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1 Introduction

Mechanization− the replacement by machines of humans (and animals) engaged in pro-
duction tasks− has proceeded continuously since the Industrial Revolution. This paper
examines interactions among long-run trends of mechanization, shifts of tasks humans per-
form, and earnings levels and inequality detailed below. Specifically, the paper develops
a Ricardian model of task assignment and analyzes how improvements of productivities of
machines and an increase in the relative supply of skilled workers affect task assignment
(which factor performs which task), earnings levels and inequality, and aggregate output.
The model succeeds in capturing the great majority of the long-run trends.

Facts. The long-run trends the paper focuses on are as follows.
Mechanization: During the Industrial Revolution, mechanization progressed in tasks

intensive in manual labor: in manufacturing (particularly, textile and metal working), ma-
chines and factory workers replaced artisans and farmers engaged in side jobs; in trans-
portation, railroads and steamboats supplanted wagons and sailboats; and in agriculture,
threshing machines and reapers reduced labor input.1 During the Second Industrial Revolu-
tion (from the second half of the 19th century to World War I), with the utilization of electric
power and internal combustion engines, mechanization proceeded further in manual tasks:
in manufacturing, broader sectors and production processes were mechanized with the in-
troduction of mass production system; a wider range of tasks were mechanized with tractors
in agriculture and with automobiles and trucks in transportation. Some analytical (cogni-
tive) tasks too were mechanized: tabulating machines substituted data-processing workers
at large organizations. In the post World War II era, especially since the 1970s, analytical
tasks in much wider areas have been mechanized because of the progress of IT technologies:
computers replaced clerical workers engaged in information processing tasks; sensors mech-
anized inspection processes in manufacturing and services; and simple troubleshooting tasks
were automated with the construction of databases of known troubles.2

Task shifts: As a result of mechanization, humans have shifted to tasks machines cannot
perform efficiently. The general trend until about the 1960s is the shift from manual tasks to
analytical tasks: initially, humans shifted from manual tasks at farms and cottages to manual
tasks at factories and analytical tasks at offices and factories (generally associated with
clerical, management, and technical jobs); after mechanization deepened in manufacturing,
they shifted from manual tasks at factories as well as at farms to analytical tasks (Katz
and Margo, 2013).3 Since the 1970s, they have shifted from routine analytical tasks (e.g.
simple information processing tasks performed by clerks) as well as manual tasks toward

1Works on the two revolutions by economic historians include Landes (2003) and Mokyr (1985, 1999).
2Case studies of effects of IT technologies on the workplace include Autor, Levy, and Murnane (2002) on

a commercial bank and Bartel, Ichniowski, and Shaw (2007) on a bulb manufacturing factory.
3Although it has been widely thought that technical change during the 19th century is unskill-biased,

Katz and Margo (2013) show that this is not the case for the U.S.: while the share of middle-skill workers
(artisans and agricultural operators) fell and shares of low-skill workers (unskilled workers and laborers)
and high-skill workers (white collar) rose in manufacturing, in the whole economy, shares of low-skill and
middle-skill workers fell and high-skill workers rose from 1850 to 1910. (The share of middle-skill workers
changed little if clerical/sales workers are classified as middle-skilled.) They also find that the same pattern
is observed for the whole economy from 1920 to 1980 and the declining share of low-skill workers is driven by
farm laborers until around 1950 and by unskilled workers and laborers (largely in manufacturing) thereafter.
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non-routine analytical tasks (mainly associated with professional and technical jobs) and
non-routine manual tasks in services (e.g. personal care and protective service) owing to the
growth of IT technologies (Autor, Levy, and Murnane, 2003; Acemoglu and Autor, 2011).4,5

Since the 1990s, due to the large shift from routine analytical tasks, the growth of middle-
wage jobs has been weak relative to both low-wage and high-wage jobs, i.e. job polarization
has been observed (Autor, Katz, and Kearney, 2006; Goos, Manning, and Salomons, 2010).

Earnings levels and inequality: Mechanization has affected relative demands for workers
of different skill levels and thus earnings levels and inequality. In the early stage of indus-
trialization, earnings of unskilled workers grew very moderately and the inequality between
skilled and unskilled workers enlarged (Feinstein, 1998; Katz and Margo, 2013).6 In later
periods, unskilled workers have benefited more from mechanization, while, as before, the
rising inequality has been the norm in economies with lightly regulated labor markets, ex-
cept in periods of rapid growth of the relative supply of skilled workers and in the 1940s,
when the inequality fell (Goldin and Katz, 1998, 2008).7 Since the 1990s, associated with
job polarization, wage polarization (the slower wage growth of middle-wage jobs relative to
low-wage and high-wage jobs) has occurred in the U.S., although the evidence for Europe is
mixed (Autor, Katz, and Kearney, 2006; Massari, Naticchioni, and Ragusa, 2012).8

The model. The model economy is a static small-open competitive economy where
three kinds of factors of production− skilled workers, unskilled workers, and machines−
are available. Each factor is characterized by analytical ability and manual ability. Skilled
workers have a higher level of analytical ability than unskilled workers, while both types
of workers have the same level of manual ability, reflecting the fact that there is no strong
correlation between the two abilities, except in poorest countries.

The final good is produced from inputs of a continuum of tasks that are different in
the importance of analytical ability, a, and the ease of codification (routinization), c, using
a Leontief technology.9 In the real economy, low a and high c tasks are those involving

4Similarly to Autor, Levy, and Murnane (2003), routine tasks refer to tasks whose procedures are orga-
nized so that they can be performed by machines after relevant technologies are developed.

5Autor, Levy, and Murnane (2003) examine changes in the composition of tasks performed by humans in
the U.S. from 1960 to 1998 and find that the growth of IT technologies is important in explaining the changes
after the 1970s. Acemoglu and Autor (2011) explore changes in occupational composition for 1959−2007.

6Feinstein (1998) finds that real wages and the standard of living of British manual workers improved
very moderately from the 1770s to the 1850s (stagnated until the 1830s), suggesting that the disparity with
skilled workers rose greatly. For the U.S. economy, Katz and Margo (2013) find a secular rise in the wage
premium for white collar workers for 1820−80.

7Goldin and Katz (1998), using data for 1909−40, show that the introduction of mass production methods
raised the relative demand for skilled workers in U.S. manufacturing. Goldin and Katz (2008) document
that, after plummeting in the 1940s, the return to college education in the U.S. kept rising except in the
1970s when the relative supply of college graduates grew rapidly. As for the return to high school education,
which is a good measure of inequality between skilled and unskilled workers until the 1940s (judging from a
low elasticity of substitution between high school graduates and dropouts), it fell greatly from 1914 to 1939,
when high school enrollment rates rose dramatically (from 20% to over 70%) and in the 1940s.

8While Autor, Katz, and Kearney (2006) find the evidence of wage polarization for the U.S. from 1988 to
2004, for Europe, Massari, Naticchioni, and Ragusa (2012) find no evidence of unconditional polarization,
weak evidence of conditional polarization (conditional on technology variables) in individual-level data for
1996−2007, and no evidence in industry-level data for 1980−2005.

9In this paper, the term codify/routinize means ”organize procedures of tasks systematically so that tasks
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repetitive motions such as assembling or sorting objects and typical in production jobs; low
a and low c tasks are those entailing non-repetitive motions such as driving vehicles and
caring for the elderly and usual in low-wage service jobs; high a and high c tasks entail
simple information processing such as calculation and recording information and are typical
in clerical jobs; and high a and low c tasks involve complex analysis and judgement mainly
associated with management, professional, and technical jobs.

The three factors are perfectly substitutable at each task. Both abilities contribute to
production at each task (except the most manual and the most analytical tasks), but the
relative contribution of analytical ability is higher in tasks of the greater importance of the
ability. Given the ability’s importance, machines are more productive in tasks of the greater
ease of codification, while workers’ productivities do not depend on the ease of codification.

A competitive equilibrium determines task assignment, factor prices, task prices, and out-
put etc. Comparative advantages of factors determine task assignment: unskilled (skilled)
workers are assigned to relatively manual (analytical) tasks and machines are assigned to
tasks that are easier to codify. Among tasks a given factor is employed, it is employed
heavily in tasks in which its productivities are low.

Main results. Based on the model, the paper examines how task assignment, earnings,
earnings inequality, and output change over time, when analytical and manual abilities of
machines and the relative supply of skilled workers grow exogenously over time.

Section 4 analyzes a simpler case in which the two abilities grow proportionately and
machines have comparative advantages in relatively manual tasks. The analysis shows that
tasks and workers strongly affected by mechanization and effects of the productivity growth
on earnings and the inequality change over time. Mechanization starts from tasks that
are highly manual and easy to routinize, and gradually spreads to tasks that are more
analytical and difficult to routinize. Eventually, mechanization proceeds in highly analytical
tasks previously performed by skilled workers too. Accordingly, unskilled workers shift to
tasks that are more difficult to codify, so do skilled workers in later stages of mechanization,
and both types shift to more analytical tasks except at the final stage. Skilled workers always
benefit from the productivity growth, whereas the effect on earnings of unskilled workers is
ambiguous while mechanization mainly affects them and the effect turns positive afterwards.
Earnings inequality rises except at the final stage, where it does not change. The output
of the final good always increases. In contrast, an increase in the relative supply of skilled
workers raises (lowers) earnings of unskilled (skilled) workers and lowers the inequality,
countervailing the inequality-enhancing effect of productivity growth (it also raises output).

The results are consistent with the long-run trends of task shifts, earnings, and the
inequality described earlier, except job polarization after the 1990s and the development
of earnings and the inequality after the 1980s and in the wartime 1940s. However, the
assumption that the two abilities grow proportionately, which makes the analysis simple, is
rather restrictive, considering that the growth of manual ability was faster than analytical
ability most of the time, while analytical ability seems to have been growing faster recently.

Hence, Section 5 analyzes the general case in which the two abilities may grow at different
rates. Under realistic productivity growth, the model does much better jobs in explaining
the development after the 1980s than under the special case (it is still inconsistent with the

can be performed by machines after relevant technologies are developed”.
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development in the 1940s). In particular, the model predicts that skilled workers shift from
non-routine analytical tasks to manual tasks when the growth of analytical ability is fast,
consistent with the development after around the year 2000 in the U.S. (Beaudry, Green, and
Sand, 2013).10 Although the job and wage polarization is beyond the scope of the model
with two types of workers, the falling inequality predicted by the model captures a part
of the development, the falling inequality between low-skill and middle-skill workers (most
recently, mildly high-skill workers too) observed at least in the U.S.. Finally, the model is
used to examine possible future trends of the variables when IT technologies and thus the
analytical ability of machines continue to grow rapidly.

Related literature. The paper belongs to the literature on task (job) assignment
model, which has been developed to analyze the distribution of earnings in labor economics
(see Sattinger, 1993, for a review), and recently is used to examine broad issues, such
as effects of technology on the labor market (Acemoglu and Autor, 2011), on cross-country
productivity differences (Acemoglu and Zilibotti, 2001), and on organizational structure and
wages (Garicano and Rossi-Hansberg, 2006), effects of international trade and offshoring on
the labor market (Grossman and Rossi-Hansberg, 2008, and Costinot and Vogel, 2010), and
inter-industry wage differentials and the effect of trade on wages (Sampson, 2011).

The most closely related is Acemoglu and Autor (2011), who argue that the conventional
non-assignment model cannot examine shifts in tasks workers with a given skill level perform
and fails to capture a large part of recent trends of task shifts, earnings, and earnings
inequality, particularly job and wage polarization and stagnant or negative earnings growth
of less-educated workers in the U.S.,11 and develop a task assignment model with three types
of workers (high-skill, middle-skill, low-skill), which is a generalization of the Acemoglu and
Zilibotti (2001) model with two types of workers. The final good is produced from inputs of
a continuum of tasks that are different in the degree of ’complexity’ using a Cobb-Douglas
technology. High (middle) skill workers have comparative advantages in more complex tasks
against middle (low) skill workers. After examining the model economy without capital, they
analyze the situation where a part of tasks initially performed by middle-skill workers come
to be mechanized exogenously, and show that a fraction of them shift to tasks previously
performed by the other types of workers and relative earnings of high-skill workers to middle-
skill workers rise and those of middle-skill workers to low-skill workers fall, reproducing job
and wage polarization.12

10Beaudry, Green, and Sand (2013) find that the employment growth of non-routine analytical jobs stalled
after around 2000, while the supply of high-skill workers continued to grow, suggesting a decrease in the
demand for such jobs. Further, they show that the average intensity of non-routine analytical tasks for
college graduates increased from the early 1980s until around 2000 but decreased thereafter.

11Limitations of the conventional model, in which workers with different skill levels are imperfect sub-
stitutes in a macro production function, pointed out by them and relevant to this paper are: (i) technical
change is factor-augmenting, thus it does not model mechanization through technical change, which is also
pointed out in the literature on growth models with mechanization reviewed below, (ii) the model cannot ex-
plain stagnant or negative earnings growth of particular groups in a growing economy, (iii) since all workers
with a given skill level have the same ’job’, shifts in jobs and tasks performed by particular groups cannot
be examined, (iv) systematic changes in the composition of employment by job (task) cannot be analyzed,
(v) typically, workers are two type and thus it cannot examine job and wage polarization.

