A new Pearson-type QMLE for conditionally heteroskedastic models

Zhu, Ke and Li, Wai Keung

Chinese Academy of Scences, University of Hong Kong

6 January 2014

Online at https://mpra.ub.uni-muenchen.de/52732/
MPRA Paper No. 52732, posted 09 Jan 2014 05:29 UTC

A new Pearson-type QMLE for conditionally heteroskedastic models

By Ke Zhu
Institute of Applied Mathematics, Chinese Academy of Sciences, Haidian District, Zhongguancun, Beijing, China
kzhu@amss.ac.cn
and Wai Keung Li
Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Kowloon, Hong Kong
hrntlwk@hku.hk

ABSTRACT

This paper proposes a novel Pearson-type quasi maximum likelihood estimator (QMLE) of $\operatorname{GARCH}(p, q)$ models. Unlike the existing Gaussian QMLE, Laplacian QMLE, generalized nonGaussian QMLE, or LAD estimator, our Pearsonian QMLE (PQMLE) captures not just the heavy-tailed but also the skewed innovations. Under strict stationarity and some weak moment conditions, the strong consistency and asymptotical normality of the PQMLE are obtained. With no further efforts, the PQMLE can apply to other conditionally heteroskedastic models. A simulation study is carried out to assess the performance of the PQMLE. Two applications to eight major stock indexes and four exchange rates further highlight the importance of our new method. Heavy-tailed and skewed innovations are often observed together in practice, and the PQMLE 20 now gives us a systematical way to capture these two co-existing features.

Some key words: Asymmetric innovation; Conditionally heteroskedastic model; Exchange rates; GARCH model; Leptokurtic innovation; Non-Gaussian QMLE; Pearson's Type IV distribution; Pearsonian QMLE; Stock indexes.

1. INTRODUCTION

After the seminal work of Engle (1982) and Bollerslev (1986), numerous volatility models have been widely used to capture the feature of conditional heteroscedasticity in economic and financial data sets; see, e.g., Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993) and Francq and Zakoïan (2010). Among them, the most influential model in empirical studies is the $\operatorname{GARCH}(p, q)$ model given by

$$
\begin{align*}
y_{t} & =\sigma_{t} \varepsilon_{t} \tag{1}\\
\sigma_{t}^{2} & =\omega+\sum_{i=1}^{p} \alpha_{i} y_{t-i}^{2}+\sum_{j=1}^{q} \beta_{j} \sigma_{t-j}^{2} \tag{2}
\end{align*}
$$

where $\omega>0, \alpha_{i} \geq 0(i=1, \cdots, p), \beta_{j} \geq 0(j=1, \cdots, q)$, and ε_{t} is a sequence of i.i.d. random variables. Traditional inference for the GARCH model is based on the Gaussian quasi maximum likelihood estimator (GQMLE), which is proposed by assuming that ε_{t} follows a standard normal distribution. Berkes, Horváth and Kokoszka (2003) showed that when ε_{t} has a finite fourth moment with $E \varepsilon_{t}^{2}=1$ (the identification condition), the GQMLE is consistent and asymptotically normal. However, the GQMLE can not capture the heavy-tailedness and skewness of ε_{t}, which are two well-observed features of financial data in GARCH model applications; see, e.g., Engle and González-Rivera (1991), Christoffersen, Heston, and Jacobs (2006), and Grigoletto and Lisi (2009). Motivated by this, the MLE, based on a user-chosen heavy-tailed or skewed likelihood function, so far has been largely considered. For instance, ε_{t} can be the Student's t distribution in Bollerslev (1987), the gamma distribution in Engle and González-Rivera (1991), the generalized error distribution in Nelson (1991), the skewed t distribution in Hansen (1994), the stable distribution in Liu and Brorsen (1995), the noncentral t distribution in Harvey and Siddique (1999), the Pearson's Type IV distribution in Premaratne and Bera (2001), the Gram-Charlier distribution in Leon, Rubio, and Serna (2005) and Cheng et al. (2011), the mixture normal distribution in Bai, Russell and Tiao (2003) and many others. However, the true distribution of ε_{t} is unknown a priori in practice, and as shown in Newey and Steigerwald (1997), the MLE may lead to inconsistent estimates of models (1)-(2) if the distribution of ε_{t} is misspecified.

In order to obtain a consistent estimator without knowing the true distribution of ε_{t}, people prefer to use the non-Gaussian QMLE (NGQMLE), which has efficiency advantage over GQMLE when ε_{t} is heavy-tailed. Generally, there are two ways to obtain a consistent NGQMLE. First,
one can assume a different identification condition rather than $E \varepsilon_{t}^{2}=1$. For instance, Peng and Yao (2003) proposed a least absolute deviation estimator (LADE) under the identification condition that median $\left(\varepsilon_{t}^{2}\right)=1$, and the consistency and asymptotic normality of LADE was proved in Chen and Zhu (2013) under only a finite fractional moment of ε_{t}. By assuming that ε_{t} follows a standard Laplace distribution, Berkes and Horváth (2004) considered the Laplacian QMLE (LQMLE) under the identification condition that $E\left|\varepsilon_{t}\right|=1$, and they showed that the LQMLE is consistent and asymptotically normal when ε_{t} has a finite second moment; see also Li and Li (2008) and Zhu and Ling (2011) for more discussions in this context. Secondly, one can retain the identification condition $E \varepsilon_{t}^{2}=1$ for NGQMLE but re-parameterize models (1)-(2). This method has been used for the semi-parametric estimator in Drost and Klaassen (1997), the rankbased estimator in Andrews (2012), and the generalized NGQMLE (GNGQMLE) in Fan, Li and Xiu (2013). By introducing a scale adjustment parameter, the GNGQMLE is consistent and asymptotical normal when ε_{t} has a finite second moment, while the semi-parametric and rankbased estimators can only estimate the heteroscedastic parameters α_{i} and β_{j} under the same re-parameterized $\operatorname{GARCH}(p, q)$ model. Morevoer, it is worth noting that when ε_{t} has an infinite fourth moment, all of LADE, LQMLE and GNGQMLE achieve root-n convergency, while the GQMLE suffers a slower convergence rate as shown in Hall and Yao (2003).

In this paper, we propose a Pearsonian QMLE (PQMLE) of models (1)-(2) by assuming that ε_{t} follows a Pearson's Type IV distribution. Like the LADE and LQMLE, the PQMLE requires a specified identification condition rather than $E \varepsilon_{t}^{2}=1$. Under strict stationarity and a finite fractional moment of ε_{t}, the strong consistency and asymptotic normality of the PQMLE are obtained. Therefore, the PQMLE is applicable to all of the aforementioned non-Gaussian distributions used in the MLE method. Furthermore, we show that the PQMLE can be easily applied to other conditionally heteroskedastic models. A simulation study is carried out to assess the performance of the PQMLE, and two applications to eight major stock indexes and four exchange rates further highlight the importance of our new method. Compared to the existing NGQMLEs, the PQMLE captures not only the heavy-tailed but also the skewed innovations. Heavy-tailed and skewed innovations are often observed together in practice, but none of the existing QMLE methods has been focussed on these co-existing features in the literature. The PQMLE method,

K. Zhu and W. K. Li

which can capture a very large range of the asymmetry and leptokurtosis of ε_{t}, now gives us a systematical way to achieve this goal.

This paper is organized as follows. Section 2 proposes our PQMLE and studies its asymptotic

Assumption 1. y_{t} is strictly stationary.

Assumption 2. For each $\theta \in \Theta, \alpha(z)$ and $\beta(z)$ have no common root, $\alpha(1) \neq 0, \alpha_{p}+\beta_{q} \neq 0$ and $\sum_{j=1}^{q} \beta_{j}<1$, where $\alpha(z)=\sum_{i=1}^{p} \alpha_{i} z^{i}$ and $\beta(z)=1-\sum_{j=1}^{q} \beta_{j} z^{j}$.

Assumption 3. (i) ε_{t}^{2} is a nondegenerate random variable; (ii) $\lim _{s \rightarrow 0} s^{-\mu} P\left(\varepsilon_{t}^{2} \leq s\right)=0$ for some $\mu>0$; (iii) $E\left|\varepsilon_{t}\right|^{2 \kappa}<\infty$ for some $\kappa>0$.

Assumption 1 is a basic set-up for model (1)-(2), and its necessary and sufficient conditions are given in Bougerol and Picard (1992). Assumption 2 and Assumption 3(i) are the identifiability conditions for model (1)-(2) as shown in Berkes, Horváth and Kokoszka (2003). Assumptions 3(ii)-(iii) from Berkes and Horváth (2004) are the technical conditions for proving our asymptotic theory. Note that only a finite fractional moment of ε_{t} is required in this case, and so our method applies to very heavy-tailed innovations.

$2 \cdot 2$. The Pearson's Type IV distribution

We briefly review the Pearson's Type IV distribution in Nagahara (1999) and Heinrich (2004). The Pearson's Type IV (PIV) distribution, as one of the asymmetric and leptokurtic distributions, has the following pdf:

$$
\begin{equation*}
f(x ; \lambda, a, \nu, m)=K\left[1+\left(\frac{x-\lambda}{a}\right)^{2}\right]^{-m} \exp \left[-\nu \tan ^{-1}\left(\frac{x-\lambda}{a}\right)\right] \tag{3}
\end{equation*}
$$

where $x \in \mathcal{R}$ and (λ, a, ν, m) are real parameters with $m \geq 1 / 2$ and $a>0$. Here, K is the normalizing constant given by

$$
K=\frac{2^{2 m-2}|\Gamma(m+i \nu / 2)|^{2}}{a \pi \Gamma(2 m-1)}
$$

where $i=\sqrt{-1}$ is the imaginary number and $\Gamma(\cdot)$ is the complex Gamma function. In (3), λ and a are the location and the scale parameters, respectively; the parameter ν is related to the asymmetry of the distribution, and a positive (or negative) ν stands for a negatively (or positively) skewed distribution; the parameter m captures the leptokurtosis of the distribution, and a smaller value of m represents a heavier tail of the distribution. To further illustrate this, Figure 1 plots four different $f(x ; 0,1, \nu, m)$ densities. From Figure 1, we know that PIV (λ, a, ν, m) distribution with a small (or large) m can have a heavier (or lighter) tail than $\mathrm{N}(0,1)$ distribution. Also, it is worth mentioning that if $\varepsilon_{t} \sim \operatorname{PIV}(\lambda, a, \nu, m)$, its j-th moment exists only when $j<r+1$ for $r=2(m-1)$. That is, ε_{t} has a finite second moment when $m>1.5$, and it has a finite fourth moment when $m>2.5$. Particularly, the skewness and kurtosis of ε_{t} are as follows:

$$
\begin{aligned}
\operatorname{skew}\left(\varepsilon_{t}\right) & =\frac{-4 \nu}{r-2} \sqrt{\frac{r-1}{r^{2}+\nu^{2}}} \text { for } m>2 \\
\operatorname{kurt}\left(\varepsilon_{t}\right) & =\frac{3(r-1)\left[(r+6)\left(r^{2}+\nu^{2}\right)-8 r^{2}\right]}{(r-2)(r-3)\left(r^{2}+\nu^{2}\right)} \text { for } m>2.5
\end{aligned}
$$

Figure 2 gives a 3-dimensional (3-D) plot of the skewness and kurtosis of ε_{t}. From this figure, we can see that when $|\nu|$ (or m) increases, the absolute value of the skewness increase (or decrease) for fixed m (or ν); and the same conclusion holds for the kurtosis. Hence, we know that the PIV distribution can capture a very large range of the asymmetry and leptokurtosis of the innovation. For more discussions on the PIV distributions, we refer to Bauwens and Laurent (2005), Yan (2005), and Grigoletto and Lisi (2009).

Fig. 1. The plot of four different densities $f(x ; 0,1, \nu, m)$ for the Pearson's Type IV distribution (the solid star line is the density of $\mathrm{N}(0,1)$ distribution).

