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ABSTRACT

This paper proposes a novel Pearson-type quasi maximum likelihood estimator (QMLE) of

GARCH(p, q) models. Unlike the existing Gaussian QMLE, Laplacian QMLE, generalized non-

Gaussian QMLE, or LAD estimator, our Pearsonian QMLE (PQMLE) captures not just the

heavy-tailed but also the skewed innovations. Under strict stationarity and some weak moment 15

conditions, the strong consistency and asymptotical normality of the PQMLE are obtained. With

no further efforts, the PQMLE can apply to other conditionally heteroskedastic models. A sim-

ulation study is carried out to assess the performance of the PQMLE. Two applications to eight

major stock indexes and four exchange rates further highlight the importance of our new method.

Heavy-tailed and skewed innovations are often observed together in practice, and the PQMLE 20

now gives us a systematical way to capture these two co-existing features.

Some key words: Asymmetric innovation; Conditionally heteroskedastic model; Exchange rates; GARCH model;

Leptokurtic innovation; Non-Gaussian QMLE; Pearson’s Type IV distribution; Pearsonian QMLE; Stock indexes.
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1. INTRODUCTION

After the seminal work of Engle (1982) and Bollerslev (1986), numerous volatility models25

have been widely used to capture the feature of conditional heteroscedasticity in economic and

financial data sets; see, e.g., Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993) and

Francq and Zakoı̈an (2010). Among them, the most influential model in empirical studies is the

GARCH(p, q) model given by

yt = σtεt, (1)30

σ2t = ω +

p
∑

i=1

αiy
2
t−i +

q
∑

j=1

βjσ
2
t−j , (2)

where ω > 0, αi ≥ 0(i = 1, · · · , p), βj ≥ 0(j = 1, · · · , q), and εt is a sequence of i.i.d. random

variables. Traditional inference for the GARCH model is based on the Gaussian quasi maximum

likelihood estimator (GQMLE), which is proposed by assuming that εt follows a standard normal

distribution. Berkes, Horváth and Kokoszka (2003) showed that when εt has a finite fourth mo-35

ment with Eε2t = 1 (the identification condition), the GQMLE is consistent and asymptotically

normal. However, the GQMLE can not capture the heavy-tailedness and skewness of εt, which

are two well-observed features of financial data in GARCH model applications; see, e.g., Engle

and González-Rivera (1991), Christoffersen, Heston, and Jacobs (2006), and Grigoletto and Lisi

(2009). Motivated by this, the MLE, based on a user-chosen heavy-tailed or skewed likelihood40

function, so far has been largely considered. For instance, εt can be the Student’s t distribution in

Bollerslev (1987), the gamma distribution in Engle and González-Rivera (1991), the generalized

error distribution in Nelson (1991), the skewed t distribution in Hansen (1994), the stable distri-

bution in Liu and Brorsen (1995), the noncentral t distribution in Harvey and Siddique (1999), the

Pearson’s Type IV distribution in Premaratne and Bera (2001), the Gram-Charlier distribution in45

Leon, Rubio, and Serna (2005) and Cheng et al. (2011), the mixture normal distribution in Bai,

Russell and Tiao (2003) and many others. However, the true distribution of εt is unknown a priori

in practice, and as shown in Newey and Steigerwald (1997), the MLE may lead to inconsistent

estimates of models (1)-(2) if the distribution of εt is misspecified.

In order to obtain a consistent estimator without knowing the true distribution of εt, people pre-50

fer to use the non-Gaussian QMLE (NGQMLE), which has efficiency advantage over GQMLE

when εt is heavy-tailed. Generally, there are two ways to obtain a consistent NGQMLE. First,
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one can assume a different identification condition rather than Eε2t = 1. For instance, Peng and

Yao (2003) proposed a least absolute deviation estimator (LADE) under the identification con-

dition that median(ε2t ) = 1, and the consistency and asymptotic normality of LADE was proved 55

in Chen and Zhu (2013) under only a finite fractional moment of εt. By assuming that εt follows

a standard Laplace distribution, Berkes and Horváth (2004) considered the Laplacian QMLE

(LQMLE) under the identification condition that E|εt| = 1, and they showed that the LQMLE

is consistent and asymptotically normal when εt has a finite second moment; see also Li and

Li (2008) and Zhu and Ling (2011) for more discussions in this context. Secondly, one can re- 60

tain the identification condition Eε2t = 1 for NGQMLE but re-parameterize models (1)-(2). This

method has been used for the semi-parametric estimator in Drost and Klaassen (1997), the rank-

based estimator in Andrews (2012), and the generalized NGQMLE (GNGQMLE) in Fan, Li

and Xiu (2013). By introducing a scale adjustment parameter, the GNGQMLE is consistent and

asymptotical normal when εt has a finite second moment, while the semi-parametric and rank- 65

based estimators can only estimate the heteroscedastic parameters αi and βj under the same

re-parameterized GARCH(p, q) model. Morevoer, it is worth noting that when εt has an infinite

fourth moment, all of LADE, LQMLE and GNGQMLE achieve root-n convergency, while the

GQMLE suffers a slower convergence rate as shown in Hall and Yao (2003).

In this paper, we propose a Pearsonian QMLE (PQMLE) of models (1)-(2) by assuming that 70

εt follows a Pearson’s Type IV distribution. Like the LADE and LQMLE, the PQMLE requires

a specified identification condition rather than Eε2t = 1. Under strict stationarity and a finite

fractional moment of εt, the strong consistency and asymptotic normality of the PQMLE are

obtained. Therefore, the PQMLE is applicable to all of the aforementioned non-Gaussian distri-

butions used in the MLE method. Furthermore, we show that the PQMLE can be easily applied 75

to other conditionally heteroskedastic models. A simulation study is carried out to assess the per-

formance of the PQMLE, and two applications to eight major stock indexes and four exchange

rates further highlight the importance of our new method. Compared to the existing NGQMLEs,

the PQMLE captures not only the heavy-tailed but also the skewed innovations. Heavy-tailed

and skewed innovations are often observed together in practice, but none of the existing QMLE 80

methods has been focussed on these co-existing features in the literature. The PQMLE method,
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which can capture a very large range of the asymmetry and leptokurtosis of εt, now gives us a

systematical way to achieve this goal.

This paper is organized as follows. Section 2 proposes our PQMLE and studies its asymptotic

property. Simulation results are reported in Section 3. Applications are given in Section 4. Con-85

cluding remarks are offered in Section 5. The proofs are provided in the Appendix. Throughout

the paper, A′ is the transpose of matrix A, |A| = (tr(A′A))1/2 is the Euclidean norm of a matrix

A, ∥A∥s = (E|A|s)1/s is the Ls-norm (s ≥ 1) of a random matrix, O(1) denotes a bounded

generic constant, “→d” denotes convergence in distribution, and “→p” denotes convergence in

probability.90

2. THE PQMLE AND ASYMPTOTIC THEORY

2·1. Some basic assumptions

Let θ = (ω, α1, · · · , αp, β1, · · · , βq)′ be the unknown parameters of the model given by (1)-

(2) and its true value be θ0. Denote the parameter space by Θ, where Θ ∈ R1+p+q
0 is compact

and R0 = [0,∞). Then, we need the following assumptions:95

Assumption 1. yt is strictly stationary.

Assumption 2. For each θ ∈ Θ, α(z) and β(z) have no common root, α(1) ̸= 0, αp + βq ̸= 0

and
∑q

j=1
βj < 1, where α(z) =

∑p
i=1

αiz
i and β(z) = 1−∑q

j=1
βjz

j .

Assumption 3. (i) ε2t is a nondegenerate random variable; (ii) lims→0 s
−µP (ε2t ≤ s) = 0 for

some µ > 0; (iii) E|εt|2κ <∞ for some κ > 0.100

Assumption 1 is a basic set-up for model (1)-(2), and its necessary and sufficient conditions are

given in Bougerol and Picard (1992). Assumption 2 and Assumption 3(i) are the identifiability

conditions for model (1)-(2) as shown in Berkes, Horváth and Kokoszka (2003). Assumptions

3(ii)-(iii) from Berkes and Horváth (2004) are the technical conditions for proving our asymptotic

theory. Note that only a finite fractional moment of εt is required in this case, and so our method105

applies to very heavy-tailed innovations.
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2·2. The Pearson’s Type IV distribution

We briefly review the Pearson’s Type IV distribution in Nagahara (1999) and Heinrich (2004).