12They also examine the situation where a part of tasks initially performed by middle-skill workers come
to be offshored exogenously. Further, they analyze the effect of changes in factor supplies on technical
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The present paper builds on their work, particularly in the modeling, but there are sev-
eral important differences. First, the paper is interested in the long-run trends of task shifts,
earnings, and earnings inequality since the Industrial Revolution, while they focus on the
recent development, especially job and wage polarization after the 1990s. Second, the paper
examines how tasks and workers strongly affected by mechanization and its effects on earn-
ings and the inequality change endogenously over time with improvements of manual and
analytical abilities of machines, whereas, because of their focus on job and wage polarization,
they assume that mechanization occurs at tasks previously performed by middle-skill work-
ers. Third, in order to examine the dynamics of mechanization, the present model assumes
that tasks are different in two dimensions, the importance of analytical ability and the ease
of codification (routinization), while, in their model, tasks are different in one dimension,
the degree of ’complexity’.

The paper is also related to the literature that examines the interaction between mech-
anization and economic growth, such as Zeira (1998, 2006), Givon (2006), and Peretto and
Seater (2013). The literature is mainly interested in whether persistent growth is possible
in models where economies grow through mechanization and whether the dynamics are con-
sistent with stylized facts on growth. While the standard model assumes labor-augmenting
technical change, which is labor-saving but not capital-using (thus does not capture mech-
anization), Givon (2006) and Peretto and Seater (2013) consider technical change that is
labor-saving and capital-using. By contrast, given technologies, Zeira (2006) examines in-
teractions among capital accumulation, changes in factor prices, and mechanization. His
model can be interpreted as a dynamic task assignment model after a slight modification
of the production technology. However, the model assumes homogenous labor and constant
productivity of machines and thus cannot examine the issue this paper focuses on.

Organization of the paper. The paper is organized as follows. Section 2 presents
the model and Section 3 derives equilibrium allocations, given machine abilities. Section
4 examines effects of improved machine abilities and increased relative supply of skilled
workers on task assignment, earnings levels and inequality, and aggregate output, when the
two abilities improve proportionately. Section 5 examines the general case in which the
abilities may improve at different rates, and Section 6 concludes. Appendix A presents
lemmas, and Appendix B contains proofs of lemmas and propositions, except Propositions
4−7 whose proofs are very lengthy and are posted on the author’s web site.13

2 Model

Consider a small open economy where three types of factors of production− skilled workers,
unskilled workers, and machines− are available. All markets are perfectly competitive.

Factors of production and Tasks: Each factor is characterized by analytical ability

and manual ability. Denote analytical abilities of a skilled worker, an unskilled worker,
and a machine by h, la, and ka, respectively, where h > la, and their manual abilities by
lm, lm, and km, respectively. Two types of workers have the same level of manual ability,

change using a version of the model with endogenous factor-augmenting technical change.
13The address is http://www.econ.kyoto-u.ac.jp/˜yuki/english.html.
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reflecting the fact that there is no strong correlation between the two abilities, except in
poorest countries. The final good is produced from inputs of a continuum of tasks that
are different in the importance of analytical ability, a ∈ [0, 1], and the ease of codification

(routinization), c ∈ [0, 1]. In the real economy, low a and high c tasks are those involving
repetitive motions such as assembling or sorting objects and typical in production jobs; low
a and low c tasks are those entailing non-repetitive motions such as driving vehicles and
caring for the elderly and usual in low-wage service jobs; high a and high c tasks entail
simple information processing such as calculation and recording information and are typical
in clerical jobs; and high a and low c tasks involve complex analysis and judgement mainly
associated with management, professional, and technical jobs.

Tasks are uniformly distributed over the (a, c) space and productivities of skilled workers,
unskilled worker, and machines in task (a, c) are given by:

Ah(a) = ah + (1 − a)lm, (1)

Al(a) = ala + (1 − a)lm, (2)

cAk(a) = c[aka + (1 − a)km]. (3)

Except the most manual tasks (a = 0) and the most analytical tasks (a = 1), both abilities
contribute to production in each task, but the relative contribution of analytical ability is
greater in tasks with higher a.14 For given a, machines are more productive in tasks with
higher c, while workers are assumed to be equally productive for any c. Since h > la, skilled
workers have comparative advantages in more analytical tasks relative to unskilled workers.

Production: At each task, the three factors are perfectly substitutable and thus the
production function of task (a, c) is expressed as:

y(a, c) = Ah(a)nh(a, c) + Al(a)nl(a, c) + cAk(a)nk(a, c), (4)

where ni(a, c) (i = h, l, k) is the measure of factor i engaged in the task. The output of the
task, y(a, c), may be interpreted as either an intermediate good or a direct input in final
good production, which is produced by either final good producers or separate entities.

The final good production function is Leontief with equal weights on all tasks, that is,
all tasks are equally essential in the production:

Y = min
a,c

{y(a, c)}. (5)

The Leontief specification is assumed for simplicity. Similar results would be obtained as
long as different types of tasks are complementary in the production, although more general
specifications seem to be analytically intractable.15

Factor markets: A unit of each factor supplies a unit of time inelastically. Let the
final good be a numeraire and let the relative price of (the output of) task (a, c) be p(a, c).
Then, from cost minimization problems of intermediate producers,

14One interpretation of the specification is that a task with certain a is composed of the proportion a of
analytical subtasks, where only analytical ability is useful, and the proportion 1−a of manual ones, and the
two types of subtasks requiring different abilities are perfectly substitutable in the production of the task.
(Due to indivisibility of subtasks and economies of scope, one needs to perform both types of subtasks.)

15The model with a Cobb-Douglas production function seems to be quite difficult to analyze. An advan-
tage of the Leontief specification over the Cobb-Douglas one is that, as shown below, the former yields a
realistic result that, among tasks a certain factor is employed, it is employed heavily in tasks in which their
productivities are low.
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p(a, c) = min

{

wh

Ah(a)
,

wl

Al(a)
,

r

cAk(a)

}

, (6)

where wh (wl) is earnings of a skilled (unskilled) worker and r is exogenous interest rate.
That is, producers choose a factor(s) so that a unit cost of task production becomes lowest.

From the equation, the basic pattern of task assignment can be derived (details are

explained later). Since Ah(a)
Al(a)

increases with a, there exists unique a∗ ∈ (0, 1) satisfying
Ah(a∗)
Al(a∗)

= wh

wl

and unskilled (skilled) workers are chosen over skilled (unskilled) workers for

a < (>)a∗. That is, unskilled (skilled) workers are assigned to relatively manual (analytical)
tasks. Of course, which factor is employed in a given task depends on the relative profitability
of workers to machines as well. For a < a∗, unskilled workers (machines) are assigned to

tasks (a, c) with Al(a)
cAk(a)

> (<)wl

r
, and for a > a∗, skilled workers (machines) are assigned

to tasks (a, c) with Ah(a)
cAk(a)

> (<)wh

r
. Comparative advantages of factors and relative factor

prices determine task assignment.
Task (intermediate) markets: Because each task (intermediate good) is equally es-

sential in final good production, y(a, c) = Y must hold for any (a, c). Thus, the following
is true for any (a, c) with nh(a, c) > 0, any (a′, c′) with nl(a

′, c′) > 0, and any (a′′, c′′) with
nk(a

′′, c′′) > 0, except for the set of measure 0 tasks in which multiple factors are employed:

Ah(a)nh(a, c) = Al(a
′)nl(a

′, c′) = c′′Ak(a
′′)nk(a

′′, c′′) = Y. (7)

Given the task assignment, factors are employed heavily in low productivity tasks.
Denote the measure of total supply of factor i (i = h, l, k) by Ni (Nk is endogenous).

Then, by substituting (7) into
∫∫

ni(a,c)>0
ni(a, c)dadc = Ni,

Nh
∫∫

nh(a,c)>0
1

Ah(a)
dadc

=
Nl

∫∫

nl(a,c)>0
1

Al(a)
dadc

=
Nk

∫∫

nk(a,c)>0
1

cAk(a)
dadc

= Y. (8)

The first equality of the equation is one of the two key equations, which states that task
assignment must be determined so that demands for two types of workers satisfy the equality.

Since the final good is a numeraire and a unit of the final good is produced from inputs
of a unit of every task,

∫∫

p(a, c)dadc = 1 (9)

⇔ wl

∫∫

nl(a,c)>0

1

Al(a)
dadc + wh

∫∫

nh(a,c)>0

1

Ah(a)
dadc + r

∫∫

nk(a,c)>0

1

cAk(a)
dadc = 1, (10)

where the second equation is from (6). (10) is the second key equation, which states that
task assignment is determined so that the unit production cost of the final good equals 1.

Equilibrium: A competitive equilibrium is defined by (6)−(8), (10), and the task assign-

ment conditions (Ah(a∗)
Al(a∗)

= wh

wl

, Al(a)
cAk(a)

= wl

r
, and Ah(a)

cAk(a)
= wh

r
). By using the task assignment

conditions, the first equality of (8) and (10) are expressed as equations of wh and wl. Once
the factor prices and thus task assignment are determined from these equations, Nk and Y
(= y(a, c)) are determined from the second and third equalities of (8), respectively; ni(a, c)
(i = h, l, k) is determined from (7); and p(a, c) is determined from (6).
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Figure 1: An example of task assignment when ka

km
< la

lm
and cm < c∗ < ca < 1

3 Analysis

This section derives task assignment and earnings explicitly, given machine abilities ka and
km. So far, no assumptions are imposed on comparative advantages of machines. Until
Section 5, it is assumed that ka

km
< la

lm
(< h

lm
), that is, machines have comparative advantages

in relatively manual tasks. Then, Al(a)
Ak(a)

and Ah(a)
Ak(a)

increase with a. With this assumption,
the task assignment conditions can be stated more explicitly.

3.1 Task assignment conditions

Remember that, for a < a∗, unskilled workers (machines) perform tasks (a, c) with Al(a)
cAk(a)

>

(<)wl

r
, and for a > a∗, skilled workers (machines) perform tasks (a, c) with Ah(a)

cAk(a)
> (<)wh

r
,

where a∗ is defined by Ah(a∗)
Al(a∗)

= wh

wl

. Further, since ka

km
< la

lm
(< h

lm
), humans (machines)

perform tasks with relatively high (low) a and low (high) c, and, for given c, machines
perform tasks with a > a∗ only if they perform all tasks with a ≤ a∗. Based on this pattern
of assignment, critical variables and functions determining task assignment, cm, c∗, ca, cl(a),
and ch(a), are defined next. (Figure 1 may be useful in understanding the following.)

Unskilled workers vs. machines: From the above discussion, whenever nk(a, c) > 0
for some (a, c), nk(0, 1) > 0, i.e. whenever machines are used, they perform the most manual

and easiest-to-codify task. Define cm as Al(0)
cmAk(0)

= lm
cmkm

= wl

r
, i.e. cm is the value of c such

that hiring a machine and hiring an unskilled worker are equally profitable at task (0, cm).16

(Under the assumption ka

km
< la

lm
, cm is the lowest c satisfying nk(a, c) > 0.) Then, other

(a, c)s satisfying Al(a)
cAk(a)

= wl

r
is given by Al(a)

cAk(a)
= lm

cmkm
. Let cl(a) ≡ km

lm

Al(a)
Ak(a)

cm. Given a, a

machine and an unskilled worker are equally profitable at c = cl(a) and the former (latter) is
hired for c > (<)cl(a). If there exists c < 1 such that they are equally profitable at a = a∗,

i.e. cl(a
∗) = km

lm

Al(a
∗)

Ak(a∗)
cm < 1, machines perform some tasks with a > a∗. If cl(a

∗) ≥ 1,

machines do not perform any tasks with a > a∗. Let c∗ ≡ min {cl(a
∗), 1} .

16When such cm ≤ 1 does not exist, cm is set to be equal 1.
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Skilled workers vs. machines: When c∗ < 1, the choice between a machine and a
skilled worker arises. Since Ah(a∗)

Al(a∗)
= wh

wl

, (a, c)s satisfying Ah(a)
cAk(a)

= wh

r
is given by Ah(a)

cAk(a)
=

lm
km

Ah(a∗)
Al(a∗)

1
cm

and let ch(a) ≡ km

lm

Al(a
∗)

Ah(a∗)
Ah(a)
Ak(a)

cm. Given a, hiring either factor is equally profitable

at c = ch(a). If c < 1 exists such that either choice is equally profitable at a = 1, i.e. ch(1) =
h
ka

km

lm

Al(a
∗)

Ah(a∗)
cm < 1, machines perform some tasks with a = 1. Let ca ≡ min {ch(1), 1} .