Next, we are interested in the case when ε_{t} in model (1)-(2) follows the PIV distribution. Figures 3-4 plot one realization for each pair of (ν, m) from the following $\operatorname{GARCH}(1,1)$ model:

$$
\begin{equation*}
y_{t}=\varepsilon_{t} \sigma_{t} \text { and } \sigma_{t}^{2}=0.01+0.01 y_{t-1}^{2}+0.9 \sigma_{t-1}^{2} \tag{4}
\end{equation*}
$$

where $\varepsilon_{t} \sim \operatorname{PIV}(0,1, \nu, m)$ with $(\nu, m)=(\pm 2,2),(0,2),(\pm 2,4)$, and (0,4). From Figures 3-4, we find that no matter how heavy-tailed ε_{t} is, y_{t} has a higher probability to be positive (or negative) when $\nu<0($ or $>0)$, and this asymmetric phenomena disappears when $\nu=0$. Moreover, when m becomes smaller, the absolute value of y_{t} tends to be larger, especially for its extreme values. All of these findings indicate that the GARCH model with $\operatorname{PIV}(0,1, \nu, m)$ innovations can capture a very large range of the asymmetry and leptokurtosis of the data set.

Fig. 2. (top panel) the 3-D plot of the skewness of ε_{t}, where $\varepsilon_{t} \sim \operatorname{PIV}(0,1, \nu, m)$ with $\nu \in[-0.2,0.2]$ and $m \in(2,8)$; (bottom panel) the 3-D plot of the kurtosis of ε_{t}, where $\varepsilon_{t} \sim \operatorname{PIV}(0,1, \nu, m)$ with $\nu \in[-0.2,0.2]$ and $m \in(2.5,8)$.

Fig. 3. One realization $\left\{y_{t}\right\}_{t=1}^{1000}$ from model (4), when $\varepsilon_{t} \sim \operatorname{PIV}(0,1, \nu, m)$.

Fig. 4. One realization $\left\{y_{t}\right\}_{t=1}^{1000}$ from model (4), when $\varepsilon_{t} \sim \operatorname{PIV}(0,1, \nu, m)$.

$2 \cdot 3$. The PQMLE

Given the observations $\left\{y_{n}, \cdots, y_{1}\right\}$ and the initial values $Y_{0}=:\left\{y_{i} ; i \leq 0\right\}$, we first rewrite the parametric models (1)-(2) as

$$
\begin{aligned}
& \varepsilon_{t}(\theta)=y_{t} / \sqrt{h_{t}(\theta)} \text { and } \\
& h_{t}(\theta)=c_{0}(\theta)+\sum_{i=1}^{\infty} c_{i}(\theta) y_{t-i}^{2}
\end{aligned}
$$

where all expressions for $c_{i}(\theta)(i \geq 0)$ are given in Berkes and Horváth (2004, pages 635-636). Clearly, $\varepsilon_{t}\left(\theta_{0}\right)=\varepsilon_{t}$ and $h_{t}\left(\theta_{0}\right)=\sigma_{t}^{2}$. In practice, since the values of Y_{0} are unobservable, we can replace them by zeros, and then use $\tilde{h}_{t}(\theta)$ instead of $h_{t}(\theta)$ to calculate our estimator, where

$$
\begin{equation*}
\tilde{h}_{t}(\theta)=c_{0}(\theta)+\sum_{i=1}^{t-1} c_{i}(\theta) y_{t-i}^{2} \text { for } t=2, \cdots, n \tag{5}
\end{equation*}
$$

and $\tilde{h}_{1}(\theta)=c_{0}(\theta)$. For given (ν, m), when ε_{t} follows the $\operatorname{PIV}(0,1, \nu, m)$ distribution, the \log likelihood function (ignoring some constants) can be written as

$$
\begin{equation*}
\tilde{L}_{n}(\theta)=-\sum_{t=1}^{n}\left\{\log \sqrt{\tilde{h}_{t}(\theta)}+m \log \left[1+\frac{y_{t}^{2}}{\tilde{h}_{t}(\theta)}\right]+\nu \tan ^{-1}\left(\frac{y_{t}}{\sqrt{\tilde{h}_{t}(\theta)}}\right)\right\} \tag{6}
\end{equation*}
$$

where $m \geq 1 / 2$. We look for the maximizer of $\tilde{L}_{n}(\theta)$ on Θ, that is,

$$
\begin{equation*}
\tilde{\theta}_{n}=\arg \max _{\theta \in \Theta} \tilde{L}_{n}(\theta) . \tag{7}
\end{equation*}
$$

Because we do not assume that ε_{t} follows the $\operatorname{PIV}(0,1, \nu, m)$ distribution, $\tilde{\theta}_{n}$ is called the Pearsonian quasi-maximum likelihood estimator (PQMLE) of θ_{0}. Note that equation (6) depends on the distribution parameters (ν, m), and so we should specify them before the calculation of $\tilde{L}_{n}(\theta)$. Particularly, when $\nu=0$, the \log-likelihood function $\tilde{L}_{n}(\theta)$ is symmetric. The detailed procedure to select (ν, m) is discussed in Remark 3.

Next, let $\bar{f}(x)=f(x ; 0,1, \nu, m) / K, g(y, s)=\log [s \bar{f}(y s)]$ and $w(s):=E\left[g\left(\varepsilon_{t}, s\right)\right]$, where $y \in \mathcal{R}$ and $s>0$. Then, it is straightforward to see that

$$
\tilde{L}_{n}(\theta)=\sum_{t=1}^{n} g\left(y_{t}, 1 / \sqrt{\tilde{h}_{t}(\theta)}\right)
$$

In order to derive the asymptotic property of $\tilde{\theta}_{n}$, we need two more assumptions below:

Assumption 4. The innovation ε_{t} satisfies that

$$
E\left[\frac{2 m \varepsilon_{t}^{2}+\nu \varepsilon_{t}}{1+\varepsilon_{t}^{2}}\right]=1
$$

Assumption 5. $w(s)$ has a unique maximum at $s=1$.

Fig. 5. The plot of $w(s)$ for Student's t and stable (STB) distributions.

Assumption 4 is the identification condition for the PQMLE. Unlike the GQMLE, the condition $E \varepsilon_{t}^{2}=1$ is not needed, and the conditional variance of y_{t} in this case is $\sigma_{t}^{2} \operatorname{var}\left(\varepsilon_{t}\right)$, provided that $E \varepsilon_{t}^{2}<\infty$. Assumption 5 is a technical condition for proving the strong consistency of the PQMLE. After some simple algebra, we can show that a sufficient condition for Assumption 5 is that (i) $w(s)$ is concave on $\{s: s>0\}$; and (ii) $E\left[\nu \varepsilon_{t} /\left(1+\varepsilon_{t}^{2}\right)\right] \leq 0$. Figure 5 plots the function $w(s)$ for Student's $t_{i}(i=1,2,4)$ distributions and stable (STB) distributions such that Assumption 4 holds, where (ν, m) are set to be $(-1,1)$ for $t_{1},(-1.16,1.16)$ for $t_{2},(-1.3,1.3)$ for t_{4}, $(1.11,1.11)$ for $\operatorname{STB}(1.8,0.5,1,0),(0.97,0.97)$ for $\operatorname{STB}(1,0.5,1,0)$, and $(0.76,0.76)$
for $\operatorname{STB}(0.5,0.5,1,0)$. Here, the $\operatorname{STB}(\check{\alpha}, \check{\beta}, c, \mu)$ distribution has the following characteristic function:

$$
\psi(t ; \check{\alpha}, \check{\beta}, c, \mu)=\exp \left[i t \mu-|c t|^{\check{\alpha}}(1-i \check{\beta} \operatorname{sgn}(t) \Phi)\right]
$$

where $\check{\alpha} \in(0,2], \check{\beta} \in[-1,1], c \in(0, \infty), \mu \in \mathcal{R}$, and

$$
\Phi= \begin{cases}\tan (\pi \check{\alpha} / 2) & \text { if } \check{\alpha} \neq 1 \\ -(2 / \pi) \log |t| & \text { if } \check{\alpha}=1\end{cases}
$$

Clearly, $w(s)$ in Figure 5 is concave with a unique maximum at $s=1$ for all six distributions.
Denote the first and second derivatives of $g(y, s)$ with respective to s by $g_{1}(y, s)$ and $g_{2}(y, s)$, respectively. We now are ready to give our main results:

ThEOREM 1. Suppose that Assumptions 1-5 hold. Then, as $n \rightarrow \infty$, (i) $\tilde{\theta}_{n} \rightarrow \theta_{0}$ almost surely (a.s.); and (ii) $\sqrt{n}\left(\tilde{\theta}_{n}-\theta_{0}\right) \rightarrow_{d} N\left(0,4 \tau^{2} A^{-1}\right)$, where

$$
\tau^{2}=\frac{E g_{1}^{2}\left(\varepsilon_{t}, 1\right)}{\left[E g_{2}\left(\varepsilon_{t}, 1\right)\right]^{2}} \text { and } A=E\left[\frac{1}{h_{t}^{2}\left(\theta_{0}\right)} \frac{\partial h_{t}\left(\theta_{0}\right)}{\partial \theta} \frac{\partial h_{t}\left(\theta_{0}\right)}{\partial \theta^{\prime}}\right]
$$

Remark 1. The PQMLE only needs a finite fractional moment of ε_{t} for its asymptotic normaland Kokoszka (2003) and Francq and Zakoïan (2004), or the moment condition $E \varepsilon_{t}^{2}<\infty$ for the LQMLE in Berkes and Horváth (2004) and the GNGQMLE in Fan, Li, and Xiu (2013). Note that as shown in Chen and Zhu (2013), the LADE in Peng and Yao (2003) also only needs a finite fractional moment of ε_{t} for its asymptotic normality.

Remark 2. The identification condition for the PQMLE in Assumption 4 is different from the identification condition $E \varepsilon_{t}^{2}=1$ for the GQMLE and the GNGQMLE, the identification condition $E\left|\varepsilon_{t}\right|=1$ for the LQMLE, or the identification condition median $\left(\varepsilon_{t}^{2}\right)=1$ for the LADE. Thus, it is not straightforward to compare the efficiency of the PQMLE with that of other estimators in formal, and the simulation comparison in Section 3 is necessary.

Remark 3. In order to calculate the PQMLE, we need to first select the parameters ν and m. This can be simply done by using the maximum likelihood estimation method; see Premaratne and Bera (2001), Verhoeven and McAleer (2004), and Bhattacharyya, Mirsa, and Kodase (2009). Assume that $\varepsilon_{t} \sim \operatorname{PIV}(0,1, \nu, m)$. Then, we can estimate (ν, m, θ) jointly by maximizing the full
\log-likelihood function $\operatorname{LLF}_{P}(\nu, m, \theta)$, where

$$
\begin{equation*}
\operatorname{LLF}_{P}(\nu, m, \theta)=\tilde{L}_{n}(\theta)+n \log K \tag{8}
\end{equation*}
$$

Now, we can choose (ν, m) to be the corresponding estimators from this MLE method. Although the parameters ν and m selected by the MLE method may not be optimal, the practical usefulness of this method will be illustrated by the empirical examples in Section 4.

