ti, ti+1), where i = 0, 1, ...n − 1. In correspondence to
each time point ti, i = 1, 2, ...n, one also defines a mapping operator U im(x, y) such that

(MA1) U im(y1, y2) ≥ 0(6.1)

(MA2)
∑

y2

U im(y1, y2) = 1 ∀y1 ∈ Λ.(6.2)

The Markov propagator for any pair of time points ti ≤ s < s′ < ti+1 is defined as follows:

(6.3) Um(y1, s; y2, s
′) = Pexp

(

∫ s′

s

Lim(v)dv

)

(y1, y2).

Moreover, if s′ = ti+1, then

(6.4) Um(y1, s; y2, ti+1) =
∑

y3∈Λ

Pexp

(∫ ti+1

s

Lim(v)dv

)

(y1, y3)U
i
m(y3, y2).

More general Markov propagators are obtained by taking products of the ones above.

Definition 28. (Attainable Sets.) Let Um be a piecewise smooth Markov process, m ≥ m0,
y ∈ Am and t ∈ [T, T ′]. The attainable set Dm(U, t, y) ⊂ Am is defined as follows: if t ∈ (ti, ti+1)
for some i = 0, ..n − 1, then Dm(U, t, y) is the set of ȳ ∈ Λ such that Li(y, ȳ; t) > 0. If instead
t = ti for some i = 1, ..n − 1, then Dm(U, ti, y) is defined as the set of the ȳ ∈ Λ such that
Ui(y, ȳ; t) > 0.

Definition 29. (Equivalent Markov Processes.) Two piecewise smooth Markov propagators
U and U ′ are called equivalent if their attainable sets Dm(U, t, y) and Dm(U ′, t, y) are equal for
all t ∈ [T, T ′] and all y ∈ Λ. If Dm(U, t, y) is a subset of Dm(U ′, t, y) for all t ∈ [T, T ′] and all
y ∈ Λ, then one says that Um is absolutely continuous with respect to U ′

m.

Definition 30. (Measure Changes.) Let Um,m ≥ m0 be a family of piecewise smooth Markov
propagators. A measure change is characterized by a family of positive, non-zero functions
Gytm(y′) ≥ 0 indexed by y ∈ Am and t ∈ [T, T ′], which is strictly positive for all y′ ∈ Dm(U, y, t)
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and zero otherwise. A measure change function defines a transformation of a Markov generator
into an equivalent one according to the following formula:

(6.5) L′(y, y′; t) =
1

Gytm(y)
L(y, y′; t)Gytm(y′) − 1

Gytm(y)
(L(t)Gytm)(y)δyy′ .

Notice that the specification of the function Gytm(y′) at the point y′ = y is immaterial in the
sense that it does not affect the measure change transformation.

Definition 31. (Time Changes.) A measure change is called time change if there is a function
φ(y, t) such that Gytm(y′) = φ(y, t) for all y ∈ Am, y′ ∈ Dm(U, y, t) and t ∈ [T, T ′]. The time
change is called state independent if φ(y, t) ≡ φ(t) is a function of the time coordinate only.

Theorem 6. (Deterministic Time Changes.) If φ(t) defines a state independent time change
corresponding to the measure change function Gytm(y′) = φ(t), then

(6.6) U ′
m(y, t; y′, t′) = Um(y, λ(t); y′, λ(t′))

where

(6.7) λ(t) =

∫ t

T

φ(s)ds.

The following is a particularly interesting special case of measure change:

Definition 32. (Numeraire Changes.) Consider a smooth (as opposed to just piece-wise
smooth) Markov process of generator Lm(y; t). Let gm(y′; t) be a function satisfying the equation

(6.8)
∂gm(y; t)

∂t
+ (Lmgm)(y; t) = 0.

The measure change given by the function Gytm(y′) = gm(y′; t) is called numeraire change and
the Markov generator transforms as follows:

(6.9) L′
m(y, y′; t) =

gm(y′; t)

gm(y; t)
Lm(y, y′; t) +

1

gm(y; t)

∂gm(y; t)

∂t
δyy′ .

Notice that if gm(t) denotes the multiplication operator of kernel gm(y; t)δyy′ , then equation
(13.4) can be written more compactly as follows:

(6.10) L′
m(t) =

1

gm(t)
Lm(t)gm(t) +

1

gm(t)

∂gm(t)

∂t
.

Theorem 7. (Numeraire Changes.) If gm satisfies equation (13.3) and defines a numeraire
change, then

(6.11) U ′
m(y, t; y′, t′) =

gm(y′, t′)

gm(y, t)
Um(y, t; y′, t′).

Let Ft = F (y·, t) be an adapted process in the time interval [T, T ′]. Let us consider a fixed
time t ∈ [T, T ′). Recall that, since Ft is non-anticipatory, we have that F (y·, t) = F (y′·, t) for
all pairs of paths such that ys = y′s for all s ≤ t. If ȳ ∈ Dm(U ′, t, y), let ỹ· = Extt(y·, yt) be
the constant extension path such that ỹs = ys for all s < t and ỹs = yt for all s ≥ t. With
probability one, we have that

(6.12) lim
δt↓0

F (y·, t+ δt) = F (Extt(y·, ȳ), t)

for some ȳ ∈ Dm(U, t, y).

Definition 33. (Monotonic Processes.) Let U be a piecewise smooth Markov propagator and
let Ft be an adapted process given by the non-anticipatory path functional F (y·, t). Ft is said to
be increasing at time t if

(i) For all ȳ ∈ Dm(U, t, y) we have that

(6.13) F (Extt(y·, ȳ), t) − F (y, t) ≥ 0.
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(ii) We have that

(6.14)
∂F (Exts(y·, yt−0), s)

∂s

∣

∣

∣

∣

s=t

≥ 0

where yt−0 = limδt↓0 yt−δt.
(iii) For all y ∈ Am and all t ∈ [T, T ′], either the inequality in (i) holds in a strict sense for

at least one ȳ ∈ Dm(U, t, y) or the inequality in (ii) holds in a strict sense.

In case the property (iii) fails but the other two still hold, the process is called non decreasing.

Theorem 8. (Monotonic Processes.) Let Um and U ′
m be two piecewise smooth Markov prop-

agators and let F (y·, t) be a non-anticipatory path functional. If Um and U ′
m are equivalent and

if F (y·, t) regarded as an adapted process under the path measure generated by Um is increas-
ing (non-decreasing), then also F (y·, t) regarded as an adapted process under U ′

m is increasing
(non-decreasing).

Proof. This theorem descends from the fact that the definition of monotonicity depends only on
the attainable sets. �

Definition 34. (Martingale Processes.) A process Ft is a martingale if for all times t we
have that

(6.15)
∂

∂t
F̃ (Extt(y·, yt−0), t) +

∑

ȳ∈D(U,t,yt)

L(yt, ȳ, t)
(

F (Extt(y·, ȳ), t) − F (Extt(y·, yt−0), t)
)

= 0

The process Ft is called an equivalent martingale if there is a second piecewise smooth Markov
propagator U ′ for which the non-anticipatory path functional F (y·, t) is a martingale process.

Theorem 9. (Equivalent Martingales.)

(i) If Ft is an increasing adapted process then it is not an equivalent martingale. Otherwise
stated, if Ft is an equivalent martingale then it is not increasing.

(ii) If Ft is a non-decreasing adapted process and it is also an equivalent martingale, then it
is a constant process with F (y·, t) = const for all t ∈ [T, T ′].

Proof. This theorem descends from the fact that monotonicity properties are preserved by mea-
sure changes. �

Martingales are particularly useful as they can be constructed by taking expectations.
Let Φ(y·) be a continuous path-functional. From the modeling viewpoint, such a functional

can represent future cash flow streams. For instance, one choice could be

(6.16) Φ(y·) = Φ0(yt′)

where Φ0 is a continuous univariate function and t′ ∈ [T, T ′] is fixed. In a more general example,
one may consider a path functional of the form

(6.17) Φ(y·) ≡
∫ T ′

T

ds1...

∫ T ′

sn−1

dsna(t; s1, ....sn)F1(ys1 , s1)...Fn(ysn
, sn)

with a(t; s1, ....sn) = 0 for t ∈ [T, t′]. The path conditioned expectation of Φ(y·) is the non-
anticipatory path functional Ft = F (y·, t) such that

(6.18) F (y·, t) =

∫

A(y·,t)

Φ(z·)µ[dz·]

where the integral is restricted to the set A(y·, t) = {z·|zs = ys∀s ≤ t}. The intersection of
the set A(y·, t) with each of the spaces Hq

mn is a compact, finite dimensional submanifold with
boundaries. To denote path conditioning, we also use the following notation:

(6.19) Ft = F (y·, t) = E[Φ(y·)|ys, s ≤ t] = Et[Φ(y·)].

Proposition 3. The process Ft in (6.19) is a martingale for t < t1.

Proof. Equation (6.15) descends from the backward equation in (5.9). �
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7. The Fundamental Theorem of Finance

In this section, we derive the Fundamental Theorem of Finance in a context general enough
to encompass most cases of practical relevance.

Definition 35. (Financial Model.) Let Am,m ≥ m0, be a simplicial sequence. A financial
model is given by a family Akm(y·, t), k = 1, ...n of adapted processes modeling asset prices and
a non-decreasing adapted process Bm(y·, t) modeling the money-market account. For notational
convenience, we set A0

m(y·, t) = Bm(y·, t). Let us introduce also the discounted asset price process
defined as follows:

(7.1) Ãkm(y·, t) =
Akm(y·, t)

Bm(y·, t)
.

Definition 36. (Trading Strategies.) Given a financial model with n assets, a trading strategy
is given by a family of adapted processes ζkm(y·, t), k = 0, ....n. The value process of a strategy is
the adapted process

(7.2) Πm(y·, t) =

n
∑

k=0

ζkm(y·, t)A
k
m(y·, t)

The discounted value process instead is given by

(7.3) Π̃m(y·, t) =
n
∑

k=0

ζkm(y·, t)Ã
k
m(y·, t)

Definition 37. (Self-Financing Condition.) An adapted trading strategy is called self-
financing if the following two conditions hold:

(7.4) (SF1)
n
∑

k=0

∂ζkm
∂t

(Extt(y·, yt−0), t)Ã
k
m(Extt(y·, yt−0), t) = 0

and if, for all ȳ ∈ Dm(U, t, yt), we have that

(7.5) (SF2)
n
∑

k=0

(

ζkm(Extt(y·, ȳ), t) − ζkm(Extt(y·, yt−0), t)
)

Ãkm(Extt(y·, ȳ), t) = 0.

Proposition 4. If ζkm(y·, t) is a self-financing trading strategy, then the corresponding discounted
value process satisfies

(7.6)
∂Π̃m(Extt(y·, yt−0), t)

∂t
=

n
∑

k=0

ζkm(Extt(y·, yt−0), t)
∂Ãkm(Extt(y·, yt−0), t)

∂t

and for all ȳ ∈ Dm(U, t, yt), we have that

Π̃m(Extt(y·, ȳ), t) − Π̃m(Extt(y·, yt−0), t)(7.7)

=
n
∑

k=0

ζkm(Extt(y·, ȳ), t)
(

Ãkm(Extt(y·, ȳ), t) − Ãkm(Extt(y·, yt−0), t)
)

.(7.8)

Definition 38. (Arbitrage Strategies.) A self-financing strategy is called arbitrage at time

t if the corresponding discounted value process Π̃m(y·, t) is increasing at time t.

Theorem 10. (Fundamental Theorem of Finance.) If there is an equivalent measure with
respect to which all discounted base asset price processes are martingales, then

(i) The discounted value process of any self-financing trading strategy under the same equiv-
alent measure is a martingale.

(ii) There is no arbitrage.

Conversely, if there is no arbitrage than there exists a measure change under which all discounted
asset price processes become martingales.
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Proof. The first part of the theorem is a simple consequence of the definitions put forward. The
converse instead requires a proof.

Let Vm(U, t, yt) be the vector space spanned by functions of the form v(ȳ) where ȳ ∈ Dm(U, t, yt).
Let K be the cone in Vm(U, t, yt) made up by all the vectors with non-negative components.
Also, let us introduce the following vector ξkm ∈ Vm(U, t, yt):
(7.9)

ξkm(ȳ) = δȳ,yt−0

∂Ãkm(Extt(y·, yt−0), t)

∂t
+
(

1− δȳ,yt−0

)(

Ãkm(Extt(y·, ȳ), t)−Akm(Extt(y·, yt−0), t)
)

.

Notice that, in case k = 0 and the asset is the money market account, then ξ0m(ȳ) = 0 for all
ȳ ∈ Dm(U, t, yt).

Suppose there is no arbitrage and fix a time t. Assuming there does not exist a trading
strategy with a strictly increasing value process, for all vectors (vk)k=1,...n ∈ Vm(U, t, yt) there
are two elements y+, y− ∈ Dm(U, t, yt) such that

(7.10)
n
∑

k=1

vkξkm(ȳ+) > 0 while
n
∑

k=1

vkξkm(ȳ−) < 0.

If in equation (7.10) we set vk = δk1, we conclude that the vector
(

ξ1m(ȳ)
)

ȳ∈Dm(U,t,yt)
has

both positive and negative components. Hence, the the hyperplane Π1 ⊂ Vm(U, t, yt) orthogonal
to the vector ξ1m(ȳ) ∈ Vm(U, t, yt) intersects K.

Let P1 be the orthogonal projection operator onto the hyperplane Π1 and let us consider the
vector

(7.11) (P1ξ
2
m)(ȳ) = ξ2m(ȳ) −

∑

z̄∈Dm(U,t,yt)
ξ2m(z̄)ξ1m(z̄)

∑

z̄∈Dm(U,t,yt)
ξ1m(z̄)ξ1m(z̄)

ξ1m(ȳ).

for i = 2, ...n. Due to absence of arbitrage, there are two elements y+, y− ∈ Dm(U, t, yt) such
that

(7.12) (P1ξ
2
m)(ȳ+) > 0 while (P1ξ

2
m)(ȳ−) < 0.

Hence, the vector P1ξ
2
m is transversal to the octant K of positive vectors. As a consequence, the

hyperplane Π2 ⊂ Π1V is orthogonal to both vectors ξ1m and ξ2m, also intersects K.
The argument above can be iterated n times, leading to the conclusion that there exists a

strictly positive function gytm(ȳ) > 0, ȳ ∈ Dm(U, t, yt), such that

(7.13)
∑

ȳ∈Dm(U,t,yt)

ξkm(ȳ)gytm(ȳ) = 0

for all k = 0, ...n. In particular, this implies that there exists a measure change function Gytm(ȳ)
such that

(7.14)
∑

y∈hZd

(

Ãkm(Extt(y·, ȳ), t) −Akm(Extt(y·, yt−0), t)
)

L(y, ȳ; t)Gytm(ȳ) = 0.

�

8. Weak Convergence of Markov Generators

Consider a one dimensional Markov process defined on the simplicial sequence Am,m ≥ m0

and the time interval [T, T ′]. Many different specifications of Markov generators on Am may
correspond to the same limit. In this section we identify a canonical sequence of generators
under a few regularity hypotheses which imply the existence of a weak limit in distribution sense
for the generator. This is a necessary first step to single out the general form of an admissible
Markov generator. In the following sections, we then investigate convergence under the much
finer criteria of pointwise convergence for probability kernels and their derivatives.

First consider the case when the limiting domain A∞ is bounded. Without restricting gener-
ality, let us suppose that A∞ = [−L,L].
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Let Lm be a sequence of Markov generators. The first assumption we make is that the first
two moments are finite, or more specifically

Hypothesis MG1. The sequences

(8.1) µm(x, t) ≡
∑

y∈Am

Lm(x, y; t)(y − x), σm(x, t) ≡
√

∑

y∈Am

Lm(x, y; t)(y − x)2

are uniformly bounded in absolute value as m → ∞ and converge to limits for all x ∈ Am and
all t ∈ [T, T ′], i.e. the following limits exist:

(8.2) µ(x, t) ≡ lim
m→∞

µm(x, t), σ(x, t) ≡ lim
m→∞

σm(x, t).

Notice that, due to the dominated convergence theorem, the functions µm(x, t) and σm(x, t)
regarded as piecewise constant functions on A∞ converge weakly to the corresponding limits.

Hypothesis MG2. The following limits exist and are finite for all m ≥ m0 and all pairs
x, y ∈ Am such that |x− y|≥ 2hm:

(8.3) λm(x, y; t) = lim
m′→∞

∑

z∈Am′ :y−hm<z≤y+hm

Lm′(x, z; t).

The family of functions λm(x, y) can be represented in terms of the so called Levy measures
specified as follows:

Theorem 11. (Levy measures.) For all x ∈ Am there exists a measure νxt(dξ) in [−L,L]
(called Levy measure) with the following two properties:

(i)

(8.4)

∫ L

−L
νxt(dξ)ξ

2 <∞

(ii) For all y ∈ Am with |x− y|≥ 2hm the following representation is valid:

(8.5) λm(x, y) = lim
ε↓0

∫ y+hm/2

y−hm/2+ε

νxt(dξ).

Definition 39. (Finite activity jumps.) A Markov process is said to have finite activity
jumps if for all m ≥ m0 and all x ∈ Am we have that

(8.6)

∫ L

−L
νxt(dξ) <∞

Notice that given MG1 and MG2 we have

(8.7) lim sup
m→∞

∑

y

λm(x, y; t)(y − x)2 ≤
∑

y

Lm(x, y; t)(y − x)2 <∞.

More generally, if φ ∈ D(R) is a test function such that φ(0) = 0 and φ′(0) = 0, then we have
that

(8.8) lim sup
m→∞

∑

y

λm(x, y; t)φ(y − x) <∞.

