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Indian scientist Amal Kumar Raychaudhuri established ‘Raychaudhuri equation’ 
in 1955 to describe gravitational focusing properties in cosmology. This equation 
is extensively used in general relativity, quantum field theory, string theory and 
the theory of relativistic membranes. This paper investigates the issue of the 
final fate of a gravitationally collapsing massive star and the associated cosmic 
censorship problems and space-time singularities therein with the help of 
Raychaudhuri equation. It is conjecture that the universe is emerged from a big 
bang singularity where all the known laws of physics break down. On the other 
hand, when the star is heavier than a few solar masses, it could undergo an 
endless gravitational collapse without achieving any equilibrium state. This 
happens when the star has exhausted its internal nuclear fuel which provides the 
outwards pressure against the inwards pulling gravitational forces. Then for a 
wide range of initial data, a space-time singularity must develop. It is conjecture 
that such a singularity of gravitational collapse from a regular initial surface 
must always be hidden behind the event horizon of gravity; this is called the 
cosmic censorship hypothesis. Thus cosmic censorship implies that the final 
outcome of gravitational collapse of a massive star must necessarily be a black 
hole which covers the resulting space-time singularity. So, causal message from 
the singularity cannot reach the external observer at infinity. Raychaudhuri 
equation plays a pioneer role in cosmology to describe the gravitational focusing 
and space-time singularities. 
 
Key words: Cosmic censorship, Einstein equation, gravitational focusing, 
Raychaudhuri equation, singularities.  
 
 
INTRODUCTION 
 
A.K. Raychaudhuri was born on September 14, 1923 in 
Barisal, in what is now Bangladesh. He studied at 
Presidency College, Kolkata, and obtained his B. Sc. and 
M. Sc. degrees in 1942 and 1944, respectively (Ehlers, 
2007). During the 1950s, A.K. Raychaudhuri began to 
examine extensively the aspects of general relativity. One 
of his early works during this period involved the 
construction of a non-static solution of the Einstein 
equations for a cluster of radially moving particles in an 
otherwise empty space (Raychaudhuri, 1953).  

Raychaudhuri (1955) developed an equation which 
contributes to find the gravitational focusing in the space-
time but it was somewhat different from the way it is 
presented in standard textbooks and research  articles  at 

present. It describes the rate of change of the volume 
expansion when one moves along the timelike geodesic 
curves in the congruence. The Raychaudhuri equation 
has been discussed and analyzed in the last 60 years in 
a variety of fields of gravitational physics, such as, in 
general relativity, quantum field theory, string theory and 
the theory of relativistic membranes.   

In this paper we describe how the matter fields with 
positive energy density affect the causality relations in a 
space-time and cause focusing in the families of non-
spacelike trajectories. Here the main phenomenon is that 
matter focuses the non-spacelike geodesics of the space-
time into pairs of focal points or conjugate points due to 
gravitational forces. There are null hypesurfaces such  as  
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the boundary of the future  pI


 for a point p such that 

no two points of such a hypersurface could be joined by a 
timelike curve. Thus, the null geodesic generators of such 
surfaces cannot contain conjugate points. Hawking and 
Penrose (1970) explained that singularities arise when a 
black hole is created due to gravitational collapse of 
massive bodies. A space-time singularity which cannot 
be observed by external observers is called a black hole. 
Poisson (2004) describes that when the black hole is 
formulated due to gravitational collapse then space-time 
singularities must occur. A space-time singularity is called 
naked if it is observable to local or distant observers. 
Joshi et al. (2012) discussed the genericity and stability 
aspects for naked singularities and black holes that arise 
as the final states for a complete gravitational collapse of 
a spherical massive matter cloud. Joshi (2009) described 
the naked singularities in some details. In this study we 
will not discuss naked singularities in space-time. 

Sahu et al. (2013) studied the time delay between 
successive relativistic images in gravitational lensing as a 
possible discriminator between various collapse end 
states and hence as a probe of cosmic censorship. They 
considered both black hole and naked singularity space-
times admitting photon spheres where infinite number of 
relativistic Einstein Rings can be formed at almost same 
radius and naked singularity space-times without photon 
sphere where multiple relativistic Einstein Rings can form 
almost up to the center of the lens. 