Remark 4. Note that the value of (ν, m) can be anywhere in $(-\infty, \infty) \times[1 / 2, \infty]$, and a different value of (ν, m) will imply a different stationarity region of y_{t}. To see this, Figure 6 plots the strict stationarity region of the $\operatorname{GARCH}(1,1)$ model: $y_{t}=\varepsilon_{t} \sigma_{t}$ and $\sigma_{t}^{2}=\omega+\alpha y_{t-1}^{2}+$ $\beta \sigma_{t-1}^{2}$, where $\varepsilon_{t} \sim \operatorname{PIV}(0,1, \nu, m)$. As a comparison, the region for $E y_{t}^{2}<\infty$ is also plotted in Figure 6. From this figure, we find that the parameter region for strict stationarity is much larger than that for $E y_{t}^{2}<\infty$. Moreover, a smaller value of ν or a larger value of m will give a larger strict stationarity region. Particularly, except $\varepsilon_{t} \sim \operatorname{PIV}(0,1,2,2)$, each strict stationarity region in Figure 6 is much larger than that in Nelson (1990) when $\varepsilon_{t} \sim N(0,1)$ or that in Zhu and Ling (2011) when $\varepsilon_{t} \sim \operatorname{Laplace}(0,1)$. Therefore, our PQMLE can have a much larger admissible parameter region than the GQMLE, the GNGQMLE or the LQMLE.

2.4. Extension to conditionally heteroskedastic models

In this subsection, we study the PMLE for the following conditionally heteroskedastic models:

$$
\begin{equation*}
y_{t}=\sigma_{t} \varepsilon_{t} \text { and } \sigma_{t}=\sigma\left(y_{t-1}, y_{t-2}, \cdots ; \theta_{0}\right) \tag{9}
\end{equation*}
$$

where ε_{t} being independent of $\left\{y_{j} ; j<t\right\}$ is a sequence of i.i.d. random variables, the parameter space $\Theta \subset \mathcal{R}^{l}$ is compact, the true value θ_{0} is an interior point in Θ, and $\sigma: \mathcal{R}^{\infty} \times \Theta \rightarrow(0, \infty)$. Many existing models, such as GARCH model in (1)-(2), asymmetric power GARCH model in Ding, Granger, and Engle (1993) and asymmetric log-GARCH model in Geweke (1986), can be embedded into model (9); see e.g., Bollerslev, Chou, and Kroner (1992) and Francq and Zakoïan (2010) for more discussions in this context.

As (5), let $h_{t}(\theta)=\left[\sigma\left(y_{t-1}, y_{t-2}, \cdots ; \theta\right)\right]^{2}$ and define $\tilde{h}_{t}(\theta)$ in the same way as $h_{t}(\theta)$ by replacing Y_{0} by zeros. Then, based on $\left\{\tilde{h}_{t}(\theta)\right\}$, we can define the PMLE for model (9) as in (7). To derive the asymptotic property of the PMLE, three more technical assumptions are needed.

Fig. 6. The regions bounded by the solid and dashed curves are for the strict stationarity (i.e., $\left.E\left[\log \left(\alpha \varepsilon_{t}^{2}+\beta\right)\right]<0\right)$ and for $E y_{t}^{2}<\infty$ (i.e., $E \varepsilon_{t}^{2} \alpha+\beta<1$), respectively, where $E \varepsilon_{t}^{2}=\left(r^{2}+\nu^{2}\right) /\left(r^{2}(r-1)\right)$ with $r=2(m-1)$.

Assumption 6. (i) $h_{t}(\theta) \geq \underline{w}$ (a.s.) for some $\underline{w}>0$ and all $\theta \in \Theta$. Moreover, $h_{t}(\theta)=h_{t}\left(\theta_{0}\right)$ (a.s.) if and only if $\theta=\theta_{0}$; (ii) if $x^{\prime}\left(\partial h_{t}(\theta) / \partial \theta_{i}\right)_{i=1 \cdots l}=0$ (a.s.) for any $x \in \mathcal{R}^{l}$, then $x=0$.

Assumption 7.

(i) $E\left[\sup _{\theta \in \Theta}\left\|\frac{1}{h_{t}(\theta)} \frac{\partial h_{t}(\theta)}{\partial \theta}\right\|\right]^{2}<\infty ;(i i) E\left[\sup _{\theta \in \Theta}\left\|\frac{1}{h_{t}(\theta)} \frac{\partial^{2} h_{t}(\theta)}{\partial \theta \partial \theta^{\prime}}\right\|\right]<\infty$.

Assumption 8.

$$
\begin{aligned}
& \text { (i) } \sup _{\theta \in \Theta}\left\|\frac{1}{\tilde{h}_{t}(\theta)} \frac{\partial \tilde{h}_{t}(\theta)}{\partial \theta}-\frac{1}{h_{t}(\theta)} \frac{\partial h_{t}(\theta)}{\partial \theta}\right\| \leq O\left(\rho^{t}\right) R_{t} \\
& \text { (ii) } \sup _{\theta \in \Theta}\left\|\frac{1}{\tilde{h}_{t}(\theta)} \frac{\partial^{2} \tilde{h}_{t}(\theta)}{\partial \theta \partial \theta^{\prime}}-\frac{1}{h_{t}(\theta)} \frac{\partial^{2} h_{t}(\theta)}{\partial \theta \partial \theta^{\prime}}\right\| \leq O\left(\rho^{t}\right) R_{t}
\end{aligned}
$$

for some constant $\rho \in(0,1)$ and positive random variable R_{t} such that $E R_{t}^{2}<\infty$.

Assumption 6 imposes some basic requirements on the function $h_{t}(\theta)$, and they are satisfied by most of the conditionally heteroskedastic models; see, e.g., Francq and Zakoïan (2004, 2013). Assumptions 7-8 give some moment conditions, which have been verified for GARCH models in Ling (2007), asymmetric power GARCH models in Hamadeh and Zakoïan (2011) and asymmetric log-GARCH models in Francq, Wintenberger, and Zakoïan (2013). The following corollary gives the strong consistency and asymptotic normality the PQMLE for model (9), and its proof is omitted because it follows the same ones as for Theorems 1.1-1.2 in Berkes and Horváth (2004).

Corollary 1. Assume that y_{t} follows model (9). If Assumptions 1, 2(iii) and 3-8 hold, then the conclusions in Theorem 1 hold.

3. Simulation Study

In this section, we compare the performance of the PQMLE with those of the GQMLE, the LQMLE, the LADE and the GNGQMLE in finite samples. We generate 1000 replications of sample size $n=1000$ from the following model:

$$
\begin{equation*}
y_{t}=\sigma_{t} \varepsilon_{t} \text { and } \sigma_{t}^{2}=\omega_{0}+\alpha_{0} y_{t-1}^{2}+\beta_{0} \sigma_{t-1}^{2} \tag{10}
\end{equation*}
$$

where we choose $\left(\omega_{0}, \alpha_{0}, \beta_{0}\right)=(0.25,0.15,0.3)$ as in Fan, Li, and Xiu (2013), and ε_{t} is chosen to be the PIV distributions, the STB distributions, and the Student's t distributions, respectively.

In order to implement the PQMLE, we choose $(\nu, m)=\left(\nu_{0} / \tau_{0}, m_{0} / \tau_{0}\right)$ such that Assumption 4 holds, where

$$
\tau_{0}=E\left[\frac{2 m_{0} \varepsilon_{t}^{2}+\nu_{0} \varepsilon_{t}}{1+\varepsilon_{t}^{2}}\right]
$$

Table 1. The bias and RMSE of all estimators for model (10)

Bias -0.0034 0.0072 0.0071 0.0013 0.0023-0.0050-0.0033 0.0065 0.0049-0.0021 0.0018-0.0040 RMSE 0.11100 .11320 .29790 .10500 .10100 .28210 .11110 .11730 .29830 .10510 .10410 .2848

GQMLE		LQMLE				LAD			GNGQMLE	
ω	α	β	ω	α	β	ω	α	β	ω	α

Bias - $0.00470 .01020 .00940 .0069 \quad 0.0041-0.0185 \quad 0.0075 \quad 0.0256-0.0245 \quad 0.0016000038-0.0061$ RMSE 0.11220 .12540 .30290 .10820 .10750 .28920 .11560 .14540 .30770 .10500 .10490 .2822
$\operatorname{PIV}(0,1,2,2)$

Bias 0.0059 0.0010-0.0073 0.0047 0.0001-0.0056 0.0037 0.0000-0.0028 0.0041 0.0000-0.0040 RMSE $0.04450 .0328 \quad 0.08810 .04560 .03340 .09080 .05470 .03960 .10970 .04900 .03580 .0981$

GQMLE			LQMLE			LAD			GNGQMLE		
ω	α	β	ω	α	β	ω	α		ω	α	

Bias 0.0087 0.0122-0.0306 0.0080 0.0017-0.0138 0.0036 0.0011-0.0039-0.0009-0.0045-0.0109 RMSE 0.09000 .09050 .17280 .05290 .04190 .10840 .05540 .04000 .11370 .04970 .03540 .1010
$\operatorname{PIV}(0,1,2,1.6)$

 RMSE $0.04200 .0227 \quad 0.04770 .04310 .02350 .04930 .04980 .02780 .05820 .04570 .02520 .0527$

Bias -0.0069-0.0016 0.0139 0.0084 0.0024-0.0076 0.0030 0.0011-0.0010-0.0189-0.0149-0.0045 RMSE $0.14050 .08290 .20180 .06050 .03900 .0767 \quad 0.04550 .02610 .06010 .05230 .03000 .0575$
$\operatorname{PIV}(0,1,2,1.5)$

Bias $0.0083-0.0006$ 0.0010 0.0079-0.0007 0.0016 0.0074-0.0007 0.0029 0.0076-0.0008 0.0023 RMSE 0.04650 .02050 .03940 .04770 .02150 .04110 .05570 .02560 .04900 .05070 .02310 .0442

	GQMLE			LQMLE			LAD			GNGQMLE		
	ω	α	β									
Bias		N.A.			N.A.		0.0073	. 001	0.0020		N.A.	
RMSE		N.A.			N.A.		0.0515	0.022	0.0485		N.A.	

$\operatorname{STA}(1.8,0.5,1,0)$

PQMLE $_{1}$		PQMLE $_{2}$			PQMLE $_{3}$				PQMLE $_{4}$		
ω	α	β	ω	α	β	ω	α	β	ω		

Bias $0.0014-0.0014$ 0.0025 0.0013-0.0014 0.0018 0.0018-0.0001-0.0008 0.0014-0.0010 0.0008
RMSE 0.05650 .03750 .11080 .04980 .03350 .09780 .05060 .03360 .09810 .04770 .03210 .0933

	GQMLE			LQMLE			LAD			GNGQMLE		
	ω	α	β									
Bias		N.A.			N.A.		0.0016	0.0001	0.0002		N.A.	
RMSE		N.A.			N.A.		0.0552	0.0373	0.1070		N.A.	

$\operatorname{STA}(1.8,0.9,1,0)$

\[

\]

Bias $0.0007-0.00040 .00230 .0010-0.00100 .0020$ 0.0018-0.0008 0.0008 0.0015-0.0011 0.0013
RMSE $0.05730 .03660 .10900 .0518 \quad 0.03230 .09840 .05300 .0328 \quad 0.10050 .05040 .03090 .0953$

	GQMLE			LQMLE			LAD			GNGQMLE		
	ω	α	β									
Bias		N.A.			N.A.		0.0024	-0.0001	0.0004		N.A.	
RMSE		N.A.			N.A.		0.0595	0.0374	0.1120		N.A.	

[^0]Table 2. The bias and RMSE of all estimators for model (10) (con't)

Bias $0.0047-0.0009$ 0.0007 0.0039-0.0013 0.0015 0.0029-0.0011 0.0023 0.0034-0.0013 0.0019 RMSE $0.04390 .0305 \quad 0.06560 .03890 .0268 \quad 0.05800 .0397 \quad 0.02620 .05840 .03760 .02520 .0556$

	GQMLE			LQMLE				LAD		GNGQMLE		
	ω	α	β		α	α	ω	α	β	ω	α	β
Bias	N.A.			N.A.		$0.0033-0.0015$	0.0018		N.A.			
RMSE	N.A.			N.A.		0.0425	0.029	0.0644		N.A.		

