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Abstract. We develop a model of household demand for frequently purchased consumer goods that are

branded, storable and subject to stochastic price fluctuations. Our framework accounts for how

inventories and expectations of future prices affect current period purchase decisions. We estimate our

model using scanner data for the ketchup category. Our results indicate that price expectations and the

nature of the price process have important effects on demand elasticities. Long-run cross price elasticities

of demand are more than twice as great as short-run cross price elasticities. Temporary price cuts (or

‘‘deals’’) primarily generate purchase acceleration and category expansion, rather than brand switching.
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The goal of this paper is to develop and estimate a dynamic model of consumer

choice behavior in markets for goods that are: (1) frequently purchased, (2) branded,

(3) storable, and (4) subject to frequent price promotions, or ‘‘deals.’’ In such an

environment, forward-looking behavior of consumers is important. Specifically,

optimal purchase decisions will depend not only on current prices and inventories,

but also on expectations of future prices. There is no single ‘‘price elasticity of

demand.’’ Rather, the effect of price changes on consumer demand will depend upon

how the price change effects expectations of future prices. This depends on the extent

to which consumers perceive the price change to be permanent or transitory, and the

*An earlier draft of this paper was presented under the title ‘‘Consumer Price and Promotion

Expectations: Capturing Consumer Brand and Quantity Choice Dynamics under Price Uncertainty.’’
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extent to which they expect competitor reaction. These, in turn, depend on the

stochastic process for prices in the market (see Marshak, 1952; Lucas, 1976).

In recent years a wealth of supermarket scanner data have become available that

document sales of frequently purchased consumer goods. In a number of instances,

panels of households have been provided with individual ID cards, so that all their

purchases over long periods of time can be tracked. These data provide a valuable

opportunity to study consumer choice dynamics. We will argue that such analysis is

important not only for marketers wishing to predict consumer response to

promotions, but also for economists interested in firm pricing behavior, antitrust

policy, welfare gains from introduction of new goods, construction of price indexes,

etc.

Since the pioneering work of Guadagni and Little (1983), an extensive literature

has emerged that uses scanner data to study consumer choice behavior. But for the

most part, this literature has relied on static models of consumer behavior, in the

sense that consumers make decisions to maximize current period utility. Much of this

literature has dealt with the issue of choice ‘‘dynamics,’’ where dynamics is used to

refer to purchase carry over effects (or habit persistence)—i.e., does past purchase of

a brand increase a consumer’s current period utility from purchase of that brand

(see, for example, Keane, 1997a)? But none of the published literature examines

consumer choice ‘‘dynamics’’ in the sense of how expectations of future prices

influence the current period purchase decisions of forward looking consumers.1

Understanding the role of price expectations in consumer purchase behavior is

important for many reasons. For instance, evaluations of the welfare effects of

mergers and welfare gains from introduction of new goods (see Hausman, 1997), rely

on estimates of own and cross-price elasticities of demand for the goods in question.

But the existing literature only contains static elasticity estimates. Such estimates do

not account for how a price cut today affects consumer expectations of future prices,

or how elasticties may differ for price cuts that are perceived to have different

degrees of persistence.2 We provide a framework for estimating dynamic price

elasticities of demand for branded frequently purchased consumer goods. We will

show that accounting for dynamics can have large effects on own and cross-price

elasticity estimates.

1 Erdem and Keane (1996) develop a model of forward looking consumers, but the focus there is on

learning about brand quality in an environment where consumers have uncertainty about brand

attributes. This generates a motive for trial or experimental purchases of brands to facilitate learning.

Erdem and Keane model prices as i.i.d. over time, so changes in current prices do not alter expected

future prices.

2 In ‘‘market mapping’’ methods (see Elrod, 1988) cross-price elasticities of demand are critical for the

evaluation of the positioning of products in unobserved (or latent) attribute space. Srinivasan and

Winer (1994) and Erdem (1996) discuss how ‘‘dynamics’’ in the sense of habit persistence may distort

such evaluations. How dynamics in the sense of price expectation formation might distort such

evaluations has not been considered.
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More generally, our framework can be used to predict how consumers’ purchase

decision rules would respond to changes in the entire retail pricing process (such

as, for example, a shift from high/low (H/L) pricing to ‘‘everyday low pricing’’ or

EDLP). To our knowledge there is no prior structural work that enables one to

predict consumer response to ‘‘major’’ pricing policy changes.3 This problem is

apparently understood by marketing practitioners. For example, in a criticism of

existing models of promotion response Struse (1987), a marketing manager at

General Mills, observed that: ‘‘While analysis of past events may be . . . useful,

the real need is to better predict the future—especially under interesting

circumstances. That is, the manager needs a forecasting method which will be

robust and discriminating over a wider range of conditions than actually seen in

the market since he or she needs to explore alternatives which go beyond past

practice . . . ’’.

Understanding consumers’ dynamic responses to pricing policy changes may also

be important for understanding industry dynamics. Existing dynamic oligopoly

models that endogenize price (see, for example, Berry et al., 1995) typically assume

that consumer behavior is static. This may be a serious misspecification in markets

where purchases are made frequently, and changes in current prices lead to

important changes in expected future prices. We think work like ours will eventually

prove useful for researchers seeking to elaborate the consumer side of dynamic

oligopoly models.4

Understanding how forward looking consumers respond to temporary price cuts

is important for retailers and brand managers, who want to know if price cuts merely

cause consumers to accelerate purchases, or whether they also induce brand

switching and/or increased category sales. Furthermore, the design of intertemporal

price discrimination strategies requires an understanding of how changes in the

whole price process affect consumer demand (e.g., would more frequent promotion

generate sales to new consumers, or simply alter the purchase timing of existing

consumers?).

As a final example, an understanding of the dynamics of consumer purchase

behavior is important for the construction of price indices. To some extent, this

involves the random sampling of posted supermarket prices, which will capture

3 See Keane (1997b) for a discussion of this issue. To give an example of the problem, we would expect

that price elasticities of demand would differ between an EDLP regime and a H/L regime for a variety

of reasons. For instance, a price cut has different effects on expected future prices under each regime,

and the expected duration until the next price cut is different under each regime. As a result, one can’t

use estimates obtained under the H/L regime to predict behavior under the EDLP regime, unless one

uses a structural model like ours.

4 The computational capacity and econometric methods needed to estimate equilibrium models with

forward-looking behavior on both the firm and consumer side are probably several years away. But we

should note that Ching (2002) has estimated a model of the pharmaceutical industry with dynamics on

both sides of the market in two stages. First, the demand side model is estimated jointly with an

approximate reduced form equation for firm’s pricing policy function. In a second stage the remaining

supply side parameters are calibrated, treating the demand side parameters as known.
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average offer prices.5 But, if a large share of purchases occurs on promotion, then the

average offer price of a good is not the relevant measure of its typical cost to

consumers. In fact, a widespread shift from H/L pricing to EDLP, such as occurred

in the US in the late 1980s and early 1990s (see Lal and Rao, 1997, for a discussion),

could cause the average posted price to fall even though the average purchase price

does not, thus distorting price level estimates based on random sampling of posted

prices. Our framework allows one to estimate the relationship between mean offer

and accepted prices under alternative price processes.

In this paper, we estimate our model of consumer brand and quantity choice

dynamics on scanner panel data provided by A.C. Nielsen. We use the data on

household ketchup purchases. We chose the ketchup category for two reasons. First,

it satisfies the four criteria discussed at the outset. In particular, there are frequent

price promotions for ketchup. Pesendorfer (2002) finds that there is little evidence of

seasonality in ketchup demand or prices, and that cost factors seem unrelated to

short run price movements. He argues that a type of inter-temporal price

discrimination strategy on the part of firms, in which the retailers play mixed

strategies, most plausibly explains frequent week-to-week price fluctuations for

ketchup. We agree with this analysis, which supports the view that price movements

are exogenous from the point of view of consumers. We believe that similar factors

are at work in most frequently purchased consumer goods markets.

Second, of the goods that satisfy our four criteria and for which scanner data have

been released for public use, ketchup is the easiest category to work with. This is

because the number of brand/size combinations for ketchup is lower than for the

other available categories (there are four brands—Heinz, Hunts, Del Monte and the

Store brand—that come in three to five sizes each, giving a choice set with 16

elements). We felt it was sensible to first apply our framework to this category before

tackling categories with more brands and/or sizes (such as yogurt, toilet paper,

cereal, etc.).

Our estimated model provides a very good fit to all the important dimensions of

the data, including brand shares, size shares, purchase frequency, inter-purchase

times, purchase hazard rates, brand switching matrices, and the distributions of

accepted prices. In our view, this is a necessary condition in order for the model’s

predictions to be credible.

We use simulations of the model to evaluate the importance of price expectations.

For instance, we can simulate the effect of a temporary price cut for one brand, both

allowing for the effect of this price cut on expected future prices, and holding

expectations fixed. Since the price process for ketchup exhibits substantial

persistence, we find, as one would expect, that the current period increase of own

brand sales in response to a temporary price cut is dampened by the expectations

5 The BLS website (see www.bls.gov/cpi/cpifact2.htm) contains some description of the random

sampling of prices at selected department stores, supermarkets, service stations, doctors’ offices, rental

units, etc. that underlies construction of the CPI.
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effect. However, this dampening effect is rather modest. For example, it is about 10%

for the leading brand—Heinz. Interestingly, however, we find that the cross-price

effects that account for expectations are roughly twice as large as cross-price effects

holding expectations fixed. For example, the percentage drop in current period sales

for Hunts, Del Monte and the Store brand are roughly twice as great if we account

for the effect of the Heinz price cut on expected future prices of all the brands.

Two factors drive this key result: (1) if Heinz’ price is lowered today it leads

consumers to also expect a lower Heinz price tomorrow. This lowers the value

function associated with purchase of any brand other than Heinz today. (2) Given

the price dynamics in the ketchup market, a lower price of Heinz today leads

consumers to expect competitor reaction, so it lowers the expected prices of the other

brands tomorrow. This further lowers the value associated with purchase of those

brands today.

Obviously, the quantitative significance of these two effects depends on the price

process. Thus, a key point is that cross-price elasticities do not (by themselves) reveal

the similarity of differentiated products in attribute space (or their degree of

competition). The magnitudes of cross-price elasticities also depend on the price

process—because this determines how a price cut for one brand today affects

expected prices of all brands in the future. Given the importance of cross-price

elasticities of demand in such areas as the analysis of mergers and the valuation of

new goods, our results clearly show that accounting for consumer price expectations

may be critical in these areas.

1. Background and literature review

Research on joint modeling of consumer brand and quantity decisions has a long

tradition in both marketing and economics. Hanneman (1984) developed a unified

framework for formulating econometric models of discrete (e.g., brand choice) and

continuous choices (e.g., quantity decisions) in which the discrete and continuous

choices both flow from the same underlying utility maximization decision.6 Dubin

and McFadden (1984) used such a model to analyze residential electric appliance

holdings and consumption. In marketing, Chiang (1991) and Chintagunta (1993)

6 In Hanneman’s framework, the commonly observed phenomenon that consumers rarely (if ever) buy

multiple brands of a frequently purchased product on a single shopping occasion is shown to arise if

the brands are perfect substitutes, quantity is infinitely divisible and pricing is linear. In that case, the

brand and quantity decisions separate: In stage 1 it is optimal to choose the brand with the highest

utility per unit, and in stage 2 the consumer chooses the number of units conditional on that brand.

Keane (1997b) pointed out that this separation does not go through if available quantities are discrete,

as is the case with the large majority of frequently purchased consumer goods. However, the literature

typically ignores this problem, and assumes quantity is continuous, because of the computational

difficulty involved in modeling choice among a multitude of discrete brand/size combinations.
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also adopted the Hanneman framework and calibrated static models consistent with

random utility maximization on scanner panel data.

All these models assume that consumers are myopic in that they maximize

immediate utility. However, frequently purchased consumer goods typically exhibit

substantial inter-temporal price variation, which suggests that for storable goods

consumer expectations about future prices may play an important role in purchase

timing and quantity decisions. Indeed, the evidence of forward-looking behavior in

frequently purchased consumer goods markets is overwhelming. For example, in

descriptive analyses, both Hendel and Nevo (2001) and Pesendorfer (2002) find that,

conditional on current price, current demand is higher when past prices were higher

or time since last sale is longer (implying that past sales were lower, and hence that

current inventories are lower). This implies that consumers ‘‘stock up’’ on storable

goods when they see a ‘‘deal.’’

Shoemaker (1979) and Ward and Davis (1978) were perhaps the first (of many)

studies to find evidence of ‘‘purchase acceleration,’’ meaning that deals induce

consumers to buy larger than normal quantities. Neslin et al. (1985) found that

advertised price cuts led to both shorter interpurchase time and larger purchase

quantities for coffee. Hendel and Nevo (2001) confirm this for three more products,

and also find that duration to next purchase is longer following a deal purchase. It is

the combination of both increased current purchases and longer duration to next

purchase that one needs forward-looking behavior to explain. While a static model

with an outside good can explain a current increase in category sales in response to a

temporary price cut, the increase in duration to next purchase implies that

consumers time purchases to coincide with prices that are ‘‘low’’ relative to some

inter-temporal standard.

The large literature on ‘‘reference prices,’’ starting with Winer (1986), consistently

finds that consumers base current purchase decisions not just on current prices but

also on how these relate to some inter-temporal pricing standard (i.e., an average or

typical price for the product). This is highly suggestive that expectations of future

prices affect consumer purchase decisions.

There is also clear (recent) evidence that the Lucas Critique is quantitatively

relevant. Mela et al. (1998) examine eight years of data for a frequently purchased

consumer product. During the last six quarters of their data there was a regime shift

where deals became much more frequent. Under the new regime: (1) consumers

bought less often, concentrating their purchases in deal periods, (2) consumers

bought larger quantities when they did buy, and (3) overall sales were roughly

constant. Mela et al. (1997, 1998) conclude that, under the new regime, consumers

‘‘learned to lie in wait for deals.’’ Furthermore, Kopalle et al. (1999) find (for several

products) that increased frequency of promotion reduces ‘‘baseline sales’’ of a brand,

and also increases its price elasticity of demand.

The behavior of retail prices also provides indirect evidence for the importance of

forward-looking behavior by consumers. Both Pesendorfer (2002) and Hong et al.

(2002) point out that it is hard to explain observed serial correlation in retail prices

without consumer stockpiling behavior. In static price discrimination story, a la
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Varian (1980), prices should be i.i.d. over time. In contrast, suppose there exists a

segment of price sensitive consumers who stockpile the good and ‘‘lie in wait for

deals,’’ creating scope for intertemporal price discrimination. As time since the last

sale increases, the number of price sensitive consumers looking to buy grows, which

increases potential revenue from a sale. Eventually, the retailer decides to have a sale,

and then quickly returns price to the ‘‘regular’’ level. This positive duration

dependence in the probability of a deal is in fact the price pattern observed for

frequently purchased storable consumer goods.

In the marketing literature there are two influential papers that examined the

purchase timing, brand choice and quantity decision of consumers for frequently

purchased storable consumer goods. These are Gupta (1988) and Chintagunta

(1993). Gupta models all three decisions, but the decisions are not linked, and there

is no consumer taste heterogeneity. Chintagunta models all three choices in a unified

utility maximization framework, and he allows for consumer taste heterogeneity.

Interestingly, these two papers reach opposite conclusions regarding a key issue:

Gupta concludes that most increased sales from a temporary price cut are due to

brand switching, and that cross-price elasticities of demand are large. In contrast,

Chintagunta finds that most increased sales from a temporary price cut are due to

purchase acceleration by brand loyal consumers, and concludes that cross-price

elasticities of demand are small. The Gupta results are the main evidence in the

literature that is taken as unfavorable for dynamics/stockpiling behavior.

In fact, the contrast between the Gupta (1988) and Chintagunta (1993) results is

exactly what one would expect if forward-looking/stockpiling behavior is important.

The difference in results would then be generated by dynamic selection and

endogeneity bias. To see this, consider the following example. Suppose Brand A has

a deal in period t. Then, the population of people who buy the category at t has an

over representation of people ‘‘loyal’’ to A. In a static logit brand choice model, such

as in Gupta (1988), low price for a brand is therefore correlated with high taste for

the brand. As a result, cross-price effects are overestimated. Chintagunta (1993)

deals with this selection bias because he allows for taste heterogeneity. Indeed, Sun et

al. (2001) show, using simulations, that static choice models without heterogeneity

drastically overstate cross-price elasticities if consumers engage in stockpiling

behavior.

