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Abstract 

Bansal and Yaron (2004) demonstrate, by calibration, that the Consumption-Based Capital 

Asset Pricing Model (CCAPM) can be rescued by assuming that consumption growth rate 

follows a stochastic volatility model. They show that the conditional equity premium is a 

linear function of conditional consumption and market return volatilities, which can be 

estimated handily by various Generalized Autoregressive Conditonal Heterskedasticity 

(GARCH) and Stochastic Volatility (SV) models.We find that conditional consumption and 

market volatilities are capable of explaining cross-sectional return differences. The 

Exponential GARCH (EGARCH) volatility can explain up to 55% variation of return and 

the  EGARCH model augmented with      -a cointegrating factor of consumption, labor 

income and asset wealth growth- greatly enhance model performance. We proceed to test 

another hypothesis: if Bansal and Yaron estimator is an unbiased estimator of true 

conditional equity premium, then the instrumental variables for estimating conditional equity 

premium should no longer be significant.We demonstrate that once the theoretical 

conditional risk premium is added to the model, it renders all instrumental variables 

redundant. Also, the model prediction is consistent with observed declining equity premium. 
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1. Introduction 

Financial derviatives can be priced in two methods - relative pricing and absolute pricing. 

Financial engineers, on the one hand, price a financial instrument by forming a replicating 

portfolio. The cash flow of a call option, for instance, can be replicated by holding stock 

shares and shorting bonds. The option is priced relative to the market prices of those two 

assets. Financial economists, on the other hand, explore the links between asset returns and 

macroeconomic variables which are the sources of systematic risk. One of the early attempts 

is the Sharpe-Lintner-Black Capital Asset Pricing Model (CAPM), in which excess return of 

market portfolio is the common factor that explains cross-sectional return differences. In a 

two period model with exogenous labor income, the equity premium is proportional to the 

aggregate consumption growth, in which the multiplicative factor is elasticity of 

intertemporal substitution of consumption. This is the famous Consumption Based Capital 

Asset Pricing Model (CCAPM). 

In spite of the theoretical simplicity and elegance of CAPM; when faced with empirical 

testing, it fails miserably. For instance, Banz (1981) identifies the small firm effect - small 

cap stocks and value stocks have unusually high average returns, while the return of large and 

growth stocks are lower than what CAPM predicts. Fama and French (1993) demonstrate that 

CAPM virtually has no power in explaining cross-sectional return when sorted by size and 

book-to-market ratios. Fama and French (1993) advocate a three factor model - market 

return, the return of small less big stocks (SMB), and the return on a portfolio of high book-

market value stocks less low book-market value stocks (HML). The Fama and French (1993) 

model is a resounding success; however, it is still not clear how these factors relate to 

underlying macroeconomic risk. In fact, the independence and economic interpretation of 

SMB and HML remain as a source of controversy. 

An alternative to the Fama and French (1993) model is the macroeconomic factor model, 

in which the factors are observed macroeconomic variables that are assumed to be 

uncorrelated to the asset specific error. The Chen et al. (1986) multi-factor model is one of 

those. They construct surprise variables by using the Vector Autoregressive Model (VAR). 

The VAR residuals of several macroeconomic variables, for example, Consumer Price Index 

(CPI), industrial production growth and oil price are used as uncorrelated macroeconomic 

variables. While the uncorrelatedness of those macroeconomic variables is less controversial, 

the explanatory power is unsatisfactory especially when compared to Fama and French 

(1993) model. 

Jagannathan and Wang (1996) attribute the failure of CAPM to two reasons. First, 

CAPM holds in a conditional sense, not unconditionally. The stochastic discount factor is 

linear as stated in CAPM, but the coefficients are time varying. The static specification of 

market premium fails to take into account the effect of time-varying investment opportunities 



in the calculation of asset risk. For instance, the betas of firms with relatively higher leverage 

rise during recession; firms with different types of assets will be affected by the business 

cycle in different way and to a different extent. Second, the return on value-weighted 

portfolio of all stocks is a bad proxy to wealth return. As a matter of fact, Roll (1977) argues 

that the market return cannot be adequately proxied by an index of common stocks. The 

problems are rectified by estimating a conditional version of CAPM and including human 

capital return, as an instrumental variable, in the model. They argue that with certain 

assumptions about the stochastic conditional expected excess return on zero-beta portfolio 

and conditional market risk premium, cross-section return can be written as a linear 

combination of factors with constant coefficients
1
. The Jagannathan and Wang (1996) model 

significantly improves predictive power of CAPM. 

Lettau and Ludvigson (2002) resurrect the CCPAM. Along the line of Jagannathan and 

Wang (1996), they examine a conditional version of CCAPM, in which the stochastic 

discount factor is expressed as a conditional or scaled factor model. They model time-

variation in the coefficients by interacting consumption growth with an instrument, in 

particular, a cointegrating factor      - a cointegrating residual between consumption, 

asset(nonhuman) wealth, and labor income (all in log). A growing literature find that 

expected excess returns on aggregate stock market indice are predictable, suggesting that risk 

premium varies over time
2
. The parameters in the stochastic discount factor will then depend 

on investor’s expectations of future excess return. Lettau and Ludvigson (2001) demonstrate 

that     drives time-variation in conditional expected return. While the consumption 

cointegrating factor alone fails to capture variation of average returns, they show that the 

interaction between      and labor income growth or consumption growth can explain 70% 

variation of average return, it remains a difficult task to reconcile how this interaction term 

can make such a difference. 

In this paper, we undertake the investigation of the CAPM by using a conditional market 

premium derived from an optimization-based model. Declining consumption volatility has 

been a plausible explanation for the declining equity premium. Bansal and Yaron (2004, 

hereafter referred to as the BY model) justify the equity premium by assuming that 

consumption growth rate follows a stochastic volatility model. They show that the 

conditional equity premium is a linear function of conditional consumption and market return 

volatilities. Thereafore, we proceed to estimate two stochastic volatility models to test the 

validity of BY model. Meanwhile, estimation methods of conditional volatility abound in the 

econometrics literature; for instance, the large class of Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models. We will apply the Fama-MacBeth 

                                                      
1 The proof can be found at the appendix of Jagannathan and Wang (1996). 
2 see Campbell (1991) and Lamont (1998) 



approach to test the validity of the BY model using 25 Fama-French portfolios (U.S.A) sorted 

by size and book-to-market value. A couple questions will be addressed in the following 

sections. Once the ex-post market risk premium is replaced by conditional consumption and 

market return volatilities, does it improve the predictive power of CAPM? Is this study robust 

that different GARCH models give similar results? Furthermore, the following null 

hypothesis will be tested: if the theoretical BY equity premium is adequate, it would render 

the instrumental variables redundant. 