The Pearson’s Type IV (PIV) distribution, as one of the asymmetric and leptokurtic distributions,

has the following pdf: 110

f(x;λ, a, ν,m) = K

[

1 +

(

x− λ

a

)2
]−m

exp

[

−ν tan−1

(

x− λ

a

)]

, (3)

where x ∈ R and (λ, a, ν,m) are real parameters with m ≥ 1/2 and a > 0. Here, K is the

normalizing constant given by

K =
22m−2 |Γ(m+ iν/2)|2

aπΓ(2m− 1)
,

where i =
√
−1 is the imaginary number and Γ(·) is the complex Gamma function. In (3), λ

and a are the location and the scale parameters, respectively; the parameter ν is related to the

asymmetry of the distribution, and a positive (or negative) ν stands for a negatively (or positively)

skewed distribution; the parameter m captures the leptokurtosis of the distribution, and a smaller 115

value of m represents a heavier tail of the distribution. To further illustrate this, Figure 1 plots

four different f(x; 0, 1, ν,m) densities. From Figure 1, we know that PIV(λ, a, ν,m) distribution

with a small (or large) m can have a heavier (or lighter) tail than N(0,1) distribution. Also, it is

worth mentioning that if εt ∼ PIV(λ, a, ν,m), its j-th moment exists only when j < r + 1 for

r = 2(m− 1). That is, εt has a finite second moment when m > 1.5, and it has a finite fourth 120

moment when m > 2.5. Particularly, the skewness and kurtosis of εt are as follows:

skew(εt) =
−4ν

r − 2

√

r − 1

r2 + ν2
for m > 2,

kurt(εt) =
3(r − 1)

[

(r + 6)(r2 + ν2)− 8r2
]

(r − 2)(r − 3)(r2 + ν2)
for m > 2.5.

Figure 2 gives a 3-dimensional (3-D) plot of the skewness and kurtosis of εt. From this figure, we

can see that when |ν| (or m) increases, the absolute value of the skewness increase (or decrease) 125

for fixed m (or ν); and the same conclusion holds for the kurtosis. Hence, we know that the PIV

distribution can capture a very large range of the asymmetry and leptokurtosis of the innovation.

For more discussions on the PIV distributions, we refer to Bauwens and Laurent (2005), Yan

(2005), and Grigoletto and Lisi (2009).
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Fig. 1. The plot of four different densities f(x; 0, 1, ν,m) for the Pearson’s Type IV distribution (the solid star line is

the density of N(0,1) distribution).

Next, we are interested in the case when εt in model (1)-(2) follows the PIV distribution.130

Figures 3-4 plot one realization for each pair of (ν,m) from the following GARCH(1,1) model:

yt = εtσt and σ2t = 0.01 + 0.01y2t−1 + 0.9σ2t−1, (4)

where εt ∼ PIV(0, 1, ν,m) with (ν,m) = (±2, 2), (0, 2), (±2, 4), and (0, 4). From Figures 3-4,

we find that no matter how heavy-tailed εt is, yt has a higher probability to be positive (or neg-

ative) when ν < 0(or > 0), and this asymmetric phenomena disappears when ν = 0. Moreover,135

when m becomes smaller, the absolute value of yt tends to be larger, especially for its extreme

values. All of these findings indicate that the GARCH model with PIV(0, 1, ν,m) innovations

can capture a very large range of the asymmetry and leptokurtosis of the data set.
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Fig. 2. (top panel) the 3-D plot of the skewness of εt, where εt ∼ PIV(0, 1, ν,m) with ν ∈ [−0.2, 0.2] and m ∈ (2, 8); (bottom panel) the 3-D plot of

the kurtosis of εt, where εt ∼ PIV(0, 1, ν,m) with ν ∈ [−0.2, 0.2] and m ∈ (2.5, 8).
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t=1 from model (4), when εt ∼ PIV(0, 1, ν,m).
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2·3. The PQMLE

Given the observations {yn, · · · , y1} and the initial values Y0 =: {yi; i ≤ 0}, we first rewrite140

the parametric models (1)-(2) as

εt(θ) = yt/
√

ht(θ) and

ht(θ) = c0(θ) +

∞
∑

i=1

ci(θ)y
2
t−i,

where all expressions for ci(θ)(i ≥ 0) are given in Berkes and Horváth (2004, pages 635-636).

Clearly, εt(θ0) = εt and ht(θ0) = σ2t . In practice, since the values of Y0 are unobservable, we145

can replace them by zeros, and then use h̃t(θ) instead of ht(θ) to calculate our estimator, where

h̃t(θ) = c0(θ) +
t−1
∑

i=1

ci(θ)y
2
t−i for t = 2, · · · , n, (5)

and h̃1(θ) = c0(θ). For given (ν,m), when εt follows the PIV(0, 1, ν,m) distribution, the log-

likelihood function (ignoring some constants) can be written as

L̃n(θ) = −
n
∑

t=1







log

√

h̃t(θ) +m log

[

1 +
y2t

h̃t(θ)

]

+ ν tan−1





yt
√

h̃t(θ)











, (6)150

where m ≥ 1/2. We look for the maximizer of L̃n(θ) on Θ, that is,

θ̃n = argmax
θ∈Θ

L̃n(θ). (7)

Because we do not assume that εt follows the PIV(0, 1, ν,m) distribution, θ̃n is called the Pear-

sonian quasi-maximum likelihood estimator (PQMLE) of θ0. Note that equation (6) depends

on the distribution parameters (ν,m), and so we should specify them before the calculation of155

L̃n(θ). Particularly, when ν = 0, the log-likelihood function L̃n(θ) is symmetric. The detailed

procedure to select (ν,m) is discussed in Remark 3.

Next, let f̄(x) = f(x; 0, 1, ν,m)/K, g(y, s) = log
[

sf̄(ys)
]

and w(s) := E [g(εt, s)], where

y ∈ R and s > 0. Then, it is straightforward to see that

L̃n(θ) =

n
∑

t=1

g

(

yt, 1/

√

h̃t(θ)

)

.

In order to derive the asymptotic property of θ̃n, we need two more assumptions below:
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Assumption 4. The innovation εt satisfies that

E

[

2mε2t + νεt
1 + ε2t

]

= 1. 160

Assumption 5. w(s) has a unique maximum at s = 1.
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Fig. 5. The plot of w(s) for Student’s t and stable (STB) distributions.

Assumption 4 is the identification condition for the PQMLE. Unlike the GQMLE, the condition

Eε2t = 1 is not needed, and the conditional variance of yt in this case is σ2t var(εt), provided

that Eε2t <∞. Assumption 5 is a technical condition for proving the strong consistency of the

PQMLE. After some simple algebra, we can show that a sufficient condition for Assumption

5 is that (i) w(s) is concave on {s : s > 0}; and (ii) E
[

νεt/(1 + ε2t )
]

≤ 0. Figure 5 plots the

function w(s) for Student’s ti (i = 1, 2, 4) distributions and stable (STB) distributions such that

Assumption 4 holds, where (ν,m) are set to be (−1, 1) for t1, (−1.16, 1.16) for t2, (−1.3, 1.3)

for t4, (1.11, 1.11) for STB(1.8, 0.5, 1, 0), (0.97, 0.97) for STB(1, 0.5, 1, 0), and (0.76, 0.76)
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for STB(0.5, 0.5, 1, 0). Here, the STB(α̌, β̌, c, µ) distribution has the following characteristic

function:

ψ(t; α̌, β̌, c, µ) = exp
[

itµ− |ct|α̌(1− iβ̌sgn(t)Φ)
]

,

where α̌ ∈ (0, 2], β̌ ∈ [−1, 1], c ∈ (0,∞), µ ∈ R, and

Φ =

{

tan(πα̌/2) if α̌ ̸= 1,
−(2/π) log |t| if α̌ = 1.

Clearly, w(s) in Figure 5 is concave with a unique maximum at s = 1 for all six distributions.165

Denote the first and second derivatives of g(y, s) with respective to s by g1(y, s) and g2(y, s),

respectively. We now are ready to give our main results:

THEOREM 1. Suppose that Assumptions 1-5 hold. Then, as n→ ∞, (i) θ̃n → θ0 almost surely

(a.s.); and (ii)
√
n
(

θ̃n − θ0

)

→d N(0, 4τ2A−1), where

τ2 =
Eg21(εt, 1)

[Eg2(εt, 1)]
2

and A = E

[

1

h2t (θ0)

∂ht(θ0)

∂θ

∂ht(θ0)

∂θ′

]

.