Although the above sequence is bounded, the limit may not exist in general. We thus need to
stipulate this as a separate assumption:

Hypothesis MG3. For all test functions φ ∈ D(R) such that φ(0) = φ′(0) = 0 and all x ∈ Am,
the sequence

∑

y λm′(x, y; t)φ(y − x) admits a limit as m′ → ∞.
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Let us introduce the following notations:

(8.9) µ0
m(x; t) =

∑

y

λm(x, y; t)(y − x), σ0
m(x; t) =

√

∑

y

λm(x, y; t)(y − x)2.

Notice that the sequence σ0
m(x, t) is non-negative and is uniformly bounded as a function of

m. More precisely

(8.10) 0 ≤ σ0
m(x, t) ≤ σm(x, t).

On the other hand, we cannot conclude in general that µ0
m(x, t) is necessarily uniformly bounded.

In fact, the difference µm(x, t) − µ0
m(x, t) could diverge as m→ ∞ while being compensated by

terms concentrated at y = x± 1 which in turn also diverge in the limit as m→ ∞ while keeping
the total drift µm(x, t) uniformly bounded. An exception to this general situation is found in
case the following condition is satisfied:

Hypothesis MG4. For all m ≥ m0 and all x ∈ Am we have that

(8.11)

∫ L

−L
|x|νxt(dξ) <∞

Two particularly important situations in which this condition MG4 holds are given in the
following:

Theorem 12. (MG4.) Assuming MG1,MG2,MG3, if the Markov process is either monotonic
or has finite activity jumps, then MG4 holds.

Under the three assumptions MG1,MG2,MG3, the sequence Lm of Markov generators can
be mapped into an equivalent canonical sequence of Markov generators LC . More precisely, we
set

(8.12) LCm(x, y; t) = λ(x, y; t)

in case |x− y|≥ 2hm. Furthermore, we set

(8.13) LCm(x, x± hm; t) = µ̃m(x; t)∇hm
(x, x± 1) +

σ̃m(x; t)2

2
∆hm

(x, x± 1)

where

(8.14) µ̃m(x; t) = µm(x) − µ0
m(x), σ̃m(x; t)2 = σm(x; t)2 − σ0

m(x; t)2.

and the operators ∇h and ∆h are defined as in equation (5.21). Finally,

(8.15) LCm(x, x; t) =
∑

y∈Am,y 6=x
LCm(x, y; t)

Theorem 13. (Canonical Representations of Markov Generators.) For all smooth func-
tions of compact support φ ∈ D(A∞) and all x ∈ Am we have that

(8.16) lim
m′→∞

∑

y∈Am′

LCm′(x, y)φ(y) = lim
m′→∞

∑

y∈Am′

Lm′(x, y)φ(y).

A compact representation for a canonical generator summarizing these definition is obtained
by considering the symbol as specified in Definition (24).

Theorem 14. (Levy-Khintchine representation.) Under the hypothesis MG1,MG2,MG3
above and in case A∞ = [−L,L] is bounded, the symbol of a generator in canonical form can be
expressed as follows:
(8.17)

L̂Cm(x, p; t) = iµ(x; t)
sin ph

h
+σ̃(x; t)2

cos ph− 1

h2
+
∑

y∈Am

(

eip(y−x) − 1 − i
sin ph

h
(y − x)

)

λm(x, y; t).
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The following limit converges in the weak topology:

(8.18) lim
m→∞

L̂Cm(x, p; t) = iµ(x; t)p− σ̃2(x; t)

2
p2 +

∫ L

−L
(eipξ − 1 − ipξ)νxt(dξ),

where νxt(dξ) is the Levy measure. Moreover, if also MG4 is satisfied, then the symbol of a
generator in canonical form can be expressed as follows:

(8.19) L̂Cm(x, p; t) = iµ̃(x; t)
sin ph

h
+ σ̃(x; t)2

cos ph− 1

h2
+
∑

y∈Am

(

eip(y−x) − 1
)

λm(x, y; t).

The following limit converges in the weak topology:

(8.20) lim
m→∞

L̂Cm(x, p; t) = iµ̃(x; t)p− σ̃2(x; t)

2
p2 +

∫ L

−L
(eipξ − 1)νxt(dξ).

9. Fast Exponentiation and Spectral Methods

Numerical analysis of pricing models in the operator formalism depend on the ability to com-
pute the propagator for a given generator L(t). Time homogenous Markov generators Lm(y1, y2)
represent a privileged special case of particular importance. In this case, the associated propa-
gator solving the differential equation in (5.2) is given by the matrix exponential

(9.1) Um(y1, s; y2, s
′) = exp((s′ − s)Lm)(y1, y2).

Matrix exponentiation can be defined in several equivalent ways, such as by Taylor expansion

(9.2) exp(tLm) =
∞
∑

j=0

tj

j!
Ljm

or by means of Neper’s formula

(9.3) exp(tLm) = lim
N→∞

(

1 +
t

N
Lm
)N

We find that the most efficient and robust method for exponentiating Markov generators is
the so called fast exponentiation algorithm. Let us fix a Markov generator L(x, y) and a time
horizon t. Let δt > 0 be the largest time interval for which both of the following properties are
satisfied:

(FE1) min
y∈Λ

(1 + δtL(y, y)) ≥ 1/2

(FE1) log2

t

δt
= n ∈ N.

To compute etL(x, y), we first define the elementary propagator

(9.4) uδt(x, y) = δxy + δtL(x, y)

and then evaluate in sequence u2δt = uδt · uδt, u4δt = u2δt · u2δt, ... u2nδt = u2n−1δt · u2n−1δt.
As we show in the next few sections, this algorithm approximates probability kernels with

errors with respect to the continuous time kernel density which, in fairly general cases, are of
order O(h2

m|log hm|3). This is the same order by which the continuous time kernel density differs
from its continuous limit also according to estimates below. In the case of Brownian motion, a
sharp convergence estimates of ordered O(h2

m) can also be proven.
Matrix multiplication is accomplished numerically by invoking the routine dgemm in Level-3

BLAS. Very efficient, processor specific version of dgemm are now available along with implemen-
tations on massively parallel GPU chipsets. It turns out that the standard measure of algorithmic
complexity as the number of floating point operations required to accomplish a certain task, is
not simply proportional and scales non-linearly with respect to execution time. Using blocking
and cache optimizations and distributing the load across many cores, execution time for medium
to large matrices appears to scales much better than the naive n3 scaling one would obtain by
triple looping (Goto and van de Geijn to appear).
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A more general method that allows to compute not only exponentials but also other functions
of a Markov generator is full diagonalization. Unfortunately, unless the Markov generator is
symmetrizable, diagonalization algorithms can possibly run into serious instabilities within dou-
ble precision arithmetics because of the phenomenon of pseudo-spectrum (Trefethen and Embree
2006). This makes it impossible to diagonalize exactly within the limits of double-precision arith-
metics and forces one to resort to expedients such as for instance spectral truncations. Since the
fast exponentiation method has much better scaling properties than full diagonalization and is
entirely stable, we recommend that it be used in all situations where a matrix exponentiation is
required. However, it often arises the necessity to define and compute also other functions of a
given time independent Markov generator and for this purpose diagonalization can be usefully
employed, especially when the target matrix is symmetrizable.

Not all Markov generators are diagonalizable but most are and it is safe to take diagonaliz-
ability for granted in numerical applications. To make this statement more precise, one sets out
the following definitions:

Definition 40. (Generic Properties.) A dense Gδ of a topological space is a countable
intersection of dense open subsets. If a property is valid on a dense Gδ one says that it is valid
generically, or that it is generic. Instead, if the same topological set is endowed of a measure
and a property is valid on a full measure set of parameters, one says that it is valid almost surely
with respect to that particular measure.

We have that

Proposition 5. Markov generators are diagonalizable both generically and almost surely.

Let un(x) and λn, n = 1, ..N , be eigenfunctions and eigenvalues of the Markov generator L,
i.e.

(9.5) Lun = λnun.

Let U be the matrix whose columns are given by the vectors un(x) and let Λ be the diagonal
matrix with the eigenvalues λn on the diagonal. Hence

(9.6) LU = UΛ.

We have that L = UΛU−1 and etL = UetΛU−1. This equation expressed in components reads
as follows:

(9.7) etL(x, x′) =
N
∑

n=1

eλntun(x)vn(y)

where vn(y) is the n−th row vector of the inverse matrix V = U−1.
One may extend the above definition to other functions of a Markov generator. If ψ(λ) is a

function, one may define ψ(L) as the operator whose matrix is given by

(9.8) ψ(L)(x, x′) =
N
∑

n=1

ψ(λn)un(x)vn(y)

An important example of functional calculus is found to express the Markov generator of pro-
cesses obtained by stochastic time change, whereby the time-change process has independent,
uniformly distributed increments. Processes in this class are called Bochner subordinators. Be-
cause of time and space homogeneity, Bochner subordinators can be constructed starting from
a process on simplicial sequence hmZ and are characterized by a Markov generator of the form
Lm(x, y) = ℓhm

(y − x).

Theorem 15. (Bochner Subordinators.) If the limit limh↓0 ℓh = ℓ exists in weak sense on
D′(R) then the limit kernel has the following form

(9.9)

∫

ℓ(x)φ(x)dx = µφ′(0) +

∫ ∞

0

(φ(x) − φ(0))ν(dx)
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where ν(dx) is a positive measure supported on R+ and is such that

(9.10)

∫ ∞

0

xν(dx) <∞.

The characteristic function of the process defined as the Fourier transform of the Markov
generator is thus

(9.11) ǫ(k) = lim
h↓0

∑

x

eikxℓh(x) = iµk +

∫ ∞

0

(eikx − 1)ν(dx).

The Laplace transform instead is given by

(9.12) φ(λ) ≡ −ǫ(iλ) = − lim
h↓0

∑

x

e−λxℓh(x) = µλ+

∫ ∞

0

(1 − e−λx)ν(dx).

A function of this form is called Bernstein function.
Bernstein functions may be used to express Laplace transform of the transition probability

kernel of time-homogeneous monotonic processes as follows:

(9.13)

∫ ∞

0

etL(0, x)e−λxdx = e−tφ(λ).

In turn, we may also express the transition probability kernel in terms of the characteristic
function, i.e.

(9.14) etL(0, x) =

∫ ∞

−∞
eitǫ(k)+ikx

dk

2π
.

Notice that since φ(−ik) = −ǫ(k), the last formula may also be interpreted as the Fourier-Mellin
inversion of the previous one.

Example 1. (Poisson Process) The Poisson process corresponds to

(9.15) φP (λ; c) = c(1 − e−λ) = c

∫ ∞

0

(1 − e−λt)δ(t− 1)dt.

Example 2. (Stable Process) The stable subordinator with index α ∈ (0, 1) is given by

(9.16) φS(λ;α) = λα =
α

Γ(1 − α)

∫ ∞

0

(1 − e−λt)t−1−αdt.

Example 3. (Gamma Process) The Gamma subordinator with variance rate ν > 0 is given
by

(9.17) φV G(λ; ν) =
1

ν
log(1 + νλ) =

1

ν

∫ ∞

0

(1 − e−λt)t−1e−t/νdt.

To add jumps to a diffusion process one can use the method of independent stochastic subor-
dination. Namely let Ft be the diffusion process with drift function µ(F ) and volatility function
σ(F ) and let Ld(y1, y2;µ, σ) be the corresponding Markov generator. Consider the generator

(9.18) LV G(µ, σ, ν) = −φV G(−Ld(µ, σ); ν).

The propagator for Lj(µ, σ, ν) satisfies the following equation:
(9.19)

exp
(

tLV G(µ, σ, nu)
)

(y1, y2) = E0

[

exp
(

T νt Ld(µ, σ)
)

(y1, y2)
]

=
N
∑

n=1

e−φV G(−λn;ν)tun(x)vn(y)

where T νt are the paths of the monotonic process in Example 3, the un(x) are the eigenfunctions
of the diffusion generator Ld(µ, σ), λn are the corresponding eigenvalues and the functions vn(x)
are defined as in (9.7). Hence, the generator LV G(µ, σ, ν) identifies the time-changed process
with paths FT ν

t
.
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To model asymmetric jumps one can follow several strategies. A simple one is to specify the
two different variance rates ν+ and ν− for the up and down jumps and compute separately two
Markov generators

LV G(µ, σ, ν±) = −φV G(−Ld(µ, σ); ν±).(9.20)

The new generator for our process with asymmetric jumps is obtained by combining the two
generators above

(9.21) LV G(y1, y2;µ, σ, ν+, ν−) =











LV G(y1, y2;µ, σ, ν−) if F (y1) < F (y2)

LV G(y1, y2;µ, σ, ν+) if F (y1) > F (y2)

−∑y2 6=y1 LV G(y1, y2;µ, σ, ν+, ν−).

The construction can also be localized. If φx(λ) is a family of Bernstein functions indexed by
the state variable x ∈ Λm, then one can consider the Markov generator of matrix

L̃(x, y) = −φx(−Ld(µ, σ))(x, y).(9.22)

This construction allows one to model state dependent jumps.

10. Construction of Brownian Motion

This section is based on work in collaboration with Alex Mijatovic, see (Albanese and Mija-
tovic 2006).

LetA = (Am),m = m0,m0+1, ... be a simplicial sequence converging to an interval limm→∞Am =
[−L,L] ⊂ R, where 0 < L <∞. Let µ and σ be two constants.

The generator of a Brownian motion on Am has the form

(10.1) Lm = µ∇hm
+

1

2
σ2∆hm

for all interior points x ∈ Int(Am). We assume that m0 is large enough so that

(10.2)
σ2

2h2
m

>
|µ|

2hm

for all m ≥ m0.
If x is a boundary point, i.e. x ∈ ∂(Am), then several definitions of the operator Lm are possi-

ble depending on the choice of boundary conditions. Absorbing boundary conditions correspond
to the choice

(10.3) Lm(x, y) = 0 ∀y ∈ Am.

Reflecting boundary conditions correspond to

Lm(x, x) = µ∇hm
(x, x) +

1

2
σ2∆hm

(x, x)(10.4)

Lm(x, y) = −Lm(x, x)(10.5)

where y ∈ Int(Am) is the closest point to x in the interior of Am, while Lm(x, y) = 0 for all
other points y. Periodic boundary conditions are implemented by setting

Lm(x, y) = µ∇hm
(x, y) +

1

2
σ2∆hm

(x, y)(10.6)

if y = x or y ∈ Int(Am) is the closest point to x in the interior of Am, and also

Lm(x, x′) = µ∇hm
(x, y) +

1

2
σ2∆hm

(x, y)(10.7)

where x′ ∈ ∂(Am) is the boundary point at the opposite extreme of the simplex Am. Finally,
mixed boundary conditions can also be defined by taking a convex linear combination of the
generators satisfying one of the three boundary conditions above.
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Theorem 16. (Convergence Estimates for Brownian Motion.) Consider a Brownian
motion defined as the process with generator in (10.1) where µ and σ are constants satisfying the
bounds in (10.2) for all m ≥ m0 and we assume periodic boundary conditions. Let us consider
the kernels

(10.8) Um(x, 0; y, T ) ≡ eTLm(x, y)

and

(10.9) Uδtm (x, 0; y, T ) ≡
(

1 + δtLm
)

T
δt

(x, y).

If δt is such that 0 < δt ≤ 1
2

h2

2σ2−h|µ| and m0 is large enough, then there is a constant c > 0 such

that for all m′ ≥ m ≥ m0 we have the following inequalities:

(i)

(10.10) |h−1
m Um(x, 0; y, T ) − h−1

m′Um′(x, 0; y, T )|≤ ch2
m

(ii)

(10.11) |h−1
m ∇hm

Um(x, 0; y, T ) − h−1
m′∇hm′

Um′(x, 0; y, T )|≤ ch2
m

(iii)

(10.12) |h−1
m ∆hm

Um(x, 0; y, T ) − h−1
m′∆hm′

Um′(x, 0; y, T )|≤ ch2
m

(iv)

(10.13) |h−1
m Um(x, 0; y, T ) − h−1

m Uδtm (x, 0; y, T )|≤ ch2
m

Proof. It suffices to show this inequality for m′ = m + 1. Let us assume for simplicity that
L = 2m0hm0

and Am = {x = hmi, i = 0, ....2m} for all m ≥ m0. The argument extends to more
general lattice geometry but the consideration of these more general cases would obscure the
simplicity of the proof with needless detail and will thus be omitted.

Let Bm be the Brillouin zone as defined in equation (5.16). Let Fm : ℓ2(Am) → ℓ2(Bm) be
the Fourier transform operator defined so that:

(10.14) f̂(p) ≡ Fm(f)(p) = hm
∑

x∈Am

f(x)e−ipx

for all p ∈ Bm. The inverse Fourier transform is given by

(10.15) F−1
m (f̂)(x) =

1

2L

∑

p∈Bm

f̂(p)eipx.

The Fourier transformed generator is diagonal and is given by the operator of multiplication
by

(10.16) ℓ̂m(p) = FmLmF−1
m (p, p) = −iµ sinhmp

hm
+ σ2 coshmp− 1

h2
m

.

We have

(10.17) h−1
m Um(x, 0; y, T ) =

1

2L

∑

p∈Bm

eT
ˆℓm(p)eip(y−x).

Using this Fourier series representation, we find
∣

∣h−1
m Um(x, 0; y, T ) − h−1

m+1Um+1(x, 0; y, T )
∣

∣

≤ 1

2L

∣

∣

∣

∣

∑

p∈Bm

(

eT ℓ̂m(p) − eT ℓ̂m+1(p)

)

eip(y−x)
∣

∣

∣

∣

+
1

2L

∣

∣

∣

∣

∑

p∈Bm+1\Bm

eT ℓ̂m+1(p)eip(y−x)
∣

∣

∣

∣

.

(10.18)
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Let

(10.19) Km =

√

|log hm+1|
σ2T

.