The first procedure is the estimatin of conditional consumption and market volatilities by 

GARCH, Exponential GARCH (EGARCH), Threshold GARCH (TGARCH) and two 

stochastic volatility models. The predicted volatilities will then be used as factors for the 

second-step Fama-MacBeth procedure. Since we will compare the model performance to the 

conventional CAPM, Fama-French (1993) and Lettau and Ludvigson (2001) models, the U.S 

25 Fama-French portfolio returns sorted by size and book-to-equity value will be used. 

We find that the Bansal and Yaron theoretical premium significantly outperforms 

traditional CAPM using observed market premium. Using GARCH consumption and market 

volatility alone can explain 55% variation of cross-section return difference. Not only does it 

improve the Fama and French model, by replacing the ex-post market risk premium with the 

Bansal and Yaron (2004) premium, the Lettau and Ludvigson (2001) model also outperforms 

the former. Moreover, various 2  tests reject the joint significance of Lettau and Ludvigson 

instrumental variables.  

There are two contributions of this research. 1. We found supportive evidence to a general 

equilibrium model with the potential to resolve the equity premium puzzke. 2. Our statistical 

method is more straight forward than the existing literature – which are mostly calibration 

instead of statistical estimation- on the Bansal and Yaron (2004) model.  

This paper is structured as follows. Section 2 outlines the Bansal and Yaron model. We 

briefly describe the derivation of the theoretical market premium. Section 3 is devoted to 

modelling conditional volatilities. Two Stochastic Volatilities and three typical GARCH type 

volatilities are estimated: Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH), Exponential GARCH and Threshold GARCH. The idea is that if the Bansal and 

Yaron premium can truly explain cross-sectional return differences, the result should be 

applied to various conditional volatility specifications. Section 4 delineates the estimation 

equations. Section 5 reports the results and section 6 concludes.  

2. Outline of Bansal and Yaron (2004) Model 

We now consider the Bansal and Yaron (2004) model. It shows that, if consumption and 

dividend growth rate contain a small long-run predictable component, consumption volatility 



is stochastic, and, if the representative household has Epstein and Zin preference, the asset 

and return premium will be a linear function of conditional consumption and market 

volatility. The Euler condition is given by 
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where   is the discount factor, 1tG  is gross return of consumption, 1, taR  is the gross 

return on an asset that delivers aggregate consumption as its dividends each period, and 1, tiR

is the individual asset return. As well-documented in the literature, this class of preference 

disentangles the relation between intertemporal elasticity of substitution (IES) and risk 

aversion. The parameter 
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, with 0  as the degree of risk aversion,   denotes IES. 

Campbell and Shiller (1988) show that the log-linearized asset return ( 1, tar ) can be expressed 

as 
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z  is the log price-consumption ratio, and 1tg  is 

the log return of consumption. The log-linearized first order euler condition is 
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 where 1tm  is the stochastic discount factor. When 1= , then 


 1
= , and the above 

equation is pinned down to the case of Constant Elasticity of Subsitution (CES) utility 

function. Moreover, if 1=  and 1= , we get the standard case of log utility. In the spirit of 

neo-classical Real Business Cycle model (RBC), an exogenous i.i.d shock perturbs 

consumption and output from their steady paths. The system of shocks is 
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This system of equation suggests that consumption ( 1tg ) and dividend growth rates( 1, tdg

) are driven by an unobservable process tx , and the volatility of the latter exhibits mean-

reversion (  ) but perturbed by an i.i.d shock ( 1te )
3
. Bansal and Yaron (2004) solve the log 

price-consumption ratio by method of undetermined coefficients, and find that 
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There are two noteworthy features of this model. First, if   and   are larger than 1, then 

  is negative, and a rise in volatility lowers the price-consumption ratio, since the 

intertemporal effect dominates the substitution effect. Second, the risk premium is a positive 

function of the volatility persistence parameter  ; meaning that the representative consumer 

dislikes a prolonged period of consumption shocks. After some algebra, the market premium 

in the presence of time-varying economic  uncertainty takes the form: 
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where 2

t  and 
2

w are the conditional consumption and wealth volatilities;   is the price of 

risk, and   is the quantity of risk. The risk premium of any asset, given by CAPM, can be 

expressed as 
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The BY model calls for estimation of two equations. Equation (5) states that long-run 

market risk premium is determined by conditional consumption and market return volatility. 

In particular, the cointegrating vector is 0.5),( ,, emem  . This paper focuses on equation (6), 

                                                      

3
 Without 1tw , it will become a GARCH model.  



which explains cross-sectional return differences by conditional volatilities.  

The essence of the BY model is that persistent stochastic volatility can explain risk 

premium. Here we provide an empirical test, by regressing cross-sectional return against 

different variants of conditional stochastic volatility. Choosing the best stochastic volatility 

model is not the purpose of this paper. Rather, we want to show that if equation (6) can be 

explained by some common GARCH and SV models, it should provide indirect support for 

the BY model. More importantly, it provides an alternative for the Fama-French model. 

While the independence of Fama-French factors is controversial, aggregate consumption and 

market return volatilities should be uncorrected. Next section is devoted to the description of 

various conditional volatility models. 

 

3. Volatility Modelling 

This section outlines the three GARCH and two SV models considered in this study. Since 

the literature on conditional volatility is well-documented, the readers can refer to Bollerslev 

et al.  (1992), Bollerslev et al. (1994) for a survey of the GARCH processes. We will also use 

the Exponential GARCH (EGARCH) and Threshold GARCH (TGARCH) to model 

asymmetry. Stochastic Volatility (SV) models which are reviewed in, for example, Taylor 

(1999), Ghysels et al. (1996) have been increasingly recognized as a viable alternative to 

GARCH models, although the latter are still the standard in empirical applications
4
. 

Most SV models are expressed in continuous time. The following models can be regarded 

as the discrete time analogue used in papers on option pricing (see Hull and White (1987)). 

The discrete SV model is intrinsically nonlinear. The parameters can be estimated by 

approximation methods or by using exact methods based on Monte-Carlo simulation which 

are subject to sampling error. 

 The first SV model takes the following form (see Harvey et al. 1994; hereafter HRS): 

tttr =  

tttt hh   1
2 =ln=  

)(0, 2
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tr  is the continuously compounded return of an asset; t denotes the volatility. There is no 

intercept in the mean equation. th  is always positive and takes on an AR(1) process. t  and 

                                                      
4
 For comparison, discussion of merits and deciding rules of these two models, see Fleming and Kirby (2003), 

Preminger and Haftner (2006), and Heynen and Kat (1994). 



t  are assumed to be two independent errors. This process is nonlinear in nature, which can 

be transformed into a linear function by appropriate change of variable. 

 We define 2ln= tt ry . It can be shown that 1.27=)ln( 2 tE   and .
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The second SV is estimated by Durbin and Koopman (1997) (hereafter, DK) model. 

Unlike the HRS model, the mean equation is in exponetial form. In high frequency data 

analysis, the model is usually specified as: 
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where   denotes average volatility. These five volatility models are estimated and then 

used as input for Fama-MacBeth estimation. 