Remark 1. The PQMLE only needs a finite fractional moment of εt for its asymptotic normal-

ity, which is weaker than the moment condition Eε4t <∞ for the GQMLE in Berkes, Horváth,170

and Kokoszka (2003) and Francq and Zakoı̈an (2004), or the moment condition Eε2t <∞ for

the LQMLE in Berkes and Horváth (2004) and the GNGQMLE in Fan, Li, and Xiu (2013). Note

that as shown in Chen and Zhu (2013), the LADE in Peng and Yao (2003) also only needs a finite

fractional moment of εt for its asymptotic normality.

Remark 2. The identification condition for the PQMLE in Assumption 4 is different from the175

identification condition Eε2t = 1 for the GQMLE and the GNGQMLE, the identification condi-

tion E|εt| = 1 for the LQMLE, or the identification condition median(ε2t ) = 1 for the LADE.

Thus, it is not straightforward to compare the efficiency of the PQMLE with that of other esti-

mators in formal, and the simulation comparison in Section 3 is necessary.

Remark 3. In order to calculate the PQMLE, we need to first select the parameters ν and m.180

This can be simply done by using the maximum likelihood estimation method; see Premaratne

and Bera (2001), Verhoeven and McAleer (2004), and Bhattacharyya, Mirsa, and Kodase (2009).

Assume that εt ∼ PIV(0, 1, ν,m). Then, we can estimate (ν,m, θ) jointly by maximizing the full
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log-likelihood function LLFP (ν,m, θ), where

LLFP (ν,m, θ) = L̃n(θ) + n logK. (8) 185

Now, we can choose (ν,m) to be the corresponding estimators from this MLE method. Although

the parameters ν andm selected by the MLE method may not be optimal, the practical usefulness

of this method will be illustrated by the empirical examples in Section 4.

Remark 4. Note that the value of (ν,m) can be anywhere in (−∞,∞)× [1/2,∞], and a

different value of (ν,m) will imply a different stationarity region of yt. To see this, Figure 6 190

plots the strict stationarity region of the GARCH(1,1) model: yt = εtσt and σ2t = ω + αy2t−1 +

βσ2t−1, where εt ∼ PIV(0, 1, ν,m). As a comparison, the region for Ey2t <∞ is also plotted

in Figure 6. From this figure, we find that the parameter region for strict stationarity is much

larger than that for Ey2t <∞. Moreover, a smaller value of ν or a larger value of m will give

a larger strict stationarity region. Particularly, except εt ∼ PIV(0, 1, 2, 2), each strict stationarity 195

region in Figure 6 is much larger than that in Nelson (1990) when εt ∼ N(0, 1) or that in Zhu and

Ling (2011) when εt ∼ Laplace(0, 1). Therefore, our PQMLE can have a much larger admissible

parameter region than the GQMLE, the GNGQMLE or the LQMLE.

2·4. Extension to conditionally heteroskedastic models

In this subsection, we study the PMLE for the following conditionally heteroskedastic models: 200

yt = σtεt and σt = σ(yt−1, yt−2, · · · ; θ0), (9)

where εt being independent of {yj ; j < t} is a sequence of i.i.d. random variables, the parameter

space Θ ⊂ Rl is compact, the true value θ0 is an interior point in Θ, and σ : R∞ ×Θ → (0,∞).

Many existing models, such as GARCH model in (1)-(2), asymmetric power GARCH model in

Ding, Granger, and Engle (1993) and asymmetric log-GARCH model in Geweke (1986), can be 205

embedded into model (9); see e.g., Bollerslev, Chou, and Kroner (1992) and Francq and Zakoı̈an

(2010) for more discussions in this context.

As (5), let ht(θ) = [σ(yt−1, yt−2, · · · ; θ)]2 and define h̃t(θ) in the same way as ht(θ) by re-

placing Y0 by zeros. Then, based on {h̃t(θ)}, we can define the PMLE for model (9) as in (7).

To derive the asymptotic property of the PMLE, three more technical assumptions are needed. 210
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Fig. 6. The regions bounded by the solid and dashed curves are for the strict stationarity (i.e., E[log(αε2t + β)] < 0)

and for Ey2

t < ∞ (i.e., Eε2tα+ β < 1), respectively, where Eε2t = (r2 + ν2)/(r2(r − 1)) with r = 2(m− 1).

Assumption 6. (i) ht(θ) ≥ w (a.s.) for some w > 0 and all θ ∈ Θ. Moreover, ht(θ) = ht(θ0)

(a.s.) if and only if θ = θ0; (ii) if x′(∂ht(θ)/∂θi)i=1···l = 0 (a.s.) for any x ∈ Rl, then x = 0.

Assumption 7.

(i) E

[

sup
θ∈Θ

∥

∥

∥

∥

1

ht(θ)

∂ht(θ)

∂θ

∥

∥

∥

∥

]2

<∞; (ii) E

[

sup
θ∈Θ

∥

∥

∥

∥

1

ht(θ)

∂2ht(θ)

∂θ∂θ′

∥

∥

∥

∥

]

<∞.
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Assumption 8.

(i) sup
θ∈Θ

∥

∥

∥

∥

∥

1

h̃t(θ)

∂h̃t(θ)

∂θ
− 1

ht(θ)

∂ht(θ)

∂θ

∥

∥

∥

∥

∥

≤ O(ρt)Rt,

(ii) sup
θ∈Θ

∥

∥

∥

∥

∥

1

h̃t(θ)

∂2h̃t(θ)

∂θ∂θ′
− 1

ht(θ)

∂2ht(θ)

∂θ∂θ′

∥

∥

∥

∥

∥

≤ O(ρt)Rt 215

for some constant ρ ∈ (0, 1) and positive random variable Rt such that ER2
t <∞.

Assumption 6 imposes some basic requirements on the function ht(θ), and they are satisfied by

most of the conditionally heteroskedastic models; see, e.g., Francq and Zakoı̈an (2004, 2013).

Assumptions 7-8 give some moment conditions, which have been verified for GARCH models in

Ling (2007), asymmetric power GARCH models in Hamadeh and Zakoı̈an (2011) and asymmet- 220

ric log-GARCH models in Francq, Wintenberger, and Zakoı̈an (2013). The following corollary

gives the strong consistency and asymptotic normality the PQMLE for model (9), and its proof is

omitted because it follows the same ones as for Theorems 1.1-1.2 in Berkes and Horváth (2004).

COROLLARY 1. Assume that yt follows model (9). If Assumptions 1, 2(iii) and 3-8 hold, then

the conclusions in Theorem 1 hold. 225

3. SIMULATION STUDY

In this section, we compare the performance of the PQMLE with those of the GQMLE, the

LQMLE, the LADE and the GNGQMLE in finite samples. We generate 1000 replications of

sample size n = 1000 from the following model:

yt = σtεt and σ2t = ω0 + α0y
2
t−1 + β0σ

2
t−1, (10) 230

where we choose (ω0, α0, β0) = (0.25, 0.15, 0.3) as in Fan, Li, and Xiu (2013), and εt is chosen

to be the PIV distributions, the STB distributions, and the Student’s t distributions, respectively.

In order to implement the PQMLE, we choose (ν,m) = (ν0/τ0,m0/τ0) such that Assumption

4 holds, where

τ0 = E

[

2m0ε
2
t + ν0εt

1 + ε2t

]
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Table 1. The bias and RMSE of all estimators for model (10)

εt Estimators

PIV(0, 1, 2, 4) PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias -0.0034 0.0072 0.0071 0.0013 0.0023-0.0050 -0.0033 0.0065 0.0049 -0.0021 0.0018-0.0040

RMSE 0.1110 0.1132 0.2979 0.1050 0.1010 0.2821 0.1111 0.1173 0.2983 0.1051 0.1041 0.2848

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias -0.0047 0.0102 0.0094 0.0069 0.0041-0.0185 0.0075 0.0256-0.0245 0.0016 0.0038-0.0061

RMSE 0.1122 0.1254 0.3029 0.1082 0.1075 0.2892 0.1156 0.1454 0.3077 0.1050 0.1049 0.2822

PIV(0, 1, 2, 2) PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0059 0.0010-0.0073 0.0047 0.0001-0.0056 0.0037 0.0000-0.0028 0.0041 0.0000-0.0040