If hm is small enough, i.e. if m0 is sufficiently large, we have that

1

2L

∣

∣

∣

∣

∑

p∈Bm,|p|≥Km

eT ℓ̂
m(p)eip(y−x)

∣

∣

∣

∣

≤ 1

2L

∑

p∈Bm,|p|≥Km

eTℜ(ℓ̂m(p)) ≤ c exp

(

Tσ2 coshmKm − 1

h2
m

)

≤ ch2
m.

(10.20)

where ℜ(a) denotes the real part of a ∈ C and c denotes a generic constant. Similarly

1

2L

∣

∣

∣

∣

∑

p∈Bm+1,|p|≥Km

eT ℓ̂m+1(p)eip(y−x)
∣

∣

∣

∣

≤ 1

2L

∑

p∈Bm,|p|≥Km

eTℜ(ℓ̂m+1(p))

≤ c exp

(

Tσ2 coshm+1K − 1

h2
m+1

)

≤ ch2
m+1

(10.21)

Since

1

2
h2p3 − 1

8
h4p5 ≤ sinhp

h
− sin 2hp

2h
≤ 1

2
h2p3(10.22)

and

−1

8
h2p4 ≤ coshp− 1

h2
− cos 2hp− 1

(2h)2
≤ −1

8
h2p4 +

1

48
h4p6.(10.23)

we find that if |p|≤
√

2
h then

|ℓ̂m(p) − ℓ̂m+1(p)|≤
µ

4
h2|p|3+σ2

16
h2p4.(10.24)

Moreover, since

−1

2
p2 ≤ coshp− 1

h
≤ −1

2
p2 +

1

24
h2p4(10.25)

we conclude that in case |p|≤ h−1
√

2
3 , the following inequality holds:

coshp− 1

h
≤ −1

4
p2(10.26)

Hence, if m0 is large enough, we find

1

2L

∣

∣

∣

∣

∑

p∈Bm,|p|≤K

(

eT ℓ̂m(p)−eT ℓ̂m+1(p)

)

eip(y−x)
∣

∣

∣

∣

≤ 1

2L

∑

p∈Bm,|p|≤K
e−

1
4p

2

(

e
µT
4 h2

m|p|3+ σ2T
16 h2

mp
4 − 1

)

≤ 1

2L

∑

p∈Bm,|p|≤K
e−

1
4p

2

(

µT

4
h2
m|p|3+σ2T

16
h2
mp

4

)

≤ ch2
m(10.27)

for some constant c > 0 independent of m. This concludes the proof of the bound in (10.10).
To estimate the sensitivity in (10.11) notice that

(10.28) h−1
m ∇Um(x, 0; y, T ) =

1

L

∑

p∈Bm

eT
ˆℓm(p) sin phm

hm
eip(y−x).
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and

∣

∣h−1
m Um(x, 0; y, T ) − h−1

m+1Um+1(x, 0; y, T )
∣

∣

≤ 1

2L

∣

∣

∣

∣

∑

p∈Bm

(

eT ℓ̂m(p) sin phm
hm

− eT ℓ̂m+1(p)
sin phm+1

hm+1

)

eip(y−x)
∣

∣

∣

∣

+
1

2L

∣

∣

∣

∣

∑

p∈Bm+1\Bm

eT ℓ̂m+1(p)eip(y−x)
∣

∣

∣

∣

.

(10.29)

Let

(10.30) Km = 2

√

|log hm+1|
σ2T

.

If hm is small enough, we have that

1

2L

∣

∣

∣

∣

∑

p∈Bm,|p|≥Km

eT ℓ̂m(p) sin phm
hm

eip(y−x)
∣

∣

∣

∣

≤ 1

2L

∑

p∈Bm,|p|≥Km

eTℜ(ℓ̂m(p)) sin phm
hm

≤ c

∣

∣

∣

∣

sinKhm
hm

∣

∣

∣

∣

exp

(

Tσ2 cosKhm − 1

h2
m

)

≤ ch2
m.

(10.31)

where c denotes a generic constant. Similarly

1

2L

∣

∣

∣

∣

∑

p∈Bm+1,|p|≥Km

eT ℓ̂m+1(p)eip(y−x)
∣

∣

∣

∣

≤ ch2.(10.32)

If m is large enough, we also find

1

2L

∣

∣

∣

∣

∑

p∈Bm,|p|≤Km

(

sin phm
hm

eT ℓ̂m(p) − sin phm+1

hm+1
eT ℓ̂m+1(p)

)

eip(y−x)
∣

∣

∣

∣

≤ 1

2L

∑

p∈Bm,|p|≤Km

∣

∣

∣

∣

sin phm
hm

∣

∣

∣

∣

e−
1
4p

2

(

e
µT
4 h2

m|p|3+ σ2T
16 h2

mp
4 − 1

)

+ e−
1
4p

2

∣

∣

∣

∣

sin phm+1

hm+1
− sin phm

hm

∣

∣

∣

∣

≤ ch2
m

(10.33)

for some constant c > 0 independent of m. This concludes the proof of the bound in (10.11).
The bound in (10.12) can be derived in a similar way.

Finally, consider the following Fourier representation for the discretized kernel

(10.34) h−1
m Uδtm (x, 0; y, T ) =

1

L

∑

p∈Bm

(

1 + δtℓ̂m(p)

)
T
δt

eip(y−x).

Consider the formula

(10.35)

(

1 + δtℓ̂m(p)

)
T
δt

= exp

(

T log
(

1 + ℓ̂m(p)
)

)

.
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and let’s represent the difference between kernels in (10.13) as follows:

|h−1
m Um(x, 0; y, T ) − h−1

m Uδtm (x, 0; y, T )|

≤ 1

2L

∣

∣

∣

∣

∑

p∈Bm

(

exp
(

T ℓ̂m(p)
)

− exp

(

T

δt
log
(

1 + δtℓ̂m(p)
)

)

eip(y−x)
∣

∣

∣

∣

≤ 1

2L

∑

p∈Bm,p≤Km

e−
1
4p

2

∣

∣

∣

∣

exp

(

T

δt
log
(

1 + δtℓ̂m(p)
)

− T ℓ̂m(p)

)

− 1

∣

∣

∣

∣

1

2L

∑

p∈Bm,p≥Km

∣

∣

∣

∣

exp
(

T ℓ̂m(p)
)

∣

∣

∣

∣

+
1

2L

∑

p∈Bm,p≥Km

∣

∣

∣

∣

exp

(

T

δt
log
(

1 + δtℓ̂m(p)
)

)∣

∣

∣

∣

(10.36)

where Km is chosen as in (10.19). The very same bounds above lead to the conclusion that this
difference is ≤ ch2

m.
�

11. Kernel Convergence Estimates for Diffusion Processes

Diffusions are a particularly important class of Markov processes which generalize Brown-
ian motions to allow for space dependent drifts and volatility. In this section we find kernel
convergence estimates for the one-dimensional case following (Albanese 2007b).

LetA = (Am),m = m0,m0+1, ... be a simplicial sequence converging to an interval limm→∞Am =
[−L,L] ⊂ R, where 0 < L < ∞. Let µ(x) and σ(x) be smooth functions defined in a neighbor-
hood of [−L,L]. The generator of a diffusion on Am has the form

(11.1) Lm = µ(x)∇hm
+

1

2
σ(x)2∆hm

.

We assume that m0 is large enough so that

(11.2)
σ2(x)

2h2
m

>
|µ(x)|
2hm

for all m ≥ m0 and all x ∈ Am. The definition of the generators at boundary points can be
extended by imposing one of the boundary conditions in the previous section, i.e. reflecting,
absorbing, periodic or mixed.

Theorem 17. (Convergence Estimates for Diffusions.) Consider a diffusion process de-
fined as in (11.1) where µ(y) and σ(y) are smooth functions satisfying the bounds in (11.2) for
all m ≥ m0. Assume that boundary conditions are either periodic or absorbing. Then there is a
constant c > 0 such that

(11.3) |h−1
m Um(x, 0; y, T ) − h−1

m′Um′(x, 0; y, T )|≤ ch2
m

for all m′ ≥ m and all y ∈ Am.

It suffices to establish the above inequality in the case m′ = m + 1. In fact, given this
particular case, the general statement can be derived with an iterative argument. Let h = hm+1

so that hm = 2h.
Recall that the path integral representation for a diffusion process has the form in equation

(11.4). In the special case of a time-homogeneous process, this expansion reads as follows:

Um(x, 0; y, T ) =
∞
∑

q=1

2−q
∑

γ ∈ Γm : γ0 = x, γq = y
|γj − γj−1|= 1 ∀j ≥ 1

Wm(γ, q, T )(11.4)
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Figure 1. Contour of integration for the integral in (11.9). C+ is the countour
joining the point D to the points E,A,B. C− is the countour joining the point
B to C to D.

where

Wm(γ, q, T ) =

∫ T

0

ds1

∫ T

s1

ds2...

∫ T

sq−1

dsqe
(T−sq)Lm(y,y)

q−1
∏

j=0

(

e(sj+1−sj)Lm(γj ,γj)Lm(γj , γj+1)

)

(11.5)

where s0 = 0.
Let us introduce the following two constants characterizing the volatility function:

(11.6) Σ0 = inf
x∈Am

σ(x), Σ1 = sup
x∈Am

√

σ(x)2 + hm|µ(x)|.

and let

(11.7) M = sup
x∈Am

|µ(x)|.

Since our interval is bounded, we have that Σ0 > 0 and Σ1,M <∞.
Let us introduce the following Green’s function:

(11.8) Gm(x, y;ω) =

∫ ∞

0

Um(x, 0; y, t)e−iωtdt =
1

L + iω
(x, y).

The propagator can be expressed as the following contour integral

(11.9) Um(x, 0; y, T ) =

∫

C−

dω

2π
Gm(x, y;ω)eiωT +

∫

C+

dω

2π
Gm(x, y;ω)eiωT .

Here, C+ is the contour joining the point D to the points E,A,B in Fig. 1, while C− is the
contour joining the point B to C to D. By design, each point ω on the upper path C+ is
separated from the spectrum of L.
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Lemma 1. For m sufficiently large, there is a constant c > 0 such that

(11.10)

∣

∣

∣

∣

∫

C+

dω

2π
Gm(x, y;ω)eiωT

∣

∣

∣

∣

≤ ch3.

Proof. The proof is based on the geometric series expansion

(11.11) Gm(ω) =
1

Lm + iω
=

∞
∑

j=0

1
1
2σ

2∆m + iω

[

µ∇m 1
1
2σ

2∆m + iω

]j

whose convergence for ω ∈ C+ can be established by means of a Kato-Rellich relative bound, see
(Kato 1976). More precisely, for any α > 0, one can find a β > 0 such that the operators ∇m

and ∆m satisfy the following relative bound estimate:

(11.12) ||∇mf ||2≤ α||∆mf ||2+β||f ||2.
for all periodic functions f and all m ≥ m0. This bound can be derived by observing that ∇m

and ∆m can be diagonalized simultaneously by a Fourier transform, as done in the previous
section, and by observing that for any α > 0, one can find a β > 0 such that

(11.13)

∣

∣

∣

∣

sinhmp

hm

∣

∣

∣

∣

≤ α

∣

∣

∣

∣

coshmp− 1

h2
m

∣

∣

∣

∣

+ β

for all m ≥ m0 and all p ∈ Bm.
Under the same conditions, we also have that

(11.14)
∣

∣

∣

∣µ∇mf
∣

∣

∣

∣

2
≤ 2Mα

Σ2
0

∣

∣

∣

∣

∣

∣

∣

∣

1

2
σ2∆mf

∣

∣

∣

∣

∣

∣

∣

∣

2

+ β||f ||2.

Hence

(11.15)

∣

∣

∣

∣

∣

∣

∣

∣

µ∇m 1
1
2σ

2∆m + iω
f

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ 2Mα

Σ2
0

∣

∣

∣

∣

∣

∣

∣

∣

1

2
σ2∆m 1

1
2σ

2∆m + iω
f

∣

∣

∣

∣

∣

∣

∣

∣

2

+ β

∣

∣

∣

∣

∣

∣

∣

∣

1
1
2σ

2∆m + iω
f

∣

∣

∣

∣

∣

∣

∣

∣

2

< 1

where the last inequality holds if ω ∈ C+, if α is chosen sufficiently small and if m is large enough.
In this case, the geometric series expansion converges in (11.11) converges in L2 operator norm.
The uniform norm of the kernel |Gm(x, y;ω)| is pointwise bounded from above by h−1

m .

Since the points B and D have imaginary part equal at height 4 |log hm|
T , the integral over the

contour C+ converges also and is bounded from above by ch3
m in uniform norm.

�

Lemma 2. If q ≥ e2Σ2
1T

2h2
m

we have that

(11.16) Wm(γ, q; 0, T ) ≤
√

q

2π
exp

(

−Σ2
0T

2
− q

)

.

Proof. Let us define the function

(11.17) φ(t) =
Σ2

1

2h2
m

e
− Σ2

0t

2h2
m 1(t ≥ 0)

where 1(t ≥ 0) is the characteristic function of R+. We have that

(11.18) Wm(γ, q; 0, T ) ≤ φ⋆q(T )

where φ⋆q is the q−th convolution power, i.e. the q−fold convolution product of the function φ
by itself. The Fourier transform of φ(t) is given by

(11.19) φ̂(ω) =
Σ2

1

2h2
m

∫ ∞

0

e
−iωt− Σ2

0t

2h2
m dt =

Σ2
1

2iωh2
m + Σ2

0

.

The convolution power is given by the following inverse Fourier transform:

(11.20) φ⋆q(T ) =

∫ ∞

0

φ̂(ω)qeiωT =

(

Σ1

Σ0

)2q ∫ ∞

−∞

(

1 +
2iωh2

m

Σ2
0

)−q
eiωT

dω

2π
.
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Figure 2. Contour of integration CR for the integral in (11.21).

Introducing the new variable z = 1 +
2iωh2

m

Σ2
0

, the integral can be recast as follows

(11.21) φ⋆q(T ) =
Σ2−2q

0 Σ2q
1

4πih2
m

lim
R→∞

∫

CR

z−q exp

(

Σ2
0T

2h2
m

(z − 1)

)

dz

where CR is the contour in Fig. 2. Using the residue theorem and noticing that the only pole of
the integrand is at z = 0, we find

(11.22) φ⋆q(T ) =
1

(q − 1)!

(

Σ2
1T

2h2
m

)q

exp

(−Σ2
0T

2h2
m

)

.

Making use of Stirling’s formula q! ≈
√

2πqq+
1
2 e−q, we find

(11.23) φ⋆q(T ) ≈
√

q

2π
exp

(

−Σ2
0T

2h2
m

+ q log
Σ2

1T

2h2
m

+ q(1 − log q)

)

.

If log q ≥ log
Σ2

1T
2h2

m
+ 2, then we arrive at the bound in (11.16).

�

Definition 41. (Decorating Paths.) Let m ≥ m0 and let γ = {y0, y1, y2, ....} be a symbolic
sequence in Γm. A decorating path around γ is defined as a symbolic sequence γ′ = {y0, y′1, y′2, ....}
with y′i ∈ hm+1Z containing the sequence γ as a subset and such that if y′j = yi and y′k = yi+1,
then all elements y′n with j < n < k are such that |y′n − y′j |≤ hm+1. Let Dm+1(γ) be the set of
all decorating sequences around γ. The decorated weights are defined as follows:

(11.24) W̃m(γ, q; 0, T ) =

∞
∑

q′=q

∑

γ′ ∈ Dm+1(γ)
γ′q′ = γq

Wm+1(γ
′, q′; 0, T ).
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Finally, let us introduce also the following Fourier transform:

(11.25) Ŵm(γ, q;ω) =

∫ ∞

0

Wm(γ, q; 0, t)eiωtdt, ˆ̃Wm(γ, q;ω) =

∫ ∞

0

W̃m(γ, q; 0, t)eiωtdt.

Definition 42. (Notations.) In the following, we set h = hm+1 so that hm = 2h. We also
use the Landau notation O(hn) to indicate a function f(h) such that h−nf(h) is bounded in a
neighborhood of (0).

Lemma 3. Let x, y ∈ Am and let C− be an integration contour as in Fig. 1. Then

(11.26)

∣

∣

∣

∣

( ∫

C−

2Gm+1(x, y;ω) −Gm(x, y;ω)

)

eiωT
dω

2π

∣

∣

∣

∣

= O(h3).

Proof. We have that

2Gm+1(x, y;ω) −Gm(x, y;ω) =
∞
∑

q=1

2−q
∑

γ ∈ Γm : γ0 = x, γq = y
|γj − γj−1|= 1∀j ≥ 1

(

2 ˆ̃Wm(γ, q;ω) − Ŵm(γ, q;ω)
)

.

(11.27)

The number of paths over which the summation is extended is

(11.28) N(γ, q;x, y) ≡ ♯{γ ∈ Γm : γ0 = x, γq = y, |γj − γj−1|= 1∀j ≥ 1} =

(

q
q
2 + k

)

where k = |y−x|
hm

. Applying Stirling’s formula we find

(11.29) Nγ . 2q
√

2

πq
.

Hence
∣

∣

∣

∣

∫

C−

(

2Gm+1(x, y;ω) −Gm(x, y;ω)

)

eiωT
dω

2π

∣

∣

∣

∣

≤ c
∞
∑

q=1

√

1

q
max

γ ∈ Γm : γ0 = x, γq = y
|γj − γj−1|= 1∀j ≥ 1

∣

∣

∣

∣

∫

C−

(

2 ˆ̃Wm(γ, q;ω) − Ŵm(γ, q;ω)

)

eiωT
dω

2π

∣

∣

∣

∣

.

(11.30)

for some constant c ≈
√

2
π > 0. It suffices to extend the summation over q only up to

(11.31) qmax ≡ e2Σ2
1T

2h2
.