$\operatorname{STA}(1.5,0.5,1,0)$

Bias $0.0029-0.0001-0.0001$ 0.0025-0.0006 0.0006 0.0015-0.0010 0.0027 0.0020-0.0009 0.0016 RMSE 0.04250 .02760 .06470 .03910 .02510 .05930 .04030 .02590 .06230 .03820 .02440 .0583

	GQMLE			LQMLE			LAD			GNGQMLE		
	ω	α	β									
Bias		N.A.			N.A.		0.0028	. 0002	0.0009		N.A.	
RMSE		N.A.			N.A.		0.0430	0.0277	0.0650		N.A.	

t_{5}

Bias 0.0047 0.0073-0.0120 0.0045 0.0041-0.0131 0.0049 0.0025-0.0086 0.0025 0.0016-0.0100 RMSE 0.07990 .05330 .17420 .07160 .04640 .15660 .07040 .04530 .15550 .06750 .04340 .1496

GQMLE		LQMLE				LAD			GNGQMLE	
ω	α	β	ω	α	β	ω	α	β	ω	α

t_{4}

PQMLE $_{1}$		PQMLE $_{2}$					PQMLE_{3}		
ω	α	β	ω	α	β		PQMLE_{4}		

Bias 0.0063 0.0050-0.0148 0.0068 0.0032-0.0143 0.0068 0.0017-0.0122 0.0071 0.0022-0.0138 RMSE $0.0700 \quad 0.04730 .15210 .06310 .04150 .13670 .06360 .04140 .13630 .06080 .03930 .1308$

t_{3}

Bias $0.0013-0.0018-0.0046$ 0.0058-0.0001-0.0038 0.0014-0.0026 0.0000 0.0073 0.0005-0.0021 RMSE $0.06020 .0430 \quad 0.11810 .05310 .03840 .10420 .05070 .03750 .10320 .04980 .03660 .0984$

	GQMLE			LQMLE			LAD			GNGQMLE		
	ω	α	β									
Bias		N.A.		0.0069	0.0016	. 01	0.002	. 00		-0.00	12-0.004	0.0076
RMSE		N.A.		0.0521	0.039	. 10	. 056		0.1	0.04	720.035	0.09

t_{2}

\[

\]

Bias 0.00250 .00070 .00050 .00230 .00010 .00100 .00240 .00030 .00090 .00230 .00000 .0011 RMSE 0.04760 .03570 .08070 .04220 .03190 .07230 .04290 .03120 .07400 .04050 .03030 .0699

	GQMLE				LQMLE				LAD				GNGQMLE	
	ω	α	β		ω	α	β		ω	α	β	ω	α	β
Bias		N.A.			N.A.			0.0012	0.0008	0.0014		N.A.		
RMSE	N.A.			N.A.			0.0471	0.0358	0.0829		N.A.			

[^1]with $\left(\nu_{0}, m_{0}\right)=(2,2),(2,4),(-2,4)$ and $(0,4)$, and the corresponding PQMLEs are called the $\mathrm{PQMLE}_{1}, \mathrm{PQMLE}_{2}, \mathrm{PQMLE}_{3}$, and PQMLE_{4}, respectively, Furthermore, since other four esti- mation methods require different identification conditions for model (10), the GQMLE $\left(\bar{\theta}_{1 n}^{*}\right)$, LQMLE $\left(\bar{\theta}_{2 n}^{*}\right)$, $\operatorname{LADE}\left(\bar{\theta}_{3 n}^{*}\right)$, and GNGQMLE $\left(\bar{\theta}_{4 n}^{*}\right)$ are estimators of $\left(\tau_{1} \omega_{0}, \tau_{1} \alpha_{0}, \beta_{0}\right)$ with $\tau_{1}=E \varepsilon_{t}^{2},\left(E\left|\varepsilon_{t}\right|\right)^{2}, \operatorname{median}\left(\varepsilon_{t}^{2}\right)$ and $E \varepsilon_{t}^{2}$ respectively. In order to make our comparison feasible, we let
$$
\bar{\theta}_{1 n}=\left(\frac{\bar{\omega}_{1 n}^{*}}{E \varepsilon_{t}^{2}}, \frac{\bar{\alpha}_{1 n}^{*}}{E \varepsilon_{t}^{2}}, \bar{\beta}_{1 n}^{*}\right) \quad \bar{\theta}_{2 n}=\left(\frac{\bar{\omega}_{2 n}^{*}}{\left(E\left|\varepsilon_{t}\right|\right)^{2}}, \frac{\bar{\alpha}_{2 n}^{*}}{\left(E\left|\varepsilon_{t}\right|\right)^{2}}, \bar{\beta}_{2 n}^{*}\right)
$$
and
$$
\bar{\theta}_{3 n}=\left(\frac{\bar{\omega}_{3 n}^{*}}{\operatorname{median}\left(\varepsilon_{t}^{2}\right)}, \frac{\bar{\alpha}_{3 n}^{*}}{\operatorname{median}\left(\varepsilon_{t}^{2}\right)}, \bar{\beta}_{3 n}^{*}\right) \quad \bar{\theta}_{4 n}=\left(\frac{\bar{\omega}_{4 n}^{*}}{E \varepsilon_{t}^{2}}, \frac{\bar{\alpha}_{4 n}^{*}}{E \varepsilon_{t}^{2}}, \bar{\beta}_{4 n}^{*}\right)
$$
be the GQMLE, LQMLE, LADE, and GNGQMLE of $\left(\omega_{0}, \alpha_{0}, \beta_{0}\right)$, respectively. The estimated asymptotic standard deviations of all estimators were derived in a similar way. In all calculations, we use the true values of $E \varepsilon_{t}^{2},\left(E\left|\varepsilon_{t}\right|\right)^{2}$ and median $\left(\varepsilon_{t}^{2}\right)$, and the GNGQMLE is constructed in the same way as in Section 7.2 of Fan, Li, and Xiu (2013). Note that the PQMLEs and LADE are applicable for all innovations, but the GQMLE is only applicable when $E \varepsilon_{t}^{4}<\infty$, and the LQMLE and GNGQMLE are only applicable when $E \varepsilon_{t}^{2}<\infty$.

Tables 1-2 report the bias and root mean square error (RMSE) of all estimators for model (10). From them, we find that all estimators have very small bias. When $\eta_{t} \sim \operatorname{PIV}(0,1,2,4), \mathrm{PQMLE}_{2}$ is the efficient estimator and so it has the smallest RMSE, while the performance of LQMLE or GNGQMLE is better than those of the remaining PQMLEs. When $\eta_{t} \sim \operatorname{PIV}(0,1,2,2), \mathrm{PQMLE}_{1}$ is the efficient estimator and so it has the smallest RMSE. In this case, all PQMLEs except PQMLE $_{3}$ have smaller RMSEs than other estimators. This advantage of the PQMLEs becomes more significant as m becomes smaller. Note that the PQMLE $_{3}$ has the worst performance in all PQMLEs, and this nay be because of the sign of ν which is negative for PQMLE 3 . Next, we consider the cases that ε_{t} follows the STB distribution. In this case, only the PQMLEs and LADE are applicable. When $\varepsilon_{t} \sim \operatorname{STB}(1.8,0.5,1,0)$, all PQMLEs except PQMLE_{1} have smaller RMSEs than the LADE; when $\varepsilon_{t} \sim \operatorname{STB}(1.8,0.9,1,0)$, the innovation becomes more skewed, and then the efficiency advantage of all PQMLEs (including PQMLE $_{1}$) over LADE becomes more significant; moreover, when $\varepsilon_{t} \sim \operatorname{STB}(1.5,0,1,0)$ or $\operatorname{STB}(1.5,0.5,1,0)$, the innovation become more heavy-tailed, and then the similar conclusions can be drawn as before. Thirdly, we consider
the cases that ε_{t} follows the t distribution. In this case, the innovations are symmetric, and hence the PQMLE_{4} has the best performance among all PQMLEs, although its performance is worse than those of the LQMLE and GNGQMLE. Meanwhile, the GNGQMLE has the best performance in all estimators due to its adaptive property under symmetry, and the performance of the PQMLEs are always better than that of the LADE. Overall, the simulation study shows that all PQMLEs have a good performance in finite samples, especially for the heavy-tailed and skewed innovations.

4. Application

4•1. Application to stock indexes

In this subsection, we apply the PQMLE estimation method to eight major stock indexes in the world. The data sets we considered are the daily CAC40, DAX, DJIA, FTSE, HSI, NASDAQ, Nikkei225, and SP500 indexes from January 3, 2000 to December 27, 2007. As usual, we denote the log-return $(\times 100)$ of each data set by $\left\{y_{t}\right\}_{t=1}^{n}$, and the summary statistics for each y_{t} is given in Table 3. From this table, we find that each y_{t} is skewed and has a heavier tail than the $N(0,1)$ distribution. Hence, we use a $\operatorname{GARCH}(1,1)$ model with the PQMLE estimation method to fit each return series. As a comparison, we also apply the GQMLE, LQMLE, or GNGQMLE estimation method to obtain the fitted $\operatorname{GARCH}(1,1)$ model for each return series. For the PQMLE method, μ and m are chosen as in Remark 3. For the GNGQMLE method, the auxiliary likelihood function is based on the standardized t_{3}, t_{5} or t_{7} distribution such that it has variance one, and then the corresponding estimator is denoted by GNGQMLE ${ }_{1}$, GNGQMLE $_{2}$ or GNGQMLE $_{3}$, respectively.

Table 3. Summary of eight major stock indexes

y_{t}	n	mean	standard deviation	skewness	kurtosis
CAC40	2049	-0.0025	1.3968	-0.0930	5.9618
DAX	2031	0.0086	1.5495	-0.0455	5.7503
DJIA	2009	0.0081	1.0951	-0.0907	7.4136
FTSE	2017	-0.0012	1.1297	-0.1749	5.8796
HSI	1982	0.0238	1.3533	-0.3596	6.5512
NASDAQ	2007	-0.0216	1.8461	0.1848	7.2060
Nikkei225	1965	-0.0102	1.3796	-0.1581	4.7171
SP500	2007	0.0000	1.1155	0.0469	5.5460

