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Abstract

This paper studies panel data models with unobserved group factor structures. The

group membership of each unit and the number of groups are left unspecified. The

number of explanatory variables can be large. We estimate the model by minimizing

the sum of least squared errors with a shrinkage penalty. The regressions coefficients

can be homogeneous or group specific. The consistency and asymptotic normality of

the estimator are established. We also introduce new Cp-type criteria for selecting

the number of groups, the numbers of group-specific common factors and relevant re-

gressors. Monte Carlo results show that the proposed method works well. We apply

the method to the study of US mutual fund returns under homogeneous regression

coefficients, and the China mainland stock market under group-specific regression co-

efficients.
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1 Introduction

Individual heterogeneity is an important issue in panel data analysis. The degree of

heterogeneity increases with larger data sets (more individuals or more time periods).

The latter are increasingly available with the advancement in information technology.

There are already many studies devoted to large N and large T settings, for example,

Arellano and Hahn (2005), Bester and Hansen (2012), Hahn and Kuersteiner (2004),

Hahn and Newey (2004), Kapetanios et al. (2011), Moon and Weidner (2009), Pesaran

(2006), Pesaran and Tosetti (2011). For panel data textbooks, we refer to Arellano

(2003), Baltagi (2008), Hsiao (2003), and Wooldridge (2010).

This paper considers estimation of grouped panel data models with unobserved het-

erogeneity, which has many attractive features. First, we allow time varying individual

effects (factor error structure) as opposed to the usual individual fixed effects. Second,

our method allows a large number of explanatory variables. The relevant variables are

selected through a lasso approach. Third, the explanatory variables are allowed to be

correlated with factors or factor loadings or both. Fourth, the group membership of

each unit is unknown, and will be estimated along with other parameters of the model.

Finally, the number of groups is unknown and is to be determined. There are a small

number of papers that study panel data models with unobserved heterogeneity when

group membership is unknown. Bonhomme and Manresa (2012), Lin and Ng (2012)

and Sun (2005) investigated this challenging problem. In contrast to previous models,

there is a factor structure in each group.

Bai (2009) estimated panel data models with interactive effects, permitting the

predictor to be correlated with unobserved heterogeneity. Incorporating this idea, we

model time-varying grouped patterns of heterogeneity in panel data by assuming a

group-specific pervasive factor structure. Grouped factor structures have been consid-

ered in a number of economic studies (Moench et al. (2012), Diebold et al. (2008),

Kose et al. (2008), Wang (2010), Moench and Ng (2011)).

We allow the error term to be weakly correlated across units and over time; het-

eroskedasticity is also allowed in both dimensions. A distinctive feature of the model

is that group membership is not specified. Our method jointly estimates the optimal

grouping of the N cross-sectional units, the regression coefficients and grouped patterns

of heterogeneity. To improve the speed of computation, the lasso method (Tibshirani

(1996)) is incorporated in the estimation algorithm. As the lasso method provides es-

timates of zero for redundant parameters, the computational cost is considerably lower

than that of traditional variable selection methods. Although the lasso method is

widely used, the shrinkage introduced by the lasso results in bias toward zero for large

regression coefficients. To diminish this bias, we use the smoothly clipped absolute

deviation (SCAD) penalty approach (Fan and Li (2001)).

We derive the asymptotic properties of the proposed estimator and show that the

proposed estimator is consistent as N and T go to infinity simultaneously. The proof

of parameter consistency with unknown group membership is enormous difficult, we
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provide a novel argument for consistency. Given consistency, we further establish that

the proposed estimator is asymptotically equivalent to the infeasible version of the

estimator in which the population groups are known. This latter result is similar to

that of Bonhomme and Manresa (2012), who deal with special known loadings (0 or 1

values). We also develop the asymptotic distribution of the proposed estimator for the

regression coefficients. We show that asymptotic bias arises under interactive effects,

leading to nonzero-centered limiting distributions. However, the asymptotic bias of

the limiting distribution is zero for some cases, including: Case 1: where the error

terms are independently, identically distributed, or Case 2: where there is an absence

of serial correlation and heteroskedasticity and where T/N → 0 (N, T → ∞), and Case

3: where there is an absence of cross-sectional correlation and heteroskedasticity and

where N/T → 0 (N, T → ∞). In such cases, there is no need to perform higher-order

bias correction.

In panel data modeling, an important issue is the selection of a proper model from

among many candidates or, equivalently, determination of the number of group-specific

pervasive factors, determination of the magnitude of the regularization parameter for

implementing the SCAD approach (to be introduced), and determination of the number

of groups. We develop a new Cp-type criteria for selecting a proper model from a

predictive perspective. Specifically, the panel data model is evaluated from a predictive

point of view, and we propose an estimator of the expected mean squared error (MSE).