To resum beyond this threshold, one can use the previous lemma. More precisely, we have that
∣

∣

∣

∣

∫

C−

(

2Gm+1(x, y;ω) −Gm(x, y;ω)

)

eiωT
dω

2π

∣

∣

∣

∣

≤ c
√
qmax max

q, γ ∈ Γm : γ0 = x, γq = y
|γj − γj−1|= 1∀j ≥ 1

∣

∣

∣

∣

∫

C−

(

2 ˆ̃Wm(γ, q;ω) − Ŵm(γ, q;ω)

)

eiωT
dω

2π

∣

∣

∣

∣

.

(11.32)

Let v(x) = σ(x)2. To evaluate the resummed weight function, let us form the matrix

(11.33) L̄(x;h) =







−v(x+h)
h2

v(x+h)
2h2 − µ(x+h)

2h 0
v(x)
2h2 + µ(x)/(2h) −v(x)

h2

v(x)
2h2 − µ(x)

2h

0 v(x−h)
2h2 + µ(x−h)

2h −v(x−h)
h2









OPERATOR METHODS, ABELIAN PROCESSES AND DYNAMIC CONDITIONING 31

and decompose it as follows:

(11.34) L̄(x;h) =
1

h2
L̄0(x) +

1

h
L̄1(x) + L̄2(x) + hL̄3(x) +O(h2).

where

(11.35) L̄0(x) =





−v(x) 1
2v(x) 0

1
2v(x) −v(x) 1

2v(x)
0 1

2v(x) −v(x)



 ,

(11.36) L̄1(x) =





−v′(x) 1
2v

′(x) − 1
2µ(x) 0

1
2µ(x) 0 − 1

2µ(x)
0 − 1

2v
′(x) + 1

2µ(x) v′(x)



 ,

(11.37) L̄2(x) =





− 1
2v

′′(x) 1
4v

′′(x) − 1
2µ

′(x) 0
0 0 0
0 1

4v
′′(x) − 1

2µ
′(x) − 1

2v
′′(x)



 .

and

(11.38) L̄3(x) =





− 1
6v

′′′(x) 1
12v

′′′(x) − 1
4µ

′′(x) 0
0 0 0
0 − 1

12v
′′′(x) + 1

4µ
′′(x) 1

6v
′′′(x)



 .

Let us introduce the sign variable τ = ±1, the functions

φ0(t, x, τ) ≡ 2Lm(x, x+ 2τh)etLm(x,x)1(t ≥ 0)(11.39)

φ1(t, x, τ) ≡ 2Lm+1(x+ τh, x+ 2τh)etL̄(x;h)(x, x+ τh)1(t ≥ 0)(11.40)

and their Fourier transforms

φ̂0(ω, x, τ) =

(

v(x)

4h2
+ τ

µ(x)

2h

)(

v(x)

4h2
+ iω

)−1

φ̂1(ω, x, τ) =

(

v(x)

h2
+ τ

µ(x) + v′(x)

h
+
v′′(x) + µ′(x)

2
+

(

v′′′(x)

6
+
µ′′(x)

2

)

τh+O(h2)

)

< x|
(

−L̄(x;h) + iω
)−1 |x+ τh > .

(11.41)

where

(11.42) |x >=





0
1
0



 , and |x+ τh >=





δτ,1
0

δτ,−1



 .

We also require the functions

(11.43) ψ0(t, x) ≡ etLm(x,x)1(t ≥ 0), ψ1(t, x) ≡ etL̄(y;h)(x, x)1(t ≥ 0)

and the corresponding Fourier transforms

ψ̂0(ω, x) =

(

v(x)

4h2
+ iω

)−1

, ψ̂1(ω, x) =< x|
(

−L̄(x;h) + iω
)−1 |x > .(11.44)

If γ is a symbolic sequence, then

Ŵm(γ, q;ω) = ψ̂0(ω, γq)

q−1
∏

j=0

φ̂0(ω; γj , sgn(γj+1 − γj))(11.45)

ˆ̃Wm(γ, q;ω) = ψ̂1(ω, γq)

q−1
∏

j=0

φ̂1(ω; γj , sgn(γj+1 − γj)).(11.46)
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Let us estimate the difference between the functions φ̂1(ω, x, τ) and φ̂2(ω, x, τ) assuming that
ω is in the contour C− in Fig. 2. Retaining only terms up to order up to O(h3), we find

φ̂0(ω, x, τ) = 1 +
2µ(x)τh

v(x)
− 4iωh2

v(x)
− 8µ(x)

iωτh3

v(x)2
− 16ω2h4

v(x)2
+O(h5).

(11.47)

A lengthy but straightforward calculation which is best carried out using a symbolic manipulation
program, gives

φ̂1(ω, x, τ) = 1 +
2µ(x)τh

v(x)
− 4iωh2

v(x)
−
[

8µ(x) − v′(x)
] iωτh3

v(x)2

+ r(x) · h3τ + iωh4p(x) − 14ω2h4

v(x)2
+O(h5)

(11.48)

where

r(x) =
1

2v(x)3
[

µ′′(x)v(x) − 4µ(x)3 + 2v′(x)µ(x)2 − 2v′(x)v(x)µ′(x)

−
(

2µ(x)µ′(x) + v′′(x)v(x) − 2v′(x)2
)

µ(x)
]

.

p(x) =
1

v(x)3
[

4µ(x)2 − 2v′(x)µ(x) + 4v(x)µ′(x) + v′′(x)v(x) − 2v′(x)2
]

.

(11.49)

We have that

q−1
∑

j=0

(

log φ̂0(ω; γj , sgn(γj+1 − γj)) − log φ̂1(ω; γj , sgn(γj+1 − γj))

)

=

q−1
∑

j=0

(

iωv′(γj)

v(γj)2
+ r(γj)

)

h3sgn(γj+1 − γj) +
(

|ω|||p||∞+2|ω|2||v−2||∞
)

O(h4q)

= iωh2 log

(

v(γq)

v(γ0)

)

+ h2
(

R(γq) −R(γ0)
)

+
(

|ω|||p||∞+2|ω|2||v−2||∞
)

O(h4q)

(11.50)

where R(x) is a primitive of r(x), i.e.

(11.51) R(x) =

∫ x

r(z)dz.

We conclude that there is a constant c > 0 such that

(11.52)

∣

∣

∣

∣

∫

C−

( q−1
∏

j=0

φ̂0(ω; γj , sgn(γj+1 − γj)) −
q−1
∏

j=0

φ̂1(ω; γj , sgn(γj+1 − γj))

)

eiωT
dω

2π

∣

∣

∣

∣

≤ ch2.

for all q ≤ qmax. Here we use the decay of eiωT in the upper half of the complex ω plane to offset
the ω dependencies in the integrand. Similar calculations lead to the following expansions:

(11.53) ψ̂0(ω, y) =
4h2

v(y)
+O(ωh4), ψ̂1(ω, y) =

2h2

v(y)
+O(ωh4) =

1

2
ψ̂0(ω, y) +O(ωh4).

Since q < ch−2 and ω ≤ |log h|, we find
∣

∣

∣

∣

∫

C−

(

2Gm+1(x, y;ω) −Gm(x, y;ω)

)

eiωT
dω

2π

∣

∣

∣

∣

≤ cqmax
1
2h4 ≤ ch3.(11.54)

This completes the proof of the Lemma and of the Theorem. �
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12. Convergence of Time Discretization Schemes

In this section we analyze the convergence of the time discretized kernel that is obtained by
means of fast exponentiation.

LetA = (Am),m = m0,m0+1, ... be a simplicial sequence converging to an interval limm→∞Am =
[0, L] ⊂ R, where 0 < L < ∞. Let µ(x) and σ(x) be functions on [0, L] satisfying all the condi-
tions in the previous section and consider the generator of a diffusion on Am of the form

(12.1) Lm = µ(x)∇hm
+

1

2
σ(x)2∆hm

.

Theorem 18. (Convergence Estimates for Fast Exponentiation.) Let δt > 0 and con-
sider the discretized kernel

(12.2) Uδtm (x, 0; y, T ) = (1 + δtLm)
T
δt (x, 0; y, T ).

where Lm is the operator in (12.1) and δtm is so small that

(12.3) min
x∈Am

1 + δtmLm(x, x) > 0

Assume that boundary conditions are either periodic or absorbing and that the ratio T
δt = N is

an integer. Then there is a constant c > 0 such that

(12.4) |h−1
m Um(x, 0; y, T ) − h−1

m Uδtm (x, 0; y, T )|≤ ch2
m

for all m ≥ m0 and all y ∈ Am.

Proof. A Dyson expansion can also be obtained for the time-discretized kernel and has the form

Uδtm (y1, 0; y2, T ) =
∞
∑

q=1

∑

γ∈Γm:γ0=x,γq=y

N
∑

k1=1

N
∑

k2=k1+1

...
N
∑

kq=kq−1+1

(

1 + δtLm(γ0, γ0)

)k1−1

(δt)q
q
∏

j=1

Lm(γj−1, γj)

(

1 + δtLm(γj , γj)

)kj+1−kj−1

(12.5)

where tq+1 = T and kq+1 = N . In this case, the propagator can be expressed through a Fourier
integral as follows:

(12.6) Uδtm (y1, 0; y2, T ) =

∫ π
δt

− π
δt

Gδtm(y1, y2;ω)eiωt
dω

2π

where

(12.7) Gδtm(y1, y2;ω) = δt

T
δt
∑

j=0

Uδtm (y1, 0; y2, jδt)e
−iωjδt.

The propagator can also be represented as the limit

(12.8) Uδtm (y1, 0; y2, T ) = lim
H→∞

∫

CH

Gδtm(y1, y2;ω)eiωt
dω

2π

where CH is the contour in Fig. 3. This is due to the fact that the integral along the segments BC
and DA are the negative of each other, while the integral over CD tends to zero exponentially
fast as ℑ(ω) → ∞, where ℑ(ω) is the imaginary part of ω. Using Cauchy’s theorem, the contour
in Fig. 3 can be deformed into the contour in Fig. 1. To estimate the discrepancy between the
time-discretized kernel and the continuous time one, one can thus compare the Green’s function
along such contour. Again, the only arc that requires detailed attention is the arc BCD, as the
integral over rest of the contour of integration can be bounded from above as in the previous
section.

Let h = hm and let us introduce the two functions

φ0(t, x, τ) ≡ 2Lm(x, x+ τh)etLm(x,x)1(t ≥ 0),(12.9)

φδt(j, x, τ) ≡ 2Lm(x, x+ τh)
(

1 + δtLm(x, x)
)j−1

.(12.10)
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Figure 3. Contour of integration for the integral in (12.8).

and the corresponding Fourier transforms

φ̂0(ω, x, τ) =

∫ ∞

0

φ0(t, x, τ)e
−iωt dω

2π
=

(

v(x)

h2
+ τ

µ(x)

h

)(

v(x)

h2
+ iω

)−1

(12.11)

φ̂δt(ω, x, τ) =

t
δt
∑

j=0

φδt(j, x, τ)e
−iωjδt =

(

v(x)

h2
+ τ

µ(x)

h

)(

eiωδt − 1 + δt
v(x)

h2

)−1

.(12.12)

We have that

φ̂δt(ω, x, τ) =

(

v(x)

h2
+ τ

µ(x)

h

)(

iω +
v(x)

h2
− ω2

2
δt+O(δt2)

)−1

= φ̂0(ω, x, τ) +
ω2

2v(x)
h2δt+O(h2δt2). = φ̂0(ω, x, τ) +O(h4),(12.13)

where the last step uses the fact that δt = O(h2).
Let us also introduce the functions

ψ0(t, x, τ) ≡ etLm(x,x)1(t ≥ 0), ψδt(j, x, τ) ≡
j
∑

k=1

(

1 + δtLm(x, x)
)j−1

.(12.14)

and the corresponding Fourier transforms

ψ̂0(ω, x, τ) =

(

v(x)

h2
+ iω

)−1

, ψ̂δt(ω, x, τ) =

(

eiωδt − 1 + δt
v(x)

h2

)−1

.(12.15)

Again we find that

ψ̂0(ω, x, τ) = ψ̂δt(ω, x, τ) +O(h4).(12.16)
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If γ is a symbolic sequence, then let us set

Ŵm(γ, q;ω) = ψ̂0(ω, γq)

q−1
∏

j=0

φ̂0(ω; γj , sgn(γj+1 − γj))(12.17)

Ŵ δt
m (γ, q;ω) = ψ̂δt(ω, γq)

q−1
∏

j=0

φ̂δt(ω; γj , sgn(γj+1 − γj)).(12.18)

We have that

Gδtm(x, y;ω) −Gm(x, y;ω) =
∞
∑

q=1

2−q
∑

γ ∈ Γm : γ0 = x, γq = y
|γj − γj−1|= 1∀j ≥ 1

(

Ŵ δt
m (γ, q;ω) − Ŵm(γ, q;ω)

)

.

(12.19)

The integration over the contour in Fig. 1 can again be split into an integration over the
countour C− and an integration over C+. The integral over C+ can be bounded from above
thanks to Lemma 3. Furthermore, we have that

∣

∣

∣

∣

∫

C−

(

Gδtm(x, y;ω) −Gm(x, y;ω)

)

eiωT
dω

2π

∣

∣

∣

∣

≤ c
√
qmax max

q, γ ∈ Γm : γ0 = x, γq = y
|γj − γj−1|= 1∀j ≥ 1

∣

∣

∣

∣

∫

C−

(

Ŵ δt
m (γ, q;ω) − Ŵm(γ, q;ω)

)

eiωT
dω

2π

∣

∣

∣

∣

.

≤ ch3(12.20)

�

13. Hypergeometric Brownian Motion

This section is based on work in collaboration with Joe Campolieti, Peter Carr and Alex
Lipton, see (Albanese et al. 2001).

In this section we pose the problem of constructing driftless diffusion models which reduce to a
given diffusion by means of a combination of a measure change and a coordinate transformation.

Consider a Markov process on the simplicial sequence Am ⊂ R
d with generator Lm(x, x′; t).

Let ρ be a real valued parameter and suppose f1
m(x) and f2

m(x) are two linearly independent
solutions of the equation

∑

x′∈Am

Lm(x, x′; t)fm)(x′) = ρfm(x)(13.1)

for all x ∈ Int(Am). Notice that on the boundary ∂(Am) these equations may fail and, in actual
applications, they will indeed as a rule fail. Consider the function

(13.2) gm(x; t) = e−ρt
(

c1f
1
m(x) + c2f

2
m(x)

)

for some choice of constants c1, c2 such that this function is strictly positive. This function
satisfies the equation

(13.3)
∂gm(x; t)

∂t
+ (Lmgm)(x; t) = 0.

Hence gm(x; t) defines a measure change and one can construct a new Markov generator by
setting

(13.4) Lgm(x, x′; t) =
gm(x′; t)

gm(x; t)
Lm(x, x′; t) +

1

gm(x; t)

∂gm(x; t)

∂t
δxx′ .

Consider the linear fractional transformation

(13.5) Ym(x) =
c3f

1
m(x) + c4f

2
m(x)

c1f1
m(x) + c2f2

m(x)
.
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for some choice of constants c3, c4.

Theorem 19. (Linear Fractional Transformations.) The process Y (xt) satisfies the mar-
tingale condition

(13.6) lim
s↓0

1

s
Et

[

Ym(xt+s) − Ym(xt)

s

]

= 0.

for all xt ∈ Int(Am).

Proof. We have that

lims↓0
1
sEt

[

Ym(xt+s)−Ym(xt)
s

]

=
∑

x′∈Am
Lgm(x, x′)

(

Ym(x′) − Ym(x)
)

= 1
gm(x,t)

(

∑

x′∈Am
Lm(x, x′)

(

c3f
1
m(x′) + c4f

2
m(x′)

)

)

+ 1
gm(x,t)2

∂gm(x;t)
∂t

(

c3f
1
m(x) + c4f

2
m(x)

)

= eρt ∂∂t

[

e−ρt(c3f
1
m(x)+c4f

2
m(x))

gm(x,t)

]

= 0

(13.7)

�

This Theorem provides a general methodology for constructing a process which is nearly a
martingale out of a Markov process. In the particular case of one-dimensional diffusion processes,
the construction gives rise to families with up to 7 adjustable parameters of analytically solvable
diffusions with drift equal to zero within the interior of the domain of definition. What makes
the case of one-dimensional diffusions special is the fact that the function Ym(x) is invertible in
the limit as m→ ∞, i.e. either monotone increasing or monotone decreasing in this limit.

More specifically, consider the diffusion with Markov generator:

(13.8) Lm = δ(x)∇hm
+

1

2
ν(x)2∆hm

.

where x ∈ R. Two important cases are the CIR process (reducing to the Bessel equation in the
continuous limit) for which

(13.9) δ(x) = (λ0 + λ1x), ν(x) = ν0
√
x

with x ∈ R+ and the Jacobi process (reducing to a gaussian hypergeometric polynamials of type

2F1) for which

(13.10) δ(x) = (λ0 + λ1x), ν(x) = ν0
√

x(1 − x)

and x ∈ [0, 1].
The construction above admits a continuous limit if the simplicial functions f jm(x), j = 1, 2, 3, 4

converge to twice differentiable functions f j(x), j = 1, 2, 3, 4 and satisfy the equation

Lf = ρf(13.11)

within the interior of the domain A = limm→∞Am. Here

(13.12) L = δ(x)
∂

∂x
+

1

2
ν(x)2

∂2

∂x2
.

Theorem 20. (Invertibility.) Let f j(x), j = 1, 2, 3, 4 be functions satisfying equation 13.12 in
the interior of the corresponding domain of definition and let

(13.13) Y (x) =
c3f

1(x) + c4f
2(x)

c1f1(x) + c2f2(x)
.

for some choice of constants c1, c2, c3, c4 such that the denominator in this equation has no zeros.
Then we have that

(13.14) Y (x) =

∫ x W (y)

g(y)2
dy + const
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where

(13.15) W (x) = ±σ0 exp

(

−
∫ x 2δ(y)

ν(y)2
dy

)

where either sign would be allowed and σ0 is a positive constant. In particular, the function Y (x)
is invertible.