Table 4. Summary of all estimations for eight major stock indexes

y_{t}		PQMLE	GQMLE	LQMLE	$\mathrm{GNGQMLE}_{1}$	$\mathrm{GNGQMLE}_{2}$	$\overline{\text { GNGQMLE }_{3}}$
CAC40	ω	0.2301	0.0160	0.0071	0.0102	0.0114	0.0121
		$(0.0876)^{\dagger}$	(0.0060)	(0.0031)	(0.0019)	(0.0021)	(0.0022)
	α	1.3881	0.0851	0.0487	0.0776	0.0800	0.0812
		(0.2084)	(0.0138)	(0.0075)	(0.0003)	(0.0003)	(0.0004)
	β	0.9103	0.9068	0.9164	0.9185	0.9154	0.9137
		(0.0128)	(0.0143)	(0.0122)	(0.0100)	(0.0108)	(0.0113)
	ν	-0.0308					
	m	9.8482					
	$\hat{\eta}_{k}$				1.3462	1.0872	1.0372
	$\begin{aligned} & \tau_{2} \\ & \text { LLF } \end{aligned}$	0.9995	0.9995	0.9995	1.0012	1.0006	1.0003
		-3205.2	-3213.8	-3282.2	-3268.0	-3227.9	-3215.5
DAX	ω	$\begin{gathered} 0.3508 \\ (0.1277) \end{gathered}$	$\begin{gathered} 0.0240 \\ (0.0081) \end{gathered}$	$\begin{gathered} 0.0081 \\ (0.0038) \end{gathered}$	$\begin{gathered} 0.0095 \\ (0.0022) \end{gathered}$	$\begin{gathered} 0.0125 \\ (0.0025) \end{gathered}$	$\begin{gathered} 0.0142 \\ (0.0027) \end{gathered}$
	α	$\begin{gathered} 1.8795 \\ (0.2694) \end{gathered}$	$\begin{gathered} 0.1062 \\ (0.0161) \end{gathered}$	$\begin{gathered} 0.0591 \\ (0.0087) \end{gathered}$	$\begin{gathered} 0.0925 \\ (0.0004) \end{gathered}$	$\begin{gathered} 0.0944 \\ (0.0005) \end{gathered}$	$\begin{gathered} 0.0954 \\ (0.0005) \end{gathered}$
	β	0.8947	0.8845	0.9014	0.9074	0.9035	0.9013
		(0.0143)	(0.0167)	(0.0138)	(0.0107)	(0.0117)	(0.0123)
	ν	-0.0830					
	m	10.989					
	$\hat{\eta}_{k}$				1.3430	1.0880	1.0389
	$\begin{aligned} & \tau_{2} \\ & \text { LLF } \end{aligned}$	0.9995	0.9996	0.9996	1.0057	1.0036	1.0025
		-3358.9	-3366.0	-3425.4	-3420.4	-3382.2	-3370.1
DJIA	ω	$\begin{gathered} 0.0698 \\ (0.0241) \end{gathered}$	$\begin{gathered} 0.0261 \\ (0.0115) \end{gathered}$	$\begin{gathered} 0.0075 \\ (0.0027) \end{gathered}$	$\begin{gathered} 0.0112 \\ (0.0031) \end{gathered}$	$\begin{gathered} 0.0123 \\ (0.0034) \end{gathered}$	$\begin{gathered} 0.0128 \\ (0.0035) \end{gathered}$
	α	$\begin{gathered} 0.4584 \\ (0.0719) \end{gathered}$	$\begin{gathered} 0.0847 \\ (0.0246) \end{gathered}$	$\begin{gathered} 0.0453 \\ (0.0078) \end{gathered}$	$\begin{gathered} 0.0801 \\ (0.0005) \end{gathered}$	$\begin{gathered} 0.0834 \\ (0.0005) \end{gathered}$	$\begin{gathered} 0.0845 \\ (0.0006) \end{gathered}$
	β	$\begin{gathered} 0.9094 \\ (0.0132) \end{gathered}$	$\begin{gathered} 0.8934 \\ (0.0287) \end{gathered}$	$\begin{gathered} 0.9120 \\ (0.0140) \end{gathered}$	$\begin{gathered} 0.9150 \\ (0.0186) \end{gathered}$	$\begin{gathered} 0.9109 \\ (0.0202) \end{gathered}$	$\begin{gathered} 0.9094 \\ (0.0211) \end{gathered}$
	ν	-0.0379					
	m	4.2961					
	$\hat{\eta}_{k}$				1.2666	1.0331	0.9909
	τ_{2}	0.9995	0.9995	0.9995	1.0086	1.0078	1.0077
	LLF	-2726.4	-2794.5	-2764.7	-2759.0	-2732.1	-2727.6
FTSE	ω	$\begin{gathered} 0.5639 \\ (0.1743) \end{gathered}$	$\begin{gathered} 0.0152 \\ (0.0046) \end{gathered}$	$\begin{gathered} 0.0091 \\ (0.0029) \end{gathered}$	$\begin{gathered} 0.0138 \\ (0.0018) \end{gathered}$	$\begin{gathered} 0.0138 \\ (0.0018) \end{gathered}$	$\begin{gathered} 0.0138 \\ (0.0019) \end{gathered}$
	α	$\begin{gathered} 4.4984 \\ (0.6032) \end{gathered}$	$\begin{gathered} 0.1175 \\ (0.0158) \end{gathered}$	$\begin{gathered} 0.0699 \\ (0.0099) \end{gathered}$	$\begin{gathered} 0.1112 \\ (0.0004) \end{gathered}$	$\begin{gathered} 0.1136 \\ (0.0004) \end{gathered}$	$\begin{gathered} 0.1148 \\ (0.0004) \end{gathered}$
	β	$\begin{gathered} 0.8728 \\ (0.0157) \end{gathered}$	$\begin{gathered} 0.8721 \\ (0.0159) \end{gathered}$	$\begin{gathered} 0.8774 \\ (0.0161) \end{gathered}$	$\begin{gathered} 0.8794 \\ (0.0125) \end{gathered}$	$\begin{gathered} 0.8774 \\ (0.0130) \end{gathered}$	$\begin{gathered} 0.8762 \\ (0.0134) \end{gathered}$
	ν	-0.0028					
	m	20.676					
	$\hat{\eta}_{k}$				1.3533	1.0933	1.0430
	τ_{2}	0.9995	0.9996	0.9996	0.9996	0.9996	0.9995
	LLF	-2722.0	-2725.2	-2801.6	-2789.3	-2748.9	-2735.9

[^2]Table 5. Summary of all estimations for eight major stock indexes (con't)

$\begin{gathered} y_{t} \\ \text { HSI } \end{gathered}$		PQMLE	GQMLE	LQMLE	$\mathrm{GNGQMLE}_{1}$	GNGQMLE $_{2}$	$\text { GNGQMLE }_{3}$
	ω	0.0318	0.0414	0.0055	0.0048	0.0073	0.0087
		$(0.0192)^{\dagger}$	(0.0260)	(0.0036)	(0.0055)	(0.0066)	(0.0071)
	α	0.2192	0.1436	0.0378	0.0497	0.0534	0.0559
		(0.0410)	(0.0446)	(0.0079)	(0.0005)	(0.0007)	(0.0008)
	β	0.9463	0.8517	0.9319	0.9529	0.9477	0.9445
		(0.0098)	(0.0437)	(0.0138)	(0.0253)	(0.0283)	(0.0302)
	ν	-0.0741					
	m	3.5529					
	$\hat{\eta}_{k}$				1.2321	1.0163	0.9795
	τ_{2}	0.9995	1.0005	1.0002	1.1053	1.0938	1.0873
	LLF	-3174.6	-3272.3	-3191.4	-3195.3	-3177.3	-3176.7
NASDAQ	ω	$\begin{gathered} 0.1702 \\ (0.0872) \end{gathered}$	$\begin{gathered} 0.0104 \\ (0.0047) \end{gathered}$	$\begin{gathered} 0.0037 \\ (0.0025) \end{gathered}$	$\begin{gathered} 0.0043 \\ (0.0014) \end{gathered}$	$\begin{gathered} 0.0053 \\ (0.0016) \end{gathered}$	$\begin{gathered} 0.0059 \\ (0.0017) \end{gathered}$
	α	1.3844	0.0650	0.0392	0.0620	0.0628	0.0634
		(0.2184)	(0.0112)	(0.0064)	(0.0002)	(0.0002)	(0.0002)
	β	0.9336	0.9319	0.9364	0.9387	0.9373	0.9363
		(0.0099)	(0.0110)	(0.0099)	(0.0080)	(0.0085)	(0.0089)
	ν	-0.0114					
	m	12.195					
	$\hat{\eta}_{k}$				1.3511	1.0917	1.0411
	τ_{2}	0.9995	0.9995	0.9995	1.0019	1.0014	1.0010
	LLF	-3576.9	-3583.7	-3652.9	-3643.0	-3602.6	-3589.5
Nikkei225	ω	$\begin{gathered} 0.1529 \\ (0.0652) \end{gathered}$	$\begin{gathered} 0.0292 \\ (0.0120) \end{gathered}$	$\begin{gathered} 0.0099 \\ (0.0046) \end{gathered}$	$\begin{gathered} 0.0106 \\ (0.0026) \end{gathered}$	$\begin{gathered} 0.0139 \\ (0.0032) \end{gathered}$	$\begin{gathered} 0.0161 \\ (0.0035) \end{gathered}$
	α	$\begin{gathered} 0.6068 \\ (0.1019) \end{gathered}$	$\begin{gathered} 0.0940 \\ (0.0179) \end{gathered}$	$\begin{gathered} 0.0412 \\ (0.0072) \end{gathered}$	$\begin{gathered} 0.0573 \\ (0.0003) \end{gathered}$	$\begin{gathered} 0.0640 \\ (0.0004) \end{gathered}$	$\begin{gathered} 0.0687 \\ (0.0005) \end{gathered}$
	β	$\begin{gathered} 0.9201 \\ (0.0132) \end{gathered}$	$\begin{gathered} 0.8960 \\ (0.0192) \end{gathered}$	$\begin{gathered} 0.9251 \\ (0.0129) \end{gathered}$	$\begin{gathered} 0.9396 \\ (0.0093) \end{gathered}$	$\begin{gathered} 0.9316 \\ (0.0109) \end{gathered}$	$\begin{gathered} 0.9261 \\ (0.0120) \end{gathered}$
	ν	0.0013					
	m	5.6151					
	$\hat{\eta}_{k}$				1.3111	1.0669	1.0213
	τ_{2}	0.9995	0.9996	0.9996	1.0151	1.0107	1.0078
	LLF	-3289.5	-3310.9	-3333.3	-3330.3	-3299.9	-3292.5
SP500	ω	$\begin{gathered} 0.0579 \\ (0.0257) \end{gathered}$	$\begin{gathered} 0.0112 \\ (0.0044) \end{gathered}$	$\begin{gathered} 0.0036 \\ (0.0017) \end{gathered}$	$\begin{gathered} 0.0044 \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.0057 \\ (0.0014) \end{gathered}$	$\begin{gathered} 0.0064 \\ (0.0015) \end{gathered}$
	α	$\begin{gathered} 0.5753 \\ (0.0914) \end{gathered}$	$\begin{gathered} 0.0712 \\ (0.0135) \end{gathered}$	$\begin{gathered} 0.0382 \\ (0.0063) \end{gathered}$	$\begin{gathered} 0.0623 \\ (0.0001) \end{gathered}$	$\begin{gathered} 0.0664 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.0683 \\ (0.0002) \end{gathered}$
	β	$\begin{gathered} 0.9265 \\ (0.0111) \end{gathered}$	$\begin{gathered} 0.9200 \\ (0.0144) \end{gathered}$	$\begin{gathered} 0.9323 \\ (0.0106) \end{gathered}$	$\begin{gathered} 0.9364 \\ (0.0091) \end{gathered}$	$\begin{gathered} 0.9311 \\ (0.0102) \end{gathered}$	$\begin{gathered} 0.9286 \\ (0.0109) \end{gathered}$
	ν	-0.0166					
	m	5.6425					
	$\hat{\eta}_{k}$				1.3060	1.0637	1.0191
	τ_{2}	0.9995	0.9995	0.9995	1.0054	1.0031	1.0023
	LLF	-2763.5	-2786.5	-2807.6	-2804.4	-2774.1	-2766.6

[^3]The detailed estimation results for each return series are given in Tables 4-5, in which the full log-likelihood function of the PQMLE is defined as in (8), and the full log-likelihood functions of the GQMLE $\left(\operatorname{LLF}_{G}\right)$, LQMLE $\left(\operatorname{LLF}_{L}\right)$, and GNGQMLE ($\operatorname{LLF}_{G N G}$) are defined as follows:

$$
\begin{aligned}
\operatorname{LLF}_{G}= & -\sum_{t=1}^{n}\left[\log \sqrt{\tilde{h}_{t}\left(\bar{\theta}_{1 n}\right)}+\frac{y_{t}^{2}}{2 \tilde{h}_{t}\left(\bar{\theta}_{1 n}\right)}\right]+n \log \left(\frac{1}{\sqrt{2 \pi}}\right) \\
\operatorname{LLF}_{L}= & -\sum_{t=1}^{n}\left[\log \sqrt{\tilde{h}_{t}\left(\bar{\theta}_{2 n}\right)}+\frac{\left|y_{t}\right|}{\sqrt{\tilde{h}_{t}\left(\bar{\theta}_{2 n}\right)}}\right]+n \log \left(\frac{1}{2}\right) \\
\operatorname{LLF}_{G N G}= & -\sum_{t=1}^{n}\left[\log \left(\hat{\eta}_{k} \sqrt{\tilde{h}_{t}\left(\bar{\theta}_{4 n}\right)}\right)+\frac{k+1}{2} \log \left(1+\frac{y_{t}^{2}}{(k-2) \hat{\eta}_{k}^{2} \tilde{h}_{t}\left(\bar{\theta}_{4 n}\right)}\right)\right] \\
& +n \log \left(\frac{\Gamma\{(k+1) / 2\}}{\sqrt{(k-2) \pi} \Gamma\{k / 2\}}\right) \text { for } k=3(\text { or } 5,7),
\end{aligned}
$$

where $\bar{\theta}_{1 n}, \bar{\theta}_{2 n}$ and $\bar{\theta}_{4 n}$ are the GQMLE, LQMLE and GNGQMLE, respectively, and

$$
\hat{\eta}_{k}=\arg \max _{\eta} \sum_{t=1}^{n}\left[-\log (\eta)-\frac{k+1}{2} \log \left(1+\frac{y_{t}^{2}}{(k-2) \eta^{2} \tilde{h}_{t}\left(\bar{\theta}_{1 n}\right)}\right)\right]
$$