Recently, there have been a number of papers dealing with the issue of potential

endogeneity of prices in consumer choice models (see, for example, Nevo, 2001). In

our view, much of this literature has missed the mark, because it has failed to make a

crucial distinction between endogeneity stemming from aggregate (market) demand

shocks and endogeneity stemming from omitted variables. Frequently purchased

consumer goods typically exhibit price patterns in which prices stay flat for weeks or

months at a time (‘‘regular price’’), and then exhibit short-lived drops (‘‘deals’’). We

find it extremely implausible that these deals are the result of manufacturer,

wholesaler or retailer responses to aggregate taste shocks, for several reasons. Why

would demand for a good like ketchup or yogurt suddenly jump every several weeks

and then return to normal? And how could sellers detect such a jump quickly enough
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to incorporate it into daily or weekly price setting? As we noted earlier, a more

plausible explanation for the observed price variation is some sort of inter-temporal

price discrimination, such as that considered by Pesendorfer (2002) and/or Hong et

al. (2002).

On the other hand, an important reason for endogeneity of prices in demand

models is the failure to account for consumer inventories, which are not observed in

scanner data. If prices are persistent over time and consumers engage in stockpiling

behavior, then inventories will be correlated with current prices. This causes price to

be econometrically endogenous due to the omitted variables problem, even though

price fluctuations are exogenous from the point of view of consumers.7 The correct

way to deal with this problem is to estimate a dynamic demand model, and to

integrate out the unobserved latent inventory levels from the likelihood function.

This is extremely computationally demanding, but it is exactly what we do in this

paper.

In principle, an alternative to our approach would be a BLP procedure using

instruments for price that are uncorrelated with inventories. But the instruments

would have to be correlated with current but not lagged prices, for if they are

correlated with lagged prices they would be related to inventories by construction.

Given the serial correlation in prices, such instruments would be very difficult if not

impossible to find.

To our knowledge there is no published research that structurally estimates a

model of consumer brand and quantity choice dynamics for frequently purchased

storable consumer goods under price uncertainty.8 After our work on this project

was well under way we became aware of ongoing work by Hendel and Nevo (2002),

who develop a structural model that is in some ways similar to ours. In the course of

presenting our model (in the next Section) we will provide some discussion of how

their approach differs from ours.

2. The model

2.1. Overview

In our model, the good is storable, and households get utility from its consumption.

Brands differ in the utility they provide per unit consumed. A key aspect of the

model is that consumers have a per period usage requirement for the good, which is

7 We thank Steve Berry for pointing this out to us.

8 We note that Gönül and Srinivasan (1996) estimated a dynamic model with uncertainty about coupon

availability, using data on the diaper category. But they consider only category choice and not brand

choice. The category price index depends on a weighted average of coupon availability measures across

brands. Prices are assumed equal across brands and over time. They also ignore quantity choice, and

assume that the probability of a stockout depends only on the current purchase decision and not on

the lagged inventory level.
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stochastic, and which is only revealed after the purchase decision is made. Thus,

households run a risk of stocking out of the good if they maintain an inadequate

inventory to meet the usage requirement. There is a cost of stocking out. At the same

time, there are carrying costs of holding inventories, and fixed costs of making

purchases. The prices of each brand evolve stochastically according to a (vector)

stochastic process that is known to consumers.

The model incorporates consumer heterogeneity in two ways: First, we allow for

four types of consumers in terms of their vector of utility evaluations for the brands.

Second, we also allow for four types of consumers in terms of the usage rate. Thus,

there are sixteen types in all. We find that this degree of heterogeneity allows us to fit

the data very well. A novel aspect of our model is that a household’s usage rate type

evolves over time according to a Markov process. A salient feature of the data is that

households will often be frequent purchasers of ketchup for several months, then

stop buying ketchup for several months, etc. Allowing usage rate type to evolve

stochastically over time allows us to capture this type of pattern.

A vital component of our model is the price process, which we estimate separately

in a first stage, using the price data from Nielsen. We estimate a multivariate jump

process that captures three key features of the data: (1) prices typically are constant

for several weeks, followed by jumps, (2) the probability and direction of jumps

depends on competitor prices, and (3) the direction of jumps depends on own lagged

price (so the jump process is autoregressive). Consumers are assumed to know the

price process for each brand, and to be aware of prices every week.

2.2. Household utility

We assume that households have utility functions defined over consumption of each

brand of a particular good and a composite other commodity. Denote the per period

utility function for household i at time t by:

Uit ¼ UðCi1t; . . . ;Cijt;ZitÞ

where Cijt is the quantity of brand j consumed by household i at time t, and Zit is the

quantity of the outside good that is consumed. Utility depends on quantities

consumed rather than quantities purchased because the good in question is storable

and households hold inventories. To simplify the model we assume that the

composite good is not storable.

Further, we assume that utility is linear in consumption and additively separable

between the storable commodity and the composite other good, so Uit takes the

form:

Uit ¼
X

j¼1; J

cijCijt þ Zit; ð1Þ
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where cij represents household i’s evaluation of the efficiency units of consumption

provided by each unit of brand j. The assumption of perfect substitutability among

brands, and that brands generate differential utility per unit consumed, is similar to

the set up in Hanneman (1984). This linear form allows us to ignore saving decisions,

so that the only inter-temporal link in the model comes through inventories. We view

this simplification as desirable, since the focus of our study is on inventory decisions

and not saving decisions.

We model unobserved heterogeneity in consumer evaluations of the efficiency

units of consumption, cij, by adopting a finite mixture approach (e.g., Heckman and

Singer, 1984; Kamakura and Russell, 1989). Thus, we assume that there are k ¼
1; . . . ;K types and we estimate type-specific parameters for the evaluation of the

efficiency units of consumption, ckj, along with the probability that a household is

type k, which we denote by ok.

It is well established in the marketing literature that rich patterns of taste

heterogeneity are typically needed to explain the brand switching patterns of

households in frequently purchased categories. Elrod and Keane (1995) and Keane

(1997a,b) discuss how brand switching patterns tend to identify distributions of

consumer taste heterogeneity. As we noted earlier, we found that a model with four

taste types gave a good fit to the data in general, and to brand switching patterns in

particular.

We assume that households can only purchase a single brand j on a given purchase

occasion t. This is consistent with the observation that for most frequently purchased

consumer goods, households rarely if ever buy multiple brands on a single purchase

occasion. For each brand j, the household can choose among a discrete set of

available quantities (which we will enumerate in the data section).

The budget constraint for household i at time t is:

X

j

PijtQijt þDitðt1 þ t2Qijt þ t3Q
2
ijtÞ þ CCit þ SCit þ Zit ¼ Yit; ð2Þ

where Pijt is the per-ounce price of brand j to household i at time t, Qijt is the quantity

of j purchased by i at t, and Yit is income of i at t. A crucial point is that the per-

ounce price is allowed to differ by quantity (i.e., container size). We leave the

dependence of per-ounce price on quantity implicit in order to conserve on notation.

The term t1 þ t2Qijt þ t3Q
2
ijt in equation (2) is the fixed cost associated with a

purchase, and Dit is an indicator variable equal to 1 if a purchase is made (and zero

otherwise). In the results Section 4.2 we discuss why we chose to specify the fixed cost

as a quadratic in container size. The term CCit is the cost associated with carrying an

inventory of the storable good under analysis for household i during time period t.

Finally, SCit is the fixed stock out cost incurred by household i during time period t if

their usage requirement exceeds their inventory. We will further define CCit and SCit
in Section 2.3.1 below.
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The fixed cost can be interpreted, for instance, as the cost of going to the store,

locating the product in the store, and then carrying the container home. But

regardless of the story one tells to motivate this term, its role in the model is to

regulate the frequency and size of purchases. A higher fixed cost will, ceteris paribus,

lead households to purchase less frequently, and to purchase larger sizes when they

do buy.

Thus, one could also view the fixed cost as simply capturing the fact that ketchup

demand is part of a larger household budgeting problem. It would be highly

inconvenient (and time consuming) to buy a little bit of every product one needs each

week. Even if ketchup prices were constant over time, usage rates were constant, and

ketchup was available in infinitely divisible quantities, households would presumably

concentrate their ketchup purchases in a small percentage of weeks in order to avoid

the inconvenience of making frequent small purchases.

The role of inventory carrying costs is to provide an incentive for households

to smooth inventories by spreading out their purchases over time. A higher

carrying cost will, ceteris paribus, induce households to avoid buying very large

quantities on single purchase occasions, or buying in consecutive or nearby

weeks. A crucial distinction between the fixed cost and the inventory carrying cost

is that, with high fixed costs, households want to buy infrequently. But,

conditional on the total number of purchases, high fixed costs do not induce a

household to care if its purchases are close together or far apart. It is only the

inventory carrying cost that induces the household to want to spread purchases

out over time.

In the absence of inventory carrying costs, households would tend to wait for deep

discounts and then buy very large stocks of ketchup. In fact, given a positive fixed

cost of purchase, a price realization close enough to the lower support point of the

price distribution would induce a household to buy a lifetime supply. In contrast, in

simple inventory models with constant prices and usage rates, the combination of a

fixed cost of purchase and an inventory carrying cost induces an optimal inter-

purchase time interval, and an optimal quantity. This generates a ‘‘saw tooth’’

pattern in inventories and the familiar square root purchase quantity rule (see

Mellen, 1925; Davis, 1925).

Finally, in a model with uncertainty about usage requirements, a stock out cost

generates an incentive to hold a buffer stock, and to repurchase before inventories

are too close to zero. In our model, a higher stock out cost induces stronger positive

duration dependence of the purchase hazard, holding price fixed. In Appendix A we

provide a more detailed discussion of how the fixed cost, carrying cost and stock out

cost affect key features of the data.

Next, we derive the period utility for household i in week t. Substituting for Zit in

(1) using (2) we obtain:

Uit ¼
X

j¼1; J

cijCijt þ Yit �
X

j¼1; J

PijtQijt �Ditðt1 þ t2Qijt þ t3Q
2
ijtÞ � CCit � SCit: ð3Þ
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Because Yit enters the conditional indirect utility function given purchase of each

brand j in the same way, Yit will not affect brand choice decisions and can be ignored

in the model.9 Also note that we entered the fixed cost, inventory carrying cost and

stockout cost terms in the budget constraint (2), but, as is obvious from (3), it is

irrelevant whether these terms enter there or in the utility function, since utility is

linear in consumption.

2.3. Household inventories

2.3.1. Preliminaries. We assume that households have an exogenous stochastic

usage need for the storable commodity in each period, given by Rit, and that they

only get utility from consumption of the good up to the level determined by the

usage need, and not beyond that level. Define

Cit ¼
X

j¼1; J

Cijt:

Then,

Cit � Rit:

The inequality allows for the possibility of stock outs, in which case consumption

falls short of the desired amount. We assume that Rit is not revealed until after the

purchase decision is made at the start of period t.

The assumption of an exogenous usage need is reasonable for many of the types of

goods we are interested in, such as ketchup, toilet paper, laundry detergent, etc. For

such goods, we think it is plausible—at least to a first approximation—that

consumers have a satiation point beyond which they do not derive additional utility

from added consumption (e.g., you don’t get extra utility from using more than the

recommended amount of detergent in each load of laundry, or using more ketchup

beyond the ideal amount that the kids like on their hamburgers).

Another way to phrase the assumption is that, barring a stock out, the usage rate

does not depend on the inventory level. Indeed, previous work in marketing (e.g.,

Ailawadi and Neslin, 1998) suggests that this assumption holds in ketchup (the

9 An interpretation of the fact that price enters the conditional indirect utility linearly is that the

marginal utility of consumption of the outside good is constant over the small range of potential

expenditures on the inside good, since these expenditures will be very small relative to Yit. This type of

assumption is standard in marketing studies of demand for inexpensive consumer goods. It is exactly

correct because we specify that utility is linear in demand for the outside good, but is still

approximately correct under more general utility specifications, provided the inside good is

inexpensive.
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category we will study). In other words, consumers do not put less ketchup on their

hamburgers when their stock is low. Rather, they use some desired amount of

ketchup until they stock out—at which point they might turn to other condiments or

cease eating hamburgers for awhile.

It is worth emphasizing that the assumption of an exogenous usage need does not

mean consumption is independent of price. If price is high for an extended period of

time, the households in our model will reduce consumption by suffering more

frequent stock outs—as opposed to consuming any ketchup that they have in stock

at a slower rate. In other words, all adjustment of consumption to price is along the

extensive rather than the intensive margin.

Rather than assuming an exogenous usage requirement, we could have instead

assumed that utility is concave in consumption. In that case, if price were high for an

extended period of time, households would reduce consumption by slowing down

their consumption rate. More generally, the optimal current consumption rate would

depend on both inventories and expected future prices.

We did not adopt such a specification for two reasons. First, we don’t observe

actual consumption in scanner data, but only purchases. Without consumption data,

we felt that identification of the extent to which households react to price changes by

altering consumption along the intensive and/or extensive margin would, at best, be

very tenuously identified. In particular, both the curvature of the utility function and

the stock out cost regulate the duration dependence in the purchase hazard, so their

separate effects would be hard to distinguish. Second, adding a weekly continuous

consumption decision would vastly increase the computational burden of solving the

household’s optimization problem. Thus, we felt that ignoring the intensive margin

was a sensible modeling choice.

We note that in some categories, such as potato chips, ice cream or cookies,

consumption rates are, presumably, an increasing function of inventories. Our

assumption of an exogenous usage need would be much less palatable in such

categories. On the other hand, simply introducing concave utility into our model

would not be a sensible strategy in such cases either. The salient feature of such

categories is ‘‘temptation’’ as opposed to forward-looking behavior (i.e., potato

chips are technologically but not practically storable—at least for most people). So

we suspect that a sensible model for such categories would be one where the

consumption rate depends on the stock of the good but not on expected future

prices. This would require a model with myopia or a very short time horizon.

Next, we allow the distribution of the stochastic usage requirement to be

heterogeneous across consumers. Thus,

logRit*Nðml; slÞ;

where l ¼ 1; . . . ; 4 and l denotes the usage type, where l ¼ 1 has the highest usage
rate, whereas l ¼ 4 has the lowest usage rate. We assume that usage rate type is
independent of preference type. Furthermore, we assume that a household’s usage
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rate type may vary over time following a Markov switching process. Let pii denote

the probability that a household remains type i from one week to the next, and let pij
denote the transition probability from type i to type j. We assume that:

pij ¼
1:0� pii

3
Vi 6¼ j:

This says that if a household changes type, it is equally likely to change to any of the

other types. Let pi denote the initial probability of being type i. In order to conserve

on parameters, we assume that the initial probability is related to the family size

(measured at the start of the panel) in the following way:

log p1 ¼ log p10 þ 2fz famsize

log p2 ¼ log p20 þ fz famsize

log p3 ¼ log p30

log p4 ¼ log p40 � fz famsize;

where famsize is the family size.

We also allow a stock out to carry a fixed cost. Denote by Iijt the inventory that

household i holds of brand j at the start of period t. The total inventory of all brands

is given by:

Iit ¼
X

j¼1; J

Iijt: ð4Þ

Thus, if household i purchases Qjt units at the start of t, its maximum consumption

during period t is Iit þQit. Define

a ¼
ðIit þQitÞ

Rit
: ð5Þ

If I½a< 1
 ¼ 1 a stock out occurs, where I½ 
 denotes an indicator function for the
event within the brackets.

The stock out cost to household i in period t has a constant component, as well as

a component proportional to the magnitude of a shortfall, and is given by:

SCit ¼ s0IðRit > CitÞ þ s1½Rit � Cit
IðRit > CitÞ; ð6Þ

where s0 is the fixed cost and s1 is the per unit cost.
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We further assume that the cost of carrying inventory is given by:

CCit ¼ c1 �IIit þ c2 �IIit
2; ð7Þ

where �IIit is the average inventory level during period t, which is given by:

�IIit ¼ Iit þQit �
Rit

2

� �

I ½a � 1
 þ a
Iit þQit
2

� �

I ½a < 1
; ð8Þ

and where c1 and c2 are linear and quadratic terms in the average inventory level.