RMSE 0.0445 0.0328 0.0881 0.0456 0.0334 0.0908 0.0547 0.0396 0.1097 0.0490 0.0358 0.0981

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias 0.0087 0.0122-0.0306 0.0080 0.0017-0.0138 0.0036 0.0011-0.0039 -0.0009-0.0045-0.0109

RMSE 0.0900 0.0905 0.1728 0.0529 0.0419 0.1084 0.0554 0.0400 0.1137 0.0497 0.0354 0.1010

PIV(0, 1, 2, 1.6) PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0044 0.0002-0.0007 0.0042 0.0002-0.0002 0.0042 0.0006 0.0005 0.0042 0.0003 0.0002

RMSE 0.0420 0.0227 0.0477 0.0431 0.0235 0.0493 0.0498 0.0278 0.0582 0.0457 0.0252 0.0527

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias -0.0069-0.0016 0.0139 0.0084 0.0024-0.0076 0.0030 0.0011-0.0010 -0.0189-0.0149-0.0045

RMSE 0.1405 0.0829 0.2018 0.0605 0.0390 0.0767 0.0455 0.0261 0.0601 0.0523 0.0300 0.0575

PIV(0, 1, 2, 1.5) PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0083-0.0006 0.0010 0.0079-0.0007 0.0016 0.0074-0.0007 0.0029 0.0076-0.0008 0.0023

RMSE 0.0465 0.0205 0.0394 0.0477 0.0215 0.0411 0.0557 0.0256 0.0490 0.0507 0.0231 0.0442

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias N.A. N.A. 0.0073-0.0012 0.0020 N.A.

RMSE N.A. N.A. 0.0515 0.0221 0.0485 N.A.

STA(1.8, 0.5, 1, 0) PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0014-0.0014 0.0025 0.0013-0.0014 0.0018 0.0018-0.0001-0.0008 0.0014-0.0010 0.0008

RMSE 0.0565 0.0375 0.1108 0.0498 0.0335 0.0978 0.0506 0.0336 0.0981 0.0477 0.0321 0.0933

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias N.A. N.A. 0.0016 0.0001 0.0002 N.A.

RMSE N.A. N.A. 0.0552 0.0373 0.1070 N.A.

STA(1.8, 0.9, 1, 0) PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0007-0.0004 0.0023 0.0010-0.0010 0.0020 0.0018-0.0008 0.0008 0.0015-0.0011 0.0013

RMSE 0.0573 0.0366 0.1090 0.0518 0.0323 0.0984 0.0530 0.0328 0.1005 0.0504 0.0309 0.0953

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias N.A. N.A. 0.0024-0.0001 0.0004 N.A.

RMSE N.A. N.A. 0.0595 0.0374 0.1120 N.A.

† The invalid estimation results are labeled as ”Not Available (N.A.)”.
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Table 2. The bias and RMSE of all estimators for model (10) (con’t)

εt Estimators

STA(1.5, 0, 1, 0) PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0047-0.0009 0.0007 0.0039-0.0013 0.0015 0.0029-0.0011 0.0023 0.0034-0.0013 0.0019

RMSE 0.0439 0.0305 0.0656 0.0389 0.0268 0.0580 0.0397 0.0262 0.0584 0.0376 0.0252 0.0556

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias N.A. N.A. 0.0033-0.0015 0.0018 N.A.

RMSE N.A. N.A. 0.0425 0.0298 0.0644 N.A.

STA(1.5, 0.5, 1, 0) PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0029-0.0001-0.0001 0.0025-0.0006 0.0006 0.0015-0.0010 0.0027 0.0020-0.0009 0.0016

RMSE 0.0425 0.0276 0.0647 0.0391 0.0251 0.0593 0.0403 0.0259 0.0623 0.0382 0.0244 0.0583

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias N.A. N.A. 0.0028-0.0002 0.0009 N.A.

RMSE N.A. N.A. 0.0430 0.0277 0.0650 N.A.

t5 PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0047 0.0073-0.0120 0.0045 0.0041-0.0131 0.0049 0.0025-0.0086 0.0025 0.0016-0.0100

RMSE 0.0799 0.0533 0.1742 0.0716 0.0464 0.1566 0.0704 0.0453 0.1555 0.0675 0.0434 0.1496

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias 0.0102 0.0039-0.0237 0.0072 0.0028-0.0154 0.0027 0.0059-0.0078 0.0055 0.0019-0.0151

RMSE 0.0743 0.0519 0.1689 0.0634 0.0404 0.1440 0.0774 0.0538 0.1743 0.0622 0.0392 0.1423

t4 PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0063 0.0050-0.0148 0.0068 0.0032-0.0143 0.0068 0.0017-0.0122 0.0071 0.0022-0.0138

RMSE 0.0700 0.0473 0.1521 0.0631 0.0415 0.1367 0.0636 0.0414 0.1363 0.0608 0.0393 0.1308

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias N.A. 0.0081 0.0022-0.0160 0.0052 0.0039-0.0104 0.0060 0.0006-0.0176

RMSE N.A. 0.0591 0.0390 0.1289 0.0715 0.0493 0.1557 0.0564 0.0369 0.1235

t3 PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0013-0.0018-0.0046 0.0058-0.0001-0.0038 0.0014-0.0026 0.0000 0.0073 0.0005-0.0021

RMSE 0.0602 0.0430 0.1181 0.0531 0.0384 0.1042 0.0507 0.0375 0.1032 0.0498 0.0366 0.0984

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias N.A. 0.0069 0.0016-0.0116 0.0025-0.0013 0.0007 -0.0012-0.0043-0.0076

RMSE N.A. 0.0521 0.0399 0.1080 0.0565 0.0419 0.1155 0.0472 0.0350 0.0993

t2 PQMLE
1

PQMLE
2

PQMLE
3

PQMLE
4

ω α β ω α β ω α β ω α β

Bias 0.0025 0.0007 0.0005 0.0023 0.0001 0.0010 0.0024 0.0003 0.0009 0.0023 0.0000 0.0011

RMSE 0.0476 0.0357 0.0807 0.0422 0.0319 0.0723 0.0429 0.0312 0.0740 0.0405 0.0303 0.0699

GQMLE LQMLE LAD GNGQMLE

ω α β ω α β ω α β ω α β

Bias N.A. N.A. 0.0012 0.0008 0.0014 N.A.

RMSE N.A. N.A. 0.0471 0.0358 0.0829 N.A.

† The invalid estimation results are labeled as ”Not Available (N.A.)”.
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with (ν0,m0) = (2, 2), (2, 4), (−2, 4) and (0, 4), and the corresponding PQMLEs are called the

PQMLE1, PQMLE2, PQMLE3, and PQMLE4, respectively, Furthermore, since other four esti-

mation methods require different identification conditions for model (10), the GQMLE (θ̄∗1n),235

LQMLE (θ̄∗2n), LADE (θ̄∗3n), and GNGQMLE (θ̄∗4n) are estimators of (τ1ω0, τ1α0, β0) with

τ1 = Eε2t , (E|εt|)2, median(ε2t ) andEε2t respectively. In order to make our comparison feasible,

we let

θ̄1n =

(

ω̄∗
1n

Eε2t
,
ᾱ∗
1n

Eε2t
, β̄∗1n

)

θ̄2n =

(

ω̄∗
2n

(E|εt|)2
,

ᾱ∗
2n

(E|εt|)2
, β̄∗2n

)

and240

θ̄3n =

(

ω̄∗
3n

median(ε2t )
,

ᾱ∗
3n

median(ε2t )
, β̄∗3n

)

θ̄4n =

(

ω̄∗
4n

Eε2t
,
ᾱ∗
4n

Eε2t
, β̄∗4n

)

be the GQMLE, LQMLE, LADE, and GNGQMLE of (ω0, α0, β0), respectively. The estimated

asymptotic standard deviations of all estimators were derived in a similar way. In all calculations,

we use the true values of Eε2t , (E|εt|)2 and median(ε2t ), and the GNGQMLE is constructed in

the same way as in Section 7.2 of Fan, Li, and Xiu (2013). Note that the PQMLEs and LADE245

are applicable for all innovations, but the GQMLE is only applicable when Eε4t <∞, and the

LQMLE and GNGQMLE are only applicable when Eε2t <∞.

Tables 1-2 report the bias and root mean square error (RMSE) of all estimators for model (10).