 

4 . The Conditional Equity Premium 

This section depicts the difficulty of estimating conditional market risk premium and some 

plausible ways to resolve the problem. In many variants of CAPM, the basic pricing equation 

is given by 

 ][= 11  tttt xmEp       (11) 

where 1tm  represents the stochastic discount factor, 1tx  is the payoff, [.]tE  is the 

expectation conditional on the market-wide time-t information set. The stochastic factor can 

be derived from CCAPM or Merton’s Intertemporal CAPM (ICAPM); and it is linear in 

market portfolio return. However, only if the payoffs and discount factors were independent 

and identically distributed over time, could conditional expectations be the same as 

unconditional expectations. Since the Euler equation (11) is oftern nonlinear, the conditional 

stochastic pricing equation can be estimated by the General Method of Moments (GMM), for 

instance Hansen and Singleton (1982). 

Since the beta pricing model and stochastic factor representation are equivalent, 



Jagannathan and Wang (1996) estimate a single beta model with respect to aggregate wealth 

or market portfolio. The dynamics of the model comes from the time-varying behavior of 

both beta and market risk premium with the business cycle. The single beta model becomes 

an unconditional multi-beta model once the parameters of the discount factor are assumed to 

be a linear function of a list of macroeconomic variables. 

The conditional CAPM states that for each asset i and in each period t, 

 

 ,=][ 1,1,11,01,   tittttiRE I|฀       (12) 

 

where 10 t  is the zero-beta rate, 11 t  is the conditional market risk premium, and 1it  is 

the conditional beta of asset i. They derive implications of the unconditional asset-pricing 

model from the conditional version of CAPM. Taking unconditional expectation on both 

sides and using the law of iterated expectation,  
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 If the covariance between conditional beta of asset i and the conditional market risk 

premium is zero for every arbitrarily chosen asset i, then the above equation is equivalent to 

the static CAPM.  

Denote the yield spread between BAA- and AAA-rated bonds by prem
tR 1  as a proxy for the 

market risk premium, let vw
tR  be the return of stock market as a proxy for return on the 

portfolio of aggregate wealth, and 
labor

tR  be the labor return as a proxy for human income. 

Suppose the corresponding betas are labor
i

vw
i
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i  ,, , with their Theorem 1 and corollary 2, 

Jagannathan and Wang (1996) show that 
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where laborpremvw cccc ,,,0  are constants. The above unconditional beta pricing model is then 

estimated using GMM. They argue that GMM requires weaker statistical assumptions. 

 Lettau and Ludvigson (2001) handle the same problem by using an instrumental variable. 

Since there exists a beta representation if and only if the stochastic discount factor is linear in 

the mean-variance frontier portfolio; and the beta pricing model implies that the stochastic 

discount factor is linear in the factors that generate betas, the discount factor can always be 

expressed as: 

 11 =   tttt cbam         (15) 

where 1 tc  denotes change of consumption growth, which is the single fundamental 

factor in CCAPM. Note that the coefficients are time-varying. Following Cochrane (1996), 

Lettau and Ludvigson (2001) assume that 

 tt za 10=        (16) 

 tt zb 10=    

Combing equation (15) and (16), 

 1110101 =   ttttt czczm     (17) 

where tz  is an intstrumental variable and their choice      is a cointegrating factor of 

consumption growth and labor income. Equation (17) is the scaled multifactor model, which 

remarkably holds in an unconditional sense. For instance, the standard CAPM is estimated by                                                                     (18) 

where tftm rr ,1,   is market excess return. Now, replace the conditional tftm rr ,1,   with the 

BY premium. The benchmark model is: 

 ttmmtcctftit errE  
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where 2
1, tc  and 2

1, tm  are conditional consumption and market volatilities respectively. 

The Fama and French model now has four factors: 

 ttttmmtcctftit ehmlsmbrrE   43
2

1,2
2
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The Lettau and Ludvigson conditional scale factor model can be expressed as                                                                                            (21)

  

We will examine whether the BY market premium can explain the cross-sectional 

difference of expected returns in the next section. The Lettau and Ludvigson (2001) scale 



factor model will be augmented with the BY premium. Two hypotheses will be tested. 1. Is 

there any statistical evidence that the stochastic consumption volatility can explain the equity 

premium puzzle? 2. If the BY conditional risk premium is correct, it should render the 

instrumental variables redundant. 

5.  Results 

5.1 Conditional Consumption and Market Return Volatilities 

The consumption and labor income data can be found at Lettau and Ludvigson’s website5
. 

The Fama-French factors, market return and risk free rate are available at Fama’s website6
.  

Since the Bansal and Yaron (2004) study used U.S data for calibration; for comparison 

purpose, we choose the U.S 25 Fama-French portfolio return as the dependent variable. These 

data are value-weighted returns for the intersection of five size portfolios and five book-to-

market equity (BE/ME) portfolios on the New York Stock Exchange, the American Stock 

Exchange, and NASDAQ stocks in Compustat. The portfolios are constructed at the end of 

June, and market equity is the market capitalization at the end of June. The ratio BE/ME is 

book equity at the end of December of the prior year. This procedure is repeated for every 

calender year from January, 1962 to October, 2009. We convert the original data from 

monthly to quarterly series. The sample period is from 1962 Q1 to 2009 Q3.  

The instrumental variable     is a cointegrating factor of consumption growth and labor 

income. Lettau and Ludvigson (2001) contend that this factor sums up information about 

investor’s expected return, and outperforms such future return predictors as price-dividend 

ratio and equity-price ratio. Lettau and Ludvigson (2001) further argue that      can be used 

to explain cross-sectional returns. Their findings include: 1) The traditional CAPM fails 

miserably in explaining cross-sectional return; 2) Fama-French model is a resounding 

success; 3) adding       into CAPM only slightly improve the model predictive power; 4) but 

using      as an instrument, interacting it with market risk premium and labor income growth 

significantly improves the preditive power. In this paper, we will demonstrate that by 

replacing observed market premium with conditional consumption and market return 

volatilities, even without interacting with labor income, the model predictive power is 

comparable to that of Fama and French (1993). Before proceeding to the regression result, the 

estimated conditional volatilities will be examined. 

That consumption series being more persistent than that of market return is well-

documented in the literature. Not surprisingly, the order of GARCH type consumption model 

                                                      
5 http://www.econ.nyu.edu/user/ludvigsons/ 
6 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 



is relatively higher. Still, most of the series can be estimated with GARCH(1,1), and the 

residuals exhibit no serial correlation. Figures 1.1 - 1.5 report the consumption volatility 

series. The range of GARCH type models is 0.35 - 0.7% per quarter, consistent with the 

observed data. Consumption is more volatile during mid 1970’s, early 1980’s and early 
1990’s, getting more stable after 1995. The GARCH and TGARCH series are relatively 

jagged, showing less clustering. The downward trend of EGARCH consumption series is 

very obvious. The HRS stochastic volatility series is very irregular during the first few years, 

and then smooth out later on. In contrast with GARCH models, both SV models predict a 

smooth transition of consumption volatility. However, the consumption volatility is slightly 

over-predicted. For instance, most of the time, the HRS quarterly volatility ranges from 0.8 to 

1.2%. 