The space-time singularity theorems and the related 
theoretical advances towards understanding the structure 
of space-time was first established by Hawking, Penrose 
and Geroch, who showed that under certain very general 
and physically reasonable conditions such as the 
positivity of energy, occurrence of trapped surface and 
suitable causality condition, the space-time singularities 
must occur as an inevitable feature, as far as a wide 
range of gravitation theories describing the gravitational 
forces are concerned (Hawking and Ellis, 1973). 

The universe is not simply a random collection of 
irregular distributed matter, but it is a single entity, all 
parts of which are connected. When considering the large 
scale structure of the universe, the basic constituents are 
galaxies, which are congregation of more than 10

10
 stars 

bound together by their mutual gravitational attraction. 
The universe is the totality of galaxies which are causally 
connected (Joshi, 2008). A lot of black hole candidates 
(compact, dark, heavy objects) have been discovered 
observationally and most likely they are indeed black 
holes (Visser et al., 2009). 

O’Connor and Ott (2011) analyzed the results of a 
systematic study of failing core-collapse supernovae and 
the formation of stellar-mass black holes. They used 
open-source general-relativistic 1.5D code GR1D 
equipped with a three-species neutrino leakage/heating 
scheme and over 100 pre-supernova models. They 
studied the effects of the choice of nuclear equation of 
state,   zero-age   main  sequence  mass  and  metallicity,  
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rotation, and mass loss prescription on black holes 
formation. Sharif and Ahmad (2012) studied the effect of 
a positive cosmological constant on spherically 
symmetric dust collapse. They considered the 
Friedmann, Robertson-Walker (FRW) metric in the 
interior region whereas Schwarzschild-de Sitter in the 
exterior region. They also discussed the apparent 
horizons and their physical significance. 

The existence of space-time singularities follows in the 
form of future or past incomplete non-spacelike 
geodesics in the space-time. Such a singularity would 
arise either in the cosmological scenarios, where it 
provides the origin of the universe or as the end state of 
the gravitational collapse of a massive star which has 
exhausted its nuclear fuel providing the pressure gradient 
against the inwards pull of gravity. The singularities 
forming in general gravitational collapse should always 
be covered by the event horizon of the gravity, and 
remains invisible to any external observer is called the 
cosmic censorship hypothesis. 

Recently the kinematic quantities (expansion, shear 
and rotation), as well as the Raychaudhuri equations, 
have appeared, quite unexpectedly, in the context of 
quantum field theory. In the last decade, Borgman and 
Ford investigated gravitational effects of quantum stress 
tensor fluctuations (Borgman, 2004). They explained that 
these fluctuations produce fluctuations in the focusing of 
a bundle of geodesics. An explicit calculation using the 
Raychaudhuri equation, treated as a Langevin equation 
was performed to estimate angular blurring and 
luminosity fluctuations of the images of distant sources 
(Kar and SenGupta, 2007). 

The holographic principle has recently played a crucial 
role in our understanding of quantum aspects of gravity. 
The principle states that the information of gravity 
degrees of freedom in a D-dimensional volume is 
encoded in a quantum field theory defined on the  1D -

dimensional boundary of this volume. The 

renormalization group (RG) flow equation for the  -

function of a 4-dimensional quantum gauge field theory 
defined on the boundary of a 5-dimensional volume can 
be described by geodesic congruence in a scalar coupled 
5-dimensional gravitational theory. Such a gauge-gravity 
duality was proposed in a more general framework 
through the Maldacena conjecture and can be elegantly 
described through the RG equation with the bulk 
coordinate (or the holographic coordinate) as the RG 
parameter. It is shown that if the central charge or the c-
function in a quantum field theory evolves monotonically 
under RG then the holographic principle indicates that in 
the corresponding dual gravity in 5-dimensions, the 
picture is realized through the Raychaudhuri equation 
governing the monotonic flow of the expansion parameter 

  for the geodesic congruence in the gravity sector 

(Sahakian, 2000; Alvarez and Gomez, 1999; Akhmedov 
et al., 2011). 

The   paper  is  organized  as  follows.  In  the  following 



 
 
 
 
second section we describe briefly the concepts of 
general relativity which are related to this article. Here we 
only included tensor, geodesic and geodesic equation, 
equation of geodesic deviation and Einstein’s law of 
gravitation. Then in the next section we introduce 
Raychaudhuri equation and the gravitational focusing 
effects for the congruence of non-spacelike geodesics. 
Finally we describe the space-time singularities using 
Raychaudhuri equation. 
 