Here, $\hat{\eta}_{k}$ measures the discrepancy between the correct likelihood function and the given auxiliary likelihood function. Specifically, when $\hat{\eta}_{k}>1($ or $<1)$, the given auxiliary innovation t_{k} is heavier (or lighter) tailed than the true innovation. Furthermore, Tables 4-5 also report the estimated values of the identification condition τ_{2} for each estimation method, that is, τ_{2} is the sample mean of $\left(2 m \varepsilon_{t}^{2}+\nu \varepsilon_{t}\right) /\left(1+\varepsilon_{t}^{2}\right), \varepsilon_{t}^{2}$ or $\left|\varepsilon_{t}\right|$ for the PQMLE, GQMLE (and GNGQMLE) or LQMLE estimation method, respectively. Meanwhile, it is worth mentioning that all fitted models are adequate by looking at the the ACF and PACF plots (not depicted here) of the squared and absolute residuals.

From Tables 4-5, we find that (i) all the values of τ_{2} are close to 1 as expected; (ii) for each return series, the PQMLE always has the best fitting in terms of the maximized LLF among all estimation methods; (iii) the GNGQMLE estimation with a t_{5} or t_{7} likelihood gives the second best fitted models for the DJIA, HSI, Nikkei225 and SP500 return series in which the value of m are smaller, while the GQMLE estimation gives the second best fitted models for the CAC40, DAX, FISE and NASDAQ return series in which the value of m are larger; (iv) the LQMLE has the worst fitting in all cases except for the DJIA and HSI return series, in which the values of m are the smallest, and so the GQMLE has the worst fitting in these two cases; (v) the GNGQMLE estimation with a t_{3} likelihood always has the largest value of $\hat{\eta}_{k}$ among all GNGQMLE es-
timations, and hence it implies that the auxiliary t_{3} innovation is heavier tailed than the true innovation, while the auxiliary t_{5} or t_{7} innovation has the similar tail as the true innovation because the values of $\hat{\eta}_{k}$ in these two cases are close to 1 ; (vi) the values of m are all larger than 2.5 , and it suggests that the innovation for each return series has finite fourth moment. Overall, we know that all estimation methods are applicable, and the PQMLE estimation method taking into account both leptokurtosis and asymmetry of the innovation gives the best fitted models for all return series.

Next, we use the conditional coverage test $L R_{\text {cc }}$ in Christoffersen (1998, page 847) to examine whether each of the estimation methods can provide us a good interval forecast for its one-step-ahead prediction. For each return series, the out-of-sample data set we used is a length of n_{0} consecutive data starting after the last observation of the in-sample data set. Following Christoffersen (1998), the upper-tail predictive interval (UPI) and lower-tail predictive interval (LPI) for each out-of-sample data y_{t} at the significance level \bar{p} are defined as

$$
\mathrm{UPI}_{t \mid t-1}(\bar{p})=\left(F^{-1}(1-\bar{p}) \bar{\sigma}_{t}, \infty\right) \text { and } \operatorname{LPI}_{t \mid t-1}(\bar{p})=\left(-\infty, F^{-1}(\bar{p}) \bar{\sigma}_{t}\right)
$$

respectively, where $\bar{\sigma}_{t}$ is the one-step-ahead prediction of σ_{t} from each estimation method, and $F(\cdot)$ is the cdf of the $\operatorname{PIV}(0,1, \nu, m), \mathrm{N}(0,1)$, Laplace $(0,1)$, and standardized t_{i} (for $i=3,5,7$) distribution for the PQMLE, GQMLE, LQMLE, and GNGQMLE ${ }_{i}$ estimation methods, respectively. Table 6 reports all the results of $\mathrm{LR}_{\mathrm{Cc}}$ with $\bar{p}=0.95$, which examine whether the UPI or LPI from each estimation method gives us a good conditional coverage rate (CR). From Table 6, we find that (i) no estimation method gives a good CR for the CAC40 and DAX return series; (ii) the p-value of $\mathrm{LR}_{\mathrm{cc}}$ based on the LQMLE or GNGQMLE ${ }_{1}$ method is always close to zero, and hence the CR constructed from these two methods is not satisfactory; (iii) for the DJIA, HSI or Nikkei 225 return series, the CR based on the PQMLE or GNGQMLE ${ }_{3}$ method is satisfactory in both directions, while the LPI based on the GQMLE method for the DJIA or HSI return series and the UPI based on the GNGQMLE 2 method for the DJIA return series are not satisfactory; (iv) the PQMLE and GQMLE methods indicate that only the LPI is satisfactory for the FTSE return series, and this can not be indicated by all of the GNGQMLE methods; (v) all PQMLE, GQMLE, GNGQMLE 2 and GNGQMLE 3 methods indicate that only the LPI is satisfactory for the NASDAQ and SP500 return series. Overall, we know that when the return series (e.g., FTSE) ${ }_{335}$

Table 6. The results of $L R_{C c}$ and out-of-sample $C R$ with $\bar{p}=0.95$ for eight major stock indexes.

$\begin{gathered} y_{t} \\ \text { CAC40 } \end{gathered}$	$\begin{gathered} n_{0} \\ 1515 \end{gathered}$	UPI	PQMLE	GQMLE	LQMLE	$\text { GNGQMLE }_{1}$	$\text { GNGQMLE }_{2}$	$\text { GNGQMLE }_{3}$
			8.0768	8.0768	50.927	49.202	16.416	12.642
			$(0.0176)^{\dagger}$	(0.0176)	(0.0000)	(0.0000)	(0.0003)	(0.0018)
			$[0.9340] ~^{\dagger}$	[0.9340]	[0.9842]	[0.9069]	[0.9261]	[0.9294]
		LPI	7.6045	7.7520	69.471	29.858	9.2859	8.6532
			(0.0223)	(0.0207)	(0.0000)	(0.0000)	(0.0096)	(0.0132)
			[0.9518]	[0.9512]	[0.9888]	[0.9248]	[0.9472]	[0.9485]
DAX	1517	UPI	6.8871	8.7585	48.851	38.780	13.213	12.406
			(0.0320)	(0.0125)	(0.0000)	(0.0000)	(0.0014)	(0.0020)
			[0.9394]	[0.9374]	[98.35]	[0.9117]	[0.9334]	[0.9341]
		LPI	7.6019	7.9221	53.464	35.564	11.840	8.6351
			(0.0223)	(0.0190)	(0.0000)	(0.0000)	(0.0027)	(0.0133)
			[0.9519]	[0.9506]	[98.48]	[0.9196]	[0.9433]	[0.9486]
DJIA	1487	UPI	5.9593	4.3344	30.276	33.411	8.5153	5.9593
			(0.0508)	(0.1145)	(0.0000)	(0.0000)	(0.0142)	(0.0508)
			[93.81]	[0.9401]	[0.9771]	[0.9153]	[0.9354]	[0.9381]
		LPI	2.9401	7.2116	61.514	34.740	3.4362	2.7723
			(0.2299)	(0.0272)	(0.0000)	(0.0000)	(0.1794)	(0.2500)
			[0.9509]	[0.9549]	[0.9872]	[0.9159]	[0.9489]	[0.9523]
FTSE	1493	UPI	8.3814	8.3814	44.653	55.661	17.443	12.717
			(0.0151)	(0.0151)	(0.0000)	(0.0000)	(0.0002)	(0.0017)
			[0.9330]	[0.9330]	[0.9826]	[0.9029]	[0.9257]	[0.9297]
		LPI	5.1764	5.1764	73.956	38.891	13.370	8.5952
			(0.0752)	(0.0752)	(0.0000)	(0.0000)	(0.0012)	(0.0136)
			[0.9451]	[0.9451]	[0.9900]	[0.9149]	[0.9357]	[0.9404]
HSI	1490	UPI	0.1211	3.1785	38.049	20.341	1.6155	0.1405
			(0.9412)	(0.2041)	(0.0000)	(0.0000)	(0.4459)	(0.9322)
			[0.9497]	[0.9443]	[0.9805]	[0.9228]	[0.6067]	[0.9490]
		LPI	1.7182	7.6223				
			(0.4235)	(0.0221)	(0.0000)	(0.0014)	(0.6067)	(0.5497)
			[0.9564]	[0.9577]	[0.9859]	[0.9302]	[0.9517]	[0.9544]
NASDAQ	1489	UPI	11.414	11.931	35.262	39.303	18.612	14.280
			(0.0033)	(0.0026)	(0.0000)	(0.0000)	(0.0001)	(0.0008)
			[0.9436]	[0.9429]	[0.9792]	[0.9174]	[0.9362]	[0.9402]
		LPI	4.3780	4.3780	84.023	36.208	3.6488	2.9362
			(0.1120)	(0.1120)	(0.0000)	(0.0000)	(0.1613)	(0.2304)
			[0.9597]	[0.9597]	[0.9919]	[0.9174]	[0.9483]	[0.9510]
Nikkei225	1449	UPI	2.5124	1.9710	51.682	51.522	5.2710	3.1463
			(0.2847)	(0.3733)	(0.0000)	(0.0000)	(0.0717)	(0.2074)
			[0.9413]	[0.9420]	[0.9841]	[0.9041]	[0.9365]	[0.9400]
		LPI	0.9494	1.6835	84.317	25.206	0.2882	0.1576
			(0.6221)	(0.4309)	(0.0000)	(0.0000)	(0.8658)	(0.9242)
			[0.9531]	[0.9565]	[0.9924]	[0.9199]	[0.9476]	[0.9503]
SP500	1489	UPI	9.0196	7.7084	26.079	38.624	12.337	8.4437
			(0.0110)	(0.0212)	(0.0000)	(0.0000)	(0.0021)	(0.0147)
			[0.9369]	[0.9382]	[0.9752]	[0.9140]	[0.9308]	[0.9355]
		LPI	1.3253	0.9940	73.623	32.532	1.5354	0.2525
			(0.5155)	(0.6084)	(0.0000)	(0.0000)	(0.4641)	(0.8814)
			[0.9550]	[0.9523]	[0.9899]	[0.9181]	[0.9449]	[0.9503]

[^4]has a large value of m, the PQMLE method like the GQMLE method is applicable to give us a good prediction in the light tail case, while when the return series (e.g., DJIA and HSI) has a small value of m, the PQMLE method, like the GNGQMLE 3 method, can give us a more efficient PI than others in the heavy tail case. Finally, it is worth to highlight that unlike the GNGQMLE methods, the performance of PQMLE neither relies on the selection of the auxiliary likelihood function nor becomes worse in the light tail case. This robustness of the PQMLE in constructing the PI may be because of the ability of the PQMLE to take into account both leptokurtosis and asymmetry.