Proof. Let us introduce the Wronskian

(13.16) W (x) =
dh(x)

dx
g(x) − dg(x)

dx
h(x)

such that

(13.17) g(x) = c1f
1(x) + c2f

2(x), h(x) = c3f
1(x) + c4f

2(x).

A direct calculation shows that

(13.18)
d

dx
Y (x) = W (x)Y (x)

and

(13.19)
d

dx
W (x) = −2δ(x)

ν(x)2
W (x).

Hence, (13.15) gives the solution to the equation in (13.19). �

Let X(y) be the inverse of the function Y (x), we have that

(13.20)
dy

σ(y)
= ± dX(y)

ν(X(y))

where

(13.21) σ(y) = Y ′(X(y))ν(X(y)) =
σ0ν(X(y)) exp

(

−2
∫X(y) δ(s)ds

ν(s)2

)

g(X(y), ρ)2

Theorem 21. (Kernel mapping.) In the limit m→ ∞, the propagator density for the process
Yt with zero drift and volatility as in (13.21) is given by

(13.22) U(y0, 0; y, t) =
ν(X(y))

σ(y)

g(X(y), ρ)

g(X(y0), ρ)
e−ρtu(X(y0), 0;X(y), t)

where u(x0, 0;x, t) is the propagator density for the process of generator (13.12).

Let us consider in detail the case of the CIR model in (13.9). If λ1 = 0, then the pricing
kernel for the state variable is expressed in terms of modified Bessel functions as follows:

(13.23) u(x, t;x0, 0) =

(

x

x0

)
1
2 (

2λ0
ν2
0

−1)
e−2(x+x0)/ν

2
0 t

ν2
0 t/2

I 2λ0
ν2
0

−1

(

4
√
xx0

ν2
0 t

)

.

The generating function is

(13.24) v̂(x, ρ) = x
1
2 (1− 2λ0

ν2
0

)
[

q1I 2λ0
ν2
0

−1

(√

8ρx

ν2
0

)

+ q2K 2λ0
ν2
0

−1

(√

8ρx

ν2
0

)

]

,

with arbitrary constants q1,q2. Here Iν(z) is the modified Bessel function of order ν and Kν(z)
is the associated McDonalds function. In this case we obtain a dual family with 6 adjustable
parameters.

In case λ1 < 0. the propagator density for the state variable x can still be expressed in terms
of modified Bessel functions as follows:

(13.25) u(x, t;x0, 0) = ct

(

xe−λ1t

x0

)
1
2 (

2λ0
ν2
0

−1)

exp
[

−ct(x0e
λ1t + x)

]

I 2λ0
ν2
0

−1

(

2ct
√

xx0eλ1t

)

,
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where ct ≡ 2λ1/(ν
2
0(eλ1t− 1)). For a derivation see (Giorno et al. 1988). The general solution of

equation (13.1) reduces to Whittaker’s equation and generating functions have the general form

(13.26) v̂(x, ρ) = x−λ0/ν
2
0 e−λ1x/ν

2
0

[

q1Wk,m

(

− 2λ1

ν2
0

x

)

+ q2Mk,m

(

− 2λ1

ν2
0

x

)]

for arbitrary constants q1,q2. Here Wk,m(·) and Mk,m(·) are Whittaker functions which can
also be expressed in terms of confluent hypergeometric functions or in terms of Kummer func-
tions.(Abramowitz and Stegun 1972) This construction gives rise to a dual family with 7 free
parameters where

(13.27) k =
λ0

ν2
0

+
ρ

λ1
, m =

λ0

ν2
0

− 1

2
.

The 7 parameter family which reduces to the CIR model has a local volatility function defined
on either an interval or on a half line and behaves asymptotically as the CEV volatility on one
hand and as a quadratic model on the other. This hybrid shape allows for greater flexibility.

Next, we show that classic exact solutions in the literature, namely quadratic and CEV
models, can all be rediscovered as particular cases of our general formula for the Bessel family
where we make use of the above solutions to the underlying x space process with β = 1

2 , λ1 = 0
and λ ≡ λ0. Without loss of generality, we can fix ν0 = 2. Let’s specialize further to the case
where

(13.28) Y (x) = ȳ − a
Kλ

2 −1(
√

2ρx)

Iλ
2 −1(

√
2ρx)

which leads to a transformed process yt = Y (xt) with volatility

(13.29) σ(y) =
a

√

X(y)
[

Iλ
2 −1(

√

2ρX(y))
]2 ,

where x = X(y) is the inverse of the function in equation (13.28). In this family, a and ρ
are positive, ȳ is arbitrary and λ > 2. The function Y (x) maps the half line x ∈ [0,∞)
into y ∈ (−∞, ȳ], where Y (x) is a strictly monotonically increasing function with dY (x)/dx =
σ(Y (x))/ν(x). This solution region can be inverted so that y ∈ [ȳ,∞). This is accomplished
by either replacing a by −a in equation (13.28) or by applying a linear change of variables that
maps y into 2ȳ − y. In this special case, we make use of the generating function in equation
(13.24), with the choice q2 = 0, and formula (13.22) reduces to

(13.30) U(y, t; y0, 0) =
e−ρt−(X(y)+X(y0))/2t

at

X(y)
[

Iλ
2 −1(

√

2ρX(y))
]3

Iλ
2 −1(

√

2ρX(y0))
Iλ

2 −1

(

√

X(y)X(y0)

t

)

.

We note that this density integrates exactly to unity in y space (i.e. no absorption).

Example 4. (Quadratic volatility models) Pricing kernels for quadratic volatility models
are readily obtained as a subset of the above general family with the special choice of parameter
λ = 3. After making the substitution y → 2ȳ − y and setting a = (ȳ − ¯̄y)/π the transformation
function Y (x) becomes

(13.31) Y (x) = ȳ +
(ȳ − ¯̄y)

π

K 1
2
(σ0

√
x/2)

I 1
2
(σ0

√
x/2)

= ȳ +
(ȳ − ¯̄y)

exp(σ0
√
x) − 1

where σ0 > 0. Here, we assume that ȳ > ¯̄y. The inverse transformation X(y) is given by

(13.32) X(y) = (1/σ2
0) log2[1 + (ȳ − ¯̄y)/(y − ȳ)],

and the volatility function σ(y) is obtained by insertion into equation (13.29) while using the
Bessel function of order 1

2 ,

(13.33) σ(y) =
σ0

(ȳ − ¯̄y)
(y − ȳ)(y − ¯̄y).
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Inserting the expression (13.32) into equation (13.30), one obtains the pricing kernel

(13.34) U(y, t; y0, 0) =
2e−σ

2
0t/8

σ(y)
√

2πt

√

(y0 − ȳ)(y0 − ¯̄y)

(y − ȳ)(y − ¯̄y)
e−(φ(y)2+φ(y0)

2)/2σ2
0t sinh

(

φ(y0)φ(y)

σ2
0t

)

where φ(y) ≡ log((y− ¯̄y)/(y− ȳ)). In the special case of a volatility function with a double root,
i.e.

(13.35) σ(y) = σ0(y − ȳ)2

the pricing kernel is computed by taking the limit as ¯̄y → ȳ, and one finds

U(y, t; y0, 0) =
1

σ0

√
2πt

(y0 − ȳ)

(y − ȳ)3

[

e−
(

(y−ȳ)−1−(y0−ȳ)−1
)2
/2σ2

0t

−e−
(

(y−ȳ)−1+(y0−ȳ)−1
)2
/2σ2

0t

]

.(13.36)

Example 5. (Lognormal models) The pricing kernel for the log-normal Black-Scholes model
with σ(y) = σ0y is a particular case of the above formula for the quadratic model. The derivative
with respect to y of the quadratic volatility function in (13.33), evaluated at y = ȳ, is σ0.
Taking the limit ¯̄y → −∞ (or ¯̄y << ȳ), while holding the other parameters fixed, one obtains
σ(y) = σ0(y − ȳ). The pricing kernel in (13.34) gives the kernel for the log-normal model in the
limit ¯̄y → −∞, i.e.

(13.37) U(y, t; y0, 0) =
1

(y − ȳ)σ0

√
2πt

exp

[

−
(

log((y0 − ȳ)/(y − ȳ)) − σ2
0

2
t

)2/

2σ2
0t

]

.

Example 6. (CEV model) The constant-elasticity-of-variance (CEV) model is recovered in
the limiting case as ρ → 0. Assume λ > 2 and let θ > 0 be defined so that λ = θ−1 + 2. The
transformation y = Y (x)

(13.38) Y (x) = ȳ + (σ2
0x)

−(2θ)−1

has inverse x = X(y) given by

(13.39) X(y) = σ−2
0 (y − ȳ)−2θ,

for any constant ȳ. The volatility function for this model is

(13.40) σ(y) =
σ0

|θ| (y − ȳ)1+θ.

In the limit ρ → 0, the Laplace transform v̂(X(y), 0) = 1, which implies that the numeraire
change is trivial in this case. The pricing kernel can be evaluated by substitution into the
general formula (13.22), and after collecting terms, it turns out to be

U(y, t; y0, 0) =
|θ|
σ2

0t

(y0 − ȳ)
1
2

(y − ȳ)
3
2+2θ

e−
(

(y−ȳ)−2θ+(y0−ȳ)−2θ
)

/2σ2
0t

I 1
2θ

(

(

(y − ȳ)(y0 − ȳ)
)−θ

σ2
0t

)

.(13.41)

This formula was derived in the case θ > 0, for which the limiting value y = ȳ is not attained
and the density is easily shown to integrate to unity (i.e. no absorption occurs and the density
also vanishes at the endpoint y = ȳ). We note that the same formula solves the propagator
equation for θ < 0, leading to the same Bessel equation of order ±(2θ)−1. In the range θ < 0,
however, the properties of the above pricing kernel are generally more subtle. In particular, one
can show that the density integrates to unity for all values θ < −1/2, hence no absorption occurs
for θ ∈ (−∞,−1/2). The boundary conditions for the density can be shown to be vanishing at
y = ȳ (i.e. paths do not attain the lower endpoint) for all θ < −1. In contrast, for θ ∈ (−1,−1/2)
the density becomes singular at the lower endpoint y = ȳ (hence this corresponds to the case
that the density has an integrable singularity for which paths can also attain the lower endpoint,
but are not absorbed). For the special case of θ = −1/2 the formula gives rise to absorption.
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[Note that only for the range θ ∈ (−1/2, 0) the above pricing kernel is not useful since it gives
rise to a density that has a non-integrable singularity at y = ȳ. In this case, however, another
solution that is integrable is obtained by only replacing the order (2θ)−1 by −(2θ)−1 in the
Bessel function. The latter solution for the density does not integrate to unity and hence gives
rise to absorption which can be of use to price options in a credit setting.] The special case of
θ = −1 gives a nonzero constant value at the lower endpoint, and recovers the Wiener process
with reflection and no absorption on the interval [ȳ,∞) with

U(y, t; y0, 0) =
1

σ0

√
2πt

(

e−(y−y0)2/2σ2
0t + e−(y+y0−2ȳ)2/2σ2

0t

)

.(13.42)

14. Stochastic Integrals for Diffusion Processes

This section provides a new derivation of a theorem by Cameron, Feynman, Girsanov, Ito,
Kac and Martin, see (Cameron and Martin 1949), (Girsanov 1960), (Ito 1949), (Feynman 1948)
and (Kac 1948). This result is at the center of stochastic calculus and in the following sections,
we derive far reaching extensions and applications.

Theorem 22. (Cameron-Feynman-Girsanov-Ito-Kac-Martin.) Consider a diffusion pro-
cess on the simplicial sequence Am ⊂ R and of generator

(14.1) Lm = µ(x, t)∇hm
+
σ(x, t)2

2
∆hm

.

Consider also the process given by the integral

(14.2) It =

∫ t

0

a(xs, s)dxs + b(xs, s)ds

where a(x, t) and b(x, t) are smooth functions in both arguments. Let us introduce also the
function φ(x, t) =

∫ x

0
a(y, t)dy. We have that

(i) Ito’s Lemma in integral form.

(14.3) It = φ(xt, t) − φ(x0, 0) + Jt +O(h).

where

(14.4) Jt =

∫ t

0

(

b(xs, s) −
1

2
σ(xs, s)

2a′(xs, s) − φ̇(xs, s)

)

ds.

where φ̇(x, t) = ∂
∂tφ(x, t) and a′(x, t) = ∂

∂xa(x, t).
(ii) Feynman-Kac formula. The characteristic function of Jt on the bridge leading from

x to y is given by
(14.5)

E0

[

eipJtδ(xt = y)|x0 = x
]

= P exp

(∫ t

0

(

L(s) + ipb(s)− ip

2
σ2(s)a′(s)− ipφ̇(s) +O(h)

))

(x, y).

(iii) Ito’s Lemma in differential form. Let φ(x, t) be a smooth function in both arguments.
Then we have that

lim
s↓0

Et
[

s−1(φ(xt+s, t+ s) − φ(xt, t))|xt = x
]

=
∂φ

∂t
(x, t) + µ(x, t)

∂φ

∂x
(x, t) +

σ(x, t)2

2

∂2φ

∂x2
(x, t) +O(hm)(14.6)

and

(14.7) lim
s↓0

Et
[

s−1(φ(xt+s, t+ s) − φ(xt, t))
2|xt = x

]

= σ(x, t)2
(

∂φ

∂t
(x, t)

)2

+O(hm).

For all n ≥ 3 instead we have that

(14.8) lim
h↓0

lim
s↓0

Et
[

s−1(φ(xt+s, t+ s) − φ(xt, t))
n|xt = x

]

= 0.
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Proof. Consider a discretization of the process It = (∆I)nt. This can be accomplished by
introducing a simplicial complex of one more dimension. Eventually in the proof, we shall take
the limit as ∆I → 0 while leaving h > 0 constant.

Consider the lifted generator

L̃(x, n;x′, n′; t) =

(

σ(x, t)2

2h2
+
µ(x, t)

2h

)

δx′,x+hδ

(

n′ − n−
[

a(x, t)h

∆I

])

+

(

σ(x, t)2

2h2
− µ(x, t)

2h

)

δx′,x−hδ

(

n′ − n+

[

a(x, t)h

∆I

])

−σ(x, t)2

h2
δx′xδ(n− n′) +

b(x, t)

∆I

(

δn′,n+1 − δn′n

)

(14.9)

where [a] stands for the nearest integer to a. The partial Fourier transform in the n variable of
this kernel is

L̃p(x, x′; t) =
∑

n

L̃(x, 0;x′, n; t)e−i∆Ipn

=

(

σ(x, t)2

2h2
+
µ(x, t)

2h

)

exp

(

−i
[

ha(x, t)

∆I

]

∆Ip

)

δx′,x+h

+

(

σ(x, t)2

2h2
− µ(x, t)

2h

)

exp

(

i

[

ha(x, t)

∆I

]

∆Ip

)

δx′,x−h

− σ(x, t)2

h2
δx′x +

b(x, t)

∆I

(

eip∆I − 1
)

(14.10)

In the limit as ∆I → 0 we find

L̃p(x, x′; t) =
σ(x, t)2

2
∆h +

(

µ(x, t) − ipσ(x, t)2a(x, t)
)

∇h

−ipa(x, t)µ(x, t) − 1

2
p2σ(x, t)2a(x, t)2 − ipb(x, t) +O(h).(14.11)

Introducing the function φ(x, t) defined above, we find that

(14.12) eipφ(x,t)L(x, x′; t)e−ipφ(x′,t) = L̃p(x, x′; t) + ipb(x, t)δxx′ − ip

2
σ(x, t)2a′(x, t)δxx′ +O(h).

This equality can be rearranged as follows:

e−ipφ(x,t)L̃(x, x′; t)eipφ(x′,t) + ipφ̇(x, t)δxx′ =

Lp(x, x′; t) − ipb(x, t)δxx′ + ip
2 σ(x, t)2a′(x, t)δxx′ + ipφ̇(x, t)δxx′ +O(h).(14.13)

Hence

P exp

(

∫ t

0
L̃p(s)ds

)

(x, x′) =

eip(φ(x,0)−φ(x′,t))P exp

(

∫ t

0
ds
(

L(s) − ip
(

b(s) − 1
2σ(s)2a′(s) − φ̇(s) +O(h)

)

)

(x, x′).

(14.14)

The joint kernel is thus given by

P exp

(

∫ t

0
dsL̃(s)

)

(x, I;x′, I ′) =

∫

dp
2π e

ip[I′−I−φ(x′,t)+φ(x,0)]P exp

(

∫ t

0
ds
(

L(s) − ip
(

b(s) − 1
2σ(s)2a′(s) − φ̇(s) +O(h)

)

)

(x, x′).

(14.15)

This formula proves both statements in the Theorem. �
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When in Definition (30) we introduced the notion of measure change, convergence and smooth-
ness in the continuum limit of the measure change function Gy(y

′; t) was not emphasized. How-
ever, this concept is important, as it is stressed by Girsanov’s theorem below, of which we give
two independent proofs.

Theorem 23. (Girsanov.) Consider two lattice diffusions on the simplicial sequence Am with
generators

(14.16) Lm = µ(x, t)∇h +
σ(x, t)2

2
∆h, L̄h = µ̄(x, t)∇h +

σ(x, t)2

2
∆h,

respectively. Here µ(x, t), µ̄(x, t), σ(x, t) are assumed to be smooth functions. Then the Markov
generators Lm and L̄m are related by the smooth measure change with function

(14.17) Gxtm(x′) = exp

(

(µ̄(x, t) − µ(x, t))

σ(x, t)2
(x′ − x)

)

and the Radon-Nykodym derivative is given by

ρ(x·) = exp

{∫ T ′

T

µ̄(xt, t) − µ(xt, t)

σ(xt, t)2
dyt −

µ̄(xt, t)
2 − µ(xt, t)

2

2σ(xt, t)2
dt+O(h)

}

.(14.18)

First Proof. Let v(x, t) = µ̄(x, t)−µ(x, t) and let a(x, t) = v(x,t)
σ(x,t)2 . Consider the measure change

with

(14.19) Gxtm(x′) = ea(x,t)(x
′−x).