 
Aims and objectives of the study 
 
The aims and objectives of the study are to discuss 
space-time singularity and gravitational collapse of 
massive star when it collapses under its own gravity at 
the end of its life cycle. It is one of the most important 
questions in gravitation theory and relativistic 
astrophysics, and is in the foundation of black hole 
physics. The study also expresses that there was a big 
bang singularity at the beginning of the universe. 
Raychaudhuri equation supports both of the singularities 
in space-time. The scope of Raychaudhuri equation in 
gravitational focusing of non-spacelike geodesics and 
space-time singularities are also discussed to clarify the 
importance of this equation in cosmology. At present it is 
not known that the singularity must be either hidden 
within an event horizon of gravity or visible to the external 
universe. The quantum gravity may take over to resolve 
the classical space-time singularity. The objective of the 
study is to make easy to the common readers to 
understand the use of Raychaudhuri equation in classical 
cosmology, quantum cosmology and other branches of 
cosmology such as, the holographic principle. 
 
 
BASIC CONCEPT OF GENERAL RELATIVITY 
 
The particle must travel within the future light cone at an 

event p which satisfies the equation   0, XXg , which 

represents the paths of photon. No material particles and 
signals can travel faster than light; hence event p is 
causally related to another event q iff there is a non-
spacelike signal between p and q. If a tensor of second 

rank A   3,2,1,0,   is symmetric then (Carroll, 

2004):  
 

 AA       (1) 

 

and if A  is anti-symmetric then:  

 

 AA  .     (2) 

 

Hence for a tensor with components  A ,  its  symmetric 
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and anti-symmetric parts are written respectively as: 
 

    AAA 
!2

1
    (3) 

 

    AAA 
!2

1
.    (4) 

 
The Kronecker delta is defined by: 
 

 
 












 





 if 0

)summation no( if  1 
gg .  

 
In a Riemannian manifold with a positive definite metric 
geodesic gives the curves of shortest distance between 
two points p and q. The arc length between these two 

points on a curve  txx
   is given by: 

 


 uugS

q

p

 , where 
dt

dx
Xu


  . (5) 

 

Let   Mt :  be a 
1

C -curve in M. If T is a 

 0rC
r

 tensor field on M then the covariant derivative 

of T along  t  is defined as: 

 

eba

edc XT
t

DT ...

;...


.    (6) 

 

where X denotes the tangent vector field along  t . 

Here   is called a geodesic if the tangent vector to   is 

parallel transported along it. The derivative operator X  

on M which gives the rate of change of vectors or tensor 
fields along the given vector field X at p for all points of 
M. If X denotes the tangent vector field along  , then it is 

required that XX  is proportional to X; that is, there 

exists a function f such that: 
 

fXXX  .     (7) 

 
In the components we can express Equation 7 as: 
 

  


 fXeeXX  
;

,     (8) 

 

which holds for all e . Hence we can write Equation 8 

along the curve as: 
 


 fXXX 
;

.     (9) 



 
 
 
 
If f = 0 then from Equation 9 we can write the equation for 
geodesic: 
 

0
;


 XX .     (10) 

 

Let  x  be the local coordinate system, then 





u

dt

dx
X   are the components of the tangent 

vector to the geodesic. Here the parameter t is the affine 
parameter along   and such a situation   is called the 

affinely parametrized geodesic. Now the geodesic 
Equation 10 can be written as: 
 

 0 




uu
dt

du
.    (11) 

 
The tensor” 
 




















 

;;
R  (12) 

 
is a tensor of rank four and called Riemann curvature 
tensor. The covariant curvature tensor is defined by: 
 






























 













xx

g

xx

g

xx

g

xx

g
R

2222

2

1 +  









 g   (13) 

 
Contraction of curvature tensor (13) gives Ricci tensor: 
 




 RgR  .    (14) 

 
Further contraction of (14) yields Ricci scalar: 
 




RgR ˆ .     (15) 

 

The energy momentum tensor 


T  is defined as: 
 

  uuT
0

      (16) 

 

where 0 is the proper density of matter, and if there is 

no pressure, a perfect fluid is characterized by pressure 

 xpp  , then; 

 

    pguupT   .   (17) 

 
The principle of local conservation of energy and 
momentum states that: 
 

0
;


T .     (18) 
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The equation: 
 





TVTRVD 2     (19) 

 
is called the equation of geodesic deviation or Jacobi 

equation. If 0
R  then 0

2 
VD ; if 0

R  then 

the neighboring non-spacelike geodesics will necessarily 
accelerated towards or away from each other. 