4.2. Application to exchange rates

In this subsection, we apply the PQMLE estimation method to four exchange rates. For each exchange rate series, the period of the data we considered is listed under the second column of Table 7. Since the log-return $(\times 100)$ of each exchange rates exhibits some correlations in its conditional mean, it is first fitted by an $\operatorname{ARMA}(2,2)$ model with the weighted LAD estimation method in Zhu and Ling (2013). Consequently, we denote the residuals from each fitted ARMA $(2,2)$ model by y_{t}. Table 7 gives the summary statistics for each y_{t}, from which we find that each y_{t} is skewed and has a heavier tail than the $N(0,1)$ distribution. Hence, as in Subsection 4.1, we use a $\operatorname{GARCH}(1,1)$ model with the PQMLE, GQMLE, LQMLE, GNGQMLE estimation methods to fit each y_{t}. All of estimation results are summarized in Table 8, and all

Table 7. Summary of four exchange rates

y_{t}	Time Period	n	mean	standard deviation	skewness	kurtosis
HKD/USD	Jan 24, 1996-Jan 08, 2004	2000	0.0000	0.0268	-4.3767	98.122
JPY/USD	Jan 24, 1996-Oct 27, 2000	1200	-0.0127	0.8063	-0.7232	7.7563
SGD/USD	Jan 23, 1996-Jan 13, 2000	1000	0.0000	0.5140	-1.0774	14.847
TWD/USD	Jan 19, 1996-Jan 10, 2000	1000	0.0116	0.4504	1.4054	28.731

fitted models are adequate by looking at the the ACF and PACF plots (not depicted here) of the squared and absolute residuals. From Table 8, we first find that the TWD/USD return series has a very heavy tail because the value of m is smaller than 1.5 , from which we may conclude that the innovation has infinite variance, and hence only the PQMLE method is valid. Secondly, we can see that except the JPY/USD return series, the values of m are all smaller than 2.5 . So the GQMLE method is only applicable to the JPY/USD return series, and its performance is worst in all cases. Thirdly, we find that the PQMLE has the best fit among all estimation methods in
each case. This advantage of PQMLE over LQMLE or GNGQMLE may be caused by including the asymmetry effect in the likelihood.

Next, as in Subsection 4.1, we use the conditional coverage test $\mathrm{LR}_{\mathrm{Cc}}$ to examine whether each of the estimation methods can provide us a good interval forecast for its one-step-ahead prediction. Table 9 reports all the results of $\mathrm{LR}_{\mathrm{Cc}}$ and CR with $\bar{p}=0.95$. From this table, we first find that for the HKD/USD and TWD/USD return series, only the PQMLE method gives us a satisfactory CR in both directions. Secondly, for the JPY/USD return series, the CRs based on all of PQMLE, GNGQMLE 2 and GNGQMLE 3 methods are satisfactory, while the GQMLE method can only provide us a satisfactory UPI. Thirdly, for the SGD/USD return series, the CRs obtained from all of PQMLE, GNGQMLE 1 and GNGQMLE $_{2}$ methods are satisfactory, while the GQMLE or GNGQMLE 3 method is only applicable to provide a satisfactory UPI. Fourth, it is interesting to see that the p-values of LR cc based on the LQMLE method are always close to zeros, and hence the CR constructed from this method is not satisfactory. Fifth, the CRs of the PQMLE are always within one percent from the 95% value, while this is not the case in other methods. Overall, compared with other methods, the performance of PI constructed from the PQMLE method is often satisfactory, and it is not affected by the selection of the auxiliary likelihood function. This advantage of PQMLE becomes more significant when the return series has a smaller value of m.

5. CONCLUDING REMARKS

In this paper, we propose a PQMLE for GARCH models. Under strict stationarity and some weak moment conditions, the strong consistency and asymptotical normality of the PQMLE are obtained. Meanwhile, the PQMLE can apply to other conditionally heteroskedastic models with no further efforts. Unlike the existing QMLE estimators, the PQMLE is the first QMLE in the literature to take into account both leptokurtosis and asymmetry of the innovation, which are two well-known co-existing features in financial and economic data sets. Simulation study demonstrates that the PQMLE can achieve better efficiency than other estimators, especially when ε_{t} is heavy-tailed and skewed. Two applications to stock indexes and exchange rates further highlight the importance of the PQMLE method. Specifically, the PQMLE method often gives us the best in-sample fit and out-of-sample prediction. This advantage of the PQMLE exists in the both light

Table 8. Summary of all estimations for four exchange rates

y_{t}		PQMLE	GQMLE	LQMLE	$\mathrm{GNGQMLE}_{1}$	$\mathrm{GNGQMLE}_{2}$	GNGQMLE 3
HKD/USD	ω	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		$(0.0000)^{\dagger}$	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
	α	0.4529	0.2464	0.2718	1.2262	1.0586	0.9734
		(0.0431)	(0.2333)	(0.0544)	(0.0000)	(0.0000)	(0.0000)
	β	0.6526	0.7837	0.6599	0.6795	0.6893	0.6975
		(0.0190)	(0.1265)	(0.0398)	(0.1108)	(0.1126)	(0.1125)
	ν	-0.0248					
	m	1.6612					
	$\hat{\eta}_{k}$				0.6952	0.6004	0.5977
	$\begin{aligned} & \tau_{2} \\ & \text { LLF } \end{aligned}$	0.9956	0.9923	0.9956	1.3948	1.3786	1.3966
		6525.1	5356.8	6389.7	6518.7	6469.4	6421.8
JPY/USD	ω	$\begin{gathered} 0.0324 \\ (0.1615) \end{gathered}$	$\begin{gathered} 0.0236 \\ (0.0098) \end{gathered}$	$\begin{gathered} 0.0068 \\ (0.0027) \end{gathered}$	$\begin{gathered} 0.0116 \\ (0.0021) \end{gathered}$	$\begin{gathered} 0.0125 \\ (0.0023) \end{gathered}$	$\begin{gathered} 0.0131 \\ (0.0025) \end{gathered}$
	α	0.1615	0.0783	0.0340	0.0601	0.0602	0.0609
		(0.0423)	(0.0255)	(0.0092)	(0.0003)	(0.0003)	(0.0003)
	β	0.9241	0.8853	0.9186	0.9238	0.9218	0.9199
		(0.0177)	(0.0337)	(0.0199)	(0.0174)	(0.0186)	(0.0195)
	ν	-0.0221					
	m	2.8458					
	$\hat{\eta}_{k}$				1.2109	0.9977	0.9639
	$\begin{aligned} & \tau_{2} \\ & \text { LLF } \end{aligned}$	0.9993	0.9993	0.9996	1.0054	1.0048	1.0045
		-1289.8	-1347.1	-1301.4	-1296.8	-1290.6	-1294.1
SGD/USD	ω	$\begin{gathered} 0.0013 \\ (0.0007) \end{gathered}$	$\begin{gathered} 0.0003 \\ (0.0008) \end{gathered}$	$\begin{gathered} 0.0006 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.0017 \\ (0.0005) \end{gathered}$	$\begin{gathered} 0.0023 \\ (0.0006) \end{gathered}$	$\begin{gathered} 0.0027 \\ (0.0007) \end{gathered}$
	α	$\begin{gathered} 0.2310 \\ (0.0418) \end{gathered}$	$\begin{gathered} 0.0693 \\ (0.0223) \end{gathered}$	$\begin{gathered} 0.0449 \\ (0.0097) \end{gathered}$	$\begin{gathered} 0.2394 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2474 \\ (0.0003) \end{gathered}$	$\begin{gathered} 0.2462 \\ (0.0003) \end{gathered}$
	β	$\begin{gathered} 0.8400 \\ (0.0238) \end{gathered}$	$\begin{gathered} 0.9263 \\ (0.0208) \end{gathered}$	$\begin{gathered} 0.9132 \\ (0.0163) \end{gathered}$	$\begin{gathered} 0.8157 \\ (0.0341) \end{gathered}$	$\begin{gathered} 0.8047 \\ (0.0376) \end{gathered}$	$\begin{gathered} 0.8013 \\ (0.0397) \end{gathered}$
	ν	0.0020					
	m	1.9731					
	$\hat{\eta}_{k}$				1.0717	0.8989	0.8786
	τ_{2}	1.0001	1.0192	1.0037	1.0492	1.0430	1.0365
	LLF	-322.5	-450.3	-332.5	-323.2	-333.4	-346.9
TWD/USD	ω	$\begin{gathered} 0.0000 \\ (0.0000) \end{gathered}$	$\begin{gathered} 0.0001 \\ (0.0005) \end{gathered}$	$\begin{gathered} 0.0017 \\ (0.0001) \end{gathered}$	$\begin{gathered} 0.0002 \\ (0.0001) \end{gathered}$	$\begin{gathered} 0.0007 \\ (0.0003) \end{gathered}$	$\begin{gathered} 0.0008 \\ (0.0004) \end{gathered}$
	α	$\begin{gathered} 0.4274 \\ (0.0615) \end{gathered}$	$\begin{gathered} 1.0917 \\ (0.6140) \end{gathered}$	$\begin{gathered} 0.2539 \\ (0.0636) \end{gathered}$	$\begin{gathered} 1.1664 \\ (0.0003) \end{gathered}$	$\begin{gathered} 1.0186 \\ (0.0007) \end{gathered}$	$\begin{gathered} 0.9788 \\ (0.0008) \end{gathered}$
	β	$\begin{gathered} 0.5154 \\ (0.0302) \end{gathered}$	$\begin{gathered} 0.6908 \\ (0.1067) \end{gathered}$	$\begin{gathered} 0.6843 \\ (0.0482) \end{gathered}$	$\begin{gathered} 0.6797 \\ (0.0736) \end{gathered}$	$\begin{gathered} 0.6931 \\ (0.0821) \end{gathered}$	$\begin{gathered} 0.6958 \\ (0.0848) \end{gathered}$
	ν	-0.0223					
	m	1.4076					
	$\hat{\eta}_{k}$				0.6887	0.6003	0.5996
	τ_{2}	0.9987	0.9975	0.9972	1.0011	0.9949	1.0044
	LLF	294.9	-219.2	247.2	265.2	225.6	193.8

[^5]Table 9. The results of $L R_{C c}$ and out-of-sample $C R$ with $\bar{p}=0.95$ for four exchange rates series.

y_{t}	n_{0}		PQMLE	GQMLE	LQMLE	$\mathrm{GNGQMLE}_{1}$	GNGQMLE $_{2}$	GNGQMLE $_{3}$
HKD/USD	2000	UPI	0.9936	3.0993	20.664	33.411	34.606	34.606
			$(0.6085)^{\dagger}$	(0.2123)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
			${[955.25]^{\dagger}}^{\dagger}$	[0.9575]	[0.9685]	[0.9685]	[0.9750]	[0.9750]
		LPI	3.9696	6.4482	55.627	49.185	63.514	65.891
			(0.1374)	(0.0398)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
			[0.9520]	[0.9585]	[0.9800]	[0.9785]	[0.9835]	[0.9840]
JPY/USD	1200	UPI	0.6719	3.2874	47.840	13.029	0.6719	1.5956
			(0.7146)	(0.1933)	(0.0000)	(0.0015)	(0.7146)	(0.4503)
			[0.9542]	[0.9608]	[0.9867]	[0.9300]	[0.9542]	[0.9575]
		LPI	1.9443	8.9148	47.840	7.2031	1.9443	2.7892
			(0.3783)	(0.0116)	(0.0000)	(0.0273)	(0.3783)	(0.2479)
			[0.9583]	[0.9675]	[0.9867]	[0.9325]	[0.9583]	[0.9600]
SGD/USD	1000	UPI	0.6240	1.1814	24.995	5.7269	0.2007	1.1814
			(0.7320)	(0.5539)	(0.0000)	(0.0571)	(0.9045)	(0.5539)
			[0.9450]	[0.9570]	[0.9800]	[0.9330]	[0.9510]	[0.9570]
		LPI	1.4316		40.768	0.7966	2.6154	6.9537
			(0.4888)	(0.0045)	(0.0000)	(0.6715)	(0.2704)	(0.0309)
			[0.9560]	[0.9690]	[0.9870]	[0.9470]	[0.9600]	[0.9670]
TWD/USD	1000	UPI	1.1373	23.754	15.057	10.989	21.803	23.754
			(0.5663)	(0.0000)	(0.0000)	(0.0041)	(0.0000)	(0.0000)
			[0.9550]	[0.9780]	[0.9730]	[0.9700]	[0.9770]	[0.9780]
		LPI	1.0623	21.660	13.516	14.773	19.437	23.386
			(0.5879)	(0.0000)	(0.0012)	(0.0006)	(0.0001)	(0.0000)
			[0.9450]	[0.9770]	[0.9720]	[0.9690]	[0.9770]	[0.9790]

${ }^{\dagger}$ The p-values of $\mathrm{LR}_{\mathrm{cc}}$ are in open brackets, and the values of CR are in square brackets.
and heavy tail cases, and it becomes more significant when m becomes smaller. Meanwhile, our PQMLE method gives us a simple way to assess the heavy-tailedness and skewness of the innovation by looking at the values of m and ν. Moreover, compared to the GNGQMLE method, the performance of the PQMLE method neither relies on the selection of the auxiliary likelihood function nor becomes worse in the light tail case. All of these findings suggest that the PQMLE estimation method should have a wide application in practice.