The off-diagonal elements of the transformed Markov generator are
(14.20)

L̄(x, x±h; t) =

(

σ(x, t)2

2h2
± µ(x, t)

2h

)

e
± v(x,t)

σ(x,t)2
h

=
σ(x, t)2

2h2
± µ̄(x, t)

2h
+
v(x, t)2

4σ(x, t)2
+
µ(y, t)v(x, t)

2σ(x, t)2
+O(h).

The diagonal elements instead change as follows

(14.21) L̄(x, x; t) = L(x, x; t) − v(x, t)2

2σ(x, t)2
− µ(x, t)v(x, t)

σ(x, t)2
+O(h).

Second Proof. Let us consider two generators differing by the drift term

(14.22) L(t) =
σ(x, t)2

2
∆h + µ(x, t)∇h, L̄(t) =

σ(x, t)2

2
∆h + µ̄(x, t)∇h

and consider the formula

E
[

e
∫

t
0
a(xs,s)dxs+b(xs,s)dsδ(xt = y)|x0 = x

]

=

e(φ(y,t)−φ(x,0))P exp

(

∫ t

0
ds

(

L(s) + b(s) − 1
2σ(s)2a′(s) +O(h)

))

(x, y).

(14.23)

To derive Girsanov’s theorem, let us ask for what choice of the functions a(x, t), b(x, t) the

right-hand side equals etL̄(x, y; t) up to terms of order O(h). Since
(14.24)

eφ
(

L+b− 1

2
σ2a′

)

e−φ =
σ(x)2

2
∆h+(a(x)σ(x)2+µ(x))∇h+

σ(x)2

2
a(x)2+µ(x)a(x)+b(x)+O(h)

we see that the right hand side equals L̄ up to terms of order O(h) if

(14.25) a(x) =
µ̄(x) − µ(x)

σ(x)2
, b(x) =

µ(x)2 − µ̄(x)2

2σ(x)2
.
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15. Markov Bridges

A first simple application of this general framework leads to an extension of the results in the
previous section to the case of a general Markov generator.

Consider a Markov process on the simplicial sequence Am = hmZ ∩ [−L,L] ⊂ R. According
to theorem (14) and assuming that hypothesis MG1, MG2, MG3, MG4 hold, the symbol of a
Markov generator in canonical form can be expressed as follows:

L̂m(x, p; t) = iµ̃(x; t)
sin ph

h
+σ̃(x; t)2

cos ph− 1

h2
+
∑

y∈Am

(

eip(y−x) − 1 − i
sin ph

h
(y − x)

)

λ̃(x, y; t).

Although not necessary for the validity of the calculation and the convergence in the limit h→ 0,
we restrict to the special case where the generator has the form

(15.1) Lm(x, y; t) = iµ(x; t)∇h + σ(x; t)2∆h + hmλm(x, y; t)

where the functions µ(x; t) and σ(x; t) are smooth in both arguments and λm(x, y; t) ≥ 0 is
smooth and non-negative for x 6= y and we have that

(15.2) λm(x, x; t) = −
∑

y 6=x∈Am

λm(x, y; t).

Consider a stochastic integral of the form

(15.3) It =

∫ t

0

a(xs, s)dxs + b(xs, s)ds

where a(x, t) and b(x, t) are smooth functions in both arguments. Let φ(x, t) =
∫ x

0
a(y, t)dy.

The following result holds:

Theorem 24. (Markov Bridges.) The joint probability distribution function for It and the
underlying process on the bridge leading from x to x′ is given by

P exp

(

∫ t

0
L̃m(s)ds

)

(x, I;x′, I ′)

=
∫

dp
2π e

ip[I′−I−φ(x′)+φ(x)]P exp

(

∫ t

0

(

Lm(s) − ipb(s) + ip
2 σ

2a′(s) − φ̇(s) + κm,p(s) +O(h)
)

ds

)

(x, x′).

(15.4)

where κm,p(t) is the operator of matrix elements

(15.5) κm,p(x, x
′; t) = hmλm(x, x′; t) exp

(

− ip
[

a(x, t)(x′ − x) + φ(x, t) − φ(x′, t)
]

)

.

Proof. Consider again a discretization of the process It = (∆I)nt and the lifted generator

L̃m(x, n;x′, n′) = Lm(x;x′)δ

(

n′ − n−
[

a(x)(x′ − x)

(∆I)

])

+
b(x)

(∆I)

(

δn′,n+1 − δn′n

)

(15.6)

where [a] stands for the nearest integer to a. The partial Fourier transform in the n variable of
this kernel is

L̃m,p(x, x′) =
∑

n

L̃(x, 0;x′, n)e−i(∆I)pn

= Lm(x;x′) exp

(

− i(∆I)p

[

a(x)(x′ − x)

(∆I)

])

+
b(x)

(∆I)

(

eip(∆I) − 1
)

(15.7)

In the limit as (∆I) → 0 we find

L̃m,p(x, x′) =
σ(x)2

2
∆h +

(

µ(x) − ipσ(x)2a(x)
)

∇h − ipa(x)µ(x) − 1

2
p2σ(x)2a(x)2 − ipb(x)

+hmλm(x, x′; t)e−ipa(x)(x
′−x) +O(h)

.(15.8)
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Introducing the function φ(x, t) defined above, we find that

eipφ(x,t)Lm(x, x′; t)e−ipφ(x′,t) = L̃m,p(x, x′; t) + ipb(x, t)δxx′ − ip

2
σ(x, t)2a′(x, t)δxx′

+hmλm(x, x′; t) exp

(

− ip
[

a(x, t)(x′ − x) + φ(x, t) − φ(x′, t)
]

)

+O(hm).(15.9)

Hence

exp
(

tL̃m,p
)

(x, x′; t)

=ip(φ(x,t)−φ(x′,t)) P exp

(

∫ t

0

(

Lm(s) − ipb(s) + ip
2 σ(s)2a′(s) − φ̇(s) + κm,p(s) +O(hm)

)

ds

)

(x, x′).

(15.10)

The joint kernel is thus given by (16.14). �

16. Abelian Processes in Continuous Time

This section is based on work in collaboration with Harry Lo and Alex Mijatovic, see (Albanese
et al. 2006a).

Abelian processes are path-dependent processes which provide an extension of the notion of
stochastic integral for which one can extend the Feynman-Kac theorem and Ito’s formula in
Section (14).

Let Am,m ≥ m0 be a simplicial sequence, consider a time interval [T, T ′] and a stochastic pro-
cess described by the Markov generator Lm(y1; y2; t). To numerically exponentiate, it is crucial
in most application examples to first reduce dimensionality by means of block diagonalisations,
or else the multiplication of the lifted generators would not be feasible. It turns out that this is
possible for the payoffs of the type above as these two fall in the general class outlined by the
following definition:

Definition 43. (Markov Generator.) Let L(y1; y2; t) be a Markov generator and let us con-
sider a lifting of the form

(16.1) L̄(y1, k1; y2, k2; t) = L(y1; y2; t)δk1k2 + A(y1, k1; y2, k2; t).

where k = 0...K. This lifting is called Abelian if the operators A(y1; y2; t) defined for each pair
y1, y2 ∈ Λ and all times t ∈ [T, T ′] as the linear operators of matrix elements

(16.2) A(y1; y2; t)k1,k2 ≡ A(y1, k1; y2, k2; t)

are mutually commuting in the sense that

(16.3) A(y1, y2)A(y3, y4) = A(y3, y4)A(y1, y2)

for all y1, y2, y3, y4 ∈ Λ and all t ∈ [T, T ′].

Lemma 4. If all the matrices A(y1; y2; t)k1,k2 , y1, y2 ∈ Λ, t ∈ [T, T ′] are mutually commuting
and if furthermore they are all diagonalizable, then they can be diagonalized simultaneously at
any given point in time, i.e. there exists a time dependent matrix V (k, i; t), i = 0, ..K such
that V (t)−1A(y1; y2; t)V (t) = Λ(y1; y2; t), where Λ(y1; y2; t) is a diagonal matrix of the form
(λ(y1; y2; t)δi1,i2) for any t ∈ [T, T ′].

Proof. Fix a t ∈ [T, T ′]. If y1, y2, y3, y4 ∈ Λ and A(y1; y2; t)ψ(t) = λ(y1; y2; t)ψ(t) for some vector
ψ(t), then

(16.4) A(y3; y4; t)A(y1; y2; t)ψ = A(y1; y2; t)A(y3; y4; t)ψ(t) = λ(y1; y2; t)A(y3; y4; t)ψ(t).

Hence if ψ(t) is an eigenvector of A(y1; y2; t) also A(y3; y4; t)ψ(t) is an eigenvector of A(y1; y2; t).
If ψ(t) is an eigenvector of multiplicity one, this shows that ψ(t) is also an eigenvector of
A(y3; y4; t) for all y3, y4. Otherwise, we conclude that the eigenspace of A(y1; y2; t) of eigenvalue
λ is invariant under A(y3, y4) for any y3, y4. Iterating the argument above to this eigenspace
one can constructively obtain a common set of invariant eigenspaces shared by all the operators
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A(y1; y2; t) for y1, y2 ∈ Λ. Hence, for any given t ∈ [T, T ′], these operators can be diagonalized si-
multaneously by the matrix whose column vectors span bases for all the common eigenspaces. �

Let V (k, i; t), i = 0, ..K be a matrix which diagonalizes simultaneously all members of the
family of operators T (k1, k2; y1t), so that V (t)−1T (y1; t)V (t) = Λ(y1; t) is diagonal. Consider
the lifted matrix V(k, y1; i, y2; t) = V (k; i; t)δy1y2 and the transformed lifted Markov generator

(16.5) (V(t)−1L̄V(t))(y1, i1; y2, i2; t) = L(y1; y2; t)δi1i2 + Λ(y1; t)i1δy1,y2δi1i2 .

Since this matrix is block-diagonal, the problem of exponentiating it is reduced to the problem of
exponentiating K blocks separately. This reduces the overall numerical complexity and makes
it comparable with the complexity of evaluating propagators on K different time points. As
a further simplification, to exponentiate this block-diagonal matrix it is necessary to hold in
memory only the blocks, and not the entire matrix. Notice that the blocks are in general
complex matrices. Hence to fast exponentiate them one needs to invoke the complex matrix-
matrix multiplication routine sgemm or cgemm of Level-3 BLAS, depending on whether the block-
diagonalizing transformation is real or complex valued.

Example 7. (Stochastic Integrals) Stochastic integrals over diffusion processes provide ex-
amples of Abelian process. This was already used in the previous section but it is worthwhile
here to stress the link between the computability of the characteristic functions for the path
dependent process on a bridge with the block-diagonalizability under partial Fourier transforms
of the lifted generator. Working directly with Markov generators, one can also generalize the
results in the previous sections.

Consider the integral

(16.6) It = I(y·, t) ≡
∫ t

T

(

φ(ys; s) + χ(ys−0, ys; s) lim
t↓0

ψ(ys; s) − ψ(ys−t; s− t)

t

)

ds

where φ(y; s), ψ(y; s) and χ(y1; y2; s) are continuous functions. Consider the problem of finding
its distribution on a bridge for the underlying Markov process yt. Introducing the discretisation

(16.7) It ≈ (∆I)mt

where mt ∈ [0, ..N ] and (∆I) > 0, the lifted generator for the pair of processes (yt, (∆I)mt) is

L̄(y1,m1; y2,m2; t) = L(y1; y2; t)δ
(

m2 −m1 − [(∆I)−1χ(y1; y2; t)(ψ(y2; t) − ψ(y1; t))]
)

+
δy1,y2
(∆I)

φ(y1; t)δm1+1,m2 .

(16.8)

Theorem 25. (Abelian Bridges.) The joint kernel of It and the underlying process on the
bridge leading from y1 to y2 is given by

Pe
∫

t
0
L̃m(s)(y1, I1; y2, I2; s) =

∫

dp

2π
eip(I2−I1)P exp

(∫ t

0

(

Lm(s) − ipφ(s) + κm,p(s) +O(h)
)

)

(x, x′).

(16.9)

where κm,p(t) is the operator with matrix elements

(16.10) κm,p(y1, y2; t) = Lm(y1, y2; t)

(

exp

(

− ipχ(y1, y2, t)(ψ(y2, t) − ψ(y1, t))

)

− 1

)

.

Notice that this theorem extends the result in the previous section on Markov bridges as it
includes multifactor processes such as processes with stochastic volatility and, more generally,
regime switching.

Example 8. (Double Liftings) There are situations that emerge in practice where one has to
track two integrals over paths, one of form (16.6) and a similar one of form

(16.11) I ′t = I ′(y·, t) ≡
∫ t

T

(

φ′(ys, s) + χ′(ys−0, ys, s) lim
t↓0

ψ′(ys, s) − ψ′(ys−t, s− t)

t

)

ds
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In this case one can introduce a similar approximation

(16.12) I ′t ≈ Ī ′t = (∆I ′)nt

where nt ∈ [0, ..N ] and a double lifting for the generator

L̄(y1,m1, n1; y2,m2, n2; t) =

L(y1; y2; t)δ

(

m2 −m1 −
[

χ(y1; y2; t)(ψ(y2; t) − ψ(y1; t))

(∆I)

])

δ

(

n2 − n1 −
[

χ′(y1; y2; t)(ψ′(y2; t) − ψ′(y1; t))

(∆I ′)

])

+
δy1,y2
(∆I)

φ(y1; t)δm1+1,m2
δn1,n2

+ +
δy1,y2
(∆I ′)

φ′(y1; t)δn1+1,n2
δm1,m2

.

(16.13)

Theorem 26. (Multifactor Bridges.) The joint kernel of It, I
′
t and the underlying process

on the bridge leading from y1 to y2 is given by the double Fourier transform

etL̃m(y1, I1; y2, I2) =
∫

dp
2π e

ip(I2−I1)
∫

dp′

2π e
ip′(I′2−I′1)

P exp

(

∫ t

0

(

Lm(s) − ipφ(s) − ip′φ′(s) + κm,p,p′(s) +O(h)
)

)

(x, x′).

(16.14)

where κm,p,p′(t) is the operator with matrix elements
(16.15)

κm,p,p′(y1; y2; t) = Lm(y1; y2; t)
(

e−ipχ(y1;y2;t)(ψ(y2;t)−ψ(y1;t))−1
)(

e−ip
′χ′(y1;y2;t)(ψ

′(y2;t)−ψ′(y1;t))−1
)

.

Example 9. (The Max Process) Consider the path dependent quantity given by the maxi-
mum attained by a given Markov process, i.e.

(16.16) Kt = K(yt, t) ≡ max
[T,t]

χ(ys; s)ds

Let’s introduce the approximation

(16.17) Kt ≈ K̄t = αkt,

where α is a constant and kt is an integer value process mt whose paths take values in kt ∈
{0...M}. The dynamics for the joint process (yt, kt) is defined by the lifted generator L̄ on Λ̄
such that:

(16.18) L̄(y1, k1; y2, k2; t) = L(y1; y2; t)δk1,k2 + A(y1)k1,k2δy1y2

where

(16.19) A(y1)k1,k2 =

{

A if χ(y1) > αk1 and k2 = [χ(y1)/α]

0 otherwise.

where [a] stands for the nearest integer to a and A > 0 is a fixed number. Typically, A is chosen
to be a large number as the approximation converges in the limit at A → ∞ and α → 0. A
direct calculation shows that the operators A(y1)k1,k2 commute and hence the maximum of the
underlying process is itself an Abelian path dependent process.

17. Abelian Processes in Discrete Time and non-Resonance Conditions

This section is based on work in collaboration with Manlio Trovato (Albanese and Trovato
2005) and Paul Jones, see (Albanese and Jones 2007).

An important class of path-dependent options requires computing the joint distribution of
the underlying lattice process and of a discrete sum of the following form:

(17.1) Jt = J(yt, t) ≡
n
∑

i=1

ψ(yti−1
, yti ; ti)
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where n is an integer, ti = i∆T and t = n∆T . Suppose that the Markov generator L is time
homogenous in the interval [t0, tn] and consider the elementary propagator

(17.2) Ui(y1, y2) = P exp

(∫ ti+1

ti

L(s)ds

)

(y1, y2).

To find the joint transition probability, one can again discretize the variable Jt so that

(17.3) Jt ≈ (∆J)nt.

As opposed to lifting the generator as in the continuous time case discussed in the previous
section, here we lift the elementary propagator itself and form the joint propagator

(17.4) Ũi(y1, k1; y2, k2) = Ui(y1, y2)δ
(

k1 − k2 + [ψi(y1, y2)(∆J)−1]
)

.

This operator can be block-diagonalized by means of a partial Fourier transform (Albanese and
Trovato 2005).

Theorem 27. Consider the Fourier transform operator Ūi,p of matrix elements

(17.5) Ũi,p(y1; y2) = Ui(y1, y2)e
−ipψi(y1,y2).

Then we have that

(17.6)

(

P
n−1
∏

i=0

Ũi

)

(y1, J1; y2, J2) =

∫

dp

2π
eip(J2−J1)

(

P
n−1
∏

i=0

Ũi,p

)

(y1, y2)

This case also falls under a more general class of Abelian liftings.

Definition 44. (Propagator Liftings.) Let Ui(y1, y2) be a family of Markov propagators
indexed by i = 0, 1, ...n−1 defined over the time intervals [ti, ti+1]. Consider a propagator lifting
of the form

(17.7) Ūi(y1, k1; y2, k2) = Ui(y1, y2)Qi(y1, y2)k1k2 .

where k1, k2 = 0...K. This lifting is called Abelian if the operators Qi(y1, y2) satisfy the following
commutation condition:

(17.8) Qi(y1, y2)Qi(y
′
1, y

′
2) −Qi(y

′
1, y

′
2)Qi(y1, y2) = 0

for all y1, y2, y3, y4 ∈ Am and all time intervals i = 0, ...n− 1.