Figure 1 illustrates task assignment on the (a, c) space, assuming cm < c∗ < ca < 1.
Given a, machines perform tasks with higher c. From the assumption that machines have
comparative advantages at relatively manual tasks, for given c, they perform tasks with
lower a and the proportion of tasks performed by machines decreases with a, i.e. cl(a) and
ch(a) are upward sloping. These properties hold when cm < c∗ < ca < 1 is not true too.

3.2 Key equations determining equilibrium
From their definitions, cl(a), ch(a), c∗, and ca are functions of cm and a∗:

cl(a) =
km

lm

Al(a)

Ak(a)
cm, ch(a) =

km

lm

Al(a
∗)

Ah(a∗)

Ah(a)

Ak(a)
cm, (11)

c∗ ≡ min {cl(a
∗), 1} , ca ≡ min {ch(1), 1} . (12)

From the equations defining a∗ and cm, earnings too are functions of cm and a∗:

wl =
lm
km

r

cm

, wh =
lm
km

Ah(a
∗)

Al(a∗)

r

cm

. (13)

Hence, the two key equations determining equilibrium, the first equality of (8) and (10),
can be expressed as equations of cm and a∗ (refer to Figure 1 for the derivation):

Nh

Nl

∫ a∗

0

∫ min{cl(a),1}

0

1

Al(a)
dcda =

∫ 1

a∗

∫ min{ch(a),1}

0

1

Ah(a)
dcda, (HL)

lm
km

r

cm

∫ a∗

0

∫ min{cl(a),1}

0

dcda

Al(a)
+

lm
km

Ah(a
∗)

Al(a∗)

r

cm

∫ 1

a∗

∫ min{ch(a),1}

0

dcda

Ah(a)

+r

[
∫ a∗

0

∫ 1

min{cl(a),1}

dcda

cAk(a)
+

∫ 1

a∗

∫ 1

min{ch(a),1}

dadc

cAk(a)

]

= 1, (P)

Once a∗ and cm are determined from (HL) and (P), c∗, ca, cl(a), ch(a) and thus task
assignment are determined. en, earnings are determined from (13), and the remaining
variables are determined as stated in the definition of equilibrium.

The determination of equilibrium a∗and cm can be illustrated using a figure depicting
graphs of (HL) and (P) on the (a∗, cm) space. Since, as explained below, the shape of (HL)
differs depending on whether c∗ and ca equal 1 or not, using (11) and (12), the (a∗, cm) space
is divided into three regions based on values of c∗ and ca, as illustrated in Figure 2.

In the figure, when cm ≥ lm
km

Ak(a∗)
Al(a∗)

⇔ Al(a
∗)

1×Ak(a∗)
≥ lm

cmkm
= wl

r
, that is, when an unskilled

worker is weakly chosen over a machine at task (a, c)=(a∗, 1), machines are not used in any

tasks with a > a∗ and thus c∗ = ca = 1 holds. When cm ≥ lm
km

ka

h

Ah(a∗)
Al(a∗)

⇔ h
1×ka

≥ lm
cmkm

Ah(a∗)
Al(a∗)

=
wh

r
and cm < lm

km

Ak(a∗)
Al(a∗)

, that is, when a skilled worker is weakly chosen over a machine at task

(a, c)=(1, 1) and a machine is strictly chosen over an unskilled worker at task (a, c)=(a∗, 1),
machines are employed in some tasks with a > a∗ but not in tasks with a = 1 and c < 1,
thus c∗ < ca = 1 holds. Finally, when cm < lm

km

ka

h

Ah(a∗)
Al(a∗)

, machines are employed in some tasks
with a = 1 and c < 1 and thus c∗ < ca < 1 holds.
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Figure 2: Values of c∗ and ca on the (a∗, cm) space when ka

km
< la

lm

(a) Relation of (HL) with Nh

Nl
(b) Relation of (HL) with ka

km

Figure 3: Shape of (HL) and its relations with Nh

Nl

and ka

km

3.3 Shape of (HL) and its relations with exogenous variables

The shape of (HL) and its relations with exogenous variables, Nh

Nl

and ka

km
, are illustrated in

Figure 3, based on Lemmas 1−3 in Appendix A. Note that the shape and the relations do
not depend on the assumption ka

km
< la

lm
, except that the case c∗=ca =1 (the upper region in

the figure) does not arise when ka

km
≥ la

lm
and the case c∗ < ca = 1 (the middle region) does

not arise when ka

km
≥ h

lm
.
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Figure 4: Shape of (P) and its relations with km, ka, and r

The left figure shows that (HL) is negatively sloped when ca = 1 and is vertical when
ca <1 on the (a∗, cm) space. The shape can be explained intuitively as follows. A decrease in
cm lowers cl(a) and ch(a) from (11) and raises the proportion of tasks performed by machines
(see Figure 1). When ca = 1, i.e. machines do not perform any tasks with a = 1 and c< 1,
the mechanization mainly affects unskilled workers engaged in relatively manual tasks and
thus they shift to more analytical tasks, i.e. a∗ increases. By contrast, when ca < 1, both
types of workers are equally affected and thus a∗ remains unchanged.

The right figure illustrates the relations of (HL) with Nh

Nl

and ka

km
. An increase in Nh

Nl

implies that a higher portion of tasks must be engaged by skilled workers and thus (HL)
shifts to the left. Less straightforward is the effect of an increase in ka

km
, which shifts the

locus to the right (left) when cm is high (low), definitely so when c∗ = 1 (when ca < 1).
An increase in ka

km
weakens comparative advantages of humans in analytical tasks and thus

lowers, particularly for high a, cl(a), ch(a), and the portion of tasks performed by humans
(see Figure 1). When cm (thus c∗ and ca) is high, such mechanization mainly affects unskilled
workers and thus a∗ must increase, while the opposite is true when cm is low.

3.4 Shape of (P) and its relations with exogenous variables

Figure 4 illustrates the shape of (P) and its relations with exogenous variables, km ka, and r,
based on Lemma 4 in Appendix A. Remember that, for (P) to hold, task assignment must be
determined so that the unit production cost of the final good equals 1. When cm increases, a∗

must increase, that is, (P) is upward-sloping on the (a∗, cm) plane, because, otherwise, both

wl =
lm
km

r
cm

and wh = Ah(a∗)
Al(a∗)

wl fall and thus the unit production cost decreases. An increase
in r raises the cost of hiring machines and thus a higher portion of tasks are assigned to
humans, i.e. the locus shifts upward, while the opposite holds when abilities of machines, km

and ka, increase. The locus never intersects with cm = 0, because machines are completely
useless and thus hiring machines are prohibitively expensive at the hardest-to-codify tasks.

11



Figure 5: Determination of equilibrium a∗ and cm

As Figure 5 illustrates, equilibrium (a∗, cm) is determined at the intersection of the two
loci. Of course, the position of the intersection depends on exogenous variables such as km

and ka. The next two sections examine how increases in km, ka, and Nh

Nl

affect the equilibrium,
particularly, task assignment, earnings, earnings inequality, and aggregate output.

4 Mechanization with constant ka

km

Suppose that abilities of machines, km and ka, improve exogenously over time. This section
examines effects of such productivity growth and of an increase in Nh

Nl

on task assignment,

earnings levels and inequality, and output, when km and ka satisfying ka

km
< la

lm
grow propor-

tionately. Since (HL) does not shift under constant ka

km
(Figure 3 (a)), the analysis is much

simpler than the general case analyzed in the next section.
The next proposition presents the dynamics of the critical variables and functions deter-

mining task assignment of an economy undergoing the productivity growth.

Proposition 1 Suppose that km and ka satisfying ka

km
< la

lm
grow over time with ka

km
constant.

(i) When km is very low initially, cm = c∗ = ca = 1 is satisfied at first;17 at some point,

cm <c∗ = ca =1 holds and thereafter cm falls over time; then, cm <c∗ <ca =1 and c∗ too

falls; finally, cm <c∗<ca <1 and ca falls as well.

(ii) a∗ increases over time when cm < ca = 1, while a∗ is time-invariant when ca < 1 (and

when cm =1).

(iii) cl(a) and ch(a) (when c∗<1) decrease over time when cm <1.

The results of this proposition can be understood using figures similar to Figure 5. When
the level of km is very low, there are no (a∗, cm) satisfying (P), or (P) is located at the left

17As noted in footnote 16, the value of cm when all tasks are performed by humans is set to be equal 1.
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(a) Equilibrium (b) Task assignment

Figure 6: Equilibrium and task assignment when cm = c∗ = ca = 1

side of (HL) on the (a∗, cm) plane (see Figure 6 (a)). Hence, the two loci do not intersect and
an equilibrium with cm < 1 does not exist. Because the manual ability of machines is very
low, hiring machines is not profitable at all and thus all tasks are performed by humans.
Figure 6 (a) illustrates an example of the determination of equilibrium cm and a∗ in this
case. Equilibrium a∗ is determined at the intersection of (HL) with cm = 1. Figure 6 (b)
illustrates the corresponding task assignment on the (a, c) plane, which shows that unskilled
(skilled) workers perform all tasks with a< (>)a∗.

When km becomes high enough that (P) is located at the right side of (HL) at cm = 1,
the two loci intersect and thus machines begin to be used, i.e. cm < 1. Note that ka is not
important for the first step of mechanization, because mechanization starts from the most
manual tasks in which analytical ability is of no use. Because of low machine productivities,
they perform only highly manual and easy-to-codify tasks that were previously performed
by unskilled workers, i.e. c∗ = ca =1 holds. Indeed, large-scale mechanization originated in
tasks associated with simple repetitive motions in textile during the Industrial Revolution.
Figure 7 (a) and (b) respectively illustrate the determination of equilibrium cm and a∗ and
task assignment. Figure 7 (c) presents the effect of small increases in km and ka on the task
assignment. Since machines come to perform a greater portion of highly manual and easy-
to-codify tasks, a∗ increases and cl(a) decreases, that is, workers shift to more analytical
and, for unskilled workers, harder-to-routinize tasks. Consistent with the model, during
early stages of industrialization, humans shifted from manual tasks at farms and cottages
toward manual tasks at factories and analytical tasks at offices and factories (generally
associated with clerical, management, and technical jobs), and manual workers shifted to
tasks involving more complex motions machines were not good at.

As km and ka grow over time, mechanization spreads to relatively analytical tasks, and
eventually, machines come to perform highly analytical tasks, those previously performed

13



(a) Equilibrium (b) Task assignment (c) Effect of productivity growth
with constant ka

km

Figure 7: Equilibrium, task assignment, and the effect of productivity growth with constant
ka

km
when cm < c∗ = ca = 1

(a) Equilibrium (b) Task assignment (c) Effect of productivity growth
with constant ka

km

Figure 8: Equilibrium, task assignment, and the effect of productivity growth with constant
ka

km
when cm < c∗ < ca = 1
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(a) Equilibrium (b) Task assignment (c) Effect of productivity growth
with constant ka

km

Figure 9: Equilibrium, task assignment, and the effect of productivity growth with constant
ka

km
when cm < c∗ < ca < 1

by skilled workers. In the real economy, the new phase of mechanization started during
the Second Industrial Revolution − e.g. teleprinters replaced Morse code operators and
tabulating machines substituted data-processing workers at large organizations− and has
progressed on a large scale in the post World War II era, especially since the 1970s, because of
the growth of IT technologies. Figure 8 (a) and (b) respectively illustrate the determination
of equilibrium cm and a∗ and task assignment when cm <c∗<ca =1. Machines perform some
tasks with a > a∗ but not the most analytical ones, i.e. c∗ < ca = 1. Productivity growth
lowers ch(a) as well as cl(a) (and raises a∗), thus skilled workers too shift to more difficult-
to-codify tasks (Figure 8 (c)). Congruent with the model, since the 1970s, humans have
shifted from routine analytical tasks (such as simple information processing tasks typical in
clerical jobs) as well as manual tasks toward non-routine analytical tasks mainly associated
with professional and technical jobs and non-routine manual tasks in services.

Finally, the economy reaches the case cm < c∗ < ca < 1, which is illustrated in Figure
9. Machines perform a portion of the most analytical tasks, i.e. ca < 1. In fact, currently,
machines are engaged in some tasks involving analysis and decision-making, such as auto-
mated trading in financial markets. Unlike the previous cases, productivity growth affects
two type of workers equally and thus a∗ does not change, while ch(a) and cl(a) decrease and
thus workers shift to more difficult-to-codify tasks.

In sum, when the two abilities of machines with ka

km
< la

lm
improve proportionally over

time, mechanization starts from highly manual and easy-to-codify tasks and gradually
spreads to more analytical and harder-to-codify tasks. Eventually, machines come to per-
form highly analytical tasks previously performed by skilled workers. Accordingly, unskilled
workers shift to tasks that are more difficult to codify, so do skilled workers in later stages
of mechanization, and both types shift to more analytical tasks except at the final stage.
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The dynamics of task assignment accord with the long-run trends of mechanization and
of shifts in tasks performed by humans, except job polarization after the 1990s, which is
detailed in the introduction and is summarized as: initially, mechanization proceeded in tasks
intensive in manual labor, while mechanization of tasks intensive in analytical labor started
during the Second Industrial Revolution and has progressed on a large scale in the post World
War II era, especially since the 1970s, because of the growth of IT technologies; humans
shifted from manual tasks to analytical tasks until about the 1960s, whereas, thereafter,
they have shifted away from routine analytical tasks as well as routine manual tasks toward
non-routine analytical tasks and non-routine manual tasks in services.