According to the Newton’s law of gravitation, the field 
equations in the presence of matter are: 
 

 G 4
2       (20) 

 

where   is the gravitational potential,   is the scalar 

density of matter, 21311
1066.6

 skgmG   is the 

gravitational constant. 
If classical Equation 20 is generalized for the relative 

theory of gravitation then this must be expressed as a 
tensor equation satisfying following conditions: 
 
(i) The tensor equation should not contain derivatives of 

g  higher than the second order.  

(ii) It must be linear in the second differential coefficients. 
(iii) Its covariant divergence must vanish identically. 
 

The covariant derivatives of g  are identically zero. The 

only tensor which involves g  up to and second order is 

the tensor obtained by contracting once and twice the 

curvature tensor R  of (13) and these are R  and 

R̂  in (14) and (15) respectively. The most appropriate 
tensor is the Einstein tensor which satisfies above 
conditions: 
 

RgRG 
2

1
     (21) 

 
where the divergence of Equation 21 is identically zero. 
Equation 21 is proportional to Equation 17, hence 
combining these two equations, Einstein’s field equation 
can be written as (Stephani et al., 2003): 
 





T

c

G
RgR

4

8

2

1
 ,    (22) 

 

where 
8

103c  m/s is the velocity of light and G is the 

gravitational constant defined earlier.  

Einstein introduced a cosmological constant  0  

for static universe solutions as (Mohajan, 2013a, b): 
 





T

c

G
gRgR

4

8

2

1
 .   (23) 



 
 
 
 
In relativistic units G = c = 1 then Equation 23 becomes: 
 


 TgRgR 8

2

1
 .  (24) 

 
which is the Einstein’s law of gravitation for naturally 
curved material world. It is clear that divergence of both 
sides of Equations 23 and 24 is zero. For empty space 

0T  then  gR  , therefore; 

 

0R  for 0     (25)  

 
which is Einstein’s law of gravitation for empty space. 
 
 
RAYCHAUDHURI EQUATION AND GRAVITATIONAL 
FOCUSING 
 
Now let us consider the Raychaudhuri equation 
(Raychaudhuri, 1955), (for null case similar equation 

holds with 
3

1
 is replaced by 

2

1
) 

 

222
22

3

1  
  VVR

dt

d
  (26) 

 
which describes the rate of change of the volume 
expansion as one moves along the timelike geodesic 

curves in the congruence (Mohajan, 2013a). Here 0  

is expansion, 0  is shear and   is rotation tensors 

which are defined as follows: 
 

 




 hhV

;


 
 

 

  h
3

1
  

 

 






;
Vhh . 

 
By Einstein Equation 22 we can write (Joshi, 1993; Kar 
and SenGupta, 2007): 
 







  TVVTVVR

2

1
8





  .   (27) 

 

The term 


 VVT  is the energy density measured by a 

timelike observer with the unit tangent four velocity of the 

observer, 


V . In classical physics: 

 

0
 VVT .      (28) 
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Such an assumption is called the weak energy condition 
(the matter density observed by the corresponding 

observers is always non-negative; that is, 0  and 

0 p ). Now let us consider (Joshi, 2013): 

 

TVVT
2

1



.     (29) 

 
Such an assumption is called the strong energy condition 
(the trace of the tidal tensor measured by he 
corresponding observers is always non-negative; that is, 

0 p  and 03  p ) which implies from Equation 

27 for all timelike vectors 


V ,  

 

0
 VVR .      (30) 

 
Both the strong and weak energy condition will be valid 

for perfect fluid provided energy density 0  and there 

are no large negative pressures. An additional energy 
condition required often by the singularity theorems is the 
dominant energy condition which states that in addition to 
the weak energy condition, the pressure of the medium 

must not exceed the energy density (that is, p ). 

The dominant energy condition also states that 


 VT  is 

non-spacelike and future-directed. Equation 30 implies 
that the effect of matter on space-time curvature causes 
a focusing effect in the congruence of timelike geodesics 
due to gravitational attraction.  