Note that the construction of �IIit depends on whether or not a stock out occurs during

the period. If there is no stock out ða � 1Þ, it is constructed assuming that usage is
spread smoothly over the period. In the event of a stock out ða < 1Þ, it is constructed
assuming that usage is at a constant rate prior to the stock out, and that the stock is

zero afterwards.

2.3.2. Evolution of household inventories. At any t, a household might potentially

have a number of brands in its inventory. In that case, we would need to model the

order in which brands are consumed within a period. This would lead to greatly

increased complexity of our model, for little payoff. In most categories of frequently

purchased consumer goods, consumers almost never buy multiple brands on a single

shopping occasion, and brand ‘‘loyalty’’ is strong, so inventory holdings will not

exhibit much brand heterogeneity. So, to avoid having to model the order of

consumption within a period in those rare instances where it would be relevant, we

assume that in period t, after the minimum usage requirement Rit is realized,

households use each brand in their inventory proportionately to meet their usage

needs.10

The state of a household at time t includes its time t inventories of each brand. If

there are several brands, this means that the state space for the consumer’s dynamic

optimization problem will grow quite large. However, under the assumption that

brands are used proportionately to meet the usage requirement, a household’s state

can be characterized by just two variables: its total inventory, as given by (4), and its

quality-weighted inventory, which we define by

I1it ¼
X

j¼1; J

cijIijt:

Recall from (1) that cij is household i’s evaluation of the efficiency units of

10 Note that households would be indifferent to the order in which brands of different quality are

consumed if they do not discount the future. Such indifference will hold to a good approximation if the

discount factor is close to one.
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consumption provided by each unit of brand j. This is why we call I1it the ‘‘quality’’

weighted inventory.

After purchasing Qijt units of brand j, the total stock of the storable good is

Iit þQijt, since households are assumed not to buy multiple brands in a given time
period. Because of the assumption that households use each brand proportionately

to meet their usage needs, if the total amount of the storable good is greater than or

equal to the minimum usage requirement Rit, then only a fraction 1/a of the stock of

each brand is used, where a is given by equation (5).

Hence, if a stock out does not occur, then, using (3), (5) and (7), the utility of

household i in period t, conditional of the purchase of Qijt, can be written as:

Uit ¼
I1it þ cijQijt

a
þ Yit � PijtQijt � c1

aðIit þQijtÞ

2

� �

� c2 Iit þQijt �
Rit

2

� �2

�Dit t1 þ t2Qijt þ t3Q
2
ijt

� �

: ð9Þ

In this case, the inventory of household i in the following period tþ 1 will be

Iitþ1 ¼ Iit þQijt � Rit; ð10Þ

and the quality-weighted inventory will be

I1itþ1 ¼ I1it þ cijtQijt
� �

1�
1

a

� �

: ð11Þ

However, if the total amount of the storable good, Iit þQijt, is less than the
minimum usage requirement Rit, all the inventories are used and a stock out occurs.

In this case the utility of household i in period t can be written, using (3), (5), (6) and

(7), as:

Uit ¼ I1it þ cijQijt þ Yit � PijtQijt � c1
aðIit þQijtÞ

2

� �

þ c2
aðIit þQijtÞ

2

� �2

�Dit t1 þ t2Qijt þ t3Q
2
ijt

� �

� ½s0 þ s1½Rit � ðIit þQijtÞ

: ð12Þ

Due to the stock out, both Iitþ1 and I1itþ1 are equal to zero.

2.3.3. Identification. At this point, we have laid out all the equations of our

structural model of household behavior. A formal analysis of identification is not

feasible for a highly complex non-linear model like ours. However, in Appendix A

we present an intuitive discussion of how the key model parameters are pinned down

by patterns in the data. To summarize, note that the key structural parameters are
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the preference weights, c; the means of the log usage requirements, m; the inventory

carrying cost parameters, c; the fixed cost of purchase parameters, t; and the stock

out cost parameters, s. The discussion in Appendix A includes simulations that show

how changing each of these parameters leads to different types of effects on

household behavior, suggesting that each parameter is separately identified. An

exception is the linear term in inventory carrying costs, c1. As we describe in

Appendix A, this has almost identical effects on behavior as the linear term in the

fixed cost of a purchase, t1. Thus, we fixed c1 ¼ 0.

2.4. The price process

A key component of our model is the vector stochastic process for the prices of each

brand/size combination. In order to have confidence in our model’s predictions of

how price expectations affect brand and quantity choice dynamics, it is important

that our assumed price process be realistic. Thus, our price process must capture

three important features that are typical of observed price data for most frequently

purchased consumer goods: (1) prices typically are constant for several weeks,

followed by jumps, (2) the probability and direction of jumps depends on competitor

prices, and (3) the direction of jumps depends on own lagged price. To capture these

features of the data we specify the multivariate jump process described below.

A key problem that we face is that the number of brand/size combinations is very

large for the typical frequently purchased consumer good (e.g., in the case of ketchup

it is 16). And per ounce prices for the same brand typically differ across sizes. This

creates two problems. First, it is not feasible to estimate a vector price process

including each of the 16 brand/size combinations, because of the substantial

proliferation of parameters that would be entailed (i.e., consider the size of the

variance/covariance matrix of the vector of price innovations). Second, if the price

process exhibits persistence, so that current prices alter expected future prices, the

expected value of the household’s next period state will depend on the current price

of each brand/size combination. Thus, we must keep track of an infeasibly large

number of state variables when solving the household’s dynamic optimization

problem.

To arrive at a practical solution of this problem, we exploit a common feature of

most frequently purchased consumer goods categories. In most categories, there is

one clearly dominant (or most popular) container size. That is, the large majority of

sales are for a particular size. Thus, our solution is as follows: First, we estimate a

vector process for the prices of the most common size (e.g., 32 ounces in the case of

ketchup) of the alternative brands. This process captures the patterns of persistence

and competitor reaction observed in the data. Second, we specify (for each brand) a

process for the differentials of the per ounce prices of the ‘‘atypical’’ sizes relative to

the most common size. We assume that the price differentials between the atypical

sizes and the most common size are i.i.d. over time (except for constant mean
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differentials that capture the fact that per ounce prices differ systematically across

sizes).

The assumption that price differentials between the atypical sizes and the common

size of each brand are i.i.d. over time greatly simplifies the solution of the dynamic

optimization problem. It means that the only state variables we need to keep track of

are the prices of the common size of each brand. Without this assumption, the

estimation of our model would be completely infeasible. In our view, the assumption

is probably fairly innocuous. Since most purchases are of the most common size,

value functions should not be too sensitive to prices of atypical sizes.

To proceed, we first specify the price process for the most common size of each

brand, and then specify how price for atypical sizes move relative to the common size

prices. The price of the most common size of brand j, denoted by c, is assumed to

stay constant from one week to the next with probability p1jt. That is:

PjtðcÞ ¼ Pj;t�1ðcÞ with probability p1jt; for j ¼ 1; . . . ; J;

where:

p1jt ¼
exp d0j þ d1jðPjt � Pt�1Þ þ d2ðPjt � Pt�1Þ

2
h i

1þ exp d0j þ d1jðPjt � Pt�1Þ þ d2ðPjt � Pt�1Þ
2

h i ;

Pt�1 ¼
1

4


 �

X

4

j¼1

Pj;t�1:

ð13Þ

Thus, the probability of a price change is p2jt ¼ 1� p1jt. In this case, the process is

posited to be

ln½PjtðcÞ
 ¼ b0j þ b1j ln½Pj;t�1ðcÞ
 þ b2
1

4


 �

X

4

l¼1

ln½Pl;t�1ðcÞ


( )

þ ejt; ð14Þ

where the vector of price shocks has a multivariate normal distribution

et*Nð0;SÞ:

Note that equation (13) specifies the probability of a price change as a logistic

function. To capture competitive reaction, the probability that a brand changes its

price is allowed to depend on the difference between the brand’s current price and

the mean price of the other brands. Equation (14) specifies that if prices do change

they follow an autoregressive process (in logs). Competitor reaction is captured in

(14) by the parameter b2 that multiplies the mean (log) price of the competitor

brands.
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Finally, the price process for the atypical sizes is specified as:

lnPjtðzÞ ¼ b1j zð Þ þ b2j zð Þ lnPjt cð Þ þ vjt zð Þ;

where c again indicates the common size and z indexes the atypical sizes. We also

assume

vjt zð Þ*N 0; s2v
� �

:

The price process parameters are estimated in a first stage using the price data,

prior to estimation of the choice model. They are treated as known in the second

stage, at which point we plug them into the consumer’s dynamic optimization

problem. The vector autoregressive jump (or switching) process for prices of the

common size is estimated by maximum likelihood, while the price processes for the

atypical sizes are estimated by OLS regression.

In the first stage we estimate the price process faced by a typical household, which is

subtly different from the price process that exists in particular stores. To estimate the

price process for a particular brand/size, we first construct the price history for that

brand/size that was faced by each individual household over the weeks of our sample

period.We then pool these household specific price histories together in the estimation.

Thus, variation in price due to uncertainty about which store will be visited in the next

period is subsumed in the household level price process that we estimate.

To justify this approach, we assume that the sequence of stores visited by a

household over successive weeks is determined by a process that is exogenous to the

brand and quantity choice process. This exogenous random variation in the store

visited from week-to-week leads to mixing of the store level price processes, thus

generating an additional source of variation in the prices a household faces. This

assumption of exogeneity of the store visit process would probably not be a good

assumption for big ticket items (say diapers) where price advertising might influence

the store one visits. But we doubt that this is an important factor for inexpensive

items like ketchup.

Our model makes the strong assumption that consumers observe the price process

realizations each week. We considered two types of alternatives to this basic model.

One is a model in which consumers only see prices and can only make purchases in

the weeks in which they visit a store. Then the dynamic optimization problem can be

simply modified by specifying a weekly probability of a store visit. An agent at time t

who is in a store and observing a set of prices must take into account probability he/

she might not visit a store next week (and therefore won’t be able to make a purchase

or see prices next week) when deciding whether to purchase at time t. But we found

that this model produced essentially identical results to our model, because the large

majority of households visit a store in the large majority of weeks.

A second more extreme alternative is to assume that consumers only see prices in

the weeks they actually purchase the good. This could be rationalized by a model in
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which consumers first decide whether to buy the good in a given period, and only

then go to the store and observe prices. But we reject this option out of hand,

because such a model could not possibly explain the purchase acceleration effects

that are clearly present in the data.

Having completely described our model, we can provide some discussion of how it

differs from that of Hendel and Nevo (2002). Their model is in many ways similar to

ours, but a key difference is that they specify utility as a concave function of

consumption and do not have a stock out cost parameter. In this framework, a high

marginal utility of consumption near zero would induce consumers to try to avoid

stock outs. They also assume that the utility from a brand is derived entirely at the

moment of purchase. Hence, a household’s state depends only on its total inventory

(and not how it is allocated among different brands). This assumption allows Hendel

and Nevo to achieve a separation of the brand choice and quantity choice problems—

households solve a dynamic optimization problem to choose optimal quantity each

period, and then choose brands (conditional on quantity) in a static framework.11

While the Hendel-Nevo approach leads to an important computational simplifica-

tion, this of course comes at some cost. The complete separation of the brand and

quantity choice problems breaks down if there is unobserved taste heterogeneity. In

that case, the distribution of brand preferences in the selected sample of consumers

who chose to buy a positive quantity in any given period will, in general, differ from

population distribution of brand preferences (in a way that depends on prices). As we

discussed in Section 1, this is a source of bias in any estimation of price elasticities of

demand based on static choice models. The Hendel and Nevo approach is likely to be

most efficacious for categories in which the relation between usage rates and inventory

is a first order problem while flexible modeling of unobserved consumer heterogeneity

is of second order importance. In contrast, estimation of our model is more

computationally demanding. But the main advantage of our approach is that we can

easily accommodate unobserved heterogeneity.

It is worth noting that unobserved heterogeneity in brand preferences can have

important implications for how consumers optimize in the presence of inter-

temporal price variation. To give just one example, consider a consumer who is very

‘‘loyal’’ to a particular name brand. Suppose he/she is low on inventory, and faces a

situation where current prices are high for his/her preferred name brand. This

consumer has an incentive to buy a small quantity of the inexpensive store brand in

order to tide him/herself over until a future time when the price of his/her favorite

name brand is lower, anticipating that he/she can ‘‘stock up’’ on the favorite brand

11 Taken literally, this assumption implies that brands are identical in attribute space (so they all generate

the same utility when consumed), but that households’ perceptions of brands alter which brands they

like to purchase. Such perceptions might be generated by ‘‘persuasive’’ or ‘‘image’’ advertising.

However, if the discount factor is close to one, then to a good approximation it is irrelevant whether

brands deliver different flow utilities when consumed, or if the expected present value of the brand

specific flow utility is received at the time of purchase.

24 ERDEM, IMAI AND KEANE



at that time.12 Such ‘‘stop gap’’ purchase behavior depends crucially on unobserved

heterogeneity that generates a strong preference for a particular name brand.

For instance, in the above example, a different consumer who was not ‘‘loyal’’ to a

single name brand, but who preferred all name brands about equally, would not buy

the store brand as a stop gap measure unless all name brand prices were high. Such a

consumer would be much more likely to switch among the store brands as their

prices fluctuate over time.

2.5. The household’s dynamic programming problem

The household’s optimal purchase timing, brand choice and quantity decisions can

be described by the solution to a dynamic programming problem (see, for example,

Rust, 1987; Pakes, 1987; Wolpin, 1987; Eckstein and Wolpin, 1989; Erdem and

Keane, 1996) with inventory Iitþ1, quality weighted inventory I1itþ1 and prices of the

common size, Ptj for j ¼ 1; . . . ; J, as the state variables.
13 We assume that

households solve a stationary problem.14

Households are assumed to make their purchase decisions after they observe the

prices at period t but before they observe their period t usage requirement ðRitÞ.
15

Now let us define the value function associated with the purchase of brand j and

quantity Q before the realization of the usage requirement to be

VjQtðIit; I1it;PtÞ ¼ ERtVjQtðIit; I1it;Pt;RitÞ þ
1

g
eitð j;QÞ;

where eitð j;QÞ is a stochastic term known to the household at the time of purchase
but not observed by the analyst. To obtain multinomial choice probabilities (see

McFadden, 1974; Rust, 1987), this error term will be assumed extreme value and

i.i.d. distributed. g denotes the inverse of the scale factor, which is proportional to

the standard deviation of the extreme value distributed error term.

12 In the data we examine, the store brand is indeed bought in small quantities much more commonly

than the name brands. This is precisely the mechanism our model uses to explain this phenomenon.

13 In describing the households’ problem, we suppress the dependence of the value functions on

household type, which depends on preference type and usage rate type. We also suppress the

dependence of price on the household i that arises because different households shop in different

stores.

14 As described in Appendix B, we obtain a stationary solution for the value functions by artificially

assuming a terminal period where all value functions equal zero, and then backsolving from that

period until the state specific value functions converge to a fixed point.

15 As described in Section 2.2.1, the usage rate is stochastic for two distinct reasons. Conditional on the

household’s usage rate type, there is an i.i.d. stochastic shock to the usage rate each period. But also,

the household’s usage rate type varies over time according to a Markov process. We subsume both

types of uncertainty when we take the expectation over the usage rate realization.
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The value function associated with the above problem for household i at period t

is

VðIit; I1it;PtÞ ¼ EeitMaxj;QfERtVjQtðIit; I1it;Pt;RitÞ þ
1

g
eitð j;QÞg: ð15Þ

In writing the alternative specific value functions VjQtðIit; I1it;Pt;RitÞthere are two
cases to consider. First, if Iit þQijt > Rit there is no stock out. In that case, using (5),
(8) and (9) and applying Bellman’s principle, the value function associated with

brand j for household i at time period t is

VjQtðIit; I1it;Pt;RitÞ ¼ I1it þ cijQijt
� � Rit

Iit þQijt
þ ðYit � PjtQijtÞ � c1 �IIit � c2 �II

2
it

�Dit t1 þ t2Qijt þ t3Q
2
ijt

� �

þ bEPtþ1VðIitþ1; I1itþ1;Ptþ1Þ;

ð16Þ

with Ii;tþ1 given by (10) and I1i;tþ1 given by (11).