Effects of the productivity growth on earnings levels and inequality, and aggregate output
are examined in the next proposition.

Proposition 2 Suppose that km and ka satisfying ka

km
< la

lm
grow proportionately over time

when cm <1.

(i) Earnings of skilled workers increase over time. When c∗ < ca < 1, earnings of unskilled

workers too increase.

(ii) Earnings inequality, wh

wl

, rises over time when ca =1 and is time-invariant when ca <1.

(iii) The output of the final good, Y, increases over time.

The proposition shows that, while skilled workers always benefit from mechanization,
the effect on earnings of unskilled workers is ambiguous when mechanization mainly affects
them, i.e. when ca = 1, and the effect turns positive when ca < 1. Mechanization worsens
earnings inequality, wh

wl

, when ca =1, while it has no effect when ca < 1. The output of the

final good always increases, even if la <h< lm and thus workers’ productivities, Ah(a) and
Al(a), fall as they shift to more analytical tasks.

So far, the proportion of skilled workers to unskilled workers, Nh

Nl

, is held constant, which
has increased over time in the actual economy. Thus, the next proposition examines effects
of the growth of Nh

Nl

under constant machine qualities.

Proposition 3 Suppose that Nh

Nl

grows over time when ka

km
< la

lm
and cm <1.

(i) cm, a∗, c∗ (when c∗<1), and cl(a) decrease, while ca (when ca <1) and ch(a) (when c∗<1)
increase over time.

(ii) wl (wh) rises (falls) and earnings inequality, wh

wl

, shrinks over time.

(iii) Y increases over time under constant Nh+Nl.

Figure 10 illustrates the effect of an increase in Nh

Nl

on task assignment. Since skilled
workers become abundant relative to unskilled workers, they take over a portion of tasks
previously performed by unskilled workers, i.e. a∗ decreases. Further, earnings of unskilled
workers rise and those of skilled workers fall, thus some tasks previously performed by
unskilled workers are mechanized, i.e. cl(a) decreases, while, when c∗ < 1, skilled workers
take over some tasks performed by machines before, i.e. ch(a) increases. That is, skilled
workers shift to more manual tasks, and unskilled workers shift to harder-to-routinize tasks.
The output of the final good increases even when the total population is constant, mainly
because skilled workers are more productive than unskilled workers at any tasks with a > 0.

By combining the results on effects of an increase in Nh

Nl

with those of the productivity
growth, the model can explain the long-run trends of earnings and earnings inequality until
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(a) when cm < c∗=ca =1 (b) when cm < c∗< ca =1 (c) when cm < c∗< ca < 1

Figure 10: Effect of an increase in Nh

Nl

on task assignment when ka

km
< la

lm

the 1970s (except the wartime 1940s) detailed in the introduction, which is: in early stages
of industrialization when mechanization directly affected unskilled workers and the relative
supply of skilled workers grew slowly, earnings of unskilled workers grew very moderately
and earnings inequality rose; in later periods when skilled workers too were directly affected
by mechanization and the relative supply of skilled workers grew faster, unskilled workers
benefited more from mechanization, while, as before, the rising inequality was the norm in
economies with lightly regulated labor markets (such as the U.S.), except in periods of a
rapid increase in the level of education and in the 1940s, when the inequality fell.18

The model, however, fails to capture the trends after the 1980s, which is: earnings
of unskilled workers stagnated and those of skilled workers rose until the mid 1990s in
the U.S.;19 the inequality rose greatly after the 1980s (after the 1990s in many European
economies, OECD, 2008); and wage polarization has proceeded since the 1990s at least in
the U.S. By contrast, the model predicts that earnings of unskilled workers increase and
the inequality shrinks when highly analytical tasks are affected by mechanization, i.e. when
ca <1, and the relative supply of skilled workers rises.

5 Mechanization with time-varying ka

km

The previous section has examined the case in which km and ka grow proportionately. This
special case has been taken up first for analytical simplicity. However, the assumption of the
proportionate growth is rather restrictive, because, according to the trend of mechanization

18Combined effects of an increase in Nh

Nl

and improvements of machine qualities on task assignment accord
with the trend of task shifts in the real economy when c∗ = 1. When c∗ < 1, they are consistent with the
fact, unless the negative effect of an increase in Nh

Nl

on ch(a) is very strong (see Figure 10).
19According to Acemoglu and Autor (2011), real wages of full-time male workers without college degrees

are lower in 1995 than in 1980, while wages of those with more than college education are higher. As for
female workers, real wages rose during the period except for high school dropouts, but the rise was moderate
for those without college degrees.
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(a) when ka

km
∈( la

lm
, h
lm

) (b) when ka

km
> h

lm
(> la

lm
)

Figure 11: c∗ and ca on the (a∗, cm) space when ka

km
∈( la

lm
, h
lm

) and when ka

km
> h

lm
(> la

lm
)

described in the introduction, the growth of km was apparently faster than that of ka in
most periods of time, while ka seems to have been growing faster than km recently.20

This section examines the general case in which they may grow at different rates. This
case is much more difficult to analyze because a change in ka

km
shifts the graph of (HL) as

well as that of (P) (see Figures 3 and 4). Under realistic productivity growth, the model
does much better jobs in explaining the development after the 1980s than in the constant
ka

km
case.
Unlike the previous case, shapes of graphs in Figures 1 and 2 may change qualitatively

with productivity growth. Starting from the situation where ka

km
< la

lm
(< h

lm
) holds, if ka keeps

growing faster than km, i.e. the rapid growth of IT technologies is long-lasting, ka

km
∈( la

lm
, h
lm

),

then ka

km
> h

lm
(> la

lm
) come to be satisfied. That is, comparative advantages of machines

to two type of workers change over time. As illustrated in Figure 11, when ka

km
∈ ( la

lm
, h
lm

),

c∗ < 1 holds, and when ka

km
> h

lm
(> la

lm
), ca < c∗ < 1 holds from c∗ = min

{

km

lm

Al(a
∗)

Ak(a∗)
cm,1

}

and

ca = min
{

h
ka

km

lm

Al(a
∗)

Ah(a∗)
cm,1

}

.

Figure 12 illustrates cl(a) and ch(a) and task assignment on the (a, c) space when ka

km
∈

( la
lm

, h
lm

) (the figure is drawn assuming ca < 1) and when ka

km
> h

lm
. Unlike the original case

ka

km
< la

lm
, cl(a) is downward sloping and, when ka

km
> h

lm
, ch(c) too is downward sloping. Hence,

when ka

km
∈( la

lm
, h
lm

), for given c, machines tend to perform tasks with intermediate a and the

proportion of tasks performed by machines is highest at a = a∗. When ka

km
> h

lm
, for given c,

machines tend to perform relatively analytical tasks and the proportion of tasks performed
by machines increases with a.

20Note that ka seems to have been positive even before the Industrial Revolution. Various machines had
automatic control systems whose major examples are: float valve regulators used in ancient Greece and in
the medieval Arab world to control the level of water in tanks and devices such as water clocks and oil
lamps; temperature regulators of furnaces invented in early 17th century Europe.
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(a) when ka

km
∈( la

lm
, h
lm

) (b) when ka

km
> h

lm

Figure 12: cl(a) and ch(a) when ka

km
∈( la

lm
, h
lm

) (ca <1 is assumed) and when ka

km
> h

lm

5.1 Effects of changes in km, ka, and Nh

Nl

Now, effects of changes in km and ka on task assignment, earnings levels and inequality, and
output are examined. Since results are different depending on the shape of (HL) (Figure
3), they are presented in three separate propositions.21,22 The next proposition analyzes the
case c∗=ca =1, which arises only when ka

km
< la

lm
.

Proposition 4 When cm≥ lm
km

Ak(a∗)
Al(a∗)

⇔ c∗=ca =1 (possible only when ka

km
< la

lm
),

(i) cm decreases and a∗ increases with km and ka (limcm→1
da∗

dkm
=limcm→1

da∗

dka
=0).

(ii) cl(a) decreases with km and ka.

(iii) wh,
wh

wl

, and Y increase with km and ka. wl increases with ka.

The only difference from the constant ka

km
case is that wl increases when ka rises with

km unchanged. As before, with improved machine qualities, cm and cl(a) decrease and a∗

increases, i.e. workers shift to more analytical and, for unskilled workers, harder-to-codify
tasks, and earnings of skilled workers, earnings inequality wh

wl

, and output rise.

The next proposition examines the case c∗<ca =1, which is possible only when ka

km
< h

lm
.

Proposition 5 When cm∈
[

lm
km

ka

h

Ah(a∗)
Al(a∗)

, lm
km

Ak(a∗)
Al(a∗)

)

⇔c∗<ca =1 (possible only when ka

km
< h

lm
),

(i) cm decreases with km and ka. a∗ increases when ka

km
non-increases.

(ii) cl(a) and ch(a) decrease with km and ka.

(iii) wh and Y increase with km and ka, while wl increases with ka.
wh

wl

increases when ka

km

non-increases.

21When ka

km

> la

lm
, cm = 1 is possible with c∗ or ca < 1. However, such situation −the most manual and

easy-to-codify task is not mechanized while some of other tasks are − is unrealistic and thus is not examined.
22As mentioned in the introduction, proofs of these propositions and Proposition 7 are very lengthy and

thus are posted on the author’s web site (http://www.econ.kyoto-u.ac.jp/˜yuki/english.html).
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(a) when ka

km
< la

lm
(< h

lm
) (b) when ka

km
∈( la

lm
, h

lm
) (c) when ka

km
> h

lm

Figure 13: Effect of productivity growth with increasing ka

km
when cm < c∗ < ca < 1

There are several differences from the constant ka

km
case. First, effects of productivity

growth with increasing ka

km
on a∗ and earnings inequality are ambiguous, and wl increases

with ka. Second, although cl(a) (thus cm) and ch(a) decrease and thus workers shift to
harder-to-routinize tasks as in the original case, workers may not shift to more analytical
tasks when a∗ decreases (possible only when ka

km
increases) and when ka

km
∈ ( la

lm
, h
lm

) (see

Figure 12 (a)). Remaining results are same as before, that is, when ka

km
non-increases, a∗

and earnings inequality increase; when ka

km
≤ la

lm
too holds, workers shift to more analytical

tasks; and earnings of skilled workers and output always increase.
Proposition 6 examines the case c∗, ca <1 (c∗<(>)ca when ka

km
<(>) h

lm
).

Proposition 6 When cm < lm
km

ka

h

Ah(a∗)
Al(a∗)

⇔ c∗, ca < 1,

(i) cm and ca decrease with km and ka, and a∗ decreases with ka

km
.

(ii) cl(a) and ch(a) decrease with km and ka.

(iii) wh and Y increase with km and ka, while wl increases when ka

km
non-decreases. wh

wl

decreases with ka

km
.

Unlike the constant ka

km
case, a∗ and thus wh

wl

decrease with ka

km
, and the effect on wl is am-

biguous when ka

km
decreases. As for task assignment, while cl(a) (thus cm) and ch(a) decrease

as in the original case (thus workers shift to harder-to-routinize tasks), tasks performed by
humans change in the skill dimension as well. In particular, when ka

km
rises (falls), that is,

when productivity growth is such that comparative advantages of machines to humans in
analytical (manual) tasks rise, unskilled workers shift to more manual (analytical) tasks
under ka

km
>(<) la

lm
, and skilled workers too shift to such tasks under ka

km
>(<) h

lm
.23 Figure 13

23When ka

km

rises (falls) under ka

km

< (>) la

lm
, unskilled workers shift to more manual (analytical) tasks at

low c. The same is true for skilled workers under ka

km

< (>) h

lm
. (See Figure 13.) Hence, at low c, workers

always shift to more manual (analytical) tasks when ka

km

rises (falls).
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(a) when ka

km
∈( la

lm
, h
lm

) and ca =1 (b) when ka

km
∈( la

lm
, h
lm

) and ca < 1 (c) when ka

km
> h

lm

Figure 14: Effect of an increase in Nh

Nl

when ka

km
∈( la

lm
, h
lm

) and when ka

km
> h

lm

illustrates the effect of productivity growth with increasing ka

km
on task assignment. Earnings

of skilled workers and output rise as before.
Finally, Proposition 7 examines effects of an increase in Nh

Nl

when ka

km
≥ la

lm
is allowed.

Proposition 7 Suppose that Nh

Nl

grows over time when cm <1.

(i) cm, a∗, and cl(a) decrease, while ca (when ca < 1) and ch(a) (when c∗ <1) increase over

time. c∗ (when c∗<1) falls (rises) when ka

km
≤ la

lm
( ka

km
≥ h

lm
).

(ii) wl (wh) rises (falls) and wh

wl

shrinks over time.