From them, we find that all estimators have very small bias. When ηt ∼ PIV(0, 1, 2, 4), PQMLE2

is the efficient estimator and so it has the smallest RMSE, while the performance of LQMLE or250

GNGQMLE is better than those of the remaining PQMLEs. When ηt ∼ PIV(0, 1, 2, 2), PQMLE1

is the efficient estimator and so it has the smallest RMSE. In this case, all PQMLEs except

PQMLE3 have smaller RMSEs than other estimators. This advantage of the PQMLEs becomes

more significant as m becomes smaller. Note that the PQMLE3 has the worst performance in

all PQMLEs, and this nay be because of the sign of ν which is negative for PQMLE3. Next, we255

consider the cases that εt follows the STB distribution. In this case, only the PQMLEs and LADE

are applicable. When εt ∼ STB(1.8, 0.5, 1, 0), all PQMLEs except PQMLE1 have smaller RM-

SEs than the LADE; when εt ∼ STB(1.8, 0.9, 1, 0), the innovation becomes more skewed, and

then the efficiency advantage of all PQMLEs (including PQMLE1) over LADE becomes more

significant; moreover, when εt ∼ STB(1.5, 0, 1, 0) or STB(1.5, 0.5, 1, 0), the innovation become260

more heavy-tailed, and then the similar conclusions can be drawn as before. Thirdly, we consider
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the cases that εt follows the t distribution. In this case, the innovations are symmetric, and hence

the PQMLE4 has the best performance among all PQMLEs, although its performance is worse

than those of the LQMLE and GNGQMLE. Meanwhile, the GNGQMLE has the best perfor-

mance in all estimators due to its adaptive property under symmetry, and the performance of the 265

PQMLEs are always better than that of the LADE. Overall, the simulation study shows that all

PQMLEs have a good performance in finite samples, especially for the heavy-tailed and skewed

innovations.

4. APPLICATION

4·1. Application to stock indexes 270

In this subsection, we apply the PQMLE estimation method to eight major stock indexes in

the world. The data sets we considered are the daily CAC40, DAX, DJIA, FTSE, HSI, NAS-

DAQ, Nikkei225, and SP500 indexes from January 3, 2000 to December 27, 2007. As usual, we

denote the log-return (×100) of each data set by {yt}nt=1, and the summary statistics for each

yt is given in Table 3. From this table, we find that each yt is skewed and has a heavier tail 275

than the N(0, 1) distribution. Hence, we use a GARCH(1,1) model with the PQMLE estima-

tion method to fit each return series. As a comparison, we also apply the GQMLE, LQMLE, or

GNGQMLE estimation method to obtain the fitted GARCH(1,1) model for each return series.

For the PQMLE method, µ and m are chosen as in Remark 3. For the GNGQMLE method, the

auxiliary likelihood function is based on the standardized t3, t5 or t7 distribution such that it has 280

variance one, and then the corresponding estimator is denoted by GNGQMLE1, GNGQMLE2 or

GNGQMLE3, respectively.

Table 3. Summary of eight major stock indexes

yt n mean standard deviation skewness kurtosis

CAC40 2049 -0.0025 1.3968 -0.0930 5.9618

DAX 2031 0.0086 1.5495 -0.0455 5.7503

DJIA 2009 0.0081 1.0951 -0.0907 7.4136

FTSE 2017 -0.0012 1.1297 -0.1749 5.8796

HSI 1982 0.0238 1.3533 -0.3596 6.5512

NASDAQ 2007 -0.0216 1.8461 0.1848 7.2060

Nikkei225 1965 -0.0102 1.3796 -0.1581 4.7171

SP500 2007 0.0000 1.1155 0.0469 5.5460
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Table 4. Summary of all estimations for eight major stock indexes

yt PQMLE GQMLE LQMLE GNGQMLE
1

GNGQMLE
2

GNGQMLE
3

CAC40 ω 0.2301 0.0160 0.0071 0.0102 0.0114 0.0121

(0.0876)† (0.0060) (0.0031) (0.0019) (0.0021) (0.0022)

α 1.3881 0.0851 0.0487 0.0776 0.0800 0.0812

(0.2084) (0.0138) (0.0075) (0.0003) (0.0003) (0.0004)

β 0.9103 0.9068 0.9164 0.9185 0.9154 0.9137

(0.0128) (0.0143) (0.0122) (0.0100) (0.0108) (0.0113)

ν -0.0308

m 9.8482

η̂k 1.3462 1.0872 1.0372

τ2 0.9995 0.9995 0.9995 1.0012 1.0006 1.0003

LLF -3205.2 -3213.8 -3282.2 -3268.0 -3227.9 -3215.5

DAX ω 0.3508 0.0240 0.0081 0.0095 0.0125 0.0142

(0.1277) (0.0081) (0.0038) (0.0022) (0.0025) (0.0027)

α 1.8795 0.1062 0.0591 0.0925 0.0944 0.0954

(0.2694) (0.0161) (0.0087) (0.0004) (0.0005) (0.0005)

β 0.8947 0.8845 0.9014 0.9074 0.9035 0.9013

(0.0143) (0.0167) (0.0138) (0.0107) (0.0117) (0.0123)

ν -0.0830

m 10.989

η̂k 1.3430 1.0880 1.0389

τ2 0.9995 0.9996 0.9996 1.0057 1.0036 1.0025

LLF -3358.9 -3366.0 -3425.4 -3420.4 -3382.2 -3370.1

DJIA ω 0.0698 0.0261 0.0075 0.0112 0.0123 0.0128

(0.0241) (0.0115) (0.0027) (0.0031) (0.0034) (0.0035)

α 0.4584 0.0847 0.0453 0.0801 0.0834 0.0845

(0.0719) (0.0246) (0.0078) (0.0005) (0.0005) (0.0006)

β 0.9094 0.8934 0.9120 0.9150 0.9109 0.9094

(0.0132) (0.0287) (0.0140) (0.0186) (0.0202) (0.0211)

ν -0.0379

m 4.2961

η̂k 1.2666 1.0331 0.9909

τ2 0.9995 0.9995 0.9995 1.0086 1.0078 1.0077

LLF -2726.4 -2794.5 -2764.7 -2759.0 -2732.1 -2727.6

FTSE ω 0.5639 0.0152 0.0091 0.0138 0.0138 0.0138

(0.1743) (0.0046) (0.0029) (0.0018) (0.0018) (0.0019)

α 4.4984 0.1175 0.0699 0.1112 0.1136 0.1148

(0.6032) (0.0158) (0.0099) (0.0004) (0.0004) (0.0004)

β 0.8728 0.8721 0.8774 0.8794 0.8774 0.8762

(0.0157) (0.0159) (0.0161) (0.0125) (0.0130) (0.0134)

ν -0.0028

m 20.676

η̂k 1.3533 1.0933 1.0430

τ2 0.9995 0.9996 0.9996 0.9996 0.9996 0.9995

LLF -2722.0 -2725.2 -2801.6 -2789.3 -2748.9 -2735.9

† The standard deviations are in parentheses.
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Table 5. Summary of all estimations for eight major stock indexes (con’t)

yt PQMLE GQMLE LQMLE GNGQMLE
1

GNGQMLE
2

GNGQMLE
3

HSI ω 0.0318 0.0414 0.0055 0.0048 0.0073 0.0087

(0.0192)† (0.0260) (0.0036) (0.0055) (0.0066) (0.0071)

α 0.2192 0.1436 0.0378 0.0497 0.0534 0.0559

(0.0410) (0.0446) (0.0079) (0.0005) (0.0007) (0.0008)

β 0.9463 0.8517 0.9319 0.9529 0.9477 0.9445

(0.0098) (0.0437) (0.0138) (0.0253) (0.0283) (0.0302)

ν -0.0741

m 3.5529

η̂k 1.2321 1.0163 0.9795

τ2 0.9995 1.0005 1.0002 1.1053 1.0938 1.0873

LLF -3174.6 -3272.3 -3191.4 -3195.3 -3177.3 -3176.7

NASDAQ ω 0.1702 0.0104 0.0037 0.0043 0.0053 0.0059

(0.0872) (0.0047) (0.0025) (0.0014) (0.0016) (0.0017)

α 1.3844 0.0650 0.0392 0.0620 0.0628 0.0634

(0.2184) (0.0112) (0.0064) (0.0002) (0.0002) (0.0002)

β 0.9336 0.9319 0.9364 0.9387 0.9373 0.9363

(0.0099) (0.0110) (0.0099) (0.0080) (0.0085) (0.0089)