The market volatility series can be found in Figures 2.1 - 2.5. The GARCH type and HRS 

SV models predict very jagged series. The market was more volatile during the mid 1970’s 
and early 2000’s. However, the HRS model significantly over-predicts market volatility. For 

instance, the market volatility in 1976 was almost 60%, defying the observed data. In 

contrast, the Durbin-Koopman SV series is overly smooth, and often, under-predicts market 

volatility. The poor performance can be reconciled by the fact that, SV series follows random 

walk pattern. It predicts change of volatility in infinitely short period of time. However, most 

quarterly series exhibits high persistence, which is better captured by GARCH type models. 

5.2 Fama-MacBeth Style Regression 

The unconditonal models can be consistently estimated by the cross-sectional regression 

method proposed by Black et al. (1972), General Method of Moments (GMM), and Fama and 

MacBeth (1973). We estimate equation (19) and its variants by the Fama-MacBeth (1973) 

approach. The first step is time series regression of each portfolio return against the BY 

premium and other scale factors. The second stage is cross-section regression for each 

quarter. The Fama-Macbeth estimates are simply the time average of cross-sectional 

estimates. Cochrane (1996) proves that if the betas do not vary over time and if the errors in 

the time series regression are cross-sectionally correlated but not correlated over time, the 

Fama-Macbeth estimate of risk price is identical to the pure cross-section OLS regression 

estimate. The Fama-Macbeth standard errors are identical to the cross-sectional standard 

errors, corrected for cross-sectional residual correlation. 

Tables 1.1-1.5 report the Fama-MacBeth style regression results
7
. We compute the usual t 

statistics corrected for cross-section heteroskedasticity, Newey-West standard error, and then 

                                                      
7 For an exposition of the estimation, see Fama and Macbeth (1973). 



both adjusted by the Shanken (1992) correction method
8
. The computed t-statistics turns out 

to be sensitive to the error correction method, rendering comparison difficult. The Shanken 

correction is directly related to the magnitude of each  , coefficient estimate and inversely 

related to the factor volatility. The Shanken correction factor is larger when comparing to 

Lettau and Ludvigon’s (2002) results, due to low factor volatility. It should be noted that the 

standard CAPM predicts a zero intercept, but the models in this paper do not. It can be easily 

verified by equation (6). In fact, the intercepts (  ) in most models are positive and 

significant. 

Table 1.1 presents the traditional CAPM regression results corresponding to equation (19); 

and we see that the standard CAPM (first row) fails miserably. The 2
R  is only 0.055. Not 

only is the coefficient of risk premium insignificant, its sign (-0.8) is incorrect. However, 

Table 1.1 also shows that GARCH type and SV models show significant improvement. The 

model predicts a positive consumption volatility and negative market return volatility 

coefficient. Most of the conditional consumption volatility coefficients are significant after 

Shanken correction. For instance, the GARCH and TGARCH consumption volatility 

coefficients are significant even after adjusting for Newey-West and Shanken correction 

error. Our result, is by large consistent with the model prediction. Athough no conditional 

market volatility coefficient is significant, Table 2.1 shows that the conditional consumption 

and market volatility coefficients are jointly significant. For GARCH, TGARCH and HRS, 

the BY conditional equity premium are jointly significant after Newey-West and Shanken 

correction. 

Following Jagannathan and Wang (1996), and Lettau and Ludvigson (2001), 2
R  is used as 

an informal and intuitive measure - which shows the fraction of the cross-sectional variation 

of average returns that can be explained by the model. The 2
R  range is 0.14 - 0.55. The best 

fitting model is GARCH, with 2
R  equal to 0.55. TGARCH model prediction is similar, 

though 2
R  is slightly lower, the size of coefficients are larger, and the market volatility 

coefficient is significant at   equal to 10%. The GARCH type models outperform the SV 

models in all cases. Coefficients of the former model are also more likely to be correct. It 

means that either stochastic consumption volatility fails to explain equity premium, or that 

stochastic volatility fails to capture trending behavior in low frequency data. While quarterly 

data in general exhibits trend behavior, high-frequency data do not. Stochastic volatility is 

usually modelled to mimic return change in an infinitely small time horizon, which is 

believed to be trendless. Hence, GARCH type models are able to capture the trend behavior 

of quarterly time series. 

The Fama and French (1993) result is replicated in Table 1.2 (corresponding to equation 

                                                      
8 The quantity of risk i.e., β is a generated series from time series regression. Thus the OLS standard error is incorrect. 



(20)). We find that 2
R  is around 80%; the intercept and HML are significant-which are the 

same as Lettau and Ludvigosn (2002) and Fama and French (1993). However, by using data 

over a longer period, the sign of risk premium is no longer correct. When replacing market 

premium with consumption and market volatility, the same pattern is observed. After 

adjusting for small sample bias, HML coefficient is still significant, but the sign of 

consumption volatility is incorrect. The coefficient of EGARCH and Durbin-Koopman 

consumption coefficients are significant at   equal to 10%. More importantly, all GARCH 

and SV models slightly outperform the standard Fama-French model. The 2
R  of EGARCH is 

0.84, 5% higher than that of Fama-French. Table 2.2 reports the joint significance test results. 

In all cases (except TGARCH), the null hypothesis is rejected.  

Lettau and Ludvigson (2001) argue that including      and its interaction with risk 

premium does not improve predictive power of their model. The same result is replicated in 

Table 1.3 with longer span of data. The 2
R  is 0.06 when the scale factor      interact with 

market return. All coefficients are insignificant after adjusting for small sample error. 

However, this model performance is greatly improved once using the BY equity preimum. In 

the GARCH case, both conditional consumption and market volatility coefficients are 

significant. The 2
R  is 0.62. 

Table 1.4 shows that the forecasting variable      fails to capture cross-sectional returns 

difference. The 2
R  is as low as 0.08 and the sign of market return coefficient remains 

incorrect. After using the BY theoretical conditional preimum, the model performance is 

significantly improved. We find that the coefficient signs of GARCH models are all correct. 

An interesting finding is that EGARCH model performance is greatly enhanced, once      

enters the equation as a separate variable. The 2
R  of EGARCH is as high as 74%, increasing 

three-fold when compared to Table 1.3. 

The full Lettau and Ludvigson scaled factor model results are reproduced in Table 1.5 

(first row) using more recent data, in which the model is augmented with labor income 

growth and its interaction with     . The 2
R  is as high as 0.71, and further increases once 

market premium is replaced by consumption and market return volatilities. Most of the 

coefficients have the correct sign. The consumption and market volatility coefficients of 

EGARCH are individually and jointly significant after adjusting for Shanken correction. The 
2

R (0.85) is highest among all regression models in this paper. Therefore, it can be concluded 

that EGARCH is the best fitting model in this paper. One plausible explanation is that the 

declining EGARCH consumption volatility is consistent with declining equity premium in 

recent decades. Hence, while Bansal and Yaron (2004) explain the declining premium by 

calibration, we provide statistical evidence to support their claim. 