The criterion is developed by correcting the asymptotic bias in the MSE as an estimate

of the expected MSE. To prove the consistency of the selection of the number of group-

specific pervasive factors, we extend the analysis of Bai (2009). There exist several

references concerning model selection of panel data models with factor structures. Ando

and Tsay (2013) investigated the model selection problem for large panel data models

with the interactive fixed effects of Bai (2009), where the slope coefficients are common

to each unit. Ando and Bai (2013) studied the panel data model selection problem

under heterogeneous slopes and hierarchical factor error structures. These results are

for panel data models where group membership is known. Therefore, our problem is

different, as we need to further develop the criterion for selecting the number of groups.

Panel data models with homogeneous regression coefficients between the groups

involve parsimonious specifications that may be suitable for some applications. How-

ever, there is evidence that homogeneity of the parameters is rejected (see for example

Hsiao and Tahmiscioglu (1997), Lin and Ng (2012)). To deal with the presence of

unobserved heterogeneity, we therefore extend the proposed model to the flexible yet

parsimonious approach. This approach delivers estimates of group-specific regression

parameters, together with interpretable estimates of unit-specific time patterns and

group membership. After we describe the model estimation procedure, the consistency

and asymptotic distribution of the proposed estimator are established. To determine

the number of group-specific pervasive factors, the magnitude of the regularization

parameter and the number of groups, we again develop a new Cp-type criterion for

selecting these quantities. The proposed panel data modeling procedures under ho-
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mogeneous regression coefficients are applied to the analysis of the US mutual fund

styles. It is common that the financial institutions manage clients’ assets according

to the investment style that defines the nature of the fund. We aim at grouping mu-

tual funds and identifying their styles by analyzing the time series of past returns of

individual mutual funds. The proposed panel data modeling procedures under hetero-

geneous regression coefficients are applied to the analysis of the two Chinese mainland

stock markets, the Shanghai and Shenzhen stock exchanges. We address the following

questions. How many groups exist in the stock markets in mainland China? How

many group-specific pervasive factors exist in the stock markets in mainland China?

What type of observable risk factors explains the stocks in each group? Furthermore,

how can the unobservable factors be understood in terms of observable variables in the

economy? A number of interesting findings are reported.

The remainder of this paper is organized as follows. Section 2 describes the model

assumptions and Section 3 develops the estimation procedure. Section 4 investigates

the consistency of the proposed estimator. Its asymptotic behaviors are also investi-

gated. Section 5 develops the model selection criterion from a predictive point of view.

Section 6 reports the results of a Monte Carlo analysis. The Monte Carlo simulations

confirm that the proposed criterion performs well. Applications to US mutual fund

data are described in Section 7. Section 8 extends the developed results to the panel

data models with heterogeneous regression coefficients. Section 9 applies the procedure

to the analysis of Chinese mainland stock markets. Concluding remarks are provided

in Section 10.

Notation. Let ‖A‖ = [tr(A′A)]1/2 be the norm of matrix A, where “tr” denotes

the trace of a square matrix. The equation an = O(bn) states that the deterministic

sequence an is at most of order bn, cn = Op(dn) states that the random variable cn is at

most of order dn in probability, and cn = op(dn) is of smaller order in probability. All

asymptotic results are obtained under N, T → ∞. Restrictions on the relative rates of

convergence of N and T are specified in later sections.

2 Model

Let t = 1, ..., T be an index for time, i = 1, ..., N be an index for units. Let S

be the number of groups (which is unknown and fixed), and let G = {g1, ..., gN} be

any grouping of the cross-sectional units into S groups. Therefore, for each i, we

have gi ∈ {1, ..., S}. Let Nj be the number of cross-sectional units within the group j,

j = 1, ..., S and thus the sum of them will equal the total number of units N =
∑S

j=1 Nj.

In this section, we assume that the response variable of the i-th unit, observed at

time t, yit, is expressed as

yit = x′
itβ + f ′

gi,t
λgi,i + εi,t, i = 1, . . . , N, t = 1, . . . , T, (1)

where xit is a p × 1 vector of observable vectors, and f gi,t
is an rj × 1 vector of

unobservable group-specific pervasive factors that affect the units only in group gi.
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The p × 1 vector β is the unknown regression coefficients, λgi,i is the factor loadings,

and εit is the unit specific error. Our approach is useful in applications where time

invariance of the fixed effects is a problematic assumption. Furthermore, the factor

structure has been used frequently in recent studies. In Section 8, we extend the model

(1) to the heterogeneous regression coefficients, which vary over the groups.