Acknowledgement

This work is supported by Research Grants Council of the Hong Kong SAR Government, GRF grant HKU703711P, and National Natural Science Foundation of China (No.11201459).

Appendix: Proof of Theorem 1

Recall that the first, second and third derivatives of $g(y, s)$ with respective to s are $g_{1}(y, s), g_{2}(y, s)$ and $g_{3}(y, s)$, respectively. By a simple algebra, we can show that

$$
\begin{aligned}
& g_{1}(y, s)=\frac{1}{s}-\frac{2 m y^{2} s}{1+y^{2} s^{2}}-\frac{\nu y}{1+y^{2} s^{2}} \\
& g_{2}(y, s)=-\frac{1}{s^{2}}-\frac{2 m y^{2}}{1+y^{2} s^{2}}+\frac{2 y^{2} s\left(2 m y^{2} s+\nu y\right)}{\left[1+y^{2} s^{2}\right]^{2}} \\
& g_{3}(y, s)=\frac{2}{s^{3}}+\frac{12 m y^{4} s+2 \nu y^{3}}{\left[1+y^{2} s^{2}\right]^{2}}-\frac{16 m y^{6} s^{3}+8 \nu y^{5} s^{2}}{\left[1+y^{2} s^{2}\right]^{3}}
\end{aligned}
$$

where $s>0$. Next, it is straightforward to see that

$$
\begin{aligned}
\left|g_{1}(y, s)\right| & \leq \frac{1}{s}+\frac{2 m}{s}+\frac{|\nu||y|}{2 s|y|}=\frac{1+2 m+|\nu| / 2}{s} \\
\left|g_{2}(y, s)\right| & \leq \frac{1}{s^{2}}+\frac{2 m}{s^{2}}+\frac{4 m s^{2} y^{4}}{y^{4} s^{4}}+\frac{2 s|\nu||y|^{3}}{\left[1+y^{2} s^{2}\right]^{3 / 2}} \\
& \leq \frac{1+6 m}{s^{2}}+\frac{2 s|\nu||y|^{3}}{s^{3}|y|^{3}}=\frac{1+6 m+2|\nu|}{s^{2}} \\
\left|g_{3}(y, s)\right| & \leq \frac{2}{s^{3}}+\frac{12 m}{s^{3}}+\frac{2|\nu||y|^{3}}{\left[1+y^{2} s^{2}\right]^{3 / 2}}+\frac{16 m}{s^{3}}+\frac{8\left|\nu \||y|^{5} s^{2}\right.}{\left[1+y^{2} s^{2}\right]^{5 / 2}} \\
& \leq \frac{2+28 m}{s^{3}}+\frac{2|\nu||y|^{3}}{s^{3}|y|^{3}}+\frac{8|\nu||y|^{5} s^{2}}{s^{5}|y|^{5}}=\frac{2+28 m+10|\nu|}{s^{3}}
\end{aligned}
$$

Thirdly, for some $\kappa_{0} \in(0, \kappa)$, by Assumption 3(iii) and Jansen's inequality, we have

$$
\begin{aligned}
E\left|\log \bar{f}\left(\varepsilon_{t} s\right)\right| & =E\left|m \log \left(1+\varepsilon_{t}^{2} s^{2}\right)+\nu \tan ^{-1}\left(\varepsilon_{t} s\right)\right| \\
& \leq \frac{m}{\kappa_{0}} E \log \left(1+\varepsilon_{t}^{2} s^{2}\right)^{\kappa_{0}}+\frac{\pi}{2}|\nu| \\
& \leq O(1) \log \left[1+E\left|\varepsilon_{t}\right|^{2 \kappa_{0}} s^{2 \kappa_{0}}\right]+O(1) \\
& \leq O(1)\left(s^{2 \kappa_{0}}+1\right) .
\end{aligned}
$$

Therefore, under Assumptions 1-5, we have verified all the conditions for Theorems 1.1-1.2 in Berkes and Horváth (2004). Hence, the conclusions in Theorem 1 hold. This completes the proof.

References

ANDREWS, B. (2012). Rank-based estimation for GARCH processes. Econometric Theory 28, 1037-1064.
Bai, X., RUSSELL, J.R. \& TiAO, G.C. (2003). Kurtosis of GARCH and stochastic volatility models with non-normal innovations. Journal of Econometrics 114, 349-360.
Bauwens, L. \& Laurent, S. (2005). A New Class of Multivariate Skew Densities, with Application to Generalized Autoregressive Conditional Heteroscedasticity Models. Journal of Business \& Economic Statistics 23, 346-354.

K. Zhu and W. K. Li

Bera, A.K. \& Higgins, M.L. (1993). ARCH models: Properties, estimation and testing. Jounal of Economic Surveys 7, 305-366; reprinted in Surveys in Econometrics (L. Oxley et al., eds.) 215-272. Blackwell, Oxford 1995. Berkes, I., Horváth, L. \& Kokoszka, P. (2003) GARCH processes: Structure and estimation. Bernoulli 9, 201-227.

Bougerol, P. \& Picard, N. (1992). Stationarity of GARCH processes and of some nonnegative time series. Journal of Econometrics 52, 115-127.

BERKES, I. \& HorvÁth, L. (2004). The efficiency of the estimators of the parameters in GARCH processes. Annals of Statistics 32, 633-655.

Bhattacharyya, M., Misra, N. \& Kodase, B. (2009). MaxVaR for non-normal and heteroskedastic returns. Quantitative Finance 9, 925-935.

Bollershev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.

Bollershev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics 69, 542-547.
Bollerslev, T., Chou, R.Y. \& Kroner, K.F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics 52, 5-59

ChEn, M. \& Zhu, K. (2013). Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations. Working paper. Chinese Academy of Sciences.
Cheng, X., Li, W.K., Yu, P.L.H., Zhou, X., Wang, C. \& Lo, P.H. (2011). Modeling threshold conditional heteroscedasticity with regime-dependent skewness and kortosis. Computational Statistics and Data Analysis 55, 2590-2604.

Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review 39, 841-862.
Christoffersen, P., Heston, S. \& Jacobs, K. (2006). Option valuation with conditional skewness. Journal of Econometrics 131, 253-284.

Ding, Z., Granger, C.W.J. \& Engle, R.F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance 1, 83-106.

Drost, F.C. \& KlaAssen, C.A.J. (1997). Efficient estimation in semiparametric garch models. Journal of Econometrics 81, 193-221.

Engle, R.F. (1982). Autoregressive conditional heteroskedasticity with estimates of variance of U.K. inflation. Econometrica 50, 987-1008.

Engle, R.F. \& GonZÁLEZ-Rivera, G. (1991). Semiparametric arch models. Journal of Business and Economic Statistics 9, 345-359.

FAN, J., QI, L. \& XIU, D. (2013). Quasi maximum likelihood estimation of GARCH models with heavy-tailed likelihoods. Journal of Business and Economic Statistics. forthcoming.

France, C., Wintenberger, O. \& Zakoïan, J.M. (2013). Garch models without positivity constraints: exponential or log garch? Journal of Econometrics. forthcoming.

France, C. \& Zakoïan, J.M. (2004). Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10, 605-637.

France, C. \& ZakoïAn, J.M. (2010). GARCH Models: Structure, Statistical Inference and Financial Applications. Wiley, Chichester, UK.
FRANCQ, C. \& ZAKOÏAN, J.M. (2013). Optimal predictions of powers of conditionally heteroscedastic processes. Journal of the Royal Statistical Society B 75, 345-367.
Geweke, J. (1986). Modeling the persistence of conditional variances: A comment. Econometric Review 5, 57-61.
Grigoletto, M. \& Lisi, F. Looking for skewness in financial time series. Econometrics Journal 12, 310-323.
HALL, P. \& YAO, Q. (2003). Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica 71, 285-317.

Hamadeh, T. \& Zakoïan, J.M. (2011). Asymptotic properties of LS and QML estimators for a class of nonlinear GARCH processes. Journal of Statistical Planning and Inference 141, 488-507.

HANSEN, B.E. (1994). Autoregressive conditional density estimation. International Economic Review 35, 705-730.
HARVEY, C.R. \& Siddique, A. (1999). Autoregressive conditional skewness. Journal of Financial and Quantitative Analysis 34, 465-487.
Heinrich, J. (2004). A guide to the Pearson type IV distribution. Working paper. University of Pennsylvania.
Leon, A., Rubio, G. \& Serna, G. (2005). Autoregressive conditional volatility, skewness and kurtosis. The Quarterly Review of Economics and Finance 45, 599-618.
LI, G. \& LI, W.K. (2008). Least absolute deviation estimation for fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity. Biometrika 95, 399-414.
LING, S. (2007). Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models. Journal of Econometrics 140, 849-873.
Liu, S.-M. \& Brorsen, B.W. (1995). Maximum likelihood estimation of a GARCH-stable model. Journal of applied econometrics 10, 273-285.
NaGahara, Y. (1999). The PDF and CF of Pearson type IV distributions and the ML estimation of the parameters. Statistics \& Probability Letters 43, 251-264.

Nelson, D.B. (1990). Stationarity and persistence in the GARCH $(1,1)$ model. Econometric Theory 6, 318-334.
Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59, 347-370.
Newey, W.K. \& Steigerwald, D.G. (1997). Asymptotic bias for quasi-maximum likelihood estimators in conditional heteroskedasticity models. Econometrica 65, 587-599.
Peng, L. \& Yao, Q. (2003). Least absolute deviations estimation for ARCH and GARCH models. Biometrika 90, 967-975.
Premaratne, G. \& Bera, A.K. (2001). Modeling asymmetry and excess kurtosis in stock return data. Working paper. University of Illinois.
Yan, J. (2005). Asymmetry, fat-tail, and autoregressive conditional density in fincancial return data with systems of frequency curves. Working paper. University of Iowa. Computers in Simulation 64, 351-361.

ZhU, K. \& Ling, S. (2011). Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models. Annals of Statistics 39, 2131-2163.

Zhu, K. \& Ling, S. (2013). Inference for ARMA models with unknown-form and heavy-tailed G/ARCH-type noises. Working paper. Hong Kong University of Science and Technolegy

[^0]: \dagger The invalid estimation results are labeled as "Not Available (N.A.)".

[^1]: ${ }^{\dagger}$ The invalid estimation results are labeled as "Not Available (N.A.)".

[^2]: ${ }^{\dagger}$ The standard deviations are in parentheses.

[^3]: ${ }^{\dagger}$ The standard deviations are in parentheses.

[^4]: ${ }^{\dagger}$ The p-values of $\mathrm{LR}_{\mathrm{Cc}}$ are in open brackets, and the values of CR are in square brackets.

[^5]: ${ }^{\dagger}$ The standard deviations are in parentheses.