In Lettau and Ludvigson (2001) analysis, they fail to show significance of      - a factor 

that the authors claim that would summarize future investment opportunity. They show that      interacting with labor income growth is significant and increases the 2
R sharply. 



However, if the BY theoretical equity premium is true, it should render these instruments 

redendent. In another word, when a consistent estimator of the conditional equity premium is 

available, the instrumental variables will not be necessary.   

Table 2.3 reports the joint hypothesis testing of Lettau and Ludvigson (2001) instrumental 

variables(     interacting with conditional consumption and market volatilities), 

corresponding to tables 1.3-1.5. For instance, the first column of table 1.3 is a joint test of 

sixth and seventh columns of table 1.3. The 2  statistics are corrected for cross-section 

heteroskedasticity, Newey-Wesley standard error, and then adjusted both for Shanken 

correction. The 5% critical value is 5.99. The first column corresponds to the 2  statistics of 

joint hypothesis testing of table 1.3 using various GARCH and SV models. The second and 

third columns are those of table 1.4 and 1.5, respectively. Clearly, Table 2.3 shows that, in all 

cases, once the standard error is corrected by Shanken method, no instrumental variables are 

significant. This result lends support to conditional consumption and market volatility as a 

reliable measure of conditional risk premium. 

 

6.  Discussion 

An optimization-based regression model is estimated in this paper. We propose estimating 

the conditional equity premium directly by conditional consumption and market return 

volatilities. Most of the coefficient signs are correct. If 2
R  is used as criteria, the volatility 

models outperform standard, CAPM. The EGARCH model, once augmented with Lettau and 

Ludvigson’s (2002) scaled factor, outperforms other models. In various 2  tests, it is shown 

that the theoretical premium renders all instrumental variables redundent, providing support 

for the BY model.  

This study is different from the current research on the Bansal and Yaron (2004) models 

that those papers attempt to estimate some of the parameters in the general equilibrium 

model. For instance, Constantinides and Ghosh (2011) estimate the intertemporal elastcity of 

substitution from the Bansal and Yaron (2004) Euler equation using aggregate U.S 

consumption and dividend growth from 1931-2009. The original Bansal and Yaron (2004) 

Euler equation is a function of two unobservable latent state variables. Through some form of 

affine transformation, Constantinides and Ghosh (2011) show that the Euler equation is a 

function of observale aggregate log price-dividend ratio and log risk free rate. The key 

finding is that the Bansal and Yaron (2004) model requires higher consumption and dividend 

growth persistence than the observed data. Bansal et al. (2012) found supporting evidence for 



the Long-Run Risks  (LRR) model – a variant of Bansal and Yaron (2004). Using annual 

consumption and asset price data from 1930-2008, the authors find that the first and second 

calibrated moments match strongly to the actual U.S data; even the lower order 

autocorrelations fall insider the confidence band. However, Marakani (2009) demonstrates 

that, by variance ratios test, the LRR model implications are inconsistent with post-1929 U.S 

data. He contends that early studies fail to address the time aggregation bias inherent in the 

data. Other related empirical studies include Colacito and Croce (2011), Hansen et al. (2008), 

and Bansal et al. (2012). In essence, the above analyses are still calibration. 

We provide a simple direct statistical method to test the validity of the BY model which 

depends on the parameter significance and coefficient of variation. In order to faciliate 

comparison with the existing studies, we are using the U.S data. An alternative to the Fama-

MacBeth method is the GMM. However, we are estimating a linear factor model instead of 

the nonlinear Euler equations; and the potential estimation error has been adjusted by 

Shanken and Newey-West correction; we believe that there might not be too much efficiency 

gain from GMM 

There are three limitations of this study. 1. Robustness remains as an issue. Lettau and 

Ludvigson (2001) fail to justify why only      interacting labor income growth can explain 

return differences; we need a justification to explain why the EGARCH model performance 

greatly enhance once      is introduced. 2. While there is a large literature comparing the 

preditive power of  GARCH to SV models, to our knowledge, there is little comparison of 

these two models as explanatory variables. 3. The conditional volatilities are generated series 

that even the Shanken and Newey-West correction do not make adjustment for this 

estimation error. The standard error reported in section 5.2 can at best be regarded as a lower 

bound.   

Current empirical studies of the Bansal and Yaron (2004) LRR models focus on 

calibration using U.S data. Future research can test the model validity by adopting statistical 

approach like this paper and using international data.  
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Appendix 

 
Figure 1.1 Estimated GARCH Consumption (Quarterly) Volatility 

 
Source: The (log) consumption growth data are available from Ludvigson and Lettau’s website -http://www.econ.nyu.edu/user/ludvigsons/. 

The first-differenced time series is used as input for a GARCH(1,1) process.  

 

Figure 1.2 Estimated EGARCH Consumption (Quarterly) Volatility 

 
Source: The (log) consumption growth data are available from Ludvigson and Lettau’s website -http://www.econ.nyu.edu/user/ludvigsons/. 
The first-differenced time series is used as input for a EGARCH(1,1) process.  
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Figure 1.3 Estimated TGARCH Consumption (Quarterly) Volatility 

 
Source: The (log) consumption growth data are available from Ludvigson and Lettau’s website -http://www.econ.nyu.edu/user/ludvigsons/. 

The first-differenced time series is used as input for a TGARCH(1,1) process.  

 

Figure 1.4 Estimated Stochastic (Harvey, Ruiz and Shephard, 1994) Consumption 

(Quarterly) Volatility 

 
Source: The (log) consumption growth data are available from Ludvigson and Lettau’s website -http://www.econ.nyu.edu/user/ludvigsons/. 

The first-differenced time series is used as input and estimated by the Harvey, Ruiz and Shephard (1994) process.  
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Figure 1.5 Estimated Stochastic (Durbin and Koopman, 1997) Consumption (Quarterly) 

Volatility 

 
Source: The (log) consumption growth data are available from Ludvigson and Lettau’s website -http://www.econ.nyu.edu/user/ludvigsons/. 

The first-differenced time series is used as input and estimated by the Durin and Koopman (1997) process.  
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Figure 2.1 Estimated GARCH Market (Quarterly) Volatility 

 

Source: The U.S Market data are available from Fama’s website - http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

The first-differenced time series is used as input for a GARCH(1,1) process.  

 

Figure 2.2 Estimated EGARCH Market (Quarterly) Volatility 

 
Source: The U.S Market data are available from Fama’s website - http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

The first-differenced time series is used as input for a EGARCH(1,1) process.  
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Figure 2.3 Estimated TGARCH Consumption (Quarterly) Volatility 

 
Source: The U.S Market data are available from Fama’s website - http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.  