If Iit þQijt < Rit there is a stock out. Then, using (8) and (12), the value function
is:

VjQtðIit; I1it;Pt;RitÞ ¼ I1it þ cijQijt þ Yit � PjtQijt � c1 �IIit � c2 �II
2
it

�Ditðt1 þ t2Qijt þ t3Q
2
ijtÞ � ½s0 þ s1½Rit � ðIit þQijtÞ



þ bEPtþ1VðIitþ1; I1itþ1;Ptþ1Þ; ð17Þ

and next period inventory levels will be such that Iitþ1 ¼ 0 and I1itþ1 ¼ 0. Note that
V0t, the value of the no purchase option, is obtained just by substituting Qijt ¼ 0 in
either equation (16) or (17).

Equations (16) and (17) capture the notion that households may not make the

choice that maximizes the expected time t payoff, but rather will also consider the

consequences of their time t decisions for expected future payoffs. For example, if a

household expects that a substantial price cut for their favorite brand is likely at

tþ 1, it may be optimal to make no purchase at t, even if this means running a high
risk of a stock out, because it is optimal to try to arrive at tþ 1 with inventories as
low as possible. On the other hand, if a substantial price cut for a favorite brand

occurs at t, it may be optimal to buy heavily—thus incurring substantial carrying

costs at t and in the near future—due to the expected utility flow from consuming the

brand over the next several periods.

We are now in a position to write out the probability that a household chooses to

buy a particular brand/size combination conditional on its state (which includes

inventories and the current price vector). Denote by dijt an indicator equal to 1 if

household i buys brand j at time t, and equal to 0 otherwise, and let di0t ¼ 1 denote
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the no purchase option. Since we have assumed that the alternative specific taste

shocks eitð j;QÞ in equation (15) follow an i.i.d. extreme value distribution, the

probability that household i purchases brand j in quantity Q at time t is given by a

multinomial logit type expression:

Pr ob ðdijt ¼ 1; . . . ;QijtÞjIit; I1it;Pt
� �

¼
exp ERitbVjQt Iit; I1it;Pt;Ritð Þc
� �

P

l¼0;::;J;Q

exp ERit VlQt Iit; I1it;Pt;Ritð Þ
� �� � :

ð18Þ

With regard to the summation in the denominator, Q must belong to a discrete set of

available sizes, which may in general be different for every brand j. Also note that

l ¼ 0 corresponds to the no purchase option, and there is slight ambiguity in

notation because in that case V does not have a Q subscript. Finally, note that the

probability of no purchase is obtained by substituting V0t for VjQt in the numerator

of (18).

2.6. The solution of the dynamic programming problem

Given the very large number of points in the state space, we do not solve for the

value function at each point. Instead, following Keane and Wolpin (1994), we

evaluate the value function only at a finite grid of points, assigned randomly over

ðI ; I1;PÞ space. We then fit polynomials in ðI ; I1;PÞ to the values on these grid
points, and use them to interpolate the value function at points outside the grid

points.

Using a polynomial in state variables to approximate the value function has an

additional advantage: the integrations of the value function with respect to price

shocks that appears in (16) and (17) can be done separately for each polynomial term

in price that appears in the approximation. These integrations can be done

analytically, since the price shocks in (14) are normal. Also, the integration with

respect to the usage requirement shocks that appears in (15) can be done simply

using quadrature integration. We describe the details of the solution of the dynamic

programming problem and of our approximation methods in Appendix B.

2.7. The likelihood function and the initial conditions problem

In our model, household choices are stochastic from the perspective of the

econometrician for four reasons: The econometrician does not observe a household’s

preference type, its usage rate type, or its inventory levels. And furthermore, the

econometrician does not observe the idiosyncratic extreme value distributed taste

shocks for brand-size combinations. The choice probabilities given in equation (18)
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assume that only the taste shocks are not observed by the econometrician. However,

we need to form choice probabilities by integrating over all the state variables that

are unknown to the econometrician. Thus, we also need to integrate over the latent

taste types, usage rate types and inventory levels.

Note that we face an initial conditions problem since we do not know the

inventory levels of households at the start of the data set (see Heckman, 1981). We

integrate out the initial conditions in the following way: We assume that the process

had a true start that occurred t0 periods prior to the start of our data, so that

households had zero inventories at that point. Call this t ¼ 1. Our model specifies

probabilities that each household is each usage rate type at t ¼ 1 (these were denoted

p1 through p4 in Section 2.3.1). Conditional on an initial usage rate type and a

preference type, we simulate the household’s purchase and consumption process for

t0 weeks (this requires us to draw prices, usage rates and usage rate types), bringing

us up to the start of the observed data.16 Call the first period of observed data

t ¼ t0 þ 1. Doing this M times, we obtain M simulated initial inventory levels and

initial usage rate types. This process is repeated for each of the L possible initial

usage rate and preference types, and for each household in the data. Thus, for each

household we get L ?M draws of initial inventories. In our application, we set M ¼
10 and t0 ¼ 246 (which is equal to twice the number of weeks of observed data). Also
note that L ¼ 4 ? 4 ¼ 16.
Suppose that we observed consumption of households during the sample period,

which runs from t ¼ t0 þ 1 to t ¼ T . Then we could form the simulated likelihood
17

of household i’s observed choice history as follows:

Li ¼ log

�

X

K

k¼1

ok
X

L

l¼1

pl

�

1

M

X

M

m¼1

Y

t0þT

t¼t0þ1

Pr ob




d0ijt;Q
0
ijt j IitðI

m
lkit0

Þ;

I1itðI
m
lkit0

; I1mlkit0Þ; l
m
lit0
;P0it;Ck

���

;

where d0ijt denotes the observed choice for household i at time t, Q
0
ijt denotes the

observed quantity for household i at time t, and P0it denotes the price vector faced by

household i at time t. ok is the population proportion of taste type k, pl is the

probability the initial usage rate type is l, and Ck is the vector of taste parameters for

taste type k. Here, IitðI
m
lkit0

Þ denotes the inventory level of the household i at time t,
conditional on simulation m of the initial inventory level and type, as well as on the

households choice and consumption history up to time t. The object I1itðI
m
lkit0

; I1mlkit0Þ

16 To draw prices we use a block bootstrap in which we sample 10 week long sequences of prices from the

actual price data. This was done in an attempt to retain the serial correlation properties of prices

present in the data.

17 See Keane (1993, 1994) for a discussion of simulated maximum likelihood methods for discrete panel

data.
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is similarly defined. lmlit0 is the usage rate type for the household at t0, according to

simulation m and conditional on draw l for the initial usage rate type.18

Unfortunately, we also face a problem of unobserved endogenous state variables,

because we do not observe households’ usage rate realizations (or equivalently, their

consumption levels) even during the sample period. Thus, even if we knew the initial

inventory level at the start of the observed data, we could not construct in-sample

inventory levels. We deal with this problem by simulating each of the M inventory

histories constructed above forward from t ¼ t0 þ 1 to t ¼ T . Then we form the

simulated likelihood contribution for household i’s observed choice history as

follows:

Li ¼ log
X

K

k¼1

ok
X

L

l¼1

pl
1

M

X

M

m¼1

Y

t0þT

t¼t0þ1

Pr ob d0ijt;Q
0
ijt I

m
lkit; I1

m
lkit; l

m
lit;P

0
it;Ck

�

�

� �

" #( )

;

where Imlkit is the inventory level at time t for household i of taste type k and initial

usage rate type l, according to the mth draw sequence. The quality weighted

inventory I1mlkit is defined similarly. And l
m
lit denotes household i’s usage rate type at

time t according to draw m and conditional on initial type l.

3. Data description

We estimate the model introduced in Section 2 on A.C. Nielsen scanner panel data

from Sioux Falls, SD. The data set contains 2797 households and covers a 123-week

period from mid-1986 to mid-1988. Every market of any significant size in the city of

Sioux Falls was included in the study, so that we should have fairly complete data on

the purchases of the participating households.19

Three national brands (Heinz, Hunt’s and Del Monte), together with Store

brands, capture more than 96% of total sales in this market. We therefore restricted

the analysis to these four brands, and eliminated households that bought other,

minor, brands. Among these four, Heinz is clearly the dominant brand, with roughly

a 66% share of all purchases, followed by Hunts at 16%, Del Monte at 12% and

Store brands at 5%. The sizes available are 14, 28, 32, 40 and 64 ounces. But Hunt’s

is not available in 14 and 28 ounce sizes, and the Store brands are not available in the

40 and 64 ounce sizes. Of all the 16 available brand/size combinations, Heinz 32-

ounce is the market share leader with 36% share.

We wanted to limit the sample to households who are regular ketchup users

because it seems unlikely that our model would be relevant for households who are

18 In writing the likelihood, we have left the integration over the latent usage rate types from time t0 þ 1

through t0 þ T implicit.

19 We will, of course, miss purchases that were made out of town.
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not regularly in the market. A careful inspection of the data revealed that some

households would be heavy ketchup users for several months, and then seem to never

purchase again. We are uncertain if this is because these households actually stopped

buying ketchup, or perhaps because of some problem with the data.20 In order to

obtain a sample of households who appeared to be regular ketchup buyers

throughout the 123 week period, we subdivided the period into three 41 week sub-

periods. Then, we took only households who bought at least once during each sub-

period. This reduced the sample size from 2797 households to 996 households.

Figure 1 reports the distribution of households by total number of ketchup

purchases during the 123 week period. We discovered that with only four usage rate

types our model had difficulty simultaneously fitting the fat right tail of very heavy

ketchup users, along with the large number of light users. This problem is

compounded by the fact that, as we noted earlier, households usage intensity often

seems to vary greatly over the 123 week period. Thus, our usage rate heterogeneity

distribution has to play the dual role of explaining the dispersion in purchase

frequency across households (Figure 1), and the heterogeneity within households in

purchase intensity over time. Adding more usage rate types would solve the problem,

but computational barriers precluded us from pursuing that course.

Hence, we decided to further screen the sample down to households who bought at

least four times and bought no more than 16 times over the 123-week period. This

further reduced the sample size from 996 to 838.

We also had to decide on which purchase quantities would be included in the

choice set. As we noted, there are five sizes of ketchup container (14, 28, 32, 40 and

64 oz), but households could purchase other quantities by buying multiple

containers. However, we found that seven options accounted for more than 99%

of all ketchup purchases: (1) buy a single container of one of the five sizes, (2) buy

two bottles of the 14-ounce size, or (3) buy two bottles of the 32-ounce size. Since

option (2) generates a 28 oz purchase, and option (3) generates a 64 oz purchase, we

decided to limit the discrete set of quantities that any household can buy to just {14,

28, 32, 40, 64}.

A feature of the data is that not every brand size/combination is available in every

store in every week. Table 1 reports the sample frequencies with which each brand/

size was present in the choice sets of the households in the data (conditional on the

stores they visited each week). This variability in the choice sets was accounted for in

both the solution of the DP problem and the construction of the likelihood for our

model. We ignored this in the presentation of the model, because it would be

notationally cumbersome. Essentially, we assume the households in our model know

the probabilities in Table 1, and that they take these into account when constructing

their expected value functions.

20 We speculate that some households may have moved out of Sioux Falls, but that this wasn’t recorded,

or perhaps that the ID cards malfunctioned for some households.
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Tables 2 and 3 contain some descriptive statistics about prices. Table 2 reports the

mean (offer) price of each of the 32 oz sizes in cents.21 Note that Heinz, the most

popular brand, is also the most expensive. Table 3 reports the mean price per oz

differentials between the various sizes and the 32 oz size. Notice that, in most cases,

the 32 oz size is actually cheaper, on a price per oz basis, than the larger sizes.

4. Empirical results

4.1. Parameter estimates for the price process

Table 4 reports the maximum likelihood estimates of the parameters of the price

process for the per ounce price of the 32 ounce sizes. The top panel of the table

reports the parameters in the logit for the probability that price remains constant

from one week to the next. The most interesting coefficient here is d2, the coefficient

on the squared difference between own price and mean competitor price. This term is

Figure 1. Observed frequency of total purchases.

21 The price variable used in the estimation is the price paid before coupons (i.e., the shelf price).

Including the redeemed coupon value in the price of the purchased brand would create a serious

endogeneity problem. This is because we do not observe what coupons the households could have used

for the brands they chose not to buy. Including the coupon value only in the price of the brand actually

bought is like including a dummy for the brand purchased (interacted with coupon value) as an

explanatory variable in the choice model. That is, one is including a transformed version of the

dependent variable as an independent variable!! While this has often been done in scanner data

research, it is clearly a serious misspecification. Erdem et al. (1999) show that it leads to serious

exaggeration of price elasticities of demand.
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negative, indicating that when the price differential is large the contribution of this

term to the logit becomes a large negative. Thus, a brand’s price is less likely to stay

constant if it departs greatly from competitors’ prices.

The bottom panel of Table 4 reports the parameters of the autoregressive process

for log per ounce prices in the event that there is a price change. Note the

autoregressive coefficient on own lagged price is 0.4473, while the coefficient on the

average price of competitors is 0.1482. This is again consistent with competitor

reaction, since it implies that Ptþ1 tends to be higher relative to Pt if competitors’

prices are higher.

Also interesting are the covariances between the price shocks. Note that the

covariances among the price shocks for the three national brands (S23;S23, and S23 ),
are very small, and in two out of three cases negative. This suggests that when brands

change prices simultaneously in a given week, there is no clear tendency for the prices

to move in the same direction. This suggests that common demand shocks are not

driving the price changes, which is consistent with our argument that price

movements are largely exogenous from the point of view of consumers.

Table 5 reports the OLS estimates of the processes for how the per ounce prices of

the ‘‘atypical’’ sizes differ from that of the common 32 ounce size. Interestingly, the

Table 1. Probability of availability of various brands and sizes.

Brands

Sizes (oz) Store Del Monte Heinz Hunts

14 0.8840 0.4268 1.0000 0.0

28 0.7060 0.7817 0.9975 0.0

32 0.8840 1.0000 0.9968 0.9968

40 0.0 0.5630 0.9968 0.6071

64 0.0 0.9264 0.9968 0.9968

Table 2. Mean price of the 32 oz. size (in cents).

Store Del Monte Heinz Hunts Total

90.70 105.07 115.09 104.93 104.33

Table 3. Average % difference in per oz. prices from 32 oz. size.

Oz size Store Del Monte Heinz Hunts Total

14 33.43 67.88 54.66 48.97

28 43.47 51.53 37.26 43.51

40 32.44 33.55 39.86 35.03

64 � 9.93 16.00 � 6.76 0.00
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fact that the slope coefficients are in many instances small suggests that these prices

do not move very closely together.22 This again suggests that brand specific demand

shocks are not what drives price fluctuations.

4.2. Parameter estimates of the choice model

Table 6 presents the simulated maximum likelihood estimates of our dynamic model

of consumer choice behavior. Consider first the taste parameter estimates for the

four taste types. These are interpretable as cents per ounce. Thus, type 1 households

receive a monetary equivalent utility of 4:09 ? 32 ¼ $1:31 from consuming a 32 oz

container of Heinz. Type 1 have a clear preference for Heinz over the other three

brands. And type 1 accounts for 51% of the population, which is consistent with

Heinz’ dominant position. This ‘‘loyal’’ type will buy Heinz almost exclusively.

Types 2 and 3 households also prefer Heinz to the other brands, which illustrates

just how dominate Heinz is in the this market. However, type 2 households Hunts

almost as much as they like Heinz, and type 3 like Del Monte almost as much as they

like Heinz. Type 2 households will tend to switch over time between Heinz and

Hunts, while type 3 households will tend to switch between Heinz and Del Monte.

The type 4, who make up only about 4% of the population, like the store brand

much more than do the other types. They will tend to switch between Heinz and the

Store brand over time.

The next section of Table 6 contains the estimates of the parameters that

characterize stock out costs, inventory carrying costs and the fixed cost of a

purchase. Note that the linear inventory carrying cost term was set to zero for

identification reasons, as discussed in Appendix A. The quadratic inventory term

(0.001157) implies that the cost of carrying a stock of 32 ounces is only about 1 cent

per week. Based on this, inventory carrying costs may seem to be trivial. It should be

noted, however, that the quadratic term would become important if households tried

to hold very large inventories (e.g., at 100 ounces it becomes 11.6 cents per week, and

at 200 ounces it becomes 46 cents per week). Thus, this parameter plays a key role in

the model (i.e., simulations of our model imply that households rarely hold

inventories in excess of 64 ounces, and practically never hold more than 80 ounces).