(iii) Y increases over time under constant Nh+Nl.

Figure 14 illustrates the effect of an increase in Nh

Nl

on task assignment when ka

km
∈( la

lm
, h

lm
)

and when ka

km
> h

lm
. (Note that c∗=ca =1 does not arise in these cases and c∗< ca =1 does not

arise when ka

km
> h

lm
.) As in the original case of ka

km
< la

lm
, skilled workers take over some tasks

previously performed by unskilled workers, i.e. a∗ decreases, and machines (skilled workers)
come to perform a portion of tasks performed by unskilled workers (machines) before, i.e.
cl(a) decreases (ch(a) increases). However, unlike before, cl(a) is downward-sloping on the
(a, c) plane, and, when ka

km
> h

lm
, ch(a) too is downward-sloping. Thus, unskilled workers

shift to harder-to-routinize and more manual tasks, and skilled workers shift to more manual
tasks only when ka

km
∈ ( la

lm
, h

lm
) (see the figure). As in the original case, earnings of unskilled

(skilled) workers rise (fall), earnings inequality shrinks, and output increases.

5.2 Contrasting the model with facts

Based on the propositions, it is examined whether the model with realistic productivity
growth can explain the long-run trends of task shifts, earnings, and earnings inequality in
the real economy. Two assumptions are imposed on comparative advantage of machines
against humans and the relative growth of the machines’ two abilities. First, it would
be plausible to suppose that ka

km
< la

lm
has continued to hold until now (thus cl(a) and
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ch(a) are downward-sloping on the (a, c) plane), since the proportion of tasks performed by
machines seems to have been and be higher in more manual tasks: consider the fact that
the vast majority of non-routine analytical tasks generally associated with management,
professional, and technical jobs and of non-routine ”middle a” tasks typical in occupations
such as mechanics and nurses are yet to be mechanized. Second, the history of mechanization
and task shifts described in the introduction suggests that km seems to have grown faster
than ka until sometime in the 1990s, after which the growth of ka appears to be faster
because of the growing application of IT technologies in many fields.24,25 (Note also that IT
technologies have contributed greatly to the growth of km too: industrial robots and CNC
[Computer Numerical Control] machines raised machines’ productivities to perform manual
and relatively non-routine tasks considerably.) Thus, suppose that ka

km
falls over time when

ca =1, while, when ca <1, ka

km
falls initially, then rises.

Now, the dynamics of earnings and earnings inequality are examined. Since the result
when c∗ = ca = 1 is almost the same as the constant ka

km
case, the model is consistent with

the actual trends in the early stage of mechanization. The model accords with the trends
in the intermediate stage as well (except a decline of the inequality in the wartime 1940s),
because the result when c∗ = ca < 1 and ka

km
falls is same as before. Further, unlike the

constant ka

km
case, the model is congruent with stagnant earnings of U.S. unskilled workers

in the 1980s and the early 1990s and the large inequality rise after the 1980s (after the
1990s in many European nations). This is because the effect of productivity growth with
decreasing ka

km
on their earnings is ambiguous and the effect on the inequality is positive when

c∗<ca <1, and the growth of Nh

Nl

, which contributes to raising their earnings and lowering the

inequality, greatly slowed down during the period. When ka

km
rises under c∗<ca <1, earnings

of unskilled workers too grow, which is consistent with the development in the late 1990s
and the early 2000s.26 Although the model with two types of workers cannot explain wage
polarization after the 1990s observed at least in the U.S., the falling inequality predicted
by the model captures a part of the development, the shrinking inequality between low-skill
and middle-skill workers (most recently, mildly high-skill workers too).

As for the dynamics of task shifts, the result under c∗=ca =1 is same as the constant ka

km

case, and so is the result under c∗<ca =1 when ka

km
< la

lm
and ka

km
falls: cl(a) and ch(a) decrease

and a∗ increase over time, unless Nh

Nl

grows rapidly. Hence, the dynamics accord with the
long-run trend until recently, i.e. workers shift to more analytical and harder-to-routinize
tasks over time. By contrast, when c∗ < ca < 1, while cl(a) and ch(a) decrease over time

24It is true that several components of the composite analytical ability ka, such as numerical ability, seems
to have been growing faster than the composite manual ability km for much longer periods. But remaining
components, such as analysis and decision-making abilities, seem to have grown slowly until recently.

25The supposed turning point would be not be far off the mark considering that a decrease in the em-
ployment share of production occupations, which are intensive in manual tasks, is greatest in the 1980s and
slowed down considerably after the 1990s, while a decrease in the share of clerical occupations intensive in
routine analytical tasks accelerated after the 1990s, according to Acemoglu and Autor (2011).

26According to Acemoglu and Autor (2011), real wages of full-time workers of all education groups ex-
hibited sound growth in the late 1990s and in the early 2000s in the U.S. Earnings growth of low education
groups are stronger for females, probably because a higher proportion of them are in growing service occu-
pations. After around the year 2004, however, earnings of all groups except male workers with post-college
education have stagnated.
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(unless Nh

Nl

grows rapidly) as before, unlike the constant ka

km
case, a∗ increases (decreases)

when ka

km
falls (rises). Hence, workers shift to more analytical and harder-to-routinize tasks

while ka

km
falls, whereas after ka

km
starts to rise, they shift to harder-to-codify tasks overall

and shift to more manual tasks at low c (footnote 23). This is consistent with the shift
from non-routine analytical tasks as well as routine tasks to non-routine manual tasks after
around the year 2000 in the U.S. (Beaudry, Green, and Sand, 2013; see footnote 10 in the
introduction for details).

In sum, unlike the proportionate growth case, the model with realistic productivity
growth is consistent with a large part of the development after the 1980s, including several
aspects of job and wage polarization after the 1990s.

If the rapid progress of IT technologies continues and ka

km
keeps rising, comparative ad-

vantages of machines to two type of workers could change over time, i.e. first, from ka

km
< la

lm

to ka

km
∈ ( la

lm
, h
lm

), then to ka

km
> h

lm
. The model predicts what will happen to task assignment,

earnings, and earnings inequality under such situations. As before, both types of workers
shift to tasks that are more difficult to routinize (unless Nh

Nl

rises greatly, which is very un-

likely). By contrast, unlike before, unskilled workers shift to more manual tasks (even at
high c), and, when ka

km
> h

lm
, skilled workers too shift to such tasks (see Figures 13 and 14).

That is, workers will shift to relatively manual and difficult-to-codify tasks: the recent shift
to low-wage service occupations such as personal care and protective service may continue
into the future. Earnings of unskilled workers as well as those of skilled workers will rise,
and earnings inequality will shrink over time. The analysis based on the model with two
types of workers may not capture the whole picture, considering the recent widening inequal-
ity between mildly and extremely high-skill workers. However, episodes such as declining
newspaper industry, burgeoning online education, and the increasing use of ”big data” in
marketing and other management decisions suggest that machines will replace a large num-
ber of tasks presently performed by highly skilled workers in the not-distant future and thus
possible effects on a great majority of the population may be captured by the present model.

6 Conclusion

Since the Industrial Revolution, mechanization has strongly affected types of tasks humans
perform, relative demands for workers of different skill levels, earnings levels and inequality,
and aggregate output. This paper has developed a Ricardian model of task assignment and
examined how improvements of qualities of machines and an increase in the relative supply
of skilled workers affect these variables. The analysis has shown that tasks and workers
strongly affected by the productivity growth and the effects on earnings and the inequality
change over time. The model is consistent with long-run trends of these variables in the
real economy, except a sharp decline of the inequality in the wartime 1940s and job and
wage polarization after the 1990s, which is beyond the scope of the model with two types of
workers, although the model does capture an important part of the latter development. The
model has also been employed to examine possible future trends of these variables when the
rapid growth of IT technologies continues.

Several extensions of the model would be fruitful. First, in order to understand the job
and wage polarization and future trends of the variables more accurately, the model with
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more than two type of workers, who differ in levels of analytical ability or ability to perform
non-routine tasks, could be developed. Second, empirical works find that international trade
and offshoring have important effects on earnings inequality,27 thus it may be interesting to
examine effects of these factors and productivity growth jointly.
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Appendix A: Lemmas

This appendix presents lemmas that examine the shape of (HL) and its relations with
exogenous variables illustrated in Figure 3 of Section 3, and a lemma examining the shape
of (P) and its relations with exogenous variables illustrated in Figure 4. The next lemma
presents the result when c∗, ca < 1 (c∗ < (>)ca when ka

km
< (>) h

lm
), the area below cm =

lm
km

ka

h

Ah(a∗)
Al(a∗)

of Figure 2. Note that no assumptions are imposed on magnitude relations
of analytical abilities to manual abilities, although presentations in the lemmas appear to
suppose h > lm, lm > la, and km > ka.
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Lemma 1 When cm < lm
km

ka

h

Ah(a∗)
Al(a∗)

⇔c∗, ca < 1, (HL) is expressed as

Nh

Nl

ln

(

km

Ak(a∗)

)

=
Al(a

∗)

Ah(a∗)
ln

(

Ak(a
∗)

ka

)

, when
ka

km

̸=1, (14)

Nh

Nl

a∗ =
Al(a

∗)

Ah(a∗)
(1−a∗), when

ka

km

=1. (15)

a∗ satisfying the equation decreases with Nh

Nl

and ka

km
.

Unlike the cases below, (HL) is independent of cm. a∗ satisfying the equation decreases
with Nh

Nl

and ka

km
. The next lemma presents the result when c∗ < ca = 1, the area below

cm = lm
km

Ak(a∗)
Al(a∗)

and on or above cm = lm
km

ka

h

Ah(a∗)
Al(a∗)

of Figure 2. This case arises only when
lm
km

Ak(a∗)
Al(a∗)

> lm
km

ka

h

Ah(a∗)
Al(a∗)

⇔ ka

km
< h

lm
.

Lemma 2 When cm∈
[

lm
km

ka

h

Ah(a∗)
Al(a∗)

, lm
km

Ak(a∗)
Al(a∗)

)

⇔ c∗ < ca = 1, which arises only when ka

km
< h

lm
,

(HL) is expressed as

when
ka

km

̸=1,
Nh

Nl

km

lm

cm

km−ka

ln

(

km

Ak(a∗)

)

=
1

h−lm
ln

[

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+(h−lm)cm

lm
km

Ah(a∗)
Al(a∗)

(hkm−lmka)
h

]

+
km

lm

Al(a
∗)

Ah(a∗)

cm

km−ka

ln

[

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+(h−lm)cm

(hkm−lmka)cm

Ak(a∗)

]

,

(16)

when
ka

km

=1,
Nh

Nl

cma∗

lm
=

1

h−lm

{

ln

[

h

lm

Al(a
∗)

Ah(a∗)
cm

]

−
Al(a

∗)

lm
cm+1

}

. (17)

a∗ satisfying the equation decreases with cm and Nh

Nl

( ∂a∗

∂cm
= 0 at cm = lm

km

ka

h

Ah(a∗)
Al(a∗)

), and

decreases (increases) with ka

km
for small (large) cm.

Unlike the previous case, a∗ satisfying (HL) decreases with cm (except at cm = lm
km

ka

h

Ah(a∗)
Al(a∗)

,

where ∂a∗

∂cm
= 0), and it increases with ka

km
when cm is large. Finally, the next lemma presents

the result when c∗=ca =1, the area on or above cm = lm
km

Ak(a∗)
Al(a∗)

of Figure 2. This case arises

only when lm
km

Ak(a∗)
Al(a∗)

< 1 ⇔ ka

km
< la

lm
.

Lemma 3 When cm ≥ lm
km

Ak(a∗)
Al(a∗)

⇔ c∗ = ca = 1, which arises only when ka

km
< la

lm
, (HL) is

expressed as

Nh

Nl

{

1

lm−la
ln

[

lakm−lmka

(km−ka)lm−(lm−la)kmcm

lm
Al(a∗)

]

+
kmcm

(km−ka)lm
ln

[

(km−ka)lm−(lm−la)kmcm

(lakm−lmka)cm

]}

=
1

h−lm
ln

(

h

Ah(a∗)

)

, when
ka

km

̸=1, (18)

Nh

Nl

1

la−lm

{

ln

[

cmAl(a
∗)

lm

]

+1−cm

}

=
1

h−lm
ln

(

h

Ah(a∗)

)

, when
ka

km

=1, (19)

where a∗ ∈ (0, 1) holds for any cm. a∗ satisfying the equation decreases with cm and Nh

Nl

, and

it increases with ka

km
(limcm→1

∂a∗

∂cm
=limcm→1

∂a∗

∂ ka

km

=0).
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a∗ satisfying (HL) decreases with cm as in the previous case, while it increases with ka

km

(limcm→1
∂a∗

∂cm
=limcm→1

∂a∗

∂ ka

km

=0, though).

Finally, the next lemma presents the shape of (P) and its relations with km, ka, and r.

Lemma 4 cm satisfying (P ), which is positive, increases with a∗ and r, and decreases with

km and ka.