The first-differenced time series is used as input for a TGARCH(1,1) process.  

 

 

Figure 2.4 Estimated Stochastic (Harvey, Ruiz and Shephard, 1994) Market (Quarterly) 

Volatility 

 

 

 
Source: The U.S Market data are available from Fama’s website - http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.  

The first-differenced time series is used as input and estimated by the Harvey, Ruiz and Shephard (1994) process.  
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Figure 2.5 Estimated Stochastic (Durbin and Koopman, 1997) Market (Quarterly) 

Volatility 

 
Source: The U.S Market data are available from Fama’s website - http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

The first-differenced time series is used as input and estimated by the Durin and Koopman (1997) process.  
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Table 1.1 Fama-MacBeth Regressions using 25 Fama-French Portfolios:  

CAPM 

Volatility Model Intercept 
2

1t,c   
2

1t,m   vmR  2R  

Coefficient 4.4   -0.8 0.055 

T-value (5.85)*   (-1.18)  

 (5.82)
# 

  (-0.87)  

 (4.96)
+ 

  (-0.74)  

 (4.93)
&  

  (-0.64)  

      

GARCH      

Coefficient 3.53 0.094 -0.72  0.55 

T-value (7.33) (8.4) (-2.6)   

 (3.23) (3.7) (-1.3)   

 (5.85) (3.87) (-1.57)   

 (2.6) (1.78 (-0.69)   

      

EGARCH      

Coefficient 4.06 -0.02 -0.63  0.14 

T-value (9.08) (-0.69) ( -1.68)   

 (8.08) (-0.61) (-1.44)   

 (6.9) (-1.42) (-1.14)   

 (6.14) (-1.21) (-.1.0)   

      

TGARCH      

Coefficient 3.75 0.14 -1.94  0.54 

T-value (8.68) (5.78) (-3.49)   

 (4.52) (2.97) (-1.8)   

 (6.84) (3.81) (-2.28)   

 (3.56) (1.75) (-1.18)   

      

HRS      

Coefficient 3.13 -0.26 4.0  0.21 

T-value (15.44) (-2.13) (1.55)   

 (9.72) (-1.34) (0.97)   

 (5.13) (-2.94) (0.85)   

 (3.24) (-1.85) (0.54)   

      

DK      

Coefficient 3.6 0.055 1.62  0.2 

T-value (26.93) (0.76) (2.72)   

 (16.1) (0.45) (1.62)   

 (5.09) (1.33) (2.53)   

 (3.04) (0.79) (1.51)   

      



2

1t,c   and 
2

1t,m   are the estimated conditional consumption and market volatilities 

respectively. vmR  is the value-weighted U.S. market return; 

* t statistics adjusted for cross-section heteroskedasticiy; 

 
#
 adjusted for heteroskedasticiy  and Shanken correction;  

+
 Newey-West adjusted standard error; 

&
 Newey-West and Shanken adjusted standard error. 

  



Table 1.2 Fama-MacBeth Regressions using 25 Fama-French Portfolios:  

Fama-French Factors 
Volatility 

Model 
Intercept 

2

1t,c   
2

1t,m   vmR  SMB HML 2R  

Coefficient 4.02   -1.19 0.61 1.33 0.79 

T-value (4.23)*   (-1.28) (3.59) (7.04)  

 (4.05)
# 

  (-1.04) (1.38) (2.97)  

 (3.82)
+ 

  (-0.98) (1.47) (3.23)  

 (3.65)
& 

  (-0.84) (1.03) (2.26)  

        

GARCH        

Coefficient 3.59 -0.014 -0.45  0.65 1.29 0.8 

T-value (9.65) (-0.97) (-1.43)  (4.18) (7.49)  

 (8.4) (-0.83) (-1.2)  (1.5) (2.9)  

 (6.86) (-1.03) (-1.49)  (1.56) (3.14)  

 (5.98) (-0.88) (-1.26)  (1.04) (2.08)  

        

EGARCH        

Coefficient 3.04 -0.04 -0.28  0.67 1.26 0.84 

T-value (13.48) (-2.3) (-0.79)  (5.5) (8.63)  

 (11.3) (-1.88) (-0.64)  (1.6) (2.8)  

 (5.84) (-3.04) (-0.65)  (1.63) (3.04)  

 (4.88) (-2.47) (-0.53)  (1.05) (1.96)  

        

TGARCH        

Coefficient 3.31 -0.03 -0.31  0.62 1.31 0.79 

T-value (12.8) (-0.71) (-0.51)  (3.8) (6.76)  

 (11.5) (-0.64) (-0.45)  (1.4) (2.9)  

 (6.74) (-0.9) (-0.49)  (1.51) (3.17)  

 (6.19) (-0.81) (-0.44)  (1.03) (2.17)  

        

HRS        

Coefficient 3.05 -0.08 -1.97  0.64 1.33 0.81 

T-value (15.0) (-1.03) (-0.67)  (4.27) (7.33)  

 (13.2) (-0.9) (-0.6)  (1.5) (2.9)  

 (5.54) (-1.49) (-1.09)  (1.56) (3.23)  

 (4.87) (-1.27) (-0.92)  (1.04) (2.16)  

        

DK        

Coefficient 3.06 -0.05 -0.33  0.69 1.3 0.82 

T-value (15.45) (-1.57) (-0.74)  (4.72) (7.86)  

 (13.0) (-1.3) (-0.6)  (1.6) (2.9)  

 (5.65) (-2.29) (-0.9)  (1.71) (3.16)  

 (4.74) (-1.85) (-0.74)  (1.1) (2.05)  

        



2

1t,c   and 
2

1t,m   are the estimated conditional consumption and market volatilities 

respectively. vmR  is the value-weighted U.S. market return; 

* t statistics adjusted for cross-section heteroskedasticiy; 

 
#
 adjusted for heteroskedasticiy  and Shanken correction;  

+
 Newey-West adjusted standard error; 

&
 Newey-West and Shanken adjusted standard error. 