Let V (k, j), j = 0, ..K be a matrix that simultaneously diagonalizes all operators of the
family Q(y1, y2)k1k2 so that V −1Q(y1, y2)V = Λ(y1, y2) is diagonal. Consider the lifted matrix
V(k, y1; j, y2) = V (k, j)δy1y2 and the transformed lifted Markov generator

(17.9) (V−1ŪiV)(y1, j1; y2, j2) = Ūi(y1; y2)Λi(y1, y2)δj1j2 .

Since this matrix is block-diagonal, the evaluation of the time-ordered product

(17.10) P
n−1
∏

i=0

Ūi = V
(

P
n−1
∏

i=0

(V−1ŪiV)

)

V−1

involves only multiplying blocks whose dimension equals the size of the lattice Am. The reader
will recognize that the formula in (17.10) is yet another generalization and extension of the
Cameron-Feynman-Girsanov-Ito-Kac-Martin formulas discussed above.

The non-singular linear transformation that accomplished the block-diagonalization can be a
Fourier transform or a more general transformation. Several possibilities are open and the opti-
mal choice depends on the objective. When using transforms more general than the Fourier trans-
form, one has to keep present that the simultaneous diagonalization of the matrices Q(y1, y2)k1k2
above can possibly result in a numerically ill-conditioned problem. An example of this phenom-
enon arises when one attempts to use a non-homogeneous discretization of the path process
coordinate. To seize the benefit of inhomogeneous lattices, one needs to be careful when dis-
cretizing and avoid resonances.
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Consider a lattice for the path dependent process defined as follows Ω = {ω1, ω1, ....ωK} where
ω1 < ω2 < ... < ωK . Consider the shift operator R of matrix elements

(17.11) Rk1k2 = (1 − pk1)δk1k2 + pk1δk2,k1+1,

if k1 < k2 and RKK = 0. Here we assume that 0 < pk < 1, for k = 1, ..n. The eigenvalues of R
are given by the diagonal elements ρk = 1 − pk. Diagonalizing this sort of matrix is potentially
a seriously ill-conditioned especially if the matrix is large and the eigenvalues are degenerate of
nearly degenerate. For practical application, one thus needs to achieve non resonance conditions
and keep the eigenvalues ρi as far apart from each other as possible.

Given a non-resonant choice of transition probabilities such as the one above, one can then
fix a ω0 and a ∆ω > 0 and determine the lattice Ω in such a way that

(17.12)
K
∑

k2=1

Rk1k2ωk2 = ωk1 + ∆ω

for all k1 = 1, ....K − 1.
To obtain a non-resonant spectrum, one may choose the lattice ωk so that

(17.13) ωk = ω0 · Zk

where ω0 > 0 and Z > 1. For this discretization to be acceptable, the resulting transition
probabilities

(17.14) pk =
∆ω

ω0Zk(Z − 1)

ought to be between 0 and 1. Hence Z must satisfy the additional constraint

(17.15) Z(Z − 1) >
∆ω

ω0
.

We interpolate between the transition kernels R to obtain the relevant kernels of all possible
values of ψ(x1, x2). We construct the relevant kernels Λψ as follows:

Q(y1, y2) = ([ψ(y1, y2)] + 1 − ψ(y1, y2))R[ψ(y1,y2)] + (ψ(y1, y2) − [ψ(y1, y2)])R[ψ(y1,y2)]+1,

(17.16)

for all y1 and y2 in Am, where [ψ(y1, y2)] represents the integer part of the functional ψ at
(y1, y2). In the representation in which the operator R is diagonal, the operators Q(y1, y2) are
also diagonal and the lifted propagator is block-diagonal.

18. Univariate Moment Expansions on Bridges

This section is based on work in collaboration with Adel Osseiran, see (Albanese and Osseiran
2007).

A second methodology that applies to most Abelian path dependent options is is based on
obtaining only a few moments of an Abelian process on any given bridge with respect to the
underlying Markov process, as opposed to reconstructing the entire conditional distribution.

Consider a time interval [T, T ′] and a Markov generator L(y1, y2; t). Consider again the
integral It in (16.6). Let’s introduce the following one parameter family of deformed Markov
operators parameterized by ǫ ∈ R

(18.1) Lǫ(y1, y2; t) = L(y1, y2; t) + ǫV (y1, y2; t)

where

(18.2) V (y1, y2; t) = φ(y1; t)δy1,y2 + L(y1, y2; t)χ(y1, y2; t)(ψ(y2; t) − ψ(y1; t))

Theorem 28. (Dyson Formula.) We have that

(18.3)

(

d

dǫ

)n ∣
∣

∣

∣

ǫ=0

P exp

(∫ t

T

Lǫ(s)ds
)

(y1, y2) = ET
[

Int δ(yt − y2)|yT = y1
]

.
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Proof. Consider Neper’s formula for the propagator

(18.4) P exp

(∫ t

T

Lǫ(s)ds
)

= lim
N→∞

P
N
∏

i=1

(

1 +
t− T

N
(L(ti) + ǫφ(ti))

)N

where ti = T + it
N . By collecting similar powers in ǫ, one finds Dyson’s formula

P exp

(∫ t

T

Lǫ(s)ds
)

= exp((t− T )L+

(18.5)

ǫ

∫ t

T

ds1

(

e(s1−T )LV (s1)e
(t−s1)L

)

+(18.6)

∞
∑

n=2

ǫn
∫ t

T

ds1...

∫ t

sn−1

dsn

(

e(s1−T )LV (s1)e
(s2−s1)L....V (sn)e

(t−sn)L
)

.(18.7)

The time-ordered integrals above are proportional to conditional moments, i.e.

(18.8) P exp

(∫ t

T

Lǫ(s)ds
)

(y1, y2) =
∞
∑

n=0

ǫn

n!
ET
[

Int δ
(

yt − y2
)

|yT = y1
]

.

Here, the factorials originate from the time ordering. �

A technique which is numerically stable in many situations of practical relevance is to nu-

merically differentiate with respect to ǫ the deformed propagators P exp

(

∫ t

T
Lǫ(s)ds

)

(y1, y2)

and evaluate at ǫ = 0. This technique can be used to obtain the first moments of It on any
given bridge for the underlying Markov process. In most applications, we find that two moments
suffice to extrapolate the probability distribution function to sufficient accuracy. To do so, it
is convenient to choose from among the probability distribution functions which are analyti-
cally tractable. For instance, starting from the first two moments only, one can use either the
log-normal or the chi-square distribution.

The standard chi-square distribution is given by

f(x) =
1

2Γ
(

a
2

)

(x

2

)a/2−1

e−x/2

where a is the number of degrees of freedom. The first and second (raw) moments of this
distribution are

E[x] = a , E[x2] = a(a+ 2)

To match the pre-assigned first and second moments m1, m2, respectively, one can pass to the
new variable

ξ =
m1

a
x

and chose

a =
2m2

1

m2 −m2
1

Let ξ be a log-normally distributed random variable with probability distribution function

f(x;µ, σ) =
1

xσ
√

2π
e−(ln x−µ)2/2σ2

The first two moments are given by

E[x] = eµ+σ2/2 and E[x2] = e2µ+2σ2

The parameters µ and σ can be reconstructed from two pre-assigned first and second moments,
m1 and m2 respectively, by setting

µ = log

(

m2
1√
m2

)

and σ2 = log

(

m2

m2
1

)

.
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The log-normal and the chi-square distributions allow one to match the first two moments.
More general distributions available in closed form allow one to match higher moments also. The
Pearson Type III distribution for instance has a probability distribution function given by

f(x) =
1

bΓ(p)

(

x− a

b

)p−1

e−(x−a)/b

and extends over the half line [a,+∞). The special case of this distribution when a = 0, b = 2
and p is half of an integer, gives the Chi-Squared distribution. In general, the moments are given
by

E[x] = a+ bp

E[x2] = (a+ bp)2 + b2p

E[x3] = (a+ bp)3 + 3b2p(a+ bp) + 2b3p

and matching these with our pre-assigned moments m1,m2 and m3 and computing the values
of a, b and p in terms of these moments we get

a = m1 −
2(m2 −m2

1)
2

m3 + 2m3
1 − 3m1m2

b =
m3 + 2m3

1 − 3m1m2

2(m2 −m2
1)

p =
4(m2 −m2

1)
3

(m3 + 2m3
1 − 3m1m2)2

Example 10. (Volatility contracts) As an example, consider variance and volatility swaps.
Variance swaps of maturity T ′ and time of issuance T have a payoff given by

min

(

∫ T ′

T

v(ys−0, ys)ds, f · SR2

)

− SR2

where SR is the swap rate and f is a factor, a typical value being f = 6.2. Here, v(y1, y2, t) is
the instantaneous variance defined as follows:

(18.9) v(y1, y2) = L(y1, y2; t) log2

(

S(y2)

S(y1)

)

if y1 is such that x(y1) 6= 0. Otherwise, if x(y1) = 0 then v(y1, t) = ∞. The variance swap is
said to be at equilibrium if its price is 0. The payoff of a volatility swap is

min





√

∫ T ′

T

v(ys, s)ds, SR



− SR

Here, SR is the volatility swap rate.
To price these contracts it suffices to evaluate the distribution of realized variance on a bridge,

i.e. of the functional

(18.10) RV (y2) = δ (yT ′ − y2)

∫ T ′

T

v(ys, s)ds

By approximating the distribution of RV (y) with the chi-squared distribution, and using the
CDF

F (x; a) =
γ
(

a
2 ,

x
2

)

Γ
(

a
2

)

where Γ(z) and γ(z, a) are the gamma and incomplete gamma functions respectively, i.e:

Γ(z) =

∫ ∞

0

sz−1e−sds , γ(z, a) =

∫ a

0

sz−1e−sds

we find
Et [min(RV,RVmax) δ(yT ′ − y2)] =

m1

a
[K(1 − F (K; a)) + aF (K; a+ 2)]
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and

Et

[

min(
√
RV ,

√

RVmax) δ(yT ′ − y2)
]

=

√

m1

a

[

√
K(1 − F (K; a)) +

√
2γ
(

a+1
2 , K2

)

Γ
(

a
2

)

]

where

a = a(y1, y2) =
2m1(y1, y2)

2

m2(y1, y2) −m1(y1, y2)2
, K = K(y1, y2) =

a(y1, y2)

m1(y1, y2)
RVmax

Since the dependency on the swap rate in both cases is non-linear, an exact calculation requires
using a root finder.

Using instead the log-normal distribution to extrapolate, we find

Et[min(RV,RVmax) δ(yT ′ − y2)]

= eµ+σ2/2N
(

log(RVmax)−µ−σ2/2
σ

)

+RVmax N
(

log(RVmax)−µ
σ

)

.

(18.11)

For volatility swaps instead, we find

Et

[

min(
√
RV ,

√
RVmax) δ(yT ′ − y2)

]

= e
1
8 (4µ+σ2)N

(

log(RVmax)−µ−σ2/2
σ

)

+
√
RVmax N

(

log(RVmax)−µ
σ

)

(18.12)

where µ and σ are specified above in terms of m1 and m2.
Finally, in case the Pearson Type 3 distribution is used, we can express these expectations in

terms of the chi-square cumulative distribution function F (x; a) as follows:

Et[min(RV,RVmax) δ(yT ′ − y2)] = (a+ bp−RVmax)FChi

(

2p, 2
RVmax − a

b

)

(18.13) −b
(

RVmax − a

b

)p
e−

RVmax−a
b

Γ(p)
+ (2RVmax − a− bp).

19. Bivariate Moment Expansions on Bridges

This section is based on work in collaboration with Adel Osseiran, see (Albanese and Osseiran
2007).

Consider a time interval [T, T ′] and a Markov generator L(y1, y2; t). We are interested in the
joint distribution on any given bridge for the underlying process of two stochastic integrals

(19.1) I1,t = I(y·, t) ≡
∫ t

T

(

φ1(ys; s) + χ1(ys−0, ys; s) lim
t↓0

ψ1(ys; s) − ψ1(ys−t; s− t)

t

)

ds

and

(19.2) I2,t = I(y·, t) ≡
∫ t

T

(

φ2(ys; s) + χ2(ys−0, ys; s) lim
t↓0

ψ2(ys; s) − ψ2(ys−t; s− t)

t

)

ds.

To handle this problem using the moment method, we introduce the following two-parameter
family of deformed Markov operators parameterized by ǫ, ǫ′ ∈ R

(19.3) Lǫ1,ǫ2(y1, y2; t) = L(y1, y2; t) + ǫ1V1(y1, y2; t) + ǫ2V2(y1, y2; t)

where

(19.4) V1(y1, y2; t) = φ1(y1; t)δy1,y2 + L(y1, y2; t)χ1(y1, y2; t)(ψ1(y2; t) − ψ1(y1; t))

and

(19.5) V2(y1, y2; t) = φ2(y1; t)δy1,y2 + L(y1, y2; t)χ2(y1, y2; t)(ψ2(y2; t) − ψ2(y1; t))
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Theorem 29. (Dyson Formula.) We have that

(19.6)

(

∂n1+n2

∂ǫn1
1 ∂ǫn2

2

) ∣

∣

∣

∣

ǫ1=0,ǫ2=0

P exp

(∫ t

T

Lǫ1,ǫ2(s)ds

)

(y1, y2) = ET
[

In1
1,tI

n2
2,tδ(yt − y2)|yt = y1

]

.

Proof. The proof is a simple extension of the proof in the univariate case and will be left to the
reader. �

Consider a bi-variate log-normally distributed variable
(

Y1

Y2

)

=

(

log(X1)
log(X2)

)

∼ N

((

µ1

µ2

)

,

(

σ1

σ2

))

whereby X1 and X2 are correlated normally distributed variables of joint distribution

(19.7) f(x1, x2) =
1

2πσ1σ2

√

1 − ρ2x1x2

·

exp

{

− 1

2(1 − ρ2)

[

(

log x1 − µ1

σ1

)2

− 2ρ
(log x1 − µ1)(log x2 − µ2)

σ1σ2
+

(

log x2 − µ2

σ2

)2
]}

,

where ρ is a correlation parameter. Both X1 and X2 are log-normally distributed with

E[Xi] = eµi+σ
2
i /2 , and E[X2

i ] = e2µi+2σ2
i , i = 1, 2.

Matching these with the pre-assigned moments, and solving for µi and σi we find

µi = log

(

E
[

I
(i)
t

]2/
√

E

[

(

I
(i)
t

)2
]

)

and σ2
i = log

(

E

[

(

I
(i)
t

)2
]

/

E
[(

I
(i)
t

)]2
)

Moreover, the mixed term is

E [X1X2] = E
[

eY1+Y2
]

= eµ1+µ2+
1
2 (σ2

1+σ2
2+2ρσ1σ2) = E[X1]E[X2] e

ρσ1σ2

which gives ρ (in terms of the pre-assigned moments):

(19.8) ρ =
1

σ1σ2
log

E
[

I
(1)
t I

(2)
t

]

E
[

I
(1)
t

]

E
[

I
(2)
t

]

Example 11. (Conditional Variance Swaps) The payoff of a conditional variance swap is
given by the ratio

(19.9)

∫ T ′

T
v(ys, s)1(L < S(ys) < H)ds
∫ T ′

T
1(L < S(ys) < H)ds

− SR2

To apply the moment method to this case, the first thing to note is that essentially we are
modelling the two integrals appearing in the payoff at the same time. We are going to need a
Bi-variate distribution to do this. Firstly let’s write:

I
(1)
t =

∫ T ′

T

v(ys, s)1(L < S(ys) < H)ds

I
(2)
t =

∫ T ′

T

1(L < S(ys) < H)ds

and in order to compute the expectation

(19.10) E

[

I
(1)
t

I
(2)
t

]

we’ll need the following expectations:

E
[

I
(1)
t

]

, E
[

I
(2)
t

]

, E

[

(

I
(1)
t

)2
]

, E

[

(

I
(2)
t

)2
]

, and E
[

I
(1)
t I

(2)
t

]
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To tackle this problem consider the operator

(19.11) Lǫ1,ǫ2(y1, y2) = L(y1, y2) + ǫ1φ(y1)δy1y2 + ǫ2 ψ(y1)δy1y2

where

(19.12) φ(y1, t) =
∑

y2

L(y1, y2; t) log2

(

S(y2)

S(y1)

)

1(L < S(y1) < H)

and

(19.13) ψ(y1) = 1(L < S(y1) < H).

We have that
∂

∂ǫ1

∣

∣

∣

∣

ǫ1=0

e((t
′−t)Lǫ1,ǫ2

)(y1, y2) = E
[

I
(1)
t

∣

∣

∣ yt = y1, yt′ = y2

]

and
∂2

∂ǫ21

∣

∣

∣

∣

ǫ1=0

e((t
′−t)Lǫ1,ǫ2 )(y1, y2) = E

[

(

I
(1)
t

)2
∣

∣

∣

∣

yt = y1, y
′
t = y2

]

similarly (but with respect to ǫ2) for

E
[

I
(2)
t

∣

∣

∣ yt = y1, yt′ = y2

]

and E

[

(

I
(2)
t

)2
∣

∣

∣

∣

yt = y1, yt′ = y2

]

The joint expectation will involve the mixed derivative:

(19.14) E
[

I
(1)
t I

(2)
t

]

=
∂2

∂ǫ1∂ǫ2

∣

∣

∣

∣

ǫ1,ǫ2=0

e((t
′−t)Lǫ1,ǫ2 )(y1, y2)

and once computed, we make use of these expectations to match a bivariate distribution. For
simplicity of notation we leave out the conditional part of these expectations, noting that all the
moments we obtain are conditional to the initial and final points.