7 Appendix B: Proofs of Lemmas and Propositions

Proof of Lemma 1. [Derivation of the LHS of the equation]: When cm < lm
km

ka

h

Ah(a∗)
Al(a∗)

and thus cm < lm
km

Ak(a∗)
Al(a∗)

⇔ c∗=cl(a
∗)<1, the LHS of (HL) equals Nh

Nl

times
∫ a∗

0

∫ cl(a)

0

1

Al(a)
dcda=

∫ a∗

0

cl(a)

Al(a)
da=

km

lm
cm

∫ a∗

0

da

Ak(a)
. (20)

Hence, when ka

km
̸=1, the LHS of (HL) equals

Nh

Nl

km

lm

cm

km−ka

ln

(

km

Ak(a∗)

)

. (21)

Applying l’Hôpital’s rule to the above equation, the LHS of (HL) when ka

km
=1 equals

−
Nh

Nl

1

lm

cm

lim ka

km
→1(1−

ka

km
)

lim
ka

km
→1

ln

(

a∗ ka

km

+1−a∗

)

=
Nh

Nl

cm

lm
lim

ka

km
→1

(

a∗

a∗ ka

km
+1−a∗

)

=
Nh

Nl

cma∗

lm
. (22)

[Derivation of the RHS of the equation]: When cm < lm
km

ka

h

Ah(a∗)
Al(a∗)

⇔ ca = ch(1)<1,

the RHS of (HL) is expressed as
∫ 1

a∗

∫ ch(a)

0

1

Ah(a)
dcda=

∫ 1

a∗

ch(a)

Ah(a)
da=

km

lm

Al(a
∗)

Ah(a∗)
cm

∫ 1

a∗

da

Ak(a)
. (23)

Hence, when ka

km
̸=1, the RHS of (HL) equals

km

lm

Al(a
∗)

Ah(a∗)

cm

km−ka

ln

(

Ak(a
∗)

ka

)

. (24)

By applying l’Hôpital’s rule to the above equation, the LHS of (HL) when ka

km
=1 equals

Al(a
∗)

Ah(a∗)

1

lm

cm

lim ka

km
→1(1−

ka

km
)

lim
ka

km
→1

ln

[

a∗+(1−a∗)
km

ka

]

=−
Al(a

∗)

Ah(a∗)

cm

lm
lim

ka

km
→1

(

−(1−a∗)( ka

km
)−2

a∗+(1−a∗)km

ka

)

=
Al(a

∗)

Ah(a∗)

cm

lm
(1−a∗). (25)

[Relations of a∗ satisfying the equation with Nh

Nl

and ka

km
]: Clearly, a∗ satisfying

the equation decreases with Nh

Nl

. Noting that, from (21) and (24), (HL) when ka

km
̸=1 can be

expressed as
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km

lm

cm

km−ka

[

−
Nh

Nl

ln

(

a∗ ka

km

+1−a∗

)

−
Al(a

∗)

Ah(a∗)
ln

(

a∗+(1−a∗)
km

ka

)]

=0, (26)

the derivative of the above equation with respect to ka

km
equals

km

lm

cm

km−ka

(

−
Nh

Nl

a∗

a∗ ka

km
+1−a∗

−
Al(a

∗)

Ah(a∗)

−(1−a∗)( ka

km
)−2

a∗+(1−a∗)km

ka

)

=
km

lm

cm

km−ka

km

Ak(a∗)

[

−
Nh

Nl

a∗+
Al(a

∗)

Ah(a∗)
(1−a∗)

km

ka

]

, (27)

where the expression inside the large bracket can be rewritten as

−
Nh

Nl

a∗+
Al(a

∗)

Ah(a∗)
(1−a∗)

km

ka

=

[

ln

(

Ak(a
∗)

ka

)]−1
Nh

Nl

[

−a∗ln

(

a∗+(1−a∗)
km

ka

)

−(1−a∗)
km

ka

ln

(

a∗ ka

km

+1−a∗

)]

=

[

ln

(

Ak(a
∗)

ka

)]−1
Nh

Nl

km

ka

[

a∗ka

km

ln

(

ka

km

)

−

(

a∗ ka

km

+1−a∗

)

ln

(

a∗ ka

km

+1−a∗

)]

. (28)

The expression inside the large bracket of the above equation is positive, because the
expression equals 0 at ka

km
= 1 and its derivative with respect to ka

km
equals

a∗

[

ln

(

ka

km

)

−ln

(

a∗ ka

km

+1−a∗

)]

, (29)

which is negative (positive) for ka

km
< (>)1. Thus, noting that ln

(

Ak(a∗)
ka

)

> (<)0 for ka

km
< (>

)1, (27) is positive. The derivative of (26) with respect to a∗ is positive from ∂ Al(a
∗)

Ah(a∗)
/∂a∗ < 0.

Hence, a∗ satisfying (14) decreases with ka

km
when ka

km
̸=1. When ka

km
→ 1, (27) equals

lim
ka

km
→1

{

1

lm

cm

1− ka

km

1

a∗ ka

km
+1−a∗

[

−
Nh

Nl

a∗+
Al(a

∗)

Ah(a∗)
(1−a∗)

km

ka

]

}

= −
cm

lm
lim

ka

km
→1











−
(

a∗ ka

km
+1−a∗

)

Al(a
∗)

Ah(a∗)
(1−a∗)( ka

km
)−2 −

(

−Nh

Nl

a∗+ Al(a
∗)

Ah(a∗)
(1−a∗)km

ka

)

a∗

(

a∗ ka

km
+1−a∗

)2











=
cm

lm

Al(a
∗)

Ah(a∗)
(1−a∗) > 0. (30)

where (15) is used to derived the last equality. Hence, the same result holds when ka

km
= 1

as well.

Proof of Lemma 2. [Derivation of the equation]: Since c∗ < 1, the LHS of (HL)
equals (21) (when ka

km
̸=1) and (22) (when ka

km
=1) in the proof of Lemma 1.

The RHS of (HL) when ca = 1 ⇔ ch(1)≥1, c∗ < 1 ⇔ ch(a
∗)<1, and ka

km
̸=1 is expressed

as
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∫ c−1
h

(1)

a∗

∫ ch(a)

0

dcda

Ah(a)
+

∫ 1

c−1
h

(1)

∫ 1

0

dcda

Ah(a)
=
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da+
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c−1
h
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da
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Ah(a∗)
cm

∫ c−1
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(1)

a∗

da

Ak(a)
+

∫ 1

c−1
h

(1)

da

Ah(a)

=
km

lm

Al(a
∗)

Ah(a∗)

cm

km−ka

ln

(

Ak(a
∗)

Ak(c
−1
h (1))

)

+
1

h−lm
ln

(

h

Ah(c
−1
h (1))

)

,

(31)

where c−1
h (1), i.e. the value of a when ch(a) = 1, equals, from (1) and (3),

Ah(a)

Ak(a)
=

lm
km

Ah(a
∗)

Al(a∗)

1

cm

⇔ a(h−lm) + lm =
lm
km

Ah(a
∗)

Al(a∗)

1

cm

[−a(km−ka) + km]

⇔ a =
lm

(

Ah(a∗)
Al(a∗)

− cm

)

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+ (h−lm)cm

. (32)

Hence, from (31) and

Ak(c
−1
h (1))=

−lm

(

Ah(a∗)
Al(a∗)

−cm

)

(km−ka)+km

[

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+ (h−lm)cm

]

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+ (h−lm)cm

=
(hkm−lmka)cm

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+ (h−lm)cm

, (33)

Ah(c
−1
h (1))=

lm

(

Ah(a∗)
Al(a∗)

−cm

)

(h−lm)+lm

[

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+ (h−lm)cm

]

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+ (h−lm)cm

=

lm
km

Ah(a∗)
Al(a∗)

(hkm−lmka)

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+ (h−lm)cm

, (34)

the RHS of (HL) when ka

km
̸=1, equals

1

h−lm
ln

[

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+(h−lm)cm

lm
km

Ah(a∗)
Al(a∗)

(hkm−lmka)
h

]

+
km

lm

Al(a
∗)

Ah(a∗)

cm

km−ka

ln

[

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+(h−lm)cm

(hkm−lmka)cm

Ak(a∗)

]

.

(35)
By applying l’Hôpital’s rule to the above equation, the RHS when ka

km
=1 equals

1

h−lm
lim

ka

km
→1

ln

[

(1− ka

km
)lm

Ah(a∗)
Al(a∗)

+(h−lm)cm

lm
Ah(a∗)
Al(a∗)

(h−lm
ka

km
)

h

]

+

1
lm

Al(a
∗)

Ah(a∗)
cm

lim ka

km
→1(1−

ka

km
)

lim
ka

km
→1

ln







(1− ka

km
)lm

Ah(a∗)
Al(a∗)

+(h−lm)cm

(h−lm
ka

km
)cm

a∗ ka

km
+(1−a∗)







=
1

h−lm
ln

[

h

lm

Al(a
∗)

Ah(a∗)
cm

]

−
1

lm

Al(a
∗)

Ah(a∗)
cm lim

ka

km
→1

[

a∗

a∗ ka

km
+(1−a∗)

+
lm

h−lm
ka

km

−
lm

Ah(a∗)
Al(a∗)

(1− ka

km
)lm

Ah(a∗)
Al(a∗)

+(h−lm)cm

]
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=
1

h−lm
ln

[

h

lm

Al(a
∗)

Ah(a∗)
cm

]

−
1

lm

Al(a
∗)

Ah(a∗)
cm

[

Ah(a
∗)

h−lm
−

lm
Ah(a∗)
Al(a∗)

(h−lm)cm

]

=
1

h−lm

{

ln

[

h

lm

Al(a
∗)

Ah(a∗)
cm

]

−
Al(a

∗)

lm
cm+1

}

. (36)

[Relations of a∗ satisfying the equation with Nh

Nl

and cm]: When ka

km
̸= 1, the

derivative of the LHS−RHS of (16) with respect to a∗ equals

Nh

Nl

km

lm
cm

1
Ak(a∗)

+ 1
h−lm

[

1
Ah(a∗)

Al(a
∗)

−
(km−ka)

lm

km

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

]

∂
Ah(a∗)

Al(a
∗)

∂a∗
+ km

lm
cm

Al(a
∗)

Ah(a∗)
1

Ak(a∗)

−
cm

Al(a
∗)

Ah(a∗)

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

∂
Ah(a∗)

Al(a
∗)

∂a∗
− km

lm

cm

km−ka

∂
Al(a

∗)

Ah(a∗)

∂a∗
ln

[

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

(hkm−lmka)cm

Ak(a∗)

]

= cm









Nh

Nl

km

lm

1
Ak(a∗)

+
Al(a

∗)

Ah(a∗)

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

∂
Ah(a∗)

Al(a
∗)

∂a∗
+ km

lm

Al(a
∗)

Ah(a∗)
1

Ak(a∗)

−
Al(a

∗)

Ah(a∗)

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

∂
Ah(a∗)

Al(a
∗)

∂a∗
− km

lm

1
km−ka

∂
Al(a

∗)

Ah(a∗)

∂a∗
ln

[

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

(hkm−lmka)cm

Ak(a∗)

]









=
km

lm

cm

km−ka







(

Nh

Nl

+
Al(a

∗)

Ah(a∗)

)

km−ka

Ak(a∗)
−

∂ Al(a
∗)

Ah(a∗)

∂a∗
ln



1+
(km−ka)

Ah(a∗)
Ak(a∗)

[

lm
km

Ak(a∗)
Al(a∗)

−cm

]

(hkm−lmka)cm

Ak(a∗)











> 0, (37)

where the last equality is derived by using

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+(h−lm)cm

(hkm−lmka)cm

Ak(a∗)

=
(km−ka)

lm
km

Ah(a∗)
Al(a∗)

+(h−lm)cm− (hkm−lmka)cm

Ak(a∗)
+ (hkm−lmka)cm

Ak(a∗)

(hkm−lmka)cm

Ak(a∗)

= 1+
(km−ka)

Ah(a∗)
Ak(a∗)

[

lm
km

Ak(a∗)
Al(a∗)

−cm

]

(hkm−lmka)cm

Ak(a∗)

>(<)1 when
ka

km

<(>)1 ( ∵ cm < lm
km

Ak(a∗)
Al(a∗)

). (38)

The derivative of the LHS-RHS of (16) with respect to cm when ka

km
̸=1 equals

1

(h−lm)cm

ln

[

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

lm

km

Ah(a∗)

Al(a
∗)

(hkm−lmka)
h

]

−
1+ km

lm

cm

km−ka

Al(a
∗)

Ah(a∗)
(h−lm)

(km−ka)
lm
km

Ah(a∗)
Al(a∗)

+(h−lm)cm

+
km

lm

1

km−ka

Al(a
∗)

Ah(a∗)

=
1

(h−lm)cm

ln

[

1+
(h−lm)hkm

h

cm− lm

h

ka

km

Ah(a∗)

Al(a
∗)

i

lm
Ah(a∗)

Al(a
∗)

(hkm−lmka)

]