In vector form, the model (1) can be expressed as yi = Xiβ + Fgi
λgi,i + εi, i =

1, . . . , N , where (for gi = j, Fgi
= Fj)

yi =











yi1

yi2
...

yiT











, Xi =











x′
i1

x′
i2
...

x′
iT











, Fj =











f ′
j,1

f ′
j,2
...

f ′
j,T











, εi =











εi1

εi2
...

εiT











.

Depending on the researcher’s view, each of the unobserved heterogeneity compo-

nents may be specified as a dynamic exact factor model (Geweke, 1977; Sargent and

Sims, 1977), a static approximate factor model (Chamberlain and Rothschild, 1983),

or a special model of the generalized dynamic factor model (Forni et al., 2000), also see,

Forni and Lippi, 2001; Amengual and Watson, 2007; Hallin and Liska, 2007. Details

of f ′
gi,t

λgi,i will be specified in the next section.

2.1 Assumptions

We first state the assumptions and then provide comments concerning these assump-

tions below.

Assumption A: Group-specific pervasive factors

The group-specific pervasive factors satisfy E‖f j,t‖4 < ∞ j = 1, ..., S. Furthermore,

T−1

T
∑

t=1

f j,tf j,t
′ → ΣFj

as T → ∞,

where ΣFj
is an rj × rj positive definite matrix. Although correlations between f j,t

and f k,t (j 6= k) are allowed, they are not correlated perfectly.

Assumption B: Factor loadings

(B1): The factor loading matrix for the group-specific pervasive factors Λj = [λj,1, . . . , λj,Nj
]′

satisfies E‖λ4
j,i‖ < ∞ and ‖N−1

j Λ′
jΛj − ΣΛj

‖ → 0 as Nj → ∞, where ΣΛj
is

an rj × rj positive definite matrix, j = 1, ..., S. We also assume that ‖λj,i‖ > 0.

(B2): For each i and j, f ′
j,tλj,i is strongly mixing processes with mixing coefficients

that satisfy r(t) ≤ exp(−a1t
b1) and with tail probability P (|f ′

j,tλj,i| > z) ≤
exp{1 − (z/b2)

a2}, where a1, a2, b1 and b2 are positive constants.
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Assumption C: Error terms

The error terms εt of the model in (1) have zero mean, but may have cross-sectional

dependence and heteroskedasticity. Furthermore, there exists a positive constant C <

∞ such that for all N and T ,

(C1): E[εit] = 0 for all i and t;

(C2): E[εitεjs] = τij,ts with |τij,ts| ≤ |τij| for some τij for all (t, s), and N−1
∑N

i,j=1 |τij| <

C; and |τij,ts| ≤ |ηts| for some ηts for all (i, j), and T−1
∑N

t,s=1 |ηts| < C. In

addition, (TN)−1
∑

i,j,t,s=1 |τij,ts| < C.

(C3): For every (s, t), E[|N−1/2
∑N

i=1(εisεit − E[εisεit])|4] < C.

(C4): T−2N−1
∑

t,s,u,v

∑

i,j |cov(εisεit, εjsεjt)| < C and T−1N−2
∑

t,s

∑

i,j,k,l |cov(εitεjt, εksεlt)| <

C.

(C5): For all i, εit is strongly mixing processes with mixing coefficients that satisfy

r(t) ≤ exp(−a1t
b1) and with tail probability P (|εit| > z) ≤ exp{1 − (z/b2)

a2},
where a1, a2, b1 and b2 are positive constants.

(C6): εit is independent of xjs, λj,i and f j,s for all i, j, t, s.

Assumption D: Observable predictors

(D1): Define Dj = 1
NT

∑

i;gi=j X ′
iMFj

Xi, Ej = diag{Ej1, ..., EjS}, Lj = (L′
j1, ..., L

′
jS)′,

where Ejk, and Ljk are Ejk = 1
N

∑

i;gi=j,g0

i =k(λ
0
k,iλ

0
k,i

′
)⊗IT , Ljk =

∑

i;gi=j,g0

i =k
1

NT
λ0

k,i⊗
MFj

Xi with g0
i denoting the true membership and λ0

k,i the true factor loadings.

Let A = {Fj : F ′
jFj/T = I, j = 1, ..., S}. We assume the matrix

S
∑

j=1

(Dj − L′
jE

−
j Lj)

is positive definite for all (F1, ..., FS) ∈ A and for all groupings with a positive

fraction of membership for each group (Assumption E below), where E−
j is a

generalized inverse of Ej. Note that if some components of Ej are zero, then the

corresponding components of Lj are also zero so that L′
jE

−1
j Lj is well defined.