To evaluate the expectation E
[

I
(1)
t

/

I
(2)
t

]

, let us notice that

E

[

X1

X2

]

= E
[

eY1−Y2
]

= E
[

eY1+Y
′

2

]

where Y
′

2 = −Y2 is also be normally distributed ∼ N(−µ2, σ
2
2). Hence

E

[

X1

X2

]

= eµ1+
1
2σ

2
1 e−µ2+

1
2σ

2
2 e−ρσ1σ2

and the expectation (19.10) is given by

(19.15) E

[

I
(1)
t

I
(2)
t

]

= E
[

I
(1)
t

]

·
E

[

(

I
(2)
t

)2
]

E
[

I
(2)
t

]3 ·
E
[

I
(1)
t

]

E
[

I
(2)
t

]

E
[

I
(1)
t I

(2)
t

] =

E
[

I
(1)
t

]2

E

[

(

I
(2)
t

)2
]

E
[

I
(2)
t

]2

E
[

I
(1)
t I

(2)
t

]

moreover

E

[

(

X1

X2

)2
]

= e2µ1+2σ2
1 e−2µ2+2σ2

2 e−4ρσ1σ2 = E

[

X1

X2

]4

e−2µ1e2µ2

so

(19.16) E





(

I
(1)
t

I
(2)
t

)2


 =

E
[

I
(1)
t

]4

E

[

(

I
(2)
t

)2
]3

E

[

(

I
(1)
t

)2
]

E
[

I
(2)
t

]4

E
[

I
(1)
t I

(2)
t

]4

To compute a payoff we will need the expectation E
[

min
(

X1

X2
, CVMax

)]

for the payoff of the

conditional variance swap.

(19.17) E

[

min

(

X1

X2
, CVMax

)]

=

∫ ∞

0

∫ X2CVMax

0

(

X1

X2
− CVMax

)

f(X1, X2)dX1dX2 +CVMax
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This double integral will need to be evaluated numerically. As the first one has finite bounds and
the second has an infinite upper bound it would make sense to use two types of Gaussian quadra-
tures: a Gauss-Legendre quadrature on the inner integral and a Gauss-Laguerre quadrature on
the outer one.

20. Block Factorizations

Although most path dependent processes emerging in applications to Finance are Abelian,
some aren’t. If the Abelian property fails, the propagator cannot be block-diagonalized by the
methods discussed above and also moment methods generally fail. In several relevant situations
one can still achieve a numerically viable framework by using block-factorizations instead of
diagonalizations.

Let Ui(y1, y2) be a family of Markov propagator indexed by i = 0, 1, ...n− 1 defined over the
time intervals [ti, ti+1]. Consider a propagator lifting of the form

(20.1) Ūi(y1, k1; y2, k2) = Ui(y1, y2)Qi(y1, y2)k1k2 .

where k1, k2 = 0...K.

Definition 45. (Block-Factorization.) We say that the propagators in (20.1) admit a block-
factorization if they can be represented in the form:

(20.2) Ūi = Πi ·
(

Ui ⊗ I
)

Here Πi, i = 0, ...n− 1 is a family of permutation matrices, i.e. matrices with the property that
for each pair (y1, k1) we have that

(20.3) Πi(y1, k1; y2, k2) = 0

for all pairs (y2, k2) except for one single pair (Y (y1, k1),K(y1, k1)) for which we have instead

(20.4) Πi(y1, k1;Y (y1, k1),K(y1, k1)) = 1.

Furthermore, the tensor product notation in equation (20.2) stands for the operator with the
following matrix elements:

(20.5)
(

Ui ⊗ I
)

(y1, k1; y2, k2) = Ui(y1, y2)δk1k2 .

If a block-factorization exists, then an efficient backward induction algorithm can be setup.
Namely, if v is a vector, then we can value the following path ordered products

(20.6) vi = P
n−1
∏

j=i

Ūjvn = P
n
∏

j=i

Πj ·
(

Uj ⊗ I
)

vn

iteratively in i from i = n−1 down to i = 0. At the first step one applies the operator
(

Un−1⊗I
)

to vn, followed by the permutation Πn−1 to obtain vn−1 and then iterate. Due to the tensor
product structure of the first operator, it is convenient to apply by regarding the vector vi as
a matrix of elements vi(y, k). This representation makes it possible to leverage on numerical
efficiencies and to re-interpret a high dimensional BLAS level 2 matrix-vector multiplication as a
lower dimensional BLAS level 3 matrix-matrix multiplication. Applying a permutation operator
is then quite straightforward from the numerical viewpoint and is an operation whose complexity
scales linearly with respect to the dimension of the vector v.

Example 12. (Snowballs) Here we follow (Albanese 2007a). Consider the case of a valuing a
snowballs for which the structured coupon at time Ti = T + (∆T )i has the following form:

(20.7) CTi
= fCTi−1

+ Φi(yTi−1
)

where the factor f is a fixed parameter and Φi(yTi−1) is a given function. Since the coupon
amount at a given time affects the coupon amou/nt in the next period, the process is not
Abelian, in fact it is path-dependent. However, block-factorizations are still possible.
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Consider discretizing the coupon dimension in intervals ∆C, so that a generic coupon can be
approximated as follows

(20.8) CTi
= (∆C)kTi

where kTi
= 0, 1, ....N − 1 is a discrete time, integer value process. A strategy to implement the

backward induction scheme is to organize the payoff function v(y, k) at maturity in a matrix
with N columns, each one indexed by the state variable y and representing the price conditional
to the discretized value of the previous coupon paid. One can then iterate backward by applying
the pricing kernel to this matrix of conditional pricing functions. After each step in the iteration,
one needs to reshuffle the pricing functions in such a way that the conditioning relation on each
column is satisfied. More precisely, we set

(20.9) vi−1(y1, k) =
∑

y2

Ui(y1, y2)vi(y2, [(f(∆C) ·k1 +Φi(y1))/(∆C)]) =

[

Πi ·
(

Ui⊗ I
)

vi

]

(y1, k)

where

(20.10) Πi(y1, k1; y2, k2) = δ(y2 − y1)δ(k2 −K(y1, k1))

and

(20.11) K(y1, k1) = [(f(∆C) · k1 + Φi(y1))/(∆C)].

Notice that this backward induction scheme can accommodate callability provisions.

Example 13. (Soft Calls) Soft calls provide another interesting example of a non-Abelian
process. In this case, a call decision depends on the fraction of time the process spends above a
given barrier level during a fixed time period prior to the decision itself. By restricting times at
which one makes observations to the discrete sequence of time points ti = T + iδt, i = 0, ...M ,
the pricing function takes the form

(20.12) vi(y,
−→σ )

where

(20.13) −→σ = (σ1, ..., σN ) ∈ {0, 1}N .
Here the variable σj equals 1 if yti−N+j

satisfies the barrier condition and 0 otherwise. We model
this dependency by means of a generic function notation

(20.14) σj = Σi(yti−N+j
).

The sequences −→σ can be arranged in an ordered sequence of 2N integers so that the data structure
vi(y,

−→σ ) appears as a matrix with 2N columns. A backward induction scheme involves evaluating

(20.15) vi−1(y1,
−→σ ) =

∑

y2

Ui(y1, y2)vi(y2,Φi(
−→σ , y1))

where

(20.16) Φi(
−→σ , y1) = {σ2, ...σN−1,Σ(ti, ti−1, y1)}

This form is block-factorized as

(20.17) vi−1(y1,
−→σ ) =

[

Πi ·
(

Ui ⊗ I
)

vi

]

(y1, k)

where Πi is the permutation operator of matrix

(20.18) Πi(y1,
−→σ 1; y2,

−→σ 2) = δ(y2 − y1)δ
(

(−→σ 2)N − Σi(y1)
)

N−1
∏

j=1

δ
(

(−→σ 2)j − (−→σ 1)j+1

)

.

More general types of useful block-factorizations can be imagined, although they might be
numerically less efficient. An example is set forth by the following definition:



56 CLAUDIO ALBANESE

Definition 46. (State Dependent Block-Factorization.) We say that the propagators in
(20.1) admit a state dependent block-factorization if they can be represented in the form:

(20.19) Ūi = Πi ·
K
⊕

k=1

Ui,k

Here Πi, i = 0, ...n− 1 is a family of permutation matrices as above. The direct sum notation in
equation (20.19) stands for the operator with the following matrix elements:

(20.20)
(

K
⊕

k0=1

Ui,k0
)

(y1, k1; y2, k2) = Ui,k1(y1, y2)δk1k2 .

A backward induction in this case is still a lower dimensional problem but since the lower
dimensional propagator is state dependent this reduces to a sequence of matrix-vector multi-
plications as opposed to a single matrix-matrix multiplication. The scheme is thus numerically
less efficient. Still it would be useful in cases for instance such as GARCH type models and
extensions, see (Engle 1982).

21. Dynamic Conditioning

This section is based on work in collaboration with Alicia Vidler, see (Albanese and Vidler
2007).

Modeling correlations between several processes has sometimes been considered a problem
affected by the so-called curse of dimensionality which causes the numerical complexity to explode
exponentially, see (Bellman 1957). This motivates the recourse to Monte Carlo methods while
calibrating using closed form solutions.

Here we deviate substantially from this framework and aim at building models viable from the
engineering deployment viewpoint and specified semi-parametrically or even non-parametrically
without any restriction imposed by analytical tractability. The method of fast exponentiation
allows one to calibrate single name models without recurring to analytic solvability thanks to
providing smooth sensitivities. Although Monte Carlo schemes could in principle be employed
in a model constructed non-parametrically and calibrated with operator methods, in many cir-
cumstances important for applications this can be avoided by using the technique of dynamic
conditioning discussed in this section. This technique can be regarded as a dynamic copula
whereby the single factor marginal distributions are preserved and the numerical complexity
grows linearly with the number of factors, similarly to what happens with Monte Carlo meth-
ods. But, unlike Motecarlo methods, dynamic conditioning is numerically noiseless as there is
no sampling, no variance reduction scheme is needed and even features such as callability are
numerically treatable.

Dynamic conditioning is based on constructing a hierarchy of conditioning relations. At
the base of the hierarchy we have continuous time lattice models for single factor marginal
distributions. Next, one introduces a binomial process for each risk factor to condition the
corresponding Markov chain. Next one finds a hierarchy of binomial processes to condition the
former conditioning lattices. See figure (4).

To describe the technique of dynamic conditioning in detail, consider a particular risk factor
described by a lattice process whose filtered probability space is engendered by a Markov propa-
gator U(y1, t1; y2, t2). For each such single factor, we introduce a conditioning binomial process
ht ∈ Z, which is constant over the time intervals [Ti, Ti+1) where Ti = T + i∆T , i = 0, 1, 2, ...N
and ∆T = (T ′ − T )/N . At initial time we set hT = 0 while for all i > 0 we have that
hTi

− hTi−1
= ±1. The elementary propagator for the process ht across neighboring time points

Ti is

(21.1) V (hi, Ti;hi+1, Ti+1) = q1(hi, i)δhi+1,hi+1
+ q−1(hi, i)δhi−1,hi+1
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Figure 4. Dynamic conditioning scheme: a binomial process conditions each
risk factor and is in turn conditioned by another binomial process. The latter
is also conditioned by a hierarchy of binomial processes.

where q1(hi, i), q−1(hi, i) > 0 and q1(hi, i) + q−1(hi, i) = 1. On a general time interval [Ti, Tj ],
we have that

(21.2) V (hi, Ti;hj , Tj) =
∑

ht:hTi
=hi,hTj

=hj

j−1
∏

k=i

V (hTk
, Tk;hTk+1

, Tk+1).

Next we define a lifted conditional propagator Ū(yi, hi, Ti; yj , hj , Tj) in such a way to preserve
unconditional transition probabilities from the starting time at T , i.e. so that

(21.3)
∑

hj

Ū(y0, 0, T ; yj , hj , Tj) = U(y0, T ; yj , Tj).

To do so, one strategy is to define two propagators for each node (h, Ti), namely to choose a
pair of operators U1(yi, hi, Ti; yi+1, hi + 1, Ti+1) and U−1(yi, hi, Ti; yi+1, hi − 1, Ti+1) so that

U(yi, Ti; yi+1, Ti+1) = q1(h, i)U1(yi, h, Ti; yi+1, h+ 1, Ti+1)+

q−1(h, i)U−1(yi, h, Ti; yi+1, h− 1, Ti+1).

The operator Ū(y0, 0, T ; yj , hj , Tj) satisfying (21.3) is defined as the following sum:

Ū(y0, h0, T0; yj , hj , Tj) =
∑

ht:hT =0,hTj
=hj

∑

y1,..yj−1

∏

k=1..j

qhTk
−hTk−1

(hTk−1
)×

UhTk
−hTk−1

(yk−1, hTk−1
, Tk−1; yk, hTk

, Tk).

Since the operators U1 and U−1 do not commute with each other, if not in trivial situations,
each path ht in the summation on the right hand side of this equation represents a different oper-
ator. In many situations one can however avoid the numerical complexities of a non-recombining
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tree by finding modified versions of such operators so that the kernels

Uh·
(y0, yk) =

∑

y1,..yj−1

∏

k=1..j

qhTk
−hTk−1

(hTk−1
)Ū(yk−1, hTk−1

, Tk−1; yk, hTk
, Tk)

are all equal to each other, for all paths ht : hT = 0, hTj
= hj and at least one single fixed

starting point y0 = ȳ0. This will be referred to as conditional recombination property.
The reasons why we focus on the initial point y0 = ȳ0 only are manifold. Firstly, in applica-

tions one needs to condition marginal distributions only to spot values, as the price of options
in the hypothetical case asset prices were different is not known. Secondly, if we insisted on
the same property being valid for all initial starting points we would end up with a seriously
ill posed problem of difficult solution. Because of these reasons, we settle for the more modest
objective of conditional recombination.

Namely, on each node (hi, Ti) with i > 0 we define

(21.4) Ū(yi−1, hi−1, Ti−1; yi, hi, Ti) = Uhi−hi−1
(yi−1, hi−1, Ti−1; yi, hi, Ti)

in case hi = ±i. Otherwise, we determine this operator so that

Ū(ȳ0, h0, T0; yi, hi, Ti) =
∑

yi−1∈Λ

Ū(ȳ0, h0, T0; yi−1, hi−1, Ti−1)Ū(yi−1, hi−1, Ti−1; yi, hi, Ti)

for all yi ∈ Λ and a fixed ȳ0. This can be achieved in more than one way. As a guideline, it is
advisable to deviate the least possible from the definition (21.4).

As a next step in the construction, consider a second binomial process ct which is piecewise
constant across neighboring time points Ti. The dynamics of ct is by construction correlated to
that of ht. More precisely, the propagator for the joint process is

W (hi,ci, Ti;hi+1, ci+1, Ti+1) =

q++(hi, ci, i)δhi+1,hi+1
δci+1,ci+1

+ q+−(hi, ci, i)δhi+1,hi+1
δci−1,ci+1

+ q−+(hi, ci, i)δhi−1,hi+1δci+1,ci+1 + q−−(hi, ci, i)δhi−1,hi+1δci−1,ci+1

where q±±(hi, ci, i) ≥ 0 and

(21.5) q++(hi, ci, i) + q+−(hi, ci, i) + q−+(hi, ci, i) + q−−(hi, ci, i) = 1.

Due to the conditional recombination property, if y0 = ȳ0, then the conditional propagators
resum with a simple formula

∑

ht:hT =0,hTj
=hj

∑

y1,..yj−1

∏

k=1..j

W (hi, ci, Ti;hi+1, ci+1, Ti+1)×

qhTk
−hTk−1

(hTk−1
)ŪhTk

−hTk−1
(yk−1, hTk−1

, Tk−1; yk, hTk
, Tk)

=
∑

hj

W (0, 0, T0;hj , cj , Tj)Ū(y0, 0, T0; yj , hj , Tj)

≡ Ũ(y0, 0, T0; yj , cj , Tj).

As a next step, the construction above is repeated for a number of different risk factors

associated to N lattice processes y
(α)
t , where α = 1, ..N all correlated to the process ct, possibly

in different ways. Then, conditioned to starting all processes at fixed lattice points y
(α)
0 = ȳ

(α)
0

and conditioned to cTj
= cj , the multi-factor propagator factorizes into the product of conditional

single factor propagators

(21.6)
∏

α=1...N

Ũ(y
(α)
0 , 0, T0; y

(α)
j , cj , Tj)

This is the key formula which we use to correlate processes while ensuring that numerical com-
plexity increases only linearly with the number of factors N .
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The construction can obviously be iterated and we can have a whole hierarchy of binomial
processes conditioning each other to model multi-factor correlations.

22. Conclusion

We reviewed a new framework for Mathematical Finance and the theory of stochastic pro-
cesses based on operator methods. The framework grew over the years through applied research
and solving specific concrete problems in derivative pricing. As wrong ideas were weeded out,
a coherent framework emerged and is now summarized in this review paper. From the nu-
merical viewpoint, the methods rely on the ability to multiply efficiently large matrices as the
main computational engine. Technologies for matrix manipulation are currently being devel-
oped at great pace. The emerging multi-core GPU chipsets will soon provide affordable teraflop
performance for algorithms based on matrix-matrix manipulations such as ours. To both set
the theory of stochastic processes on firm theoretical grounds and justify the empirically ob-
served convergence rates, we derive pointwise kernel convergence estimates of a new type which
explain the observed smoothing properties of the method. We introduce the notion of Abelian
process to generalize the concept of stochastic integral and extend the classic Cameron-Feynman-
Girsanov-Ito-Kac-Martin theorem in multiple directions. This theorem is here reinterpreted as a
block-diagonalization scheme for large matrices corresponding to Abelian processes. We outline
solution methods for Abelian path dependent options, a class we identified and which comprises
the great majority of the path-dependent options currently traded. Important non-Abelian
processes are also considered and discussed by means of a weaker but still effective method of
block-factorizations. Furthermore, we also discuss a method for dynamic conditioning which
applies to correlation products such as baskets and hybrid derivatives.
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