≥ 0 ( ∵ cm≥ lm
km

ka

h

Ah(a∗)
Al(a∗)

), (39)

where the last equality is derived by using

(km−ka)lm
Ah(a∗)

Al(a
∗)

+(h−lm)kmcm

lm
Ah(a∗)

Al(a
∗)

(hkm−lmka)
h =

h

(km−ka)lm
Ah(a∗)

Al(a
∗)

+(h−lm)kmcm

i

h−lm
Ah(a∗)

Al(a
∗)

(hkm−lmka)+lm
Ah(a∗)

Al(a
∗)

(hkm−lmka)

lm
Ah(a∗)

Al(a
∗)

(hkm−lmka)

= 1+
(h−lm)hkm

h

cm− lm

h

ka

km

Ah(a∗)

Al(a
∗)

i

lm
Ah(a∗)

Al(a
∗)

(hkm−lmka)
. (40)

Hence, when ka

km
̸= 1, a∗ satisfying (16) decreases with Nh

Nl

and cm ( ∂a∗

∂cm
= 0 at cm =

lm
km

ka

h

Ah(a∗)
Al(a∗)

).
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The corresponding derivatives when ka

km
→ 1 are

a∗ : lim
ka

km
→1

(

1

lm

cm

1− ka

km

{

(

Nh

Nl

+ Al(a
∗)

Ah(a∗)

)

1− ka

km

a∗ ka

km
+1−a∗

−
∂ Al(a

∗)
Ah(a∗)

∂a∗
ln

[

1+
(1− ka

km
)Ah(a∗)

h

(a∗ ka

km
+1−a∗) lm

Al(a
∗)
−cm

i

(h−lm
ka

km
)cm

]

})

= −
cm

lm
lim

ka

km
→1















(

Nh

Nl

+ Al(a
∗)

Ah(a∗)

)

−(a∗ ka

km
+1−a∗)−(1− ka

km
)(1−a∗)

(a∗ ka

km
+1−a∗)2

−
∂

Al(a
∗)

Ah(a∗)

∂a∗

[

1+
(1− ka

km
)Ah(a∗)

h

(a∗ ka

km
+1−a∗) lm

Al(a
∗)
−cm

i

(h−lm
ka

km
)cm

]−1

×
(h−lm

ka

km
)Ah(a∗)

h

−
“

(a∗ ka

km
+1−a∗) lm

Al(a
∗)
−cm

”

+(1− ka

km
)
(1−a

∗)lm
Al(a

∗)

i

+lm(1− ka

km
)Ah(a∗)

h

(a∗ ka

km
+1−a∗) lm

Al(a
∗)
−cm

i

(h−lm
ka

km
)2cm















=
cm

lm

{

(

Nh

Nl

+ Al(a
∗)

Ah(a∗)

)

−
∂ Al(a

∗)
Ah(a∗)

∂a∗

Ah(a∗)
“

lm

Al(a
∗)
−cm

”

(h−lm)cm

}

> 0, (41)

cm :
1

(h−lm)cm

ln

[

1+
(h−lm)h

h

cm− lm

h

Ah(a∗)

Al(a
∗)

i

lm
Ah(a∗)

Al(a
∗)

(h−lm)

]

≥ 0. (42)

Therefore, the same results hold when ka

km
= 1 as well.

[Relations of a∗ satisfying the equation with ka

km
]: Since (16) can be expressed as

−
Nh

Nl

1

lm

cm

1− ka

km

ln

(

a∗ ka

km

+1−a∗

)

(43)

=
1

h−lm
ln

[

(1− ka

km
)lm

Ah(a∗)
Al(a∗)

+(h−lm)cm

lm
Ah(a∗)
Al(a∗)

(h−lm
ka

km
)

h

]

+
1

lm

cm

1− ka

km

Al(a
∗)

Ah(a∗)
ln

[

a∗ ka

km
+1−a∗

h−lm
ka

km

(1− ka

km
)lm

Ah(a∗)
Al(a∗)

+(h−lm)cm

cm

]

,

the derivative of the LHS−RHS of (16) with respect to ka

km
when ka

km
̸=1 equals

−Nh

Nl

1
lm

cm

1− ka

km

[

ln(a∗ ka

km
+1−a∗)

1− ka

km

+ a∗

a∗ ka

km
+1−a∗

]

− 1
lm

cm

(1− ka

km
)2

Al(a
∗)

Ah(a∗)
ln

[

a∗ ka

km
+1−a∗

h−lm
ka

km

(1− ka

km
)lm

Ah(a∗)

Al(a
∗)

+(h−lm)cm

cm

]

+ lm
h−lm

[

Ah(a∗)

Al(a
∗)

(1− ka

km
)lm

Ah(a∗)

Al(a
∗)

+(h−lm)cm

− 1

h−lm
ka

km

]

− 1
lm

cm

1− ka

km

Al(a
∗)

Ah(a∗)

[

a∗

a∗ ka

km
+1−a∗

+ lm

h−lm
ka

km

−
lm

Ah(a∗)

Al(a
∗)

(1− ka

km
)lm

Ah(a∗)

Al(a
∗)

+(h−lm)cm

]

= 1

(h−lm)(1− ka

km
)
ln

[

(1− ka

km
)lm

Ah(a∗)

Al(a
∗)

+(h−lm)cm

lm
Ah(a∗)

Al(a
∗)

(h−lm
ka

km
)

h

]

−Nh

Nl

1
lm

cm

1− ka

km

a∗

a∗ ka

km
+1−a∗

+
lm

“

Ah(a∗)

Al(a
∗)

−cm

”

(h−lm
ka

km
)
h

(1− ka

km
)lm

Ah(a∗)

Al(a
∗)

+(h−lm)cm

i

− 1
lm

cm

1− ka

km

Al(a
∗)

Ah(a∗)

[

a∗

a∗ ka

km
+1−a∗

−
lm(h−lm)

“

Ah(a∗)

Al(a
∗)

−cm

”

(h−lm
ka

km
)
h

(1− ka

km
)lm

Ah(a∗)

Al(a
∗)

+(h−lm)cm

i

]

= km

km−ka







−
[

Nh

Nl

+ Al(a
∗)

Ah(a∗)

]

km

lm

a∗

Ak(a∗)
cm+

km

„

1−cm

Al(a
∗)

Ah(a∗)

«

hkm−lmka
+ 1

h−lm
ln

[

(km−ka)lm
Ah(a∗)

Al(a
∗)

+(h−lm)kmcm

lm
Ah(a∗)

Al(a
∗)

(hkm−lmka)
h

]







. (44)

Since the derivative on (HL) is examined, by substituting (16) into the above equation

km

km−ka















−
[

Nh

Nl

+ Al(a
∗)

Ah(a∗)

]

km

lm

a∗

Ak(a∗)
cm+

km

„

1−cm

Al(a
∗)

Ah(a∗)

«

hkm−lmka
+ Nh

Nl

km

lm

cm

km−ka
ln

(

km

Ak(a∗)

)

−km

lm

Al(a
∗)

Ah(a∗)
cm

km−ka
ln

[

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

(hkm−lmka)cm

Ak(a∗)

]














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= kmcm

(km−ka)2
km

lm











Nh

Nl

[

ln
(

km

Ak(a∗)

)

+1− km

Ak(a∗)

]

− Al(a
∗)

Ah(a∗)

[

(km−ka)
Ah(a∗)
Al(a∗)

1
cm

Al(a
∗)kmcm−lmAk(a∗)

Ak(a∗)(hkm−lmka)
+ln

[

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

(hkm−lmka)cm

Ak(a∗)

]]











. (45)

The above expression is positive at cm = lm
km

ka

h

Ah(a∗)
Al(a∗)

from (27) in the proof of Lemma 1 and

is negative at cm = lm
km

Ak(a∗)
Al(a∗)

from (56) in the proof of Lemma 3. Further, the derivative of
the expression inside the big bracket of the above equation with respect to cm equals

−(km−ka)
1

c2m

lm
hkm−lmka

− Al(a
∗)

Ah(a∗)

[

h−lm

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

− 1
cm

]

= lm
km

km−ka

cm

[

− 1
cm

km

hkm−lmka
+ 1

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

]

=− l2m
km

1
c2m

(km−ka)2
h

Ah(a∗)

Al(a
∗)

−cm

i

(hkm−lmka)
h

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

i ,

(46)

which is negative for cm∈
[

lm
km

ka

h

Ah(a∗)
Al(a∗)

, lm
km

Ak(a∗)
Al(a∗)

]

from Ah(a∗)
Al(a∗)

−cm≥ Ah(a∗)km−lmAk(a∗)
Al(a∗)km

= (hkm−lmka)a∗

Al(a∗)km
>

0 ( lm
km

Ak(a∗)
Al(a∗)

> lm
km

ka

h

Ah(a∗)
Al(a∗)

⇔ ka

km
< h

lm
). Hence, there exists a unique cm ∈ ( lm

km

ka

h

Ah(a∗)
Al(a∗)

, lm
km

Ak(a∗)
Al(a∗)

)

such that (44) is positive (negative) for smaller (greater) cm.
When ka

km
→ 1, (44) equals

lim
ka

km
→1

1

1− ka

km

{

−
[

Nh

Nl

+ Al(a
∗)

Ah(a∗)

]

1
lm

a∗

a∗ ka

km
+1−a∗

cm+
1−cm

Al(a
∗)

Ah(a∗)

h−lm
ka

km

+ 1
h−lm

ln

[

(1− ka

km
)lm

Ah(a∗)

Al(a
∗)

+(h−lm)cm

lm
Ah(a∗)

Al(a
∗)

(h−lm
ka

km
)

h

]

}

= − lim
ka

km
→1







[

Nh

Nl

+ Al(a
∗)

Ah(a∗)

]

1
lm

a∗2cm

(a∗ ka

km
+1−a∗)2

+
lm

„

1−cm

Al(a
∗)

Ah(a∗)

«

(h−lm
ka

km
)2

+ 1
h−lm

[

−lm
Ah(a∗)

Al(a
∗)

(1− ka

km
)lm

Ah(a∗)

Al(a
∗)

+(h−lm)cm

+ lm

h−lm
ka

km

]







= −







[

Nh

Nl

+ Al(a
∗)

Ah(a∗)

]

a∗2cm

lm
−

lm

„

1−cm

Al(a
∗)

Ah(a∗)

«

“

1
cm

Ah(a∗)

Al(a
∗)

−1
”

(h−lm)2







. (47)

The above expression is positive at cm = lm
h

Ah(a∗)
Al(a∗)

from (30) in the proof of Lemma 1 and is

negative at cm = lm
Al(a∗)

from (58) in the proof of Lemma 3. Further, the derivative of the

expression with respect to cm is negative. Hence, the same result holds when ka

km
= 1 as well.

Proof of Lemma 3. [Derivation of the equation]: The LHS of (HL) when c∗ = 1 ⇔
cl(a

∗)≥1 and ka

km
̸=1 equals Nh

Nl

times
∫ c−1

l
(1)

0

∫ cl(a)

0

dcda

Al(a)
+

∫ a∗

c−1
l

(1)

∫ 1

0

dcda

Al(a)
=

∫ c−1
l

(1)

0

cl(a)

Al(a)
da+

∫ a∗

c−1
l

(1)

da

Al(a)

=
km

lm
cm

∫ c−1
l

(1)

0

da

Ak(a)
+

∫ a∗

c−1
l

(1)

da

Al(a)

=
km

lm

cm

km−ka

ln

(

km

Ak(c
−1
l (1))

)

+
1

lm−la
ln

(

Al(c
−1
l (1))

Al(a∗)

)

,

(48)
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where the value of c−1
l (1), i.e. a when cl(a) = 1, equals, from (2) and (3),

Al(a)

Ak(a)
=

lm
km

1

cm

⇔ −a(lm−la) + lm =
lm
km

1

cm

[−a(km−ka)+km]

⇔ a =
lm(1−cm)

(km−ka)
lm
km

− (lm−la)cm

. (49)

Hence, from (48) and

Ak(c
−1
l (1))=

−lm(1−cm)(km−ka)+km

[

(km−ka)
lm
km

−(lm−la)cm

]

(km−ka)
lm
km

− (lm−la)cm

=
(lakm−lmka)cm

(km−ka)
lm
km

− (lm−la)cm

, (50)

Al(c
−1
l (1))=

−lm(1−cm)(lm−la)+lm

[

(km−ka)
lm
km

−(lm−la)cm

]

(km−ka)
lm
km

− (lm−la)cm

=
lm
km

(lakm−lmka)

(km−ka)
lm
km

− (lm−la)cm

, (51)

the LHS of (HL) when ka

km
̸=1 equals

Nh

Nl

{

1

lm−la
ln

[

lakm−lmka

(km−ka)lm−(lm−la)kmcm

lm
Al(a∗)

]

+
kmcm

(km−ka)lm
ln

[

(km−ka)lm−(lm−la)kmcm

(lakm−lmka)cm

]}

.