Further comments on this assumption is given below.

(D2): The vector of predictor xit satisfies max1≤i≤N T−1‖Xi‖2 = Op(N
α) with α < 1/8.

We also assume N/T 2 → 0.

Assumption E: Number of units in each group

All units are divided into a finite number of groups S, each of them containing Nj units

such that 0 < a < Nj/N < ā < 1, which implies that the number of units in the Sj-th

group increases as the total number of units N grows.

Some comments on the assumptions are in order. Assumptions A and B imply the

existence of rj group-specific pervasive factors, j = 1, ..., S. Assumption C imposes
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weak serial and cross-sectional correlations on εit. Heteroskedasticity is allowed. These

assumptions are made in Bai (2009) except C5. Assumption C5 assumes that the error

term is strongly mixing with a faster than polynomial decay rate and restricts the tail

property. This condition is used to bound misclassification probabilities, and is used

in Bonhomme and Manresa (2012).

Assumption D1 is similar to a condition used in Bai (2009), where only a single

group exists. The assumption is used for proof of consistency. Assumption D1 is anal-

ogous to the full rank condition in standard linear regression models, but it is stronger

than that due to the unobservableness of factors and the membership groupings. An

alternative and weaker assumption is that
∑S

j=1(Dj − Lj′E−Lj) is positive definite

when evaluated at the true factors and true groupings. This will correspond to the

usual full rank condition. This alternative assumption is discussed in Bai (2009) and is

also used by Ando and Bai (2013), in which group memberships are known. Under this

assumption, one first proves the consistency of the estimated factors and membership

groupings, and then proves the consistency of the estimated beta coefficient (the factor

and membership grouping can be treated as known). This argument of consistency

is more involved. The current assumption allows a simpler proof of consistency of β̂.

Assumption D2 is a weaker condition than the assumption that xit has exponentially

decaying tails. The regressors can be correlated with factors, factor loadings or both.

This correlation is controlled for by treating both factors and factor loadings as pa-

rameters. As in usual panel data analysis, the number of cross-sectional units N can

be much greater than the number of time periods T . In this paper, the true number of

groups, S, is kept fixed. Bester and Hansen (2012) allowed the true number of groups

in both dimensions of the panel to tend to infinity. In their setup, there are individual

effects but no factor structure, and the group membership is assumed known.

3 Estimation

3.1 Estimation procedure

Under a given number of groups S, number of factors r1, ..., rS, and size of the penalty

κ in pκ,γ (|β|), the estimator {β̂, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S} is defined as the minimizer of

LNT (β, G, F1, ..., FS, Λ1, ..., ΛS) =
S

∑

j=1

∑

i;gi=j

‖yi − Xiβ − Fgi
λgi,i‖2 + NT · pκ,γ (|β|) ,

subject to the constraints F ′
jFj/T = Irj

(j = 1, ..., S), Λ′
jΛj (j = 1, ..., S) being diago-

nal. Here, Λj = (λj,1, ...., λj,Nj
) is the rj × Nj factor loading matrix (j = 1, ..., S) for

the group-specific factors. These restrictions are needed to avoid the model identifica-

tion problem and are commonly used in the literature (Connor and Korajzcyk (1986),

Stock and Watson (2002), Bai and Ng (2002)).

For the penalty function, pκ,γ (|β|) is designed to identify the significant components

of the regression coefficients. This is important when the number of regressors (p) is
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large and some regressors may be irrelevant. In this paper we use the SCAD penalty,

which is formally given as pκ,γ(|β|) =
∑p

k=1 pκ,γ(|βk|) with

pκ,γ(|βk|) =























κ|βk| (|βk| ≤ κ)
γκ|βk| − 0.5(β2

k + κ2)

γ − 1
(κ < |βk| ≤ γκ)

κ2(γ2 − 1)

2(γ − 1)
(γκ < |βk|)

for κ > 0 and γ > 2. This penalty first applies the same rate of penalization as the

lasso method and then reduces the rate to zero as it moves further away from zero.

Fan and Li (2001) showed that the value γ = 3.7 minimizes a Bayesian risk criteria for

the regression coefficients. We also used the SCAD penalty with γ = 3.7.

Given the group membership G and the value of the regression coefficient β, we

define the variable Wj = (wj,1, . . . , wj,Nj
) with wj,i = yi − Xiβ for gi = j. Then the

original model (1) reduces to wj,i = Fjλj,i + εi, which implies that matrix Wj has a

pure factor structure. The least squares objective function with the penalty is

S
∑

j=1

tr
{

(

Wj − FjΛ
′
j

) (

Wj − FjΛ
′
j

)′
}

+ NT · pκ,γ (|β|) .