The stock out cost is about 12 cents. In contrast, the fixed cost of making a

purchase of a 32 ounce size is 228� 4.73(32)þ 0.06(32)2 ¼ $1.38. This slightly

exceeds the typical price of the 32 oz size. This estimate seems quite reasonable if one

interprets the fixed cost as consisting primarily of the utility cost (i.e., time cost) of

going to the store to make the purchase. However, since we know households go to

22 This is a weakness of our approach, since it means our model of the price process fits the behavior of

the ‘‘atypical’’ sizes less well than we would like. But, as noted in Section 2.4, we expect that value

functions will not be too sensitive to the price process for the atypical sizes since they are bought much

less frequently than the 32 oz size.

BRAND AND QUANTITY CHOICE DYNAMICS UNDER PRICE UNCERTAINTY 33



the store in the large majority of weeks, this interpretation is not ‘‘realistic.’’ More

plausibly, what the high fixed cost really captures is that it would be highly

inconvenient to make frequent small purchases of ketchup and other consumer

goods, rather than concentrating ones purchases for each good into a small number

of weeks. Given the low stock out cost and the large fixed cost of making a purchase,

it is not surprising that simulations of the model imply stock outs are very common

(see Section 4.3 below).

Our estimates of the quadratic in container size implies that the fixed cost of

purchasing the 32 oz size is lower than the fixed cost of purchasing any other size.

This seems plausible, given that the 32 oz size is typically prominently displayed in

the store (sometimes including end of aisle displays, in aisle displays, etc.), while

other sizes may take more effort to locate. Obviously, our fixed cost parameters are

Table 4. Estimates of the price process coefficients.

Parameters in logit for probability of price staying constant

Store brand intercept d01 1.829 (0.01890)

Del Monte intercept d02 0.6170 (0.00901)

Heinz intercept d03 0.3079 (0.00980)

Hunts intercept d04 0.7655 (0.00814)

Store Brand slope coefficient d11 1.139 (0.0460)

Del Monte slope coefficient d12 2.004 (0.0327)

Heinz slope coefficient d13 1.908 (0.0145)

Hunts slope coefficient d14 1.577 (0.0371)

Square term coefficient d2 � 0.1453 (0.0239)

Parameters of the autoregressive process for log price change

Store brand Intercept b01 0.3851 (0.00428)

Del Monte intercept b02 0.4375 (0.00415)

Heinz intercept b03 0.5068 (0.00470)

Hunts intercept b04 0.4534 (0.00455)

Slope coefficient b1 0.4473 (0.00330)

Square term coefficient b2 0.1482 (0.00516)

Variance covariance matrix parameters

S11 0.00402 (3.22E-5)

S12 0.00121 (5.10E-5)

S13 0.00148 (6.37E-5)

S14 0.00014 (4.53E-5)

S22 0.01189 (5.71E-5)

S23 � 0.00042 (9.04E-5)

S24 0.00218 (6.14E-5)

S33 0.00891 (9.63E-5)

S34 � 0.00050 (6.42E-5)

S44 0.00820 (4.93E-5)

Note. The brand subscripts are defined as follows: Store brand ¼ 1, Del Monte ¼ 2, Heinz ¼ 3,

Hunts ¼ 4.
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capturing time and search costs, not just the physical effort involved in carry

containers. It is worth noting that ketchup purchases are quite heavily concentrated

at the most popular (32 oz) size (see Section 4.3). Our model can generate that the

32 oz is clearly the most popular size even without making the fixed cost a quadratic

in size, but not to the same degree seen in the data.23

We turn next to a discussion of the usage rate parameters for each of the four

usage rate types. Type 1 households have a very high usage rate—about 23 ounces

per week on average.24 But the probability a household remains a type 1 from one

week to the next is only 0.35. The model uses the type 1 to capture instances in the

data where households are observed to buy large amounts of ketchup in consecutive

(or nearby) weeks. We speculate that these unusual episodes are probably due to

events like container breakage or instances where families throw large parties or

cook outs.

Type 2 and 3 households exhibit much more moderate usage rates, and also much

greater persistence over time. For instance, type 2 use about 81
2
ounces per week on

average. They have a week-to-week probability of staying type 2 of 0.9958, which

Table 5. OLS results for log prices of atypical sizes relative to 32 oz.

Size (oz) Store brand Del Monte Heinz Hunts

Constant terms

14 1.409 1.642 1.814

28 0.971 1.338 1.191

40 1.566 1.639 1.265

64 0.445 1.143 0.614

Slope coefficients

14 � 0.090 � 0.003 � 0.085

28 0.419 0.197 0.324

40 � 0.211 � 0.059 0.228

64 0.561 0.211 0.411

Standard errors

14 0.046 0.033 0.045

28 0.128 0.107 0.087

40 0.145 0.060 0.096

64 0.127 0.150 0.119

23 This same problem—the extent of preference for the most popular size is hard to explain—has been

noted in many past marketing studies. These typically invoke size specific preferences (or ‘‘size

loyalty’’) to explain the phenomenon.

24 To obtain this figure, use the m1 and s1 from Table 6, and plug them into the formula expðm1 þ s21=2Þ.
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Table 6. Parameter estimates for the structural model.

Parameter Symbol Estimate Standard error

Utility type 1

Store brand utility weight C11 0.0373 0.108

Del Monte utility weight C12 0.4520 0.176

Heinz utility weight C13 4.0860 0.135

Hunts utility weight C14 1.3924 0.174

Utility type 2

Store brand utility weight C21 0.0099 0.174

Del Monte utility weight C22 2.2218 0.150

Heinz utility weight C23 3.3812 0.144

Hunts utility weight C24 3.2828 0.145

Utility type 3

Store brand utility weight C31 0.1205 0.295

Del Monte utility weight C32 2.7410 0.188

Heinz utility weight C33 3.0087 0.212

Hunts utility weight C34 1.3046 0.397

Utility type 4

Store brand utility weight C41 3.2608 0.214

Del Monte utility weight C42 0.3618 0.339

Heinz utility weight C43 2.4825 0.199

Hunts utility weight C44 2.8661 0.198

Type probabilities

Utility type 1 P1 0.5148 0.025

Utility type 2 P2 0.3426 0.026

Utility type 3 P3 0.0996 0.020

Other utility function parameters

Precision of utility shocks g 0.03125 3:51E-4

Discount factor b 0.99 —

Parameters of stockout costs, inventory carrying costs and fixed costs of purchase

Stockout cost: constant s0 11.528 1.446

Stockout cost: linear term s1 0.001728 0.370

Inventory carrying cost: square term c2 0.006236 5:16E-5

Cost of purchase: constant t1 228.46 3.527

Cost of purchase: size t2 � 4.7263 0.271

Cost of purchase: size2 t3 0.06119 0.0016

Usage rate process: type 1

Mean m1 3.0186 0.063

Standard deviation s1 0.5111 0.011
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implies there is about a 20% chance they change type within a year. Type 3 use about

2 ounces per week on average.

Note that usage rate parameters for type 4 are not reported in the table. In the

estimation process, the model wanted to generate one type with a very low usage

rate. This enables the model to explain instances where households go several

months without buying any ketchup. Thus, at some point in the estimation process

we simply fixed the usage rate for type 4 at zero.

The last set of estimates, reported at the bottom of Table 6, are the probabilities

that a household is each of the four usage rate types in the initial week of the data.

The most common initial type is actually the zero usage rate type (e.g., 34.2% if

family size is set to zero). As we would expect, the family size coefficient suggests that

larger families are more likely to be the higher usage rate types (initially). The

estimate implies that the probability of being a zero usage rate type drops by about

Table 6. (continued)

Parameter Symbol Estimate Standard error

Usage rate process: type 2

Mean m2 1.5222 0.0033

Standard deviation s2 1.1224 0.0054

Usage rate process: type 3

Mean m3 0.5267 0.034

Standard deviation s3 0.5253 0.042

Usage rate type persistence

Type 1 P11 0.3511 0.0060

Type 2 P22 0.9958 9:53E-4

Type 3 P33 0.9101 3:95E-4
Type 4 P44 0.9049 3:41E-4

Usage rate types, initial probability

Type 1 P01 0.1245 0.031

Type 2 P02 0.2770 0.101

Type 3 P03 0.2565 0.045

Family size effect on usage rate fz 0.03484 0.097
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3.5% with each additional family member (e.g., the probability of being the zero

usage rate type drops to 29.8% if family size is 4).

4.3. Goodness of fit

Table 7 compares the sample choice frequencies and simulated choice frequencies for

all brand/size combinations. Overall, the fit of the model is very good on this

dimension. The probability that a household makes a ketchup purchase in any given

week in the data is 6.768%. Simulation of our model generates a probability of

6.771%. The model also fits the brand shares extremely well. For example, the Heinz

share is 66.4% and the model predicts 64.6%.

The only dimension in which the model (slightly) fails is generating the size

distribution of purchases. The 32 ounce share is slightly underestimated (61% in the

simulation vs. 64% in the data) and the 28 ounce share is also slightly underestimated

Table 7. Choice frequencies in data vs. model predictions.

Sample choice frequencies

Brand

Size (oz) Store Del Monte Heinz Hunts Size total

14 0.0159 0.0049 0.0489 0.0698

28 0.0050 0.0156 0.1498 0.1752

32 0.0326 0.0904 0.3643 0.1540 0.6413

40 0.0032 0.0444 0.0060 0.0535

64 0.0029 0.0571 0.0049 0.0649

Brand total 0.0535 0.1170 0.6646 0.1649 1.0000

Purchase probability: 0.06768

Simulated choice frequencies

Brand

Size (oz) Store Del Monte Heinz Hunts Size total

14 0.0183 0.0079 0.0426 0.0688

28 0.0158 0.0145 0.1064 0.1367

32 0.0310 0.0723 0.3636 0.1431 0.6100

40 0.0123 0.0848 0.0167 0.1139

64 0.0050 0.0486 0.0169 0.0705

Brand total 0.0651 0.1155 0.6461 0.1768 1.0000

Purchase probability: 0.06775

Stockout probability: 0.6665

Average inventory level: 7.5226
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(13.7% in the simulation vs. 17.0% in the data). Both these errors get pushed into the

40 ounce share, which is seriously overestimated (11.4% in the simulation vs. 5.4% in

the data).

Obviously, inventories are unobserved, so we cannot compare the model’s

inventory predictions to the data. The simulation implies that households carry a

mean inventory of 7.5 ounces, and that they are stocked out (have no ketchup at all)

in two out of three of the weeks. This rate may seem high, but we have no data to

compare it against. Also, recall that our estimates imply that roughly one third of

households have zero desired usage. These households are not really ‘‘stocked out’’

in the standard sense of the term, but simply do not want ketchup (i.e., they bear no

stock out cost). It is also useful to recall that, in our model, households adjust

consumption rates along the extensive margin (i.e., percentage of weeks they have

ketchup available to consume) rather than along the intensive margin (i.e., rate of

ketchup consumption in weeks when it is available). Thus, price changes effect

consumption via their effect on stock out frequency, and the stock out frequency is

therefore closely related to the price elasticity of demand.

An interesting aspect of the data is that the share of the 14 ounce size in total

brand sales is much greater for the Store brand (29%) than for the name brands (7%

for Heinz and 4% for Del Monte). The model captures this pattern quite well,

despite the fact that there is no specific parameter that could pick it up (i.e., we do

not have brand/size specific taste parameters). Thus, the pattern is generated by the

basic structure of our behavioral model itself. We can show in a greatly simplified

version of our model that if a household has low inventory (i.e., it is at risk of

stocking out) and the prices of preferred name brands are high, it is optimal to buy a

small amount of the cheapest brand as a stop gap measure while waiting for prices to

fall. This basic mechanism presumably carries over to the more complex model

estimated here.

Figures 2, 3 and 4 provide evidence on how the model fits choice dynamics.25

Figure 2 compares the simulated and actual distributions of inter-purchase times (in

weeks). The main failure of the model is that it somewhat underestimates the

frequency of very short inter-purchase spells. For instance, the percent of the time

that people buy again in just one week is 3.8% in the data vs. 2.7% in the

25 Of course, in the data, some spells are left or right censored. To make the simulations of the

distribution of interpurchase times, the survivor function and the hazard comparable to those in the

data, we imposed the same censoring on the simulated data. However, we found that this led to only

trivial changes in the simulated distributions. This contrasts with the usual experience with

unemployment duration data, where truncation typically has large effects. The reason for the

difference lies in the different nature of these two types of data. In unemployment spell data, the

sample usually consists of people who became unemployed in a particular week. Thus, the finite length

of the sampling period leads to right censoring of longer spells. In our data, in contrast, the sample

begins at random points during no-purchase spells of households. And the sampling frame of nearly

three years is long relative to even the longest no-purchase spells. This means that short spells are just

as likely to be right censored as long spells when the data set ends.
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simulation. By four weeks the model predicts 5.3% vs. 5.9% in the data. But other

than that, the agreement of the simulated and actual distributions is quite

impressive. The modal inter-purchase time is six weeks, and this is correctly

predicted by the model. The model is also accurate regarding the amount of mass in

the vicinity of the mode. In data, 18.8% of spells are in the 5 to 7 week range,

compared to 17.7% in the simulation. The model (very) slightly overestimates the

percent of inter-purchase spells in the 8–22 week range, and is quite accurate for

spells of over 22 weeks.

Another way to look at the data is to look at the survivor function for no-purchase

spells, which is reported in Figure 3. Here, the agreement between the model and the

data is quite good. Consistent with the observations made above, the simulated

survivor function from the model is slightly above that in the data in weeks 1–16,

because the model predicts too few short spells. And the simulated survivor function

drops a bit below the data in the 21–37 week range—because too many spells are

predicted to end in that range. But the divergence between the data and simulated

survivor functions is never more than a few percent.26 In the data the survivor

function first drops below 50% at 10 weeks (i.e., 47.8% of no-purchase spells survive

more than 10 weeks). The model survivor function implies that 50.2% of spells

survive past 10 weeks, and dips below 50% at 11 weeks. The model and data survivor

functions both drop below 20% at 18 weeks.

Figure 4 reports hazard rates for the hazard of making a purchase. Again the

empirical and simulated hazard rates line up quite well. The hazard rate for the data

Figure 2. Interpurchase time distribution.

26 The maximum divergence is at week 7. In the data 61.9% of no-purchase spells survive past week 7,

and the model predicts 65.8%.
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is rather jagged due to noise, especially after about 30 weeks, since less than 10% of

all no purchase spells survive that long (see the survivor function). The model

predicts that purchase hazard is quite low immediately after a purchase, and then

rises to the vicinity of 8% after about seven weeks. It then stays fairly flat at that level

regardless of spell length. Note that empirical hazard is very similar to the simulated

Figure 4. Purchase hazard.

Figure 3. Survivor function.
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hazard up through week 16, and by that point over 70% of spells are ended (see

survivor function). The empirical and simulated hazards diverge a bit after week 16.

The difference is that, while the simulated hazard stays near 8%, in the actual data

the hazard sags to the 6–7% range in weeks 16–32, and after week 35 it averages

around 10%.

Table 8 reports on how the model fits the distribution of accepted (per ounce)

prices. The top two panels of the table contain mean offer prices from the data vs.

simulation of the model. These are virtually identical. The bottom two panels

contain mean accepted prices from the data vs. the simulation. The mean price for

each brand/size combination is reported as a price per ounce. For example, for

Heinz, the mean offer price in the data is 3.596 cents per ounce for the 32 ounce size,

or $1.15. The mean accepted price is $1.12. In the simulation, these figures are $1.15

and $1.11, respectively. Note that mean accepted price is only a few cents below

mean offer price, which is consistent with the fact that a large fraction of consumers

have a strong preference for Heinz, thus isolating it from strong price competition.

As we would expect, differentials between offer and accepted prices are generally

much larger for Hunts, Del Monte and the Store brand. For example, for Del

Monte, the mean offer price in the data is $1.05 and the mean accepted price is 96

cents. The simulation also generates predictions of $1.05 and 96 cents, respectively.

For the Hunts 32 oz, the offer/accepted differential is about 5 cents in both the data

in the simulation. Overall, the fit of the model to the accepted price distribution is

remarkably good.27

Finally, Table 9 compares the brand transition matrix in the data vs. that

generated by simulation of our model. Some features of the transition matrix for the

data are quite striking. First, note that a household that buys Heinz on a given

purchase occasion has a 79% probability of buying Heinz again on the next purchase

occasion. But the pattern is strikingly different for the other three brands. For

example, a household that buys Del Monte on a given purchase occasion has only a

34% probability of buying it again on the next purchase occasion. It actually has a

higher probability of buying Heinz (41%). Indeed, Heinz is so dominant in this

market that this basic pattern holds for all three alternative brands. In general our

model fits the transition matrix quite well, except that we understate the own

transition rate for Del Monte by a third.