(52)
Applying l’Hôpital’s rule to the above equation, the LHS of (HL) when ka

km
=1 equals

Nh

Nl

{

1

lm−la
lim

ka

km
→1

ln

[

la−lm
ka

km

(1− ka

km
)lm−(lm−la)cm

lm
Al(a∗)

]

+
cm

lim ka

km
→1(1−

ka

km
)lm

lim
ka

km
→1

ln

[

(1− ka

km
)lm−(lm−la)cm

(la−lm
ka

km
)cm

]}

=
Nh

Nl

{

1

lm−la
ln

[

lm
cmAl(a∗)

]

+cm lim
ka

km
→1

(

1

(1− ka

km
)lm−(lm−la)cm

−
1

la−lm
ka

km

)}

=
Nh

Nl

1

la−lm

{

ln

[

cmAl(a
∗)

lm

]

+1−cm

}

. (53)

[a∗ ∈ (0, 1) for any cm]: a∗ < 1 is obvious from the equation. Since cm≥ lm
km

Ak(a∗)
Al(a∗)

, a∗=0

is possible only at cm = 1. However, at cm = 1, the equation becomes Nh

Nl

1
lm−la

ln
(

lm
Al(a∗)

)

=

1
h−lm

ln
(

h
Ah(a∗)

)

and thus a∗>0.

[Relations of a∗ satisfying the equation with Nh

Nl

, cm, and ka

km
]: Since the derivative

of the LHS−RHS of (18) and (19) with respect to a∗ equals Nh

Nl

1
Al(a∗)

+ 1
Ah(a∗)

> 0, a∗ satisfying

the equation decreases with Nh

Nl

.

When ka

km
̸=1, a∗ satisfying (18) decreases with cm, because the derivative of the expres-

sion inside the large curly bracket of (18) with respect to cm equals
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(

1−
(lm−la)kmcm

(km−ka)lm

)

km

(km−ka)lm−(lm−la)kmcm

−
km

(km−ka)lm
+

km

(km−ka)lm
ln

[

(km−ka)lm−(lm−la)kmcm

(lakm−lmka)cm

]

=
1

(1− ka

km
)lm

ln

[

1+
1−cm

cm

(1− ka

km
)lm

la−lm
ka

km

]

> 0. (54)

limcm→1
∂a∗

∂cm
=0 is clear from the above equation.

Since (18) can be expressed as

Nh

Nl

{

1

lm−la
ln

[

la−lm
ka

km

(1− ka

km
)lm−(lm−la)cm

lm
Al(a∗)

]

+
cm

(1− ka

km
)lm

ln

[

(1− ka

km
)lm−(lm−la)cm

(la−lm
ka

km
)cm

]}

=
1

h−lm
ln

(

h

Ah(a∗)

)

, (55)

when ka

km
̸= 1, the derivative of the expression inside the large curly bracket of (18) with

respect to ka

km
equals

lm
lm−la

− cm

1− ka

km

(1− ka

km
)lm−(lm−la)cm

−

lm
lm−la

− cm

1− ka

km

la−lm
ka

km

+
cm

(1− ka

km
)2lm

ln

[

(1− ka

km
)lm−(lm−la)cm

(la−lm
ka

km
)cm

]

= −

(

lm
lm−la

−
cm

1− ka

km

)

(lm−la)(1−cm)

[(1− ka

km
)lm−(lm−la)cm](la−lm

ka

km
)
+

cm

(1− ka

km
)2lm

ln

[

(1− ka

km
)lm−(lm−la)cm

(la−lm
ka

km
)cm

]

= −
cm

(1− ka

km
)2lm

(

1−cm

cm

(1− ka

km
)lm

la−lm
ka

km

− ln

[

1+
1−cm

cm

(1− ka

km
)lm

la−lm
ka

km

])

< 0. (56)

The derivative is negative because the expression inside the large parenthesis of (56) equals

0 at cm = 1 and, when ka

km
< (>)1, it increases (decreases) with 1−cm

cm

(1− ka

km
)lm

la−lm
ka

km

and thus

decreases with cm. Hence, a∗ satisfying (18) increases with ka

km
when ka

km
̸=1. limcm→1

∂a∗

∂ ka

km

=0

is clear from the above equation.
The corresponding derivatives when ka

km
→ 1 are

cm : lim
ka

km
→1

{

1

(1− ka

km
)lm

ln

[

(1− ka

km
)lm−(lm−la)cm

(la−lm
ka

km
)cm

]}

=
−1

lm
lim

ka

km
→1

[

−lm

(1− ka

km
)lm−(lm−la)cm

+
lm

la−lm
ka

km

]

=
1

la−lm

1−cm

cm

> 0. (57)

ka

km

: lim
ka

km
→1

{

−
cm

(1− ka

km
)2lm

(

1−cm

cm

(1− ka

km
)lm

la−lm
ka

km

−ln

[

(1− ka

km
)lm−(lm−la)cm

(la−lm
ka

km
)cm

])}

= lim
ka

km
→1

{

cm

2(1− ka

km
)lm

(

1−cm

cm

−(la−lm
ka

km
)lm+(1− ka

km
)l2m

(la−lm
ka

km
)2

−

[

−lm

(1− ka

km
)lm−(lm−la)cm

+
lm

la−lm
ka

km

])}

=
cm

2lm

(

1−cm

cm

lim
ka

km
→1

2l2m(la−lm)

(la−lm
ka

km
)3

+ lim
ka

km
→1

[

−l2m
[(1− ka

km
)lm−(lm−la)cm]2

+
l2m

(la−lm
ka

km
)2

])
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=
cm

2lm

l2m
(la−lm)2

[

2
1−cm

cm

+

(

1−
1

c2
m

)]

= −
1

2

lm
(la−lm)2

(1−cm)2

cm

< 0, (58)

where la−lm > 0 from lm
km

Ak(a∗)
Al(a∗)

< 1 ⇔ 1 < la
lm

. Therefore, the same results hold when ka

km
=1

as well.

Proof of Lemma 4. [Relations of cm satisfying (P) with a∗, km, ka, and r]: Derivatives
of the LHS of (P) with respect to a∗, cm, km, and ka equal

a∗ :
∂ Ah(a∗)

Al(a∗)

∂a∗

lm
km

r

cm

∫ 1

a∗

∫ min{ch(a),1}

0

dcda

Ah(a)
> 0, (59)

cm : −
lm
km

r

c2
m

{

∫ a∗

0

∫ min{cl(a),1}

0

dcda

Al(a)
+

Ah(a
∗)

Al(a∗)

∫ 1

a∗

∫ min{ch(a),1}

0

dcda

Ah(a)

}

<0, (60)

km : −
1

km

{

1−r

[
∫ a∗

0

∫ 1

min{cl(a),1}

dcda

cAk(a)
+

∫ 1

a∗

∫ 1

min{ch(a),1}

dadc

cAk(a)

]}

−r

[
∫ a∗

0

∫ 1

min{cl(a),1}

(1−a)dcda

c(Ak(a))2
+

∫ a∗

0

∫ 1

min{cl(a),1}

(1−a)dcda

c(Ak(a))2

]

< 0, (61)

ka : − r

[
∫ a∗

0

∫ 1

min{cl(a),1}

adcda

c(Ak(a))2
+

∫ a∗

0

∫ 1

min{cl(a),1}

adcda

c(Ak(a))2

]

< 0, (62)

where cl(a
∗) = ch(a

∗) = c∗, 1
cl(a)Ak(a)

= lm
km

1
cm

1
Al(a)

, and 1
ch(a)Ak(a)

= lm
km

Ah(a∗)
Al(a∗)

1
cm

1
Ah(a)

are used
to derive the equations. The results are straightforward from the equations.

[(P) does not hold at cm = 0]: Noting that cl(a) = km

lm

Al(a)
Ak(a)

cm and ch(a) = km

lm

Al(a
∗)

Ah(a∗)
Ah(a)
Ak(a)

cm,

when cm→0, the LHS of (P) becomes

r

∫ a∗

0

da

Ak(a)
+r

∫ 1

a∗

da

Ak(a)
+r

∫ 1

0

∫ 1

0

dadc

cAk(a)
= r

∫ 1

0

da

Ak(a)
−

r

km−ka

ln(
km

ka

)lim
c→0

ln c = +∞ > 1. (63)

Hence, (P) does not hold at cm =0.

Proof of Proposition 1. At cm =1, cl(a), ch(a) >1 from (11), thus (P) equals

lm
km

r

∫ a∗

0

da

Al(a)
+

lm
km

Ah(a
∗)

Al(a∗)
r

∫ 1

a∗

da

Ah(a)
= 1. (64)

When km is very small, the LHS of the above equation is strictly greater than 1 for any
a∗ ∈ [0, 1] (thus, (P) does not hold for any cm and a∗ from Lemma 4), or a∗ satisfying the
equation is weakly smaller than a∗ ∈ (0, 1) satisfying (HL) at cm = 1 (a∗ ∈ (0, 1) holds on
(HL) from Lemma 3). In such case, there is no a∗ ∈ (0, 1) and cm <1 satisfying both (HL)
and (P), and thus machines are not employed, i.e. cm =1, in equilibrium, where equilibrium
a∗ is determined from (HL) with cm =1.

When km becomes large enough that a∗ satisfying (64) is greater than a∗ ∈ (0, 1) satis-
fying (HL) at cm =1, an equilibrium with cm < 1 exists from shapes of (HL) and (P). The
dynamics of cm and a∗ are straightforward from shapes of the two loci. The dynamics of

c∗ and ca are from c∗ =min
{

km

lm

Al(a
∗)

Ak(a∗)
cm,1

}

, ca =min
{

h
ka

km

lm

Al(a
∗)

Ah(a∗)
cm,1

}

, and the assumptions
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that ka

km
is time-invariant and satisfies ka

km
< la

lm
. The dynamics of cl(a) and ch(a) are from

those of the other variables.

Proof of Proposition 2. (i) When cm ≥ lm
km

ka

h

Ah(a∗)
Al(a∗)

, earnings of skilled workers increase

over time from Propositions 4 (iii) and 5 (iii) below. Earnings of both types of workers

increase when cm < lm
km

ka

h

Ah(a∗)
Al(a∗)

from Proposition 6 (iii) below. (ii) is straightforward from

Proposition 1 and the earnings equations (eq. 13).
(iii) Y decreases with the LHS and the RHS of (HL) from (8). When c∗ = ca = 1 and

ka

km
̸= 1, the RHS of (HL) equals 1

h−lm
ln

(

h
Ah(a∗)

)

from Lemma 3, which decreases with the

growth of km and ka with constant ka

km
from Proposition 1. When c∗ < ca < 1 and ka

km
̸= 1,

the RHS of (HL) equals km

lm

Al(a
∗)

Ah(a∗)
cm

km−ka
ln

(

Ak(a∗)
ka

)

from (24) in the proof of Lemma 1, which

decreases with the productivity growth from Proposition 1. When c∗ < ca = 1 and ka

km
̸= 1,

the derivative of the RHS of (HL) with respect to cm equals, from (39) in the proof of Lemma
2 and (16),

−
1

(h−lm)cm

ln

[

1+
(h−lm)hkm

h

cm− lm

h

ka

km

Ah(a∗)

Al(a
∗)

i

lm
Ah(a∗)

Al(a
∗)

(hkm−lmka)

]

+
Nh

Nl

km

lm

1

km − ka

ln

(

km

Ak(a∗)

)

=
km

lm

Al(a
∗)

Ah(a∗)

1

km−ka

ln

[

(km−ka)
lm

km

Ah(a∗)

Al(a
∗)

+(h−lm)cm

(hkm−lmka)cm

Ak(a∗)

]

> 0, (65)

and the derivative with respect to a∗ equals, from (37) in the proof of Lemma 2 ,

−
km

lm

cm

km−ka

{

Al(a
∗)

Ah(a∗)

km−ka

Ak(a∗)
−

∂ Al(a
∗)

Ah(a∗)

∂a∗
ln

[

1+
(km−ka)

Ah(a∗)

Ak(a∗)

h

lm

km

Ak(a∗)

Al(a
∗)
−cm

i

(hkm−lmka)cm

Ak(a∗)

]

}

< 0. (66)

From signs of the derivatives and Proposition 1, the RHS of (HL) decreases with the pro-
ductivity growth. Hence, Y increases over time when ka

km
̸= 1. The result when ka

km
= 1 can

be proved similarly.

Proof of Proposition 3. Since an increase in Nh

Nl

shifts (HL) to the left on the (a∗, cm)
space from Lemmas 1−3, the result that cm and a∗ decrease is straightforward from Figures

7−9. Then, wl = lm
km

r
cm

rises and wh

wl

= Ah(a∗)
Al(a∗)

falls. Since c∗ ≡ min
{

km

lm

Al(a
∗)

Ak(a∗)
cm,1

}

, c∗ falls

when c∗ <1 from ka

km
< la

lm
, da∗

d
Nh

Nl

< 0, and dcm

d
Nh

Nl

< 0. cl(a) decreases from dcm

d
Nh

Nl

< 0. Proofs of

the results for ch(a), ca, wh, and Y are in the proof of Proposition 7.

36