Let us suppose   is a timelike geodesic. Then two 

points p and q along   are called conjugate points if 

there exists Jacobi field along   which is not identically 

zero but vanishes at p and q. If infinitesimally nearby null 
geodesics of the congruence meet again at some other 
point q in future, then p and q are called conjugate to 

each other, where   at q (Figure 1). We can 

define conjugate point another way as follows: 
 

Let S be a smooth spacelike hypersurface in M which is 
an embedded three dimensional sub-manifold. Consider 
a congruence of timelike geodesics orthogonal to S. Then 
a point p along a timelike geodesic   of the congruence 

is called conjugate to S along   if there exists a Jacobi 

vector field along   which is non-zero at S but vanishes 

at p, which means that there are two infinitesimally 
nearby geodesics orthogonal to S which intersects at p 
(Figure 2). Again we face equivalent condition that the 
expansion for the congruence orthogonal to S tends to 

  at p. If  


V  denotes the normal to S, then the 

extrinsic curvature   of S is defined as: 

 

 V      (31) 
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                 T      •  q                        

                         V 
                                

 
 
             
 

                p  
 
Figure 1. Infinitesimally separated null geodesics 

cross at p and q, which are conjugate points along 
the curve  . 

 
 
 

                                                  p 

                 

                                            

                                                                         
                                                                                     S 

 
 
Figure 2. A point p conjugate to the spacelike hypersurface S. The timelike geodesic is 

orthogonal to S, which is intersected by another infinitesimally nearby timelike geodesic. 

 
 
 

which is evaluated at S. So, 0 



  VV . Since 

S is orthogonal to the congruence this implies 0 , 

hence    . The trace of the extrinsic curvature, is 

denoted by  , and is given by: 

 

 


  h     (32) 

where   is expansion of the congruence orthogonal to S. 

Let us consider the situation when the space-time 
satisfies the strong energy condition and the congruence 
of timelike geodesics is hypersurface orthogonal, then 

0  implies 0
2   then Equation 26 gives: 

 

3

2




d

d      (33) 



 
 
 
 
which means that the volume expansion parameter must 
be necessarily decreasing along the timelike geodesics. 

Let us denote 
0  as initial expansion then integrating 

(33) we get: 
 

c
3

1 


.     (34) 

 

Initially 
0   then (34) becomes: 

 

0

1

3

1





 .     (35) 

 
By (35) we confirm that if the congruence is initially 

converging and 0  is negative then   within a 

proper time distance 

0

3


  , provided   can be 

extended to that value of the proper time. 

Now suppose 0  , and further, it is bounded 

above by a negative value max , so all the timelike curves 

of the congruence orthogonal to S will contain a point 

conjugate to S within a proper time distance 

max

3


  , 

provided the geodesics can be extended to that value of 
the proper time. 

By the above results the existence of space-time 
singularities exist in the form of geodesic incompleteness. 
Now we introduce the gravitational focusing effect for the 
congruence of null geodesics orthogonal to a spacelike 
two surfaces as follows (Joshi, 1993): 

Let M be a space-time satisfying 0
 KKR  for all 

null vectors 


K  and   be a null geodesic of the 

congruence. If the convergence   of null geodesic from 

some point p is 00   at some point q  along  , 

then within an affine distance less than or equal to 

0

2


  

from q the null geodesic   will contain a point conjugate 

to p, provided that it can be extended to that affine 
distance. 
 
 
SPACE-TIME SINGULARITIES 
 

Now let  s  be any past directed null geodesic in M 

then, 
 

0inf 



 KKTLim

ks     
(36)  
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must hold along   where k is the limit of the affine 

parameter in the past. Such a condition arises when 
matter and radiation are present, for example, and the 
microwave background radiation, which should have 
higher densities in the past in view of the observed 
expansion of the universe (Hawking and Ellis, 1973).  

Violation of any one of the higher-order causality 
condition in M implies that M is null geodesically 
incomplete, provided:  
 
(1) The weak energy condition holds on M; that is, 

0
 VVT  for any timelike vector 


V . 

(2) The matter tensor satisfies 0inf 



 KKTLim

ks
 on 

all null geodesics in M. 
 
The Raychaudhuri Equation 26 for null geodesic is: 
 

22
2

2

1  
  KKR

dt

d
   ( 0

2  ), (37) 

  

where 


K  is the tangent to the geodesic. The conjugacy 
of p and q for a function y is defined by  
 

ds

dy

y
.