4.4. Policy experiments

Our model could potentially be used to study the impact of a multitude of possible

policy experiments. In this section we report the results of two types of experiment

that are of particular interest. First, we discuss a transitory price cut experiment.

27 The only exceptions are the Heinz 64 oz and the Del Monte 40 oz. For each of these, the model

substantially under-predicts mean accepted price.
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This experiment is aimed at evaluating the importance of price expectations in the

determination of own and cross price effects on demand. Second, we evaluate the

effects of three types of permanent changes in pricing policy: a permanent reduction

in mean price, a permanent reduction in price variability, and a simultaneous

reduction in both the mean and variance of prices.

4.4.1. Effects of transitory price changes: evaluating the importance of

expectations. In our first experiment we simulate the effect of a 10% temporary

(i.e., one week in duration) price cut for all sizes of the leading brand, Heinz. This

change in price at time t will alter the expected future prices of Heinz, and all the

other brands. Using our model, we can simulate the ‘‘total’’ effect of the temporary

Table 8. Average offer and accepted prices in data vs. model predictions.

Oz size Store brand Del Monte Heinz Hunts

Mean offer prices—data

14 3.752 5.154 5.492

28 4.024 4.830 4.901

32 2.836 3.288 3.596 3.280

40 4.007 4.742 4.502

64 2.845 4.137 3.024

Mean offer prices—simulation of the model

14 3.752 5.154 5.491

28 4.022 4.827 4.897

32 2.833 3.284 3.594 3.273

40 4.013 4.743 4.500

64 2.835 4.133 3.023

Mean accepted prices—data

14 3.747 5.078 5.535

28 4.045 4.706 4.749

32 2.760 2.996 3.509 3.114

40 4.145 4.619 4.470

64 2.580 3.909 2.993

Mean accepted prices—simulation of the model

14 3.737 5.136 5.464

28 3.666 4.649 4.674

32 2.785 3.006 3.463 3.099

40 3.657 4.663 4.392

64 2.638 3.302 2.789

Note. The figures in the table are cents per ounce. For accepted prices, brand totals are obtained by

dividing aggregate brand sales revenue by the aggregate quantity sold of the brand (i.e., purchases of larger

sizes receive more weight).
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price cut on demand, which includes this change in expectations. We can also

calculate an ‘‘expectations fixed’’ effect, in which households do not update their

forecast of future prices when Heinz changes its time t price. To implement this, we

simply use the original (rather than the reduced) Heinz price when constructing the

future components of the alternative specific value functions given by (16) and (17).

To conduct the experiment, we first generate 10,000 simulated price histories that

last 246 weeks (twice the sample period in our data). Four each of the four taste

types, we then simulate the behavior of 10,000 households, each facing one of these

price histories. The 40,000 simulated households are then weighted according to our

estimates of the population type proportions. Details of the simulation procedure are

presented in Appendix C.

We start each household with zero inventories at t ¼ 1, just as when we integrate

out the initial conditions in simulating our likelihood function. We simulate the

effect of a price cut at week 80, under the assumption that the distribution of

inventories would have converged to the stationary distribution by that point. This

leaves 167 weeks over which to trace out the impulse response to the price cut. By

using 10,000 simulated price histories, we essentially integrate over the distribution

of initial prices and inventories that exist at the time of the price cut, as well as over

the distribution of price changes (for Heinz and other brands) that occur after the

price cut.

Table 10 reports the effects of the temporary price cut on purchase probabilities

for Heinz and all other brands in the week of the price cut, week 1, and in subsequent

weeks through week 15. The table reports percentage changes in the number of

purchases. We found that after week 15 effects on demand were trivial, so we do not

report them. Under each brand heading in the table, the first column reports the

‘‘total’’ effect, and the second column reports the ‘‘expectations fixed’’ effect. The

Table 9. Brand switching matrix in data vs. model predictions.

Store brand Del Monte Heinz Hunts

Data

Store brand 0.2719 0.1338 0.4233 0.1711

Del Monte 0.0583 0.3407 0.4111 0.1898

Heinz 0.0340 0.0698 0.7895 0.1067

Hunts 0.0678 0.1576 0.4516 0.3230

Simulation of the model

Store brand 0.2363 0.0930 0.4661 0.2047

Del Monte 0.0520 0.2270 0.4850 0.2360

Heinz 0.0468 0.0834 0.7422 0.1276

Hunts 0.0780 0.1474 0.4643 0.3103

Note. The left column reports the brand bought on the previous purchase occasion. The top row indicates

the brand bought on the current purchase occasion.
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first column indicates that purchases of Heinz increase 41.3% in the week of the price

cut (corresponding to an elasticity of demand of roughly � 4). This very large own
effect is consistent with a large body of work in marketing (using scanner data)

showing large effects of temporary price cuts on demand for many frequently

purchased consumer goods.

Consider now the cross-price effects. The 10% price decrease for Heinz results in

decreases in demand in week 1 of about 4% for Hunts, 3.6% for Del Monte and 3.1%

for the Store brand, implying cross-price elasticties of demand in the range of 0.30 to

40.

Note that total demand in the category rises 25.3%. This indicates that the price

cut for Heinz is not just stealing customers away from the other brands. Rather most

of the increase in Heinz sales results from either ‘‘purchase acceleration’’ or category

expansion.

Next, consider the effect of the price cut, holding expectations of future prices

fixed. As we would expect, the positive effect on Heinz sales is now greater; 45.3%

compared to 41.3% when expectations adjust. The reason is that, with expectations

held fixed, given the high degree of persistence in the price process, consumers expect

that at tþ 1 the price of Heinz will very likely be near its original (pre-promotion)

Table 10. Effects of temporary 10% Heinz price decrease on purchase frequencies for Heinz and other

brands when expectations are adjustable (‘‘full’’) or fixed.

Heinz Hunts Del Monte Store brand Total

Week Full Fixed Full Fixed Full Fixed Full Fixed Full Fixed

1 41.30 45.28 � 3.99 � 1.93 � 3.58 � 1.81 � 3.11 � 1.88 25.32 28.53

2 � 2.07 � 2.31 � 1.23 � 1.38 � 1.23 � 1.29 � 1.07 � 1.21 � 1.75 � 1.96

3 � 1.56 � 1.72 � 0.94 � 1.02 � 0.80 � 0.89 � 0.79 � 0.88 � 1.31 � 1.45

4 � 1.40 � 1.54 � 0.68 � 0.72 � 0.57 � 0.63 � 0.58 � 0.65 � 1.13 � 1.24

5 � 0.80 � 0.92 � 0.53 � 0.55 � 0.37 � 0.41 � 0.39 � 0.43 � 0.68 � 0.77
6 � 0.55 � 0.58 � 0.26 � 0.27 � 0.21 � 0.21 � 0.18 � 0.19 � 0.44 � 0.46

7 � 0.42 � 0.42 � 0.15 � 0.19 � 0.12 � 0.14 � 0.24 � 0.26 � 0.33 � 0.34

8 � 0.25 � 0.24 � 0.10 � 0.12 � 0.06 � 0.07 � 0.09 � 0.10 � 0.19 � 0.19
9 � 0.17 � 0.19 � 0.02 � 0.04 � 0.05 � 0.06 � 0.05 0.03 � 0.12 � 0.14

10 � 0.30 � 0.15 � 0.04 � 0.04 � 0.08 � 0.06 0.04 � 0.05 � 0.21 � 0.11

11 � 0.13 � 0.14 � 0.04 � 0.04 � 0.08 � 0.07 � 0.03 0.04 � 0.09 � 0.10

12 � 0.21 � 0.21 � 0.03 � 0.04 � 0.02 � 0.03 � 0.12 � 0.04 � 0.15 � 0.15
13 � 0.05 � 0.04 0.01 � 0.01 � 0.01 � 0.01 � 0.01 � 0.11 � 0.04 � 0.03

14 � 0.15 � 0.01 0.02 0.01 0.00 0.00 0.01 � 0.00 � 0.10 � 0.01

15 0.02 0.04 0.03 0.04 0.01 0.03 0.01 0.02 0.02 0.04

Note. The table reports the effects of a temporary 10% price cut for Heinz on simulated weekly sales

frequencies for Heinz and the other brands over a 15 week period. Changes are reported in percent terms.

The first column (for each brand) shows the effect when expectations of future prices are allowed to adjust

(which we denote here as ‘‘full’’ expectations). The second column (for each brand) shows the effect

holding expectations of future prices fixed.
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level. Thus, there is an added incentive to purchase at time t (i.e., ‘‘make hay while

the sun shines’’). Still, the most striking thing about this effect is that it is rather

small. The own price elasticity of demand holding expectations fixed is only 10%

greater than the elasticity when expectations adjust.

The striking result in the table is the impact of expectations on cross-price

elasticities of demand. When expectations are held fixed, these are reduced by

roughly 50%. The expectations fixed cross-price elasticities of demand for Hunts, Del

Monte and the Store brand are only about 0.20. Two factors drive this result: (1) if

Heinz’ price is lowered today it leads consumers to also expect a lower Heinz price

tomorrow. This lowers the value function associated with purchase of any brand

other than Heinz today. (2) Given the price dynamics in the ketchup market, a lower

price of Heinz today leads consumers to expect competitor reaction, so it lowers the

expected prices of the other brands tomorrow.

Table 11 reports the results of the exact same experiment, except that there we

report the effects of the price cut on quantities demanded, rather than on purchase

probabilities. The basic story is exactly the same. The only additional point worth

noting is that the price cut for Heinz causes both the Heinz quantity sold and the

overall category quantity sold to increase by about 10% more than did the purchase

incidence. This implies that, in response to the price cut, consumers are also

Table 11. Effects of temporary 10% Heinz price decrease on purchase quantities for Heinz and other

brands when expectations are adjustable (‘‘full’’) or fixed.

Heinz Hunts Del Monte Store brand Total

Week Full Fixed Full Fixed Full Fixed Full Fixed Full Fixed

1 45.07 49.19 � 4.02 � 1.90 � 3.64 � 1.78 � 3.15 � 1.82 27.93 31.28

2 � 2.14 � 2.38 � 1.22 � 1.38 � 1.13 � 1.30 � 1.08 � 1.23 � 1.81 � 2.01

3 � 1.51 � 1.67 � 0.91 � 0.99 � 0.80 � 0.89 � 0.81 � 0.90 � 1.29 � 1.42

4 � 1.61 � 1.75 � 0.65 � 0.69 � 0.56 � 0.62 � 0.60 � 0.67 � 1.26 � 1.37

5 � 0.87 � 0.97 � 0.54 � 0.55 � 0.36 � 0.41 � 0.41 � 0.45 � 0.73 � 0.80
6 � 0.57 � 0.60 � 0.26 � 0.27 � 0.20 � 0.20 � 0.19 � 0.21 � 0.46 � 0.48

7 � 0.43 � 0.44 � 0.14 � 0.18 � 0.11 � 0.13 � 0.24 � 0.25 � 0.33 � 0.35

8 � 0.26 � 0.24 � 0.13 � 0.15 � 0.06 � 0.06 � 0.09 � 0.10 � 0.20 � 0.20
9 � 0.18 � 0.20 � 0.02 � 0.04 � 0.04 � 0.05 0.03 0.01 � 0.13 � 0.14

10 � 0.44 � 0.15 � 0.04 � 0.03 � 0.08 � 0.07 � 0.05 � 0.05 � 0.31 � 0.11

11 � 0.12 � 0.13 � 0.04 � 0.04 � 0.08 � 0.03 0.03 � 0.03 � 0.09 � 0.10

12 � 0.33 � 0.32 � 0.03 � 0.04 � 0.02 � 0.01 � 0.03 � 0.04 � 0.22 � 0.22
13 � 0.06 � 0.04 � 0.01 � 0.01 � 0.01 0.00 � 0.10 � 0.10 � 0.04 � 0.04

14 � 0.19 � 0.02 0.02 0.01 0.01 0.03 � 0.01 � 0.00 � 0.12 � 0.01

15 0.02 0.05 0.03 0.04 0.02 0.04 0.01 0.02 0.02 0.04

Note. The table reports the effects of a temporary 10% price cut for Heinz on simulated weekly sales

quantities for Heinz and the other brands over a 15 week period. Changes are reported in percent terms.

The first column (for each brand) shows the effect when expectations of future prices are allowed to adjust

(which we denote here as ‘‘full’’ expectations). The second column (for each brand) shows the effect

holding expectations of future prices fixed.
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switching to somewhat larger quantities (conditional on purchase). This is as we

would expect, and is again consistent with purchase acceleration.

Finally, we report the effect of the temporary price cut on total quantity sold over

weeks 1 through the end of the simulation (a period of 167 weeks). As a percentage

of average weekly sales, the sales of Heinz increase 35.5%, while the sales of Hunts,

Del Monte and the Store brand decline � 7.9%, � 6.9% and � 6.6%, respectively.
Overall category sales increase 20.5%.28 Thus, it is clear that the short run increase in

the level of sales due to the temporary price cut is not wiped out, even in the long

run, by sales reductions in later periods. The temporary price cut not only produces

purchase acceleration, but also generates some additional Heinz and category sales

that otherwise would not have occurred.

4.4.2. Effects of permanent changes in pricing policy. The real strength of a

structural approach to demand estimation is that we can forecast how consumer

behavior will respond to fundamental changes in pricing policy. In this section we

analyze three such policy changes: (1) a permanent 10% cut in the mean price of

Heinz, (2) a permanent 50% reduction in the standard deviation of Heinz prices

around their mean, and (3) a combined experiment where we lower both the mean

and variance in Heinz prices. The results of these three experiments are reported in

Table 12. For both Heinz and the competitor brands we report the percentage

changes in purchase incidence, total quantity sold (i.e., sales weighted by the

container size), sales revenue, and mean accepted price.

The top panel of Table 12 reports results from a permanent 10% reduction in the

mean price of Heinz. This price reduction was applied to all sizes.29 Note that the

purchase frequency for Heinz increases 33.1%, while the total quantity of Heinz sales

increases 35.6%. Thus the price cut generates some shift towards purchase of larger

sizes. As we would expect, the long run elasticity of quantity demanded with respect

to the permanent price cut ð� 3.5Þ is less than the short long elasticity with respect to
a transitory price cut ð� 4.5Þ.
It is also interesting to compare short-run vs. long-run cross-price elasticities of

demand. Recall from Table 11 that the short-run cross-price elasticities with respect

to transitory price changes were in the range of 0.30 to 0.40. Here, we see that the

long-run elasticities with respect to permanent price changes are in the range of 0.75

to 1.0. Thus, the long run cross-price elasticities are much greater than the short-run

elasticities. Finally, note that the 10% price cut for Heinz leads to a 19.7% increase in

28 Dividing these figures by 167, we see that percentage increase in Hunts sales over the whole 167 week

period is less than 1
5
of 1%. Since essentially all the change happens in the first several weeks, we see that

asymptotically, as t grows large, the effect of the temporary price cut on the percentage increase in

total sales is (of course) approaching zero.

29 To determine the new stochastic process for prices, we reduced all Heinz prices in the data by 10%, and

then re-estimated the price process of Section 4.1. Since the price process includes terms that capture

competitor reaction, these parameters must adjust so that the new price process generates the same

distribution of competitor prices as did the original price process (despite the lower prices of Heinz).
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overall category demand in the long-run. As we would expect, this is substantially

less than the 31.3% short-run category expansion effect we found for a transitory

price cut in Table 11.

The finding that long-run cross price elasticities of demand greatly exceed short-

run cross-price elasticities is a key result of our analysis. This result implies that the

degree of competition between brands is substantially greater than short-run

elasticity estimates would indicate. But, in interpreting this result, it is important to

bear in mind that we are not modeling competitor reaction to the permanent change

in Heinz pricing policy.30 Thus, our experiment involves permanently lowering the

price of Heinz relative to other brands. Obviously, this will induce a certain degree of

brand switching (from other brands to Heinz). In contrast, when we simulated a

transitory price cut for Heinz, this induced consumers to expect competitor reaction,

in the form of lower prices for the other brands in the future. Thus, to some extent,

Table 12. Predicted effects of permanent changes in Heinz pricing policy.