ν -0.0114

m 12.195

η̂k 1.3511 1.0917 1.0411

τ2 0.9995 0.9995 0.9995 1.0019 1.0014 1.0010

LLF -3576.9 -3583.7 -3652.9 -3643.0 -3602.6 -3589.5

Nikkei225 ω 0.1529 0.0292 0.0099 0.0106 0.0139 0.0161

(0.0652) (0.0120) (0.0046) (0.0026) (0.0032) (0.0035)

α 0.6068 0.0940 0.0412 0.0573 0.0640 0.0687

(0.1019) (0.0179) (0.0072) (0.0003) (0.0004) (0.0005)

β 0.9201 0.8960 0.9251 0.9396 0.9316 0.9261

(0.0132) (0.0192) (0.0129) (0.0093) (0.0109) (0.0120)

ν 0.0013

m 5.6151

η̂k 1.3111 1.0669 1.0213

τ2 0.9995 0.9996 0.9996 1.0151 1.0107 1.0078

LLF -3289.5 -3310.9 -3333.3 -3330.3 -3299.9 -3292.5

SP500 ω 0.0579 0.0112 0.0036 0.0044 0.0057 0.0064

(0.0257) (0.0044) (0.0017) (0.0012) (0.0014) (0.0015)

α 0.5753 0.0712 0.0382 0.0623 0.0664 0.0683

(0.0914) (0.0135) (0.0063) (0.0001) (0.0002) (0.0002)

β 0.9265 0.9200 0.9323 0.9364 0.9311 0.9286

(0.0111) (0.0144) (0.0106) (0.0091) (0.0102) (0.0109)

ν -0.0166

m 5.6425

η̂k 1.3060 1.0637 1.0191

τ2 0.9995 0.9995 0.9995 1.0054 1.0031 1.0023

LLF -2763.5 -2786.5 -2807.6 -2804.4 -2774.1 -2766.6

† The standard deviations are in parentheses.
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The detailed estimation results for each return series are given in Tables 4-5, in which the full

log-likelihood function of the PQMLE is defined as in (8), and the full log-likelihood functions

of the GQMLE (LLFG), LQMLE (LLFL), and GNGQMLE (LLFGNG) are defined as follows:285

LLFG = −
n
∑

t=1

[

log

√

h̃t(θ̄1n) +
y2t

2h̃t(θ̄1n)

]

+ n log

(

1√
2π

)

,

LLFL = −
n
∑

t=1



log

√

h̃t(θ̄2n) +
|yt|

√

h̃t(θ̄2n)



+ n log

(

1

2

)

,

LLFGNG = −
n
∑

t=1

[

log

(

η̂k

√

h̃t(θ̄4n)

)

+
k + 1

2
log

(

1 +
y2t

(k − 2)η̂2kh̃t(θ̄4n)

)]

+ n log

(

Γ{(k + 1)/2}
√

(k − 2)πΓ{k/2}

)

for k = 3 (or 5, 7),

where θ̄1n, θ̄2n and θ̄4n are the GQMLE, LQMLE and GNGQMLE, respectively, and

η̂k = argmax
η

n
∑

t=1

[

− log(η)− k + 1

2
log

(

1 +
y2t

(k − 2)η2h̃t(θ̄1n)

)]

.

Here, η̂k measures the discrepancy between the correct likelihood function and the given aux-290

iliary likelihood function. Specifically, when η̂k > 1(or < 1), the given auxiliary innovation tk

is heavier (or lighter) tailed than the true innovation. Furthermore, Tables 4-5 also report the

estimated values of the identification condition τ2 for each estimation method, that is, τ2 is the

sample mean of (2mε2t + νεt)/(1 + ε2t ), ε
2
t or |εt| for the PQMLE, GQMLE (and GNGQMLE)

or LQMLE estimation method, respectively. Meanwhile, it is worth mentioning that all fitted295

models are adequate by looking at the the ACF and PACF plots (not depicted here) of the squared

and absolute residuals.

From Tables 4-5, we find that (i) all the values of τ2 are close to 1 as expected; (ii) for each

return series, the PQMLE always has the best fitting in terms of the maximized LLF among all

estimation methods; (iii) the GNGQMLE estimation with a t5 or t7 likelihood gives the second300

best fitted models for the DJIA, HSI, Nikkei225 and SP500 return series in which the value of

m are smaller, while the GQMLE estimation gives the second best fitted models for the CAC40,

DAX, FISE and NASDAQ return series in which the value of m are larger; (iv) the LQMLE has

the worst fitting in all cases except for the DJIA and HSI return series, in which the values of m

are the smallest, and so the GQMLE has the worst fitting in these two cases; (v) the GNGQMLE305

estimation with a t3 likelihood always has the largest value of η̂k among all GNGQMLE es-
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timations, and hence it implies that the auxiliary t3 innovation is heavier tailed than the true

innovation, while the auxiliary t5 or t7 innovation has the similar tail as the true innovation be-

cause the values of η̂k in these two cases are close to 1; (vi) the values of m are all larger than

2.5, and it suggests that the innovation for each return series has finite fourth moment. Overall, 310

we know that all estimation methods are applicable, and the PQMLE estimation method taking

into account both leptokurtosis and asymmetry of the innovation gives the best fitted models for

all return series.

Next, we use the conditional coverage test LRcc in Christoffersen (1998, page 847) to examine

whether each of the estimation methods can provide us a good interval forecast for its one- 315

step-ahead prediction. For each return series, the out-of-sample data set we used is a length

of n0 consecutive data starting after the last observation of the in-sample data set. Following

Christoffersen (1998), the upper-tail predictive interval (UPI) and lower-tail predictive interval

(LPI) for each out-of-sample data yt at the significance level p̄ are defined as

UPIt|t−1(p̄) =
(

F−1(1− p̄)σ̄t,∞
)

and LPIt|t−1(p̄) =
(

−∞, F−1(p̄)σ̄t
)

, 320

respectively, where σ̄t is the one-step-ahead prediction of σt from each estimation method, and

F (·) is the cdf of the PIV(0, 1, ν,m), N(0, 1), Laplace(0, 1), and standardized ti (for i = 3, 5, 7)

distribution for the PQMLE, GQMLE, LQMLE, and GNGQMLEi estimation methods, respec-

tively. Table 6 reports all the results of LRcc with p̄ = 0.95, which examine whether the UPI or

LPI from each estimation method gives us a good conditional coverage rate (CR). From Table 325

6, we find that (i) no estimation method gives a good CR for the CAC40 and DAX return series;

(ii) the p-value of LRcc based on the LQMLE or GNGQMLE1 method is always close to zero,

and hence the CR constructed from these two methods is not satisfactory; (iii) for the DJIA, HSI

or Nikkei225 return series, the CR based on the PQMLE or GNGQMLE3 method is satisfactory

in both directions, while the LPI based on the GQMLE method for the DJIA or HSI return series 330

and the UPI based on the GNGQMLE2 method for the DJIA return series are not satisfactory;

(iv) the PQMLE and GQMLE methods indicate that only the LPI is satisfactory for the FTSE

return series, and this can not be indicated by all of the GNGQMLE methods; (v) all PQMLE,

GQMLE, GNGQMLE2 and GNGQMLE3 methods indicate that only the LPI is satisfactory for

the NASDAQ and SP500 return series. Overall, we know that when the return series (e.g., FTSE) 335
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Table 6. The results of LRcc and out-of-sample CR with p̄ = 0.95 for eight major stock indexes.

yt n0 PQMLE GQMLE LQMLE GNGQMLE
1

GNGQMLE
2

GNGQMLE
3

CAC40 1515 UPI 8.0768 8.0768 50.927 49.202 16.416 12.642

(0.0176)† (0.0176) (0.0000) (0.0000) (0.0003) (0.0018)

[0.9340]† [0.9340] [0.9842] [0.9069] [0.9261] [0.9294]

LPI 7.6045 7.7520 69.471 29.858 9.2859 8.6532

(0.0223) (0.0207) (0.0000) (0.0000) (0.0096) (0.0132)

[0.9518] [0.9512] [0.9888] [0.9248] [0.9472] [0.9485]

DAX 1517 UPI 6.8871 8.7585 48.851 38.780 13.213 12.406

(0.0320) (0.0125) (0.0000) (0.0000) (0.0014) (0.0020)

[0.9394] [0.9374] [98.35] [0.9117] [0.9334] [0.9341]

LPI 7.6019 7.9221 53.464 35.564 11.840 8.6351

(0.0223) (0.0190) (0.0000) (0.0000) (0.0027) (0.0133)