  



Table 1.3 Fama-MacBeth Regressions using 25 Fama-French Portfolios: 

CAPM with      as Instrument 

Volatility 

Model 
Intercept 

2

1t,c   
2

1t,m   vmR  
                

2

1t,c   
2

1t,m   vmR  2R  

         

Coefficient 4.72   -1.08   -0.13 0.06 

T-value (2.78)*   (-0.68)   (-0.21)  

 (2.7) 
# 

  (-0.63)   (-0.2)  

 (6.13)
+ 

  (-1.14)   (-0.46)  

 (6.05)
& 

  (-0.95)   (-0.43)  

         

GARCH         

Coefficient 4.1 0.08 -1.43  0.003 0.05  0.62 

T-value (6.6) (6.19) (-2.86)  (1.12) (1.03)   

 (2.7) (2.5) (-1.17)  (0.46) (0.42)   

 (7.73) (3.95) (-4.0)  (1.82) (1.52)   

 (3.19) (1.65) (-1.64)  (0.75) (0.62)   

         

EGARCH         

Coefficient 4.17 -0.043 -1.62  
-

0.0004 
-0.03  0.25 

T-value (5.01) (-1.32) (-1.92)  (-0.13) (-0.52)   

 (3.02) (-0.8) (-1.15)  (-0.08) (-0.31)   

 (6.96) (-3.31) (-3.15)  (-0.34) (-1.07)   

 (4.19) (-1.94) (-1.88)  (-0.2) (-0.63)   

         

TGARCH         

Coefficient 3.7 0.1 -2.65  0.006 0.08   

T-value (9.48) (2.25) (-3.46)  (1.82) (1.56)   

 (4.3) (1.03) (-1.57)  (0.83) (0.7)   

 (6.35) (1.99) (-4.15)  (2.87) (2.04)   

 (2.91) (0.91) (-1.89)  (1.31) (0.93)   

         

HRS         

Coefficient 4.2 -0.08 6.88  -0.007 0.013  0.49 

T-value (7.05) (-0.68) (3.78)  (-1.17) (0.32)   

 (4.4) (-0.42) (2.3)  (-0.72) (0.19)   

 (5.91) (-1.63) (1.78)  (-1.71) (0.35)   

 (3.67) (-0.99) (1.1)  (-1.05) (0.22)   

         

DK         

Coefficient 3.83 0.07 1.52  -0.003 -0.03  0.23 

T-value (13.29) (1.11) (2.49)  (-0.63) (-0.62)   

 (7.9) (0.66) (1.48)  (-0.37) (-0.36)   

 (6.06) (1.96) (2.93)  (-1.27) (-0.03)   



 (3.6) (1.16) (1.73)  (-0.74) (-0.62)   

         
2

1t,c   and 
2

1t,m   are the estimated conditional consumption and market volatilities 

respectively. vmR  is the value-weighted U.S. market return; 

* t statistics adjusted for cross-section heteroskedasticiy; 

 
#
 adjusted for heteroskedasticiy  and Shanken correction;  

+
 Newey-West adjusted standard error; 

&
 Newey-West and Shanken adjusted standard error. 

  



Table 1.4 Fama-MacBeth Regressions using 25 Fama-French Portfolios: 

CAPM with      and                 as Instruments 

Volatility Intercept      
2

1t,c   
2

1t,m   vmR  
                

2

1t,c   
2

1t,m   vmR  2R  

Coefficient 4.75 -0.006   -1.08   -0.02 0.08 

T-value (3.06)
 *

 (-0.8)
 

  (-0.74)   (-0.36)  

 (2.7) # (-0.72)
   (-0.62)   (-0.32)  

 (6.16) + (-1.47)
   (-1.14)   (-0.75)  

 (5.55) & (-1.29)
   (-0.89)   (-0.65)  

 
 

        

GARCH          

Coefficient 4.01 0.006 0.08 -1.4  0.0023 0.04  0.62 

T-value (6.35) (1.02) (6.69) (-2.8)  (0.97) (0.93)   

 (2.76) (0.44) (2.9) (-1.2)  (0.42) (0.4)   

 (7.42) (1.64) (3.91) (-4.0)  (1.56) (1.36)   

 (3.22) (0.71) (1.59) (-1.73)  (0.67) (0.59)   

          

EGARCH          

Coefficient 1.4 0.002 -0.03 -1.08  -0.0006 -0.02  0.74 

T-value (3.1) (0.36) (-2.77) (-2.46)  (-0.51) (-0.73)   

 (1.35) (0.16) (-1.76) (-1.06)  (-0.22) (-0.32)   

 (2.06) (0.39) (-2.35) (-2.31)  (-0.56) (-0.67)   

 (0.9) (0.17) (-1.0) (-0.99)  (-0.24) (-0.29)   

          

TGARCH          

Coefficient 3.06 0.005 0.008 -2.56  0.001 0.0004  0.73 

T-value (7.59) (1.06) (1.19) (-4.21)  (0.48) (0.01)   

 (3.6) (0.5) (1.09) (-1.97)  (0.23) (0.005)   

 (5.19) (1.23) (1.22) (-4.08)  (0.57) (0.01)   

 (2.5) (0.58) (1.1) (-1.91)  (0.27) (0.0052)   

          

HRS          

Coefficient 4.13 -0.007 -0.09 7.0  -0.007 0.01  0.49 

T-value (4.14) (-1.11) (-0.66) (2.78)  (-1.16) (0.27)   

 (2.6) (-0.72) (-0.41) (1.71)  (-0.68) (0.16)   

 (5.59) (-1.66) (-1.64) (1.86)  (-1.7) (0.32)   

 (3.5) (-1.04) (1.15) (-1.02)  (-1.0) (0.19)   

          

DK          

Coefficient 3.6 -0.015 0.056 1.33  -0.008 -0.08  0.32 

T-value (13.14) (-2.09) (0.87) (2.24)  (-1.85) (-1.67)   

 (6.02) (-0.95) (0.4) (1.03)  (-0.85) (-0.76)   

 (6.03) (-2.69) (1.72) (2.71)  (-2.0) (-2.16)   

 (2.8) (-1.23) (0.78) (1.23)  (-1.19) (-0.99)   

          



2

1t,c   and 
2

1t,m   are the estimated conditional consumption and market volatilities 

respectively. vmR  is the value-weighted U.S. market return; 

* t statistics adjusted for cross-section heteroskedasticiy; 

 
#
 adjusted for heteroskedasticiy  and Shanken correction;  

+
 Newey-West adjusted standard error; 

&
 Newey-West and Shanken adjusted standard error. 

  



Table 1.4 Fama-MacBeth Regressions using 25 Fama-French Portfolios: 

Ludvigson and Lettau’s Scaled Factor Model 

Volatility Intercept      
2

1t,c   
2

1t,m   vmR  y  
                

2

1t,c   
2

1t,m   vmR  y  2R  

Coefficient 6.6 -0.004   -3.64 0.01   -0.08 0.0002 0.71 

T-value (9.47)
 *

 (-0.69)
 

  (-5.32) (2.56)   (-2.81) (3.33)  

 (3.7) # (-0.27)
 

  (-3.6) (0.99)   (-1.08) (1.3)  

 (6.4) + (-1.11)
 

  (-3.11) (3.07)   (-2.26) (3.89)  

 (2.45) & (-0.43)
 

  (-1.18) (1.19)   (-0.87) (1.5)  

 
 

          

GARCH            

Coefficient 3.7 0.005 0.04 -1.3  0.003 0.002 0.033  0.0001 0.67 

T-value (6.53) (0.83) (1.9) (-2.87)  (0.76) (0.67) (0.64)  (1.73)  

 (3.3) (0.42) (0.96) (-1.45)  (0.38) (0.34) (0.33)  (0.88)  

 (6.69) (1.36) (2.1) (-3.77)  (1.37) (1.16) (1.03)  (2.99)  