1
   

 
and is given as follows: 
 

A new function z is defined by yz 2
, then 

ds

dz

z
.

2
 , 

so (37) becomes: 
 

  0 
2

2

 zsH
ds

zd
    (38) 

 

where    2
2

2

1 
  KKRsH . 

Thus y will be zero at p and q iff z is zero at p and q. 
Now let   be past complete, then condition (1) above 

implies 0
 KKR  for all null vector 


K . Since 

0
2   then Equation 38 gives: 

 

     


dssHdsKKR   2
2

1

00

2
 . (39) 

 

In this case the null trajectory   must contain infinitely 

many points (Tipler, 1977) and any two of such points 
can be timelike related. Let us define a length scale y 

associated with the volume V(t) defined by Vy 3
.  Now  



 
 
 
 
taking second derivative of Raychaudhuri Equation 26 we 
get: 
 

  02
3

1 2

2

2

 yVVR
dt

yd 
 .   (40) 

 

Let us choose    
2

2
2

3

1

t

A
VVRtF  


 for A > 0 then 

Equation 40 becomes: 
 

0
22

2

 y
t

A

dt

yd
.     (41) 

 
Here we will choose a trial solution to solve Equation 41 
because trial solution of differential equation results 
precisely and concisely so that common readers can 
understand the solution easily. This type of differential 
equation also has analytical solution but in that case we 
have to use related boundary conditions and that case 
the solution would be complicated and tedious to the 
readers. So then trial solution seems to be preferable to 
us and we have avoided analytical solution here. Let 


ty   be a trial solution of Equation 41, then we get: 

 

  0 1
22    Att    (42) 

 

which is true for all 
2

t , so that: 

 
2 A .     (43) 

 

Since   0tV  at t = 0 we must have 0 . Again 

since A > 0 so that from Equation 43 for we get: 
 

2

411 A
 . 

 

Since for 10  , we have 041  A  
4

1
 A . 

Hence solution for y is given by: 
 

   24 11 A
ty

 .    (44) 

 

The volume   0tV  is near the singularity at least as 

fast as 2
3

ty  . Hence at a strong curvature singularity, 

the gravitational tidal forces associated with this 
singularity are so strong that any object trying to cross it 
must be destroyed to zero size. 
 
 

DISCUSSION 
 

We   have   discussed   Raychaudhuri    equation    which 
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expresses the gravitational focusing of geodesics and 
conjugate points in a space-time manifold. The 
discussion implies that there was a big bang singularity at 
the beginning of the universe and also there will be a big 
crunch in the future within a fixed time at the end state of 
the universe and then another singularity will create in 
space-time manifold. It also supports the space-time 
singularities in the black hole regions. The aim of the 
study was to discuss the application of Raychaudhuri 
equation in different fields of physics and to indicate the 
importance of it to the future researchers. Finally we can 
remark that the study is very interesting and it is most 
advanced area of relativity and cosmology “which is the 
space-time puzzle and results the black holes formation.” 
 
 
CONCLUSION 
 
In this paper we have described gravitational focusing of 
geodesics and conjugate points in a space-time manifold. 
Raychaudhuri equation predicts that there may occur 
singularities in the beginning and at the end state of 
gravitational focusing. We have used Raychaudhuri 
equation to explain space-time singularities and show the 
procedures with detail mathematical calculations and 
diagrams where necessary.  

This paper is based on theoretical discussion and 
mathematical calculations. Experimental attempts are 
also taken to know the answer of the questions: What is 
the universe made of? How did it start? etc. Since 1952 
CERN (Conseil Européen pour la Recherche Nucléaire), 
the European Organization for Nuclear Research, 
physicists and engineers are probing the fundamental 
structure of the universe. They use the world’s largest 
and most complex scientific instruments to study the 
basic constituents of matter; the fundamental particles. 
The particles are made to collide together at close to the 
speed of light. The process gives the physicists clues 
about how the particles interact, and provides insights 
into the fundamental laws of nature. The Large Hadron 
Collider (LHC) is the world’s largest and most powerful 
particle accelerator and remains the latest addition to 
CERN’s accelerator complex. We hope in near future the 
scientists can provide us the true information about the 
universe in some details.  

In this paper we have avoided the complicated 
mathematical calculations thinking for the common 
readers. We hope all the readers who have elementary 
ideas in mathematics and physics can realize the paper 
with full interest.   
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