[0.9519] [0.9506] [98.48] [0.9196] [0.9433] [0.9486]

DJIA 1487 UPI 5.9593 4.3344 30.276 33.411 8.5153 5.9593

(0.0508) (0.1145) (0.0000) (0.0000) (0.0142) (0.0508)

[93.81] [0.9401] [0.9771] [0.9153] [0.9354] [0.9381]

LPI 2.9401 7.2116 61.514 34.740 3.4362 2.7723

(0.2299) (0.0272) (0.0000) (0.0000) (0.1794) (0.2500)

[0.9509] [0.9549] [0.9872] [0.9159] [0.9489] [0.9523]

FTSE 1493 UPI 8.3814 8.3814 44.653 55.661 17.443 12.717

(0.0151) (0.0151) (0.0000) (0.0000) (0.0002) (0.0017)

[0.9330] [0.9330] [0.9826] [0.9029] [0.9257] [0.9297]

LPI 5.1764 5.1764 73.956 38.891 13.370 8.5952

(0.0752) (0.0752) (0.0000) (0.0000) (0.0012) (0.0136)

[0.9451] [0.9451] [0.9900] [0.9149] [0.9357] [0.9404]

HSI 1490 UPI 0.1211 3.1785 38.049 20.341 1.6155 0.1405

(0.9412) (0.2041) (0.0000) (0.0000) (0.4459) (0.9322)

[0.9497] [0.9443] [0.9805] [0.9228] [0.6067] [0.9490]

LPI 1.7182 7.6223 56.443 13.132 0.9994 1.1968

(0.4235) (0.0221) (0.0000) (0.0014) (0.6067) (0.5497)

[0.9564] [0.9577] [0.9859] [0.9302] [0.9517] [0.9544]

NASDAQ 1489 UPI 11.414 11.931 35.262 39.303 18.612 14.280

(0.0033) (0.0026) (0.0000) (0.0000) (0.0001) (0.0008)

[0.9436] [0.9429] [0.9792] [0.9174] [0.9362] [0.9402]

LPI 4.3780 4.3780 84.023 36.208 3.6488 2.9362

(0.1120) (0.1120) (0.0000) (0.0000) (0.1613) (0.2304)

[0.9597] [0.9597] [0.9919] [0.9174] [0.9483] [0.9510]

Nikkei225 1449 UPI 2.5124 1.9710 51.682 51.522 5.2710 3.1463

(0.2847) (0.3733) (0.0000) (0.0000) (0.0717) (0.2074)

[0.9413] [0.9420] [0.9841] [0.9041] [0.9365] [0.9400]

LPI 0.9494 1.6835 84.317 25.206 0.2882 0.1576

(0.6221) (0.4309) (0.0000) (0.0000) (0.8658) (0.9242)

[0.9531] [0.9565] [0.9924] [0.9199] [0.9476] [0.9503]

SP500 1489 UPI 9.0196 7.7084 26.079 38.624 12.337 8.4437

(0.0110) (0.0212) (0.0000) (0.0000) (0.0021) (0.0147)

[0.9369] [0.9382] [0.9752] [0.9140] [0.9308] [0.9355]

LPI 1.3253 0.9940 73.623 32.532 1.5354 0.2525

(0.5155) (0.6084) (0.0000) (0.0000) (0.4641) (0.8814)

[0.9550] [0.9523] [0.9899] [0.9181] [0.9449] [0.9503]

† The p-values of LRcc are in open brackets, and the values of CR are in square brackets.
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has a large value of m, the PQMLE method like the GQMLE method is applicable to give us

a good prediction in the light tail case, while when the return series (e.g., DJIA and HSI) has a

small value ofm, the PQMLE method, like the GNGQMLE3 method, can give us a more efficient

PI than others in the heavy tail case. Finally, it is worth to highlight that unlike the GNGQMLE

methods, the performance of PQMLE neither relies on the selection of the auxiliary likelihood 340

function nor becomes worse in the light tail case. This robustness of the PQMLE in constructing

the PI may be because of the ability of the PQMLE to take into account both leptokurtosis and

asymmetry.

4·2. Application to exchange rates

In this subsection, we apply the PQMLE estimation method to four exchange rates. For each 345

exchange rate series, the period of the data we considered is listed under the second column

of Table 7. Since the log-return (×100) of each exchange rates exhibits some correlations in

its conditional mean, it is first fitted by an ARMA(2,2) model with the weighted LAD estima-

tion method in Zhu and Ling (2013). Consequently, we denote the residuals from each fitted

ARMA(2,2) model by yt. Table 7 gives the summary statistics for each yt, from which we find 350

that each yt is skewed and has a heavier tail than the N(0, 1) distribution. Hence, as in Sub-

section 4.1, we use a GARCH(1,1) model with the PQMLE, GQMLE, LQMLE, GNGQMLE

estimation methods to fit each yt. All of estimation results are summarized in Table 8, and all

Table 7. Summary of four exchange rates

yt Time Period n mean standard deviation skewness kurtosis

HKD/USD Jan 24, 1996–Jan 08, 2004 2000 0.0000 0.0268 -4.3767 98.122

JPY/USD Jan 24, 1996–Oct 27, 2000 1200 -0.0127 0.8063 -0.7232 7.7563

SGD/USD Jan 23, 1996–Jan 13, 2000 1000 0.0000 0.5140 -1.0774 14.847

TWD/USD Jan 19, 1996–Jan 10, 2000 1000 0.0116 0.4504 1.4054 28.731

fitted models are adequate by looking at the the ACF and PACF plots (not depicted here) of the

squared and absolute residuals. From Table 8, we first find that the TWD/USD return series has 355

a very heavy tail because the value of m is smaller than 1.5, from which we may conclude that

the innovation has infinite variance, and hence only the PQMLE method is valid. Secondly, we

can see that except the JPY/USD return series, the values of m are all smaller than 2.5. So the

GQMLE method is only applicable to the JPY/USD return series, and its performance is worst

in all cases. Thirdly, we find that the PQMLE has the best fit among all estimation methods in 360
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each case. This advantage of PQMLE over LQMLE or GNGQMLE may be caused by including

the asymmetry effect in the likelihood.

Next, as in Subsection 4.1, we use the conditional coverage test LRcc to examine whether

each of the estimation methods can provide us a good interval forecast for its one-step-ahead

prediction. Table 9 reports all the results of LRcc and CR with p̄ = 0.95. From this table, we365

first find that for the HKD/USD and TWD/USD return series, only the PQMLE method gives

us a satisfactory CR in both directions. Secondly, for the JPY/USD return series, the CRs based

on all of PQMLE, GNGQMLE2 and GNGQMLE3 methods are satisfactory, while the GQMLE

method can only provide us a satisfactory UPI. Thirdly, for the SGD/USD return series, the CRs

obtained from all of PQMLE, GNGQMLE1 and GNGQMLE2 methods are satisfactory, while370

the GQMLE or GNGQMLE3 method is only applicable to provide a satisfactory UPI. Fourth,

it is interesting to see that the p-values of LRcc based on the LQMLE method are always close

to zeros, and hence the CR constructed from this method is not satisfactory. Fifth, the CRs of

the PQMLE are always within one percent from the 95% value, while this is not the case in

other methods. Overall, compared with other methods, the performance of PI constructed from375

the PQMLE method is often satisfactory, and it is not affected by the selection of the auxiliary

likelihood function. This advantage of PQMLE becomes more significant when the return series

has a smaller value of m.