 (3.4) (0.7) (1.06) (-1.9)  (0.69) (0.58) (0.52)  (1.51)  

            

EGARCH            

Coefficient 2.42 -0.005 -0.07 -1.46  -0.003 -0.002 -0.06  
0.0000

8 
0.85 

T-value (5.19) (-0.89) (-5.2) (-4.35)  (-0.78) (-0.98) (-1.5)  (1.78)  

 (2.22) (-0.38) (-2.2) (-1.84)  (-0.33) (-0.42) (-0.67)  (0.76)  

 (3.68) (-1.32) (-4.17) (-2.71)  (-1.06) (-1.48) (-1.97)  (2.43)  

 (1.57) (-0.56) (-1.76) (-1.15)  (-0.45) (-0.63) (-0.84)  (1.03)  

            

TGARCH            

Coefficient 3.06 0.004 -0.02 -2.58  0.002 0.0004 -0.013  0.0001 0.74 

T-value (6.41) (0.55) (-0.33) (-4.23)  (0.29) (0.14) (-0.25)  (1.74)  

 (2.96) (0.25) (-0.15) (-1.93)  (0.14) (0.06) (-0.12)  (0.8)  

 (4.56) (0.88) (-0.48) (-3.59)  (0.46) (0.2) (-0.37)  (2.56)  

 (2.1) (0.4) (-0.22) (-1.65)  (0.21) (0.09) (-0.17)  (1.17)  

            

HRS            

Coefficient 2.7 -0.006 -0.2 -0.52  0.003 -0.005 -0.03  0.0001 0.74 

T-value (4.8) (-1.08) (-2.07) (-0.16)  (1.64) (-0.9) (-0.69)  (1.64)  

 (2.16) (-0.55) (-1.04) (-0.08)  (0.82) (-0.45) (-0.35)  (0.82)  

 (3.95) (-1.38) (-3.02) (-0.23)  (1.26) (-1.27) (-0.63)  (2.71)  

 (2.0) (-0.69) (-1.51) (-0.11)  (0.63) (-0.64) (-0.32)  (1.36)  

            

DK            

Coefficient 2.4 -0.009 -0.004 1.06  0.011 -0.004 -0.04  0.0001 0.62 

T-value (4.4) (-1.88) (-0.15) (2.41)  (3.16) (-1.64) (-1.29)  (3.2)  

 (2.41) (-0.58) (-0.04) (0.8)  (1.11) (-0.45) (-0.43)  (0.84)  

 (4.44) (-1.88) (-0.15) (2.41)  (3.16) (-1.64) (-1.29)  (3.2)  

 (1.71) 
(-0.72) 

 
(-0.05) 

(0.92) 

 
 

(1.22) 

 

(-0.63) 

 

(-0.5) 

 
 

(1.2) 

 
 



            

y  denotes log labor income growth. 
2

1t,c   and 
2

1t,m   are the estimated conditional consumption and market volatilities 

respectively. vmR  is the value-weighted U.S. market return; 

* t statistics adjusted for cross-section heteroskedasticiy; 

 
#
 adjusted for heteroskedasticiy  and Shanken correction;  

+
 Newey-West adjusted standard error; 

&
 Newey-West and Shanken adjusted standard error. 

  



Table 2.1 Fama-MacBeth Regressions using 25 Fama-French Portfolios 

CAPM 

Tests for Joint Significance 

Volatility Model 

 

2

1, tc  and 
2

1, tm  

99.52

c   

GARCH 

 
76.5

* 

 14.6
# 

 14.1
+ 

 2.7
& 

  

EGARCH 

 
4.5 

 3.3 

 2.5 

 1.9 

  

TGARCH 

 
61.5 

 16.1 

 61.5 

 16.13 

  

HRS 

 
7.4 

 2.9 

 14.0 

 5.5 

  

DK 

 
7.7 

 2.7 

 7.4 

 2.6 
2  statistics for testing joint significance of 

2

1t,c   and 
2

1t,m   coefficient from Table 1.1. 

The critical value is 5.99. 

* t statistics adjusted for cross-section heteroskedasticiy; 

 
#
 adjusted for heteroskedasticiy  and Shanken correction;  

+
 Newey-West adjusted standard error; 

&
 Newey-West and Shanken adjusted standard error. 

 

  



 

Table 2.2 Fama-MacBeth Regressions using 25 Fama-French Portfolios 

Fama French Factors 

Tests for Joint Significance 

Volatility Model 

 

2

1, tc  and 
2

1, tm  

99.52

c   

GARCH 

 
2.60

* 

 1.88
# 

 3.54
+ 

 2.52
& 

  

EGARCH 

 
7.6 

 4.9 

 9.65 

 6.12 

  

TGARCH 

 
0.93 

 0.74 

 0.95 

 0.77 

  

HRS 

 
1.25 

 0.95 

 3.01 

 2.2 

  

DK 

 
2.5 

 1.69 

 5.23 

 3.43 
2  statistics for testing joint significance of 

2

1t,c   and 
2

1t,m   coefficient from Table 1.2. 

The critical value is 5.99. 

* t statistics adjusted for cross-section heteroskedasticiy; 

 
#
 adjusted for heteroskedasticiy  and Shanken correction;  

+
 Newey-West adjusted standard error; 

&
 Newey-West and Shanken adjusted standard error. 

  



Table 2.3 Fama-MacBeth Regressions using 25 Fama-French Portfolios 

 
CAPM with       

as Instrument 

CAPM with      and                 as 

Instruments 

Ludvigson and 

Lettau’s Scaled Factor 
Model 

Volatility Model 

 
                

(Table 1.3) 
                

(Table 1.4) 
                

(Table 1.5) 

GARCH 

 
1.68* 0.99 0.45 

 0.3
# 

0.19 0.13 

 6.87
+ 

3.8 1.9 

 1.15
# 

0.7 0.47 

    

EGARCH 

 
8.01 1.57 23.6 

 2.8 0.28 4.17 

 7.34 0.6 6.94 

 2.6 0.11 1.25 

    

TGARCH 

 
4.05 3.9 3.89 

 0.85 0.86 0.82 

 18.15 5.6 7.2 

 3.77 1.23 1.5 

    

HRS 

 
3.4 0.68 0.8 

 1.28 0.26 0.2 

 5.43 3.22 1.78 

 2.05 1.19 0.45 

    

DK 

 
0.4 2.78 1.4 

 0.14 0.58 0.2 

 1.78 5.02 3.88 

 0.62 1.05 0.57 
2  statistics for testing joint significance of     ∙ 2

1t,c   and     ∙ 2

1t,m   coefficient for 

Tables 1.3-1.5. The critical value is 5.9. 

* t statistics adjusted for cross-section heteroskedasticiy; 

 
#
 adjusted for heteroskedasticiy  and Shanken correction;  

+
 Newey-West adjusted standard error; 

&
 Newey-West and Shanken adjusted standard error. 

 

 