Store brand Del Monte Heinz Hunts Total

Permanent 10% drop in mean offer price of Heinz

Purchase probability � 8.078 � 9.071 33.071 � 10.100 18.038

Purchase quantity � 8.075 � 8.821 35.581 � 10.186 19.844

Revenue � 8.052 � 9.008 23.363 � 10.242 13.151

Accepted price (mean) � 0.048 � 0.205 � 9.012 � 0.063 � 5.585

Permanent 50% drop in the standard deviation of Heinz offer prices

Purchase probability � 6.351 � 10.172 � 5.278 � 6.994 � 6.200

Purchase quantity � 7.522 � 11.145 � 6.642 � 7.256 � 7.295
Revenue � 7.385 � 10.683 � 4.221 � 7.110 � 5.485

Accepted price (mean) 0.141 0.520 2.594 0.157 1.952

Combined 2.2% permanent drop in mean and 50 % drop in standard deviation for Heinz price

Purchase probability � 6.746 � 12.157 1.052 � 9.347 � 2.774

Purchase quantity � 7.340 � 13.021 &0 � 9.660 � 3.622

Revenue � 7.238 � 12.669 0.537 � 9.545 � 2.802
Accepted price (mean) 0.110 0.404 0.530 0.127 0.851

Note. The table reports the percentage changes in each of the indicated quantities for the period after the

policy change, compared to a baseline simulation under the present pricing policy. The mean accepted

prices are obtained by dividing aggregate sales (over all sizes) by aggregate quantity.

30 To do so we would need to develop and estimate a market equilibrium model, which is beyond the

scope of this paper. As we noted in the introduction, the technology to estimate market equilibrium

models with forward-looking behavior on both the firm and consumer sides is probably several years

away.
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the transitory price cut generates delay as opposed to switching, thus dampening the

cross-effect.

There is a second mechanism that also dampens the short-run cross-price effect

relative to the long-run effect. Given a transitory price cut for Heinz, a ‘‘switch’’ to

Heinz will, for households with relatively large inventories, require a ‘‘purchase

acceleration’’ ahead of the time when they would have otherwise bought again. Such

households may be deterred from switching because it will entail extra inventory

costs in the short run. With a permanent price cut this mechanism is not operative—

a household with large current inventories can simply delay the Heinz purchase until

some future point when inventories are sufficiently run down.

In other words, given a permanent Heinz price cut, a household can raise its steady

state share of Heinz purchases without being subject to any short run spike in

inventories. But, with a purely transitory price cut, a household whose current

inventory is relatively high can only take advantage of the sale by bearing the cost of

a short run inventory spike. Intuitively, households that already have a 64 oz bottle

of ketchup at home will not want to buy Heinz even if it is on sale this week, because

they don’t want to waste more room in their kitchen cabinets on ketchup. Thus,

households with high inventories are insensitive to transitory price cuts.

It is important to consider the implications of these findings for conventional

estimations of demand elasticities using static models. The fact that elasticities with

respect to permanent and transitory price cuts differ substantially means that

conventional estimates will be quite sensitive to whether the price changes present in

the data under analysis are primarily persistent or transitory changes. Of course this

is not a new point. For instance, Keane and Wolpin (2002) recently made a similar

point regarding estimates of elasticities of various behaviors such as labor supply,

fertility, marriage and welfare participation with respect to permanent vs. transitory

changes in welfare benefit rules, and, much earlier, Lucas and Rapping (1969)

considered elasticities of labor supply with respect to permanent vs. transitory wage

changes. But it appears that previous work on scanner data has not paid serious

attention to this issue.

The second panel of Table 12 reports the effects of a 50% reduction in the variance

of Heinz prices. To implement this experiment, we first calculated the mean offer

price for each Heinz container size. We then compressed these offer prices around

the size specific means, and re-estimated the price process of Section 4.1. Note that

the Heinz purchase probability falls 5.3%, while total quantity of Heinz sold drops

by 6.6%. This implies there is some shift towards the purchase of smaller sizes. Heinz

total sales revenue drops by 4.2%. Revenue drops less than quantity because the

mean accepted price increases by 2.6%. This is as we would expect in a search model,

given a reduction in the dispersion of the offer price distribution.

Our final experiment was designed to determine whether it would be possible for

Heinz to increase profits by simultaneously reducing the mean and variance of

prices. This corresponds to a policy of having fewer sales, while also maintaining

price at a consistently lower mean level. This experiment is of some interest, because

there was a widespread shift from a policy of frequent sales to a policy of ‘‘every day
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low pricing’’ (EDLP) for many frequently purchased consumer goods in the late

1980s and early 1990s (i.e., after our sample period ended).

Of course, not knowing the cost function, we can’t in general determine how

changes in pricing policy would affect profits. However, if we assume that

production cost is only a function of total quantity sold, then we can compare

profits under policies that generate equal sales quantities simply by comparing

revenues. Given a 50% reduction in the variance of its offer prices, we determined

that Heinz would need to reduce its mean offer price by 2.2% in order to hold the

quantity of sales constant. We report this experiment in the bottom panel of Table

12.

Note that the change in pricing policy has a positive effect on Heinz revenue,

which increases by one half of 1%. Thus, our model of consumer demand does imply

that ‘‘Heinz’’ had an incentive to try this type of change in strategy. Of course, we are

abstracting from the fact that ‘‘Heinz’’ is not a unitary actor. Actual retail price

setting for a brand involves a complex interaction between retailers, wholesalers and

manufacturers. Manufacturers use systems of incentives to attempt to induce

particular pricing strategies on the part of retailers. For discussions of this topic, see,

for example, Lal (1990), Neslin et al. (1995) and Neslin (2002). It is beyond the scope

of our analysis to explain how any increase in Heinz revenues resulting from the

policy change would be distributed among the various actors in the supply chain, or

to consider how such a policy change might be instigated.

The Heinz pricing policy change actually reduces demand for all competing

brands and for the ketchup category as a whole. So whether a retailer would have an

incentive to try such a change in strategy is ambiguous. Of course, not knowing

wholesale costs for the various brands, we cannot determine how the policy change

affects total category profits for the retailer. Within a range of plausible estimates for

markups, our estimates in Table 12 imply reduced profits from other brands but

ambiguous effects for the category as a whole.31

The reason demand for competing brands is reduced is the very dominant position

of Heinz in the market. Even the type 2 and 3 households, who account for the bulk

of Hunts and Del Monte sales, respectively, actually slightly prefer Heinz. Thus, a

large fraction of their sales derive from situations in which the Heinz price is

relatively high. The variance reduction reduces the extent of such events.32

Even if we adopt the abstraction of each brand as a unitary actor, our policy

experiment is also limited because it holds competitors’ pricing policy rules fixed.

31 For example, assuming all brands have a 20% markup, and that marginal cost is constant, the

estimates imply an increase in Heinz profits of 3.2%, reduced profits from Hunts, Del Monte and the

Store brand of � 9%, � 11% and � 7% respectively, and a small decline of � 0.4% in category profits.

Assuming smaller markups for the smaller brands would easily swing the sign of the net category

effect, as would assuming smaller markups in general.

32 Of course, the variance reduction also reduces the magnitude of Heinz sales. But there is an

asymmetric effect of the variance reduction because, loosely speaking, as long as Heinz price is at or

below its mean, households are much more likely to buy Heinz than the competing brands anyway.

50 ERDEM, IMAI AND KEANE



Thus, the policy change could still be undesirable if Heinz expected it to induce

competitor reactions that would adversely affect Heinz profits. At best, an analysis

of demand side response alone can only tell us whether a policy change would have

some potential for increasing profits given the predicted nature of consumer

reaction. It cannot reveal whether a policy change would still increase profits once

competitor reaction is factored in.

Nevertheless, our results in the bottom panel of Table 12 do suggest that a strategy

based on reducing price variance would have offered some promise. For such a

strategy to be successful, a necessary condition is that it induce a substantial increase

in mean accepted price. Notice that under the experiment, consumers are predicted

to buy the same quantity of Heinz but at a mean accepted price that is one half of 1%

higher. This may represent a significant percentage increase in margins.

Finally, our experiment also illustrates why a price index constructed by randomly

sampling offer prices would be misleading during a period in which retailers switched

to an EDLP strategy. In our experiment the mean offer price for Heinz falls 2.2%,

yet the mean accepted price for Heinz rises 0.5%, and that for the category as a whole

rises 0.85%. Thus, such a price index would falsely imply that the price of ketchup

had fallen, when in reality the effective price of ketchup to consumers had increased.

5. Conclusions

We have shown that our dynamic model of consumer brand and quantity choice

dynamics under price uncertainty does an excellent job of fitting data on consumer

purchase behavior in the market for a particular frequently purchased consumer

good, namely ketchup.

Our results indicate that increased brand sales resulting from a temporary price

cut are mostly due to a combination of purchase acceleration and category

expansion, rather than brand switching. Given the stochastic process for prices

present in our data, cross-price elasticities of demand with respect to temporary price

cuts are modest compared to the own price elasticities.

More generally, our work suggests that estimates of own and particularly cross-

price elasticities of demand may be very sensitive to the stochastic process for price

and how households form expectations of future prices. In particular, the magnitude

of cross-price elasticities of demand depends not just on the similarity of goods in

attribute space, but also on the extent to which changes in current prices affect

expected future prices for the own brand and other brands. This in turn will depend

on the price process itself, which is just another way of saying hat price elasticities of

demand are reduced form, and not ‘‘structural,’’ parameters. These findings suggest

that researchers working on merger analysis and evaluation of welfare gains from the

introduction of new goods should be careful about interpreting cross-price

elasticities as measures of the degree of competition between brands.
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A second main finding of our work is that estimates of cross-price elasticities with

respect to permanent or long-run price changes are substantially greater (i.e., by a

factor of two) than estimates of cross-price elasticities with respect to transitory or

short-run price changes. The short-run estimates are dampened by the presence of

both inventory carrying costs and expected competitor reaction. For this reason, the

long-run estimates provide a better measure of the intensity of competition between

brands.

Finally, we showed how a pricing policy change that involves a simultaneous

change in mean offer prices and price variability can create a substantial wedge

between the change in mean offer vs. accepted prices. Thus, price indices based on

sampling of offer prices can potentially be highly misleading as measures of

changes in effective costs to consumers during periods when price variability is

changing.

It is beyond the scope of this paper to determine if retailers confronted with the

consumers in our model would choose pricing patterns with positive duration

dependence in the probability of sales. Models of sales that capture this pattern,

like Pesendorfer (2002) and Hong et al. (2002) are quite stylized. But the essential

dynamic that these models capture is that demand is increasing in duration since

the last sale, because consumer’s inventories are dwindling. This implies that the

potential revenue from holding a sale is increasing over time, which, combined

with appropriate assumptions about the supply side, creates at least the potential

for positive duration dependence in the probability of sales. Our demand side

model does imply that demand is increasing in duration since the last sale, so it

may be consistent with duration dependence in pricing. On the other hand, in a

static demand model, or a model without inventory carrying costs, demand is not

a function of inventory, so demand cannot depend on duration since the last sale.

Thus, consumer forward-looking behavior, along with storability and inventory

carrying costs, appear to be essential ingredients for any realistic equilibrium

model that seeks to generate positive duration dependence in the probability of

sales.

Appendix A: Identification

Our model is too complex to for us to provide analytic results on identification, so we

instead provide an intuitive discussion of how the key model parameters are pinned

down by patterns in the data. We also present, in Table A1, simulations of how

increasing each of the key model parameters affects key features of simulated data.

These simulations are useful for understanding how various parameters have

different effects, and are therefore identified.

First, we discuss the parameters that determine the inventory carrying cost ðCCÞ,
fixed cost of purchase ðFCÞ and stock out cost ðSCÞ. Recall that the equations for
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these are:

Carrying Cost : CC ¼ c1I þ c2I
2;

Fixed Cost : FC ¼ t0 þ t1Qþ t2Q
2;

Stockout Cost : SC ¼ s0 þ s1ðR� CÞ:

First, consider the linear component of fixed cost ðt1Þ and the linear term in

inventory carrying costs ðc1Þ. If the quantity Q that a consumer buys is used at a

constant rate over time (i.e., R is fixed), and/or there is no discounting, it is irrelevant

whether carrying costs are spread out over the period the good is consumed (reflected

in c1 ), or whether the present value of carrying costs is born up front (reflected in t1).

Thus, c1 and t1 would not be separately identified.

In our model, there is discounting, and usage rates R do fluctuate over time, so the

parameters c1 and t1 would have subtly different effects on behavior, but it would

not be surprising if these are hard to detect. Indeed, when we tried to iterate on both

parameters, we found that the likelihood was extremely flat along a locus in ðc1; t1Þ
space, and that the two parameters would run off in opposite directions. Thus, we

discovered that we cannot separately identify these two parameters, and so we

constrained c1 ¼ 0. It is comforting that this identification problem was made

obvious by our search algorithm, and that such problems did not emerge for any

other model parameters.

Next consider t0, the constant in the fixed cost of purchase function. A large t0
would induce one to minimize the frequency of purchases, and to buy large

quantities when one does buy. Thus, it is pinned down by data on the frequency and

size of purchases.33 It is important to note that while a high t0 discourages frequent

purchases, it does not affect or induce duration dependence in the purchase hazard.

For example, with a high t0 one wants to avoid having many purchases during a

year, but, conditional on the total number, one doesn’t care if purchases are spread

out or close together. Indeed, simulations of our model, which we report in Table A1

indicate that an increase in t0 shifts down the purchase hazard, but has little effect on

its shape.

Next, consider the quadratic terms c2 and t2. These might at first appear to be

subject to the same sort of identification problem that affects c1 and t1. If a consumer

had I ¼ 0, usage rate was fixed and/or there were no discounting, and furthermore, if
the consumer knew that he/she would not buy again until Q was used up, then there

33 Suppose we had not constrained c1 ¼ 0. Higher inventory carrying costs would also cause one to buy

small quantities frequently, so as to smooth inventories over time. Thus, a reduction in t0 and in

increase in c1 would both lead to more frequent small purchases and hence smoother inventories.

However, the former would increase overall demand, while the later would reduce it. So the likelihood

would not be flat in these two parameters.
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Table A1. Effect of increasing fundamental parameters on key features of the data.

Purchase hazard Purchase frequency

Parameter General level Duration dependence Overall Large size vs. small size Mean accepted price

Carrying cost quadratic—c2 � þ � � &0

Fixed cost of purchase

Constant—t0 � 0 � þ &0

Linear—t1 � 0 � � &0

Quadratic—t2 � � � �� &0

Stock out cost

Constant—s0 þ þ þ þ &0

Linear—s1 Smallþ 0 Smallþ Smallþ &0

Utility weights – c þ 0 þ þ Ambiguous (small

þ own effect for

preferred brand)

Usage rate high type þ at early weeks only �� þ þ þ for 64 oz. Only

Medium type � at early weeks (� 5)

þ at weeks 6þ

�� &0 þ &0

Low type þ at intermediate

weeks only

þ at early weeks

� at later weeks

þ þ &0

Note. ‘‘þ’’ denotes increase and ‘‘�’’ denotes decrease. A ‘‘��’’ denotes that increasing a parameter results in an exceptionally sharp decrease for some data
feature, relative to the magnitude of the parameter’s effect on other data features.
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would be a locus of c2 and t2 values that would generate equal present values of fixed

plus carrying costs for a purchase Q.

However, c2 and t2 are separately identified by variation in inventories and the

probability of subsequent purchases. A large c2 says one should avoid buying a large

quantity if current inventory is already large and/or one thinks it is likely one would

want to buy again in the near future (say, because a deal is likely). In contrast, a large

t2 says one should avoid buying large sizes regardless of one’s state. This will tend to

make time between purchases shorter, leading to less positive duration dependence in

the purchase hazard.

In contrast to fixed costs, higher inventory carrying costs should induce more

positive duration dependence in the purchase hazard. A value of c2 > 0 induces one
to smooth inventories, to the extent that one wishes to avoid very high inventory

spikes, but it leaves one rather indifferent to fluctuations of inventories around low

levels. In other words, since c2 > 0 induces a convex carrying cost function, the
marginal cost of carrying inventories will be small until inventories grow quite large.

Thus, purchase probability is increasing in duration since last purchase.