5. CONCLUDING REMARKS

In this paper, we propose a PQMLE for GARCH models. Under strict stationarity and some380

weak moment conditions, the strong consistency and asymptotical normality of the PQMLE are

obtained. Meanwhile, the PQMLE can apply to other conditionally heteroskedastic models with

no further efforts. Unlike the existing QMLE estimators, the PQMLE is the first QMLE in the

literature to take into account both leptokurtosis and asymmetry of the innovation, which are two

well-known co-existing features in financial and economic data sets. Simulation study demon-385

strates that the PQMLE can achieve better efficiency than other estimators, especially when εt is

heavy-tailed and skewed. Two applications to stock indexes and exchange rates further highlight

the importance of the PQMLE method. Specifically, the PQMLE method often gives us the best

in-sample fit and out-of-sample prediction. This advantage of the PQMLE exists in the both light
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Table 8. Summary of all estimations for four exchange rates

yt PQMLE GQMLE LQMLE GNGQMLE
1

GNGQMLE
2

GNGQMLE
3

HKD/USD ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000)† (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

α 0.4529 0.2464 0.2718 1.2262 1.0586 0.9734

(0.0431) (0.2333) (0.0544) (0.0000) (0.0000) (0.0000)

β 0.6526 0.7837 0.6599 0.6795 0.6893 0.6975

(0.0190) (0.1265) (0.0398) (0.1108) (0.1126) (0.1125)

ν -0.0248

m 1.6612

η̂k 0.6952 0.6004 0.5977

τ2 0.9956 0.9923 0.9956 1.3948 1.3786 1.3966

LLF 6525.1 5356.8 6389.7 6518.7 6469.4 6421.8

JPY/USD ω 0.0324 0.0236 0.0068 0.0116 0.0125 0.0131

(0.1615) (0.0098) (0.0027) (0.0021) (0.0023) (0.0025)

α 0.1615 0.0783 0.0340 0.0601 0.0602 0.0609

(0.0423) (0.0255) (0.0092) (0.0003) (0.0003) (0.0003)

β 0.9241 0.8853 0.9186 0.9238 0.9218 0.9199

(0.0177) (0.0337) (0.0199) (0.0174) (0.0186) (0.0195)

ν -0.0221

m 2.8458

η̂k 1.2109 0.9977 0.9639

τ2 0.9993 0.9993 0.9996 1.0054 1.0048 1.0045

LLF -1289.8 -1347.1 -1301.4 -1296.8 -1290.6 -1294.1

SGD/USD ω 0.0013 0.0003 0.0006 0.0017 0.0023 0.0027

(0.0007) (0.0008) (0.0002) (0.0005) (0.0006) (0.0007)

α 0.2310 0.0693 0.0449 0.2394 0.2474 0.2462

(0.0418) (0.0223) (0.0097) (0.0002) (0.0003) (0.0003)

β 0.8400 0.9263 0.9132 0.8157 0.8047 0.8013

(0.0238) (0.0208) (0.0163) (0.0341) (0.0376) (0.0397)

ν 0.0020

m 1.9731

η̂k 1.0717 0.8989 0.8786

τ2 1.0001 1.0192 1.0037 1.0492 1.0430 1.0365

LLF -322.5 -450.3 -332.5 -323.2 -333.4 -346.9

TWD/USD ω 0.0000 0.0001 0.0017 0.0002 0.0007 0.0008

(0.0000) (0.0005) (0.0001) (0.0001) (0.0003) (0.0004)

α 0.4274 1.0917 0.2539 1.1664 1.0186 0.9788

(0.0615) (0.6140) (0.0636) (0.0003) (0.0007) (0.0008)

β 0.5154 0.6908 0.6843 0.6797 0.6931 0.6958

(0.0302) (0.1067) (0.0482) (0.0736) (0.0821) (0.0848)

ν -0.0223

m 1.4076

η̂k 0.6887 0.6003 0.5996

τ2 0.9987 0.9975 0.9972 1.0011 0.9949 1.0044

LLF 294.9 -219.2 247.2 265.2 225.6 193.8

† The standard deviations are in parentheses.



28 K. ZHU AND W. K. LI

Table 9. The results of LRcc and out-of-sample CR with p̄ = 0.95 for four exchange rates series.

yt n0 PQMLE GQMLE LQMLE GNGQMLE
1

GNGQMLE
2

GNGQMLE
3

HKD/USD 2000 UPI 0.9936 3.0993 20.664 33.411 34.606 34.606

(0.6085)† (0.2123) (0.0000) (0.0000) (0.0000) (0.0000)

[95.25]† [0.9575] [0.9685] [0.9685] [0.9750] [0.9750]

LPI 3.9696 6.4482 55.627 49.185 63.514 65.891

(0.1374) (0.0398) (0.0000) (0.0000) (0.0000) (0.0000)

[0.9520] [0.9585] [0.9800] [0.9785] [0.9835] [0.9840]

JPY/USD 1200 UPI 0.6719 3.2874 47.840 13.029 0.6719 1.5956

(0.7146) (0.1933) (0.0000) (0.0015) (0.7146) (0.4503)

[0.9542] [0.9608] [0.9867] [0.9300] [0.9542] [0.9575]

LPI 1.9443 8.9148 47.840 7.2031 1.9443 2.7892

(0.3783) (0.0116) (0.0000) (0.0273) (0.3783) (0.2479)

[0.9583] [0.9675] [0.9867] [0.9325] [0.9583] [0.9600]

SGD/USD 1000 UPI 0.6240 1.1814 24.995 5.7269 0.2007 1.1814

(0.7320) (0.5539) (0.0000) (0.0571) (0.9045) (0.5539)

[0.9450] [0.9570] [0.9800] [0.9330] [0.9510] [0.9570]

LPI 1.4316 10.788 40.768 0.7966 2.6154 6.9537

(0.4888) (0.0045) (0.0000) (0.6715) (0.2704) (0.0309)

[0.9560] [0.9690] [0.9870] [0.9470] [0.9600] [0.9670]

TWD/USD 1000 UPI 1.1373 23.754 15.057 10.989 21.803 23.754

(0.5663) (0.0000) (0.0000) (0.0041) (0.0000) (0.0000)

[0.9550] [0.9780] [0.9730] [0.9700] [0.9770] [0.9780]

LPI 1.0623 21.660 13.516 14.773 19.437 23.386

(0.5879) (0.0000) (0.0012) (0.0006) (0.0001) (0.0000)

[0.9450] [0.9770] [0.9720] [0.9690] [0.9770] [0.9790]

† The p-values of LRcc are in open brackets, and the values of CR are in square brackets.

and heavy tail cases, and it becomes more significant when m becomes smaller. Meanwhile, our390

PQMLE method gives us a simple way to assess the heavy-tailedness and skewness of the in-

novation by looking at the values of m and ν. Moreover, compared to the GNGQMLE method,

the performance of the PQMLE method neither relies on the selection of the auxiliary likelihood

function nor becomes worse in the light tail case. All of these findings suggest that the PQMLE

estimation method should have a wide application in practice.395

ACKNOWLEDGEMENT

This work is supported by Research Grants Council of the Hong Kong SAR Government, GRF

grant HKU703711P, and National Natural Science Foundation of China (No.11201459).



A PQMLE for heteroskedastic models 29

APPENDIX: PROOF OF THEOREM 1

Recall that the first, second and third derivatives of g(y, s) with respective to s are g1(y, s), g2(y, s) 400

and g3(y, s), respectively. By a simple algebra, we can show that

g1(y, s) =
1

s
− 2my2s

1 + y2s2
− νy

1 + y2s2
,

g2(y, s) = − 1

s2
− 2my2

1 + y2s2
+

2y2s(2my2s+ νy)

[1 + y2s2]
2

,

g3(y, s) =
2

s3
+

12my4s+ 2νy3

[1 + y2s2]
2

− 16my6s3 + 8νy5s2

[1 + y2s2]
3

,

where s > 0. Next, it is straightforward to see that 405

|g1(y, s)| ≤
1

s
+

2m

s
+

|ν||y|
2s|y| =

1 + 2m+ |ν|/2
s

,

|g2(y, s)| ≤
1

s2
+

2m

s2
+

4ms2y4

y4s4
+

2s|ν||y|3

[1 + y2s2]
3/2

≤ 1 + 6m

s2
+

2s|ν||y|3
s3|y|3 =

1 + 6m+ 2|ν|
s2

,

|g3(y, s)| ≤
2

s3
+

12m

s3
+

2|ν||y|3

[1 + y2s2]
3/2

+
16m

s3
+

8|ν||y|5s2

[1 + y2s2]
5/2

≤ 2 + 28m

s3
+

2|ν||y|3
s3|y|3 +

8|ν||y|5s2
s5|y|5 =

2 + 28m+ 10|ν|
s3

. 410

Thirdly, for some κ0 ∈ (0, κ), by Assumption 3(iii) and Jansen’s inequality, we have

E| log f̄(εts)| = E|m log(1 + ε2t s
2) + ν tan−1(εts)|

≤ m

κ0
E log(1 + ε2t s

2)κ0 +
π

2
|ν|

≤ O(1) log[1 + E|εt|2κ0s2κ0 ] +O(1)

≤ O(1)(s2κ0 + 1). 415

Therefore, under Assumptions 1-5, we have verified all the conditions for Theorems 1.1-1.2 in Berkes and

Horváth (2004). Hence, the conclusions in Theorem 1 hold. This completes the proof.
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