The simulations reported in Table A1 are consistent with these assertions. They

indicate that while increases in c2 and t2 both shift down the purchase hazard, the

increase in c2 makes the hazard steeper (i.e., greater positive duration dependence),

while the increase in t2 makes the hazard flatter.

Next consider the role of stock out costs. The critical role of these parameters is to

induce positive duration dependence in purchase probabilities. With a stock out cost,

the probability of a purchase is increasing in duration since last purchase, holding

price fixed. As we noted earlier, fixed costs of purchase cannot induce positive

duration dependence, so there is no danger of confounding these parameters with the

stock out cost parameters.34 However, an inventory carrying cost also makes

purchase more likely as duration since last purchase increases. But a higher

inventory carrying cost reduces demand, while a higher stock out cost increases

demand, so these parameters have different effects. All these statements are verified

by the simulations in Table A1.

Now consider the tastes for consumption (or utility weights) C and the usage rate

R. An increase in C or R each increases demand. However, they have different

effects on the duration dependence of purchase probabilities. A higher usage rate R

causes important changes in the duration dependence in the purchase hazard, while a

higher C does not. As the simulations in Table A1 show, the effects of increasing

usage rates on the duration dependence of the purchase hazard are rather complex.

For high and medium usage rate types, the increase in R leads to less positive

duration dependence (i.e., the relative frequency of short inter-purchase spells

increases). But for low usage rate types the hazard increases for intermediate length

spells relative to both short and long spells.

34 In addition, our fixed cost parameters (constant, linear and quadratic) are also pinned down by the

relative purchase frequencies for the different sizes.
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Table A1 also describes how key parameters affect accepted prices. It is interesting

that most parameters seem to have negligible effects on accepted prices. It is also

interesting that the utility weights have ambiguous effects. Of course, in a static

model, an increase in the utility weights would unambiguously raise accepted prices.

This is no longer true in a dynamic model, where consumers can search for good

prices over time. One clear cut effect is that if we raise the Heinz utility weight for

type 1 consumers (i.e., the ones who strongly prefer Heinz) it raises accepted prices

for Heinz. Other effects are more complex.

Appendix B: The solution of the dynamic programming problem

In this appendix we describe the details of how we solve the dynamic programming

(DP) problem faced by households in our model. The solution of the DP problem

proceeds as follows. In order to construct the value function VðIit; I1it;PtÞ in
equation (15) we need to construct the objects ERitbVjQt Iit; I1it;Pt;Ritð Þc. Given those
objects, the expected maximum taken in equation (15) has simple closed form. The

ERitbVjQt Iit; I1it;Pt;Ritð Þc are expectations (over usage rate realizations) of the
alternative specific value functions, which are given by equations (16) and (17). Using

(16) and (17), along with (8), and letting FðRÞ denote the cumulative distribution
function of the usage rate, we obtain:

ERitbVjQt Iit; I1it;Pt;Ritð Þc

¼
I1it þ cjQijt

h i

Iit þQijt

R IitþQijt
0

RitdFðRÞ

Pr obðRit � Iit þQijtÞ
þ Yit � PjtQijt �Ditðt1 þ t2Qijt þ t3Q

2
ijtÞ

8

<

:

�
c1
R IitþQijt
0

Iit þQijt �
1
2
Rit

� �

dFðRÞ þ c2
R IitþQijt
0

Iit þQijt �
1
2
Rit

� �2
dFðRÞ

Pr obðRit � Iit þQijtÞ

)

Pr obðRit � Iit þQijtÞ

þ

(

I1it þ cjQijt þ Yit � PjtQijt �Dit t1 þ t2Qijt þ t3Q
2
ijt

� �

:

�

c1
IitþQijtð Þ

2

2


 �

R

?

IitþQijt
ð 1
Rit
Þ dFðRÞ þ c2

IitþQijtð Þ
2

2


 �2
R

?

IitþQijt
ð 1
Rit
Þ2 dFðRÞ

Pr obðRit > Iit þQijtÞ

� s0 �
s1
R

?

IitþQijt
Rit � Iit �Qijt
� �

dF Rð Þ

Pr ob Rit > Iit þQijt
� �

)

Pr obðRit > Iit þQijtÞ

þ bERitbEPtþ1VðIitþ1; I1itþ1;Ptþ1Þ Iit; I1it;Pt;j Qijtc: ðA1Þ

Note that the first term in brackets corresponds to usage rate realizations that generate

no stock-out, while the second term in brackets corresponds to cases in which a stock-

out does occur. The univariate integrals over Rit in (A1) can be done analytically.

The last term in (A1) is the future component, ERitbEPtþ1VðIitþ1; I1itþ1;Ptþ1Þ6
Iit; I1it;Pt;j Qijtc, which we must somehow compute. In our model, we assume that
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households solve an infinite horizon stationary problem. However, as computational

device for solving the DP problem, we assume there is terminal period T at which the

future component is exactly zero at all state points. Then, at t ¼ T� 1, equation
(A1) takes a simple form, since the last term drops out, and we can calculate the

ERiT�1bVjQ;T�1 IiT�1; I1iT�1;PT�1;RiT�1ð Þc values analytically. These can then be

substituted into equation (15) to obtain values for the VðI i;T�1; I1i;T�1;Pt;T�1Þ.
Given these, it is straightforward to construct the future component terms in (A1)

that are relevant for t ¼ T� 2. Given these, we can calculate the ERiT�2 6

bVjQ;T�2 IiT�2; I1iT�2;PT�2;RiT�2ð Þc values analytically, and so on. This process of
solving a finite horizon DP problem by working backward from a terminal period in

which the value functions are known is called ‘‘backsolving.’’

Our computational procedure for solving the infinite horizon DP problem is to

backsolve the finite horizonDP problem for a sufficiently large number of time periods

so that the value functions at each state point become stable,meaning that they cease to

change significantly as wemove further back. This approach to solving infinite horizon

problems is quite common.Wewill make the criterion for stabilitymore precise below.

It is important to note that the state variables in our DP problem, Iit, I1it and Pt,

are continuous. Therefore, in contrast to problems with a finite number of state

points, it is not possible to solve exactly for VðIitþ1; I1itþ1;Ptþ1Þ at every state point.
Thus, exact solution of the DP problem is impossible, and an approximation method

must be used. We therefore introduce a polynomial approximation for

VðIitþ1; I1itþ1;Ptþ1Þ.
The polynomial for VðIitþ1; I1itþ1;Ptþ1Þ is a function of total inventories, Iit, the

ratio of quality adjusted inventories to total inventories I1it/Iit, and the vector of prices

of the common size of each brand, PjtðcÞ for j ¼ 1, . . . , 4. To be precise, we specify:

VðIit; I1it;PtÞ ¼
X

k¼0; . . . ;K
l¼0; . . . ;L

X

mð1Þ; . . . ;mð4Þ
[Mðk; lÞ

Ck;l;mð1Þ;...;mð4ÞI
k
it

I1it

Iit

� �l
Y

4

j¼1

½lnPjtðcÞ

mð jÞ;

ðA2Þ

where the Ck;l;mð1Þ;...;mð4Þ are parameters to be estimated, and Mðk; lÞ is a set whose
elements satisfy the following conditions:

X

4

j¼1

mð jÞ ¼ 0; 1 or 2 if k ¼ 0; l ¼ 0;

X

4

j¼1

mð jÞ ¼ 0 or 1 if l ¼ 0 and k ¼ 1; 2; 3; or l ¼ 1 and k ¼ 0; 1;

X

4

j¼1

mð jÞ ¼ 0 if l ¼ 1 and k ¼ 2; 3; 4; or l ¼ 0 and k ¼ 4;

or k ¼ 0 and l ¼ 2; 3; 4; or k ¼ 1 and l ¼ 2:

The structure of the setMðk; lÞ is set up so as to ignore various high order interaction
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terms, thus achieving amore parsimonious specification. For instance, the cases where

the mð jÞ sum to 2 and k ¼ 0, l ¼ 0 correspond to squared terms in prices and

interactions between each pair of prices. The requirement that k ¼ 0 and l ¼ 0 in this

case means that these second order price terms are not interacted with inventories. The

total number of coefficients in the approximating polynomial is 48, and the R2 is 0.99.

The Ck;l;mð1Þ;...mð4Þ parameters are estimated by OLS regression. To obtain the

sample of data points on which the regression is run, we calculate VðIg; I1g;PgÞon
G ¼ 1000 inventory/price grid points ðIg; I1g;PgÞ. To set up the grid, we first set the
inventory grid points Ig to be the Chebychev quadrature points on the interval from

0 to 80. The values of quality adjusted inventories and prices at each grid point are

then set as follows:

First, we generate a fraction of inventories that is allotted to each brand.35 Given

these fractions and the Ig, we can construct brand specific inventories I
g
j , j ¼ 1, . . . , 4.

We then multiply these by the utility weights cj to obtain the quality weighted

inventory I1g.

Second, the four (brand specific) prices are drawn i.i.d. from a uniform

distribution on the interval from 35 cents to 200 cents. This exceeds the range of

prices for the 32 oz size observed in the data. These prices are then divided by the

standard size 32 to obtain prices per ounce.

Having defined the grid over which we calculate the value functions, we can now

return to the issue of convergence of the backsolving process. We backsolve until we

reach a point where, in going back one additional period, the maximum percentage

change in the value functions across all grid points is less than 0.1%.

We now discuss why we use I1itþ1/Iitþ1 as an argument in the polynomial

approximation for VðIitþ1; I1itþ1;Ptþ1Þ, rather than I1itþ1 itself. One reason is that
I1itþ1 is highly collinear with Iitþ1, while I1itþ1/Iitþ1 is not. Thus, the OLS regression

we use to estimate the Ck;l;mð1Þ;...mð4Þ is better behaved if we use the ratio.

A second reason is more subtle. The ratio specification has a computational

advantage that arises because I1itþ1/Iitþ1 does not depend on Rit. To see this, note

that if Rit � Iit þQijt then Iitþ1 ¼ Iit þQijt � Rit. Thus, using (5) and (11), we have:

I1itþ1 ¼ I1it þ cjQijt
� � Iit þQijt � Rit

Iit þQijt


 �

35 To generate the inventory shares for each brand, we draw three uniform random numbers on the

interval (0,1). Denote these by u1, u2 and u3. Then numerator of the share for brand 1 is set to u1u2u3,

that for brand 2 is set to ð1� u1Þu2u3, that for brand 3 is set to ð1� u1Þð1� u2Þu3, and that for brand 4

is set to ð1� u1Þð1� u2Þð1� u3Þ. The denominator of the shares are set to the sum of the four

numerators. This construction guarantees that the inventory shares of the four brands sum to one.
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and hence:

I1tþ1

Iitþ1
¼

I1it þ cjQijt

Iit þQijt

� �

:

Thus, I1tþ1/Itþ1 does not depend on Rit.
36 We now describe why this is

advantageous.

Updating (A2) by one period and substituting for Iitþ1 and I1itþ1/Iitþ1, we obtain:

VðIitþ1; I1itþ1;Ptþ1Þ

¼
X

k¼0; . . . ;K
l¼0; . . . ;L

X

mð1Þ; . . . ;mð4Þ
[Mðk; lÞ

Ck;l;mð1Þ;...;mð4Þ Iit þQijt � Rit
� �k I1it þ cjQijt

Iit þQijt


 �l
Y

4

j¼1

½lnPjtþ1ðcÞ

mð jÞ:

ðA3Þ

Since Rit does not appear in the I1itþ1/Iitþ1 term, the expectation over Rit is simply:

ERitVðIitþ1; I1itþ1;Ptþ1Þ

¼
X

k ¼ 0; . . . ;K

l ¼ 0; . . . ;L

X

mð1Þ; ::;mð4Þ

[Mðk; lÞ

Ck;l;mð1Þ;...;mð4Þ
I1itþ1

Iitþ1

� �l
Y

4

j¼1

½lnPjtþ1ðcÞ

mð jÞ
ERitðIit þQijt � RitÞ

k:

ðA4Þ

Now, for each k, the terms ERitðIit þQijt � RitÞ
k
can be calculated analytically using

a simple quadrature procedure.

Finally, to obtain the future component, ERitbEPtþ1VðIitþ1; I1itþ1;Ptþ1Þ
Iit; I1it;Pt;j Qijtc, which is the last term in (A1), we must also take an expectation

with respect to price realizations at tþ 1. We have:

Eptþ1ERitVðIitþ1; I1itþ1;Ptþ1Þ

¼
X

k¼0; . . . ;K
l¼0; . . . ;L

X

mð1Þ; . . . ;mð4Þ
[Mðk; lÞ

Ck;l;mð1Þ;...;mð4Þ
I1itþ1

Iitþ1

� �l

ERit ðIit þQijt � RitÞ
k
EPtþ1

Y

4

j¼1

½lnPjtþ1ðcÞ

mð jÞ;

ðA5Þ

36 Note that if Rit > Iit þQijt, then Iitþ1 ¼ 0 and I1itþ1 ¼ 0, so the ratio is undefined. However, the

Chebychev quadrature points that we use always have Ii;tþ1 > 0, so this problem does not arise.
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where, using equations (13) and (14), the last term in (A5) can be written:

EPtþ1

Y

4

j¼1

lnPjtþ1ðcÞ
mð jÞ

" #

¼ Eet

Y

4

j¼1

 

½lnPjtðcÞ

mð jÞ

p1jt

þ b1j þ b2j½lnPjtðcÞ
 þ b3j




1

4

�

X

4

l¼1

½lnPltðcÞ
 þ ejt

" #mð jÞ

p2jt

1

A:

The integration over realizations of the error term for prices ejt in equation (13) can

be done analytically, since we assume these errors are normally distributed.

Appendix C: Simulation of the model

This appendix describes how we simulate data from the model, both to evaluate

model fit and to conduct policy experiments. The first step is to generate 10,000

simulated price histories that last 246 weeks (twice the sample period in our data).

Recall that in our model there are four taste types and four initial usage rate types,

giving a total of 16 types. We simulate the behavior of 10,000 households of each

taste type. Each of these faces one of the 10,000 simulated price histories. Within

each taste type, 2500 households are assigned to each initial usage rate type. Thus,

we simulate a total of 40,000 households, 2500 for each of the 16 types. In order to

form sample statistics, the simulated households are weighted according to our

estimates of the population type proportions. We discard the data from the first 79

weeks.

Given a simulated price history, we simulate the choice history for a household of

a particular taste and initial usage rate type as follows:

1. Assume initial inventory is zero.

2. Use equation (18) to determine the probability of each of the 17 choice options at

t ¼ 1. These are conditional on the t ¼ 1 price vector P1, the initial inventories
I1 ¼ 0 and quality weighted inventories I11 ¼ 0, and the household’s initial usage
rate type. Denote the set of choice probabilities by fp1; . . . ; p17g. Define q0 ¼ 0
and qk ¼

P

l¼1;k pl. Draw a uniform random variable u1 on the interval ½0; 1
.
Option j is chosen iff qj�1 < uj < qj .

3. Draw the t ¼ 1 usage requirement from a log normal distribution. Update

inventory using equation (10) to obtain I2, and update quality weighted inventory

using (11) to obtain I12.

4. Use the usage rate type transition probabilities pij for j ¼ 1; . . . ; 4 to draw the
household’s t ¼ 2 usage rate type. This is done using a uniform draw, following

the same type of algorithm used in step (2).
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5. Use equation (18) to determine the probability of each of the 17 choice options at

t ¼ 2, conditional on the t ¼ 2 price vector P2, the t ¼ 2 inventory levels I2 and
I12, and the t ¼ 2 usage rate type. A particular choice option is drawn using a

uniform random draw, just as in step 2.

Steps analogous to these are repeated until a complete history is obtained.

It is worth noting that simulation of data from the model is trivial once we have

solved the dynamic optimization problem and can form the conditional choice

probabilities (18), because the inventories and the latent usage rate types that enter

the conditioning set are fully observed along the simulated choice path. This

contrasts with construction of the likelihood function, which is very difficult because

inventories and usage rate type realizations are unobserved in the actual data, and

therefore must be integrated out of the choice probability expressions.

It is also worth noting that, whenever we implement a policy experiment, we hold

fixed the uniform and log normal random draws that determine the choice history. In

that way, all changes in behavior are due to changes in the prices facing the

household or changes in the choice probabilities determined by equation (18), rather

than due to simulation induced noise.
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