From the analysis of pure factor models estimated by the method of least squares

(i.e., principal components; see Connor and Korajzcyk (1986) and Stock and Watson

(2002)), by concentrating out Λj = W ′
jFj(F

′
jFj)

−1 = W ′
jFj/T , the objective function

becomes

S
∑

j=1

tr
{

W ′
jWj

}

−
S

∑

j=1

tr
{

F ′
jWjW

′
jFj

}

/T + NT · pκ,γ (|β|) . (2)

Noting that only Nj units are related to the factor structure Fj of the j-th group Sj

and that the penalty term is not related to Fj, minimizing the objective function with

respect to Fj is equivalent to maximizing tr
{

F ′
jWjW

′
jFj

}

. The principal components

estimate of Fj subject to the constraint, F̂j, is
√

T times the eigenvectors corresponding

to the rj largest eigenvalues of the T × T matrix WjW
′
j . Given F̂j, the factor loading

matrix can be obtained as Λ̂j = F̂jWj/T . See also Bai and Ng (2002, pp197∼198).

It is easy to see that, for any given values of β and Fjλj,i (j = 1, ..., S), the optimal

assignment for each individual unit is

g∗
i = argminj∈{1,...,S}‖yi − Xiβ − Fjλj,i‖2.

In this paper, the group membership of each unit is estimated through the observed

panel data information only. We mention that some prior information can be incorpo-

rated by using the Bayesian procedure (not considered in this paper). The estimates

of β, {Fj, Λj; j = 1, ..., S}, and G ∈ {g1, ..., gN} depend on each other. The estimators

are obtained by using the following iterative algorithm.

8



Estimation algorithm

Step 1. Fix κ and {r1, ..., rS}. Initialize the unknown parameters β, {F (0)
j , Λ

(0)
j ; j =

1, ..., S}, G(0) ∈ {g(0)
1 , ..., G

(0)
N }.

Step 2. Given the values of β and {Fj, Λj; j = 1, ..., S}, update G.

Step 3. Given the values of β and G, update {Fj, Λj} for j = 1, ..., S.

Step 4. Given the values of G and {Fj, Λj; j = 1, ..., S}, update β.

Step 5. Repeat Steps 2 and 4 until convergence.

In Step 1, starting values for β, G, and {Fj, Λj; j = 1, ..., S} are needed. In the

next section, we discuss how to prepare initial values for these parameters.

3.2 Initial parameter values

First, we refer to the clustering literature in order to achieve fast initialization of group

membership G. For this purpose, the well-known K-means algorithm (Forgy (1965)) is

used. Given the number of groups S, the algorithm finds a collection of centers of each

group such that the sum of the Euclidean distances between each unit and the closest

center is minimized. The K-means algorithm divides the data set {yi; i = 1, ..., N}
into S clusters that correspond to the number of groups. Thus an initial estimate of

the group membership G(0) ∈ {g(0)
1 , ..., g

(0)
N } is obtained this way. Second, given the

values of G(0), an initial estimate of β(0) is obtained by the SCAD approach by ignoring

the group-specific factor structures {Fj, Λj; j = 1, ..., S}. Finally, given the values of

β(0) and G(0), we obtain the starting values {F (0)
j , Λ

(0)
j } for j = 1, ..., S.

It is known that the least squares objective function is not globally convex (Bai

2009). In other words, an arbitrary starting value will not necessarily provide the global

optimal solution. To maximize the chance of obtaining the global maximum, one may

prepare several starting values. After convergence, one may choose the estimators that

give a smaller value of the objective function. If the converged values are different, we

select the one that minimizes the objective function.

4 Asymptotic properties

In Sections 2 and 3, we described the assumptions imposed on the model and proposed

an estimation procedure. This section investigates some asymptotic properties of the

parameter estimates. All proofs of the theorems, described below, are given in the

Appendix. We use {F 0
j , j = 1, ..., S} to denote the true parameter values of the group-

specific factors Fj obtained from the true data-generating process. As T increases, the

number of elements of Fj (j = 1, ..., S) are also increasing. We claim that the estimated

factors are consistent in the sense of some averaged norm, which will be specified below.

We have the following theorem.
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Theorem 1 : Consistency. Under Assumptions A–E, κ → 0 and min{N, T}×κ →
∞ as T, N → ∞, and the estimator β̂ is consistent

‖β̂ − β0‖ = op(1),

where β0 denotes the true parameter value. In addition, {F̂j, j = 1, ..., S} are consis-

tent in the sense of the following norm

T−1‖F̂j − F 0
j Hj‖2 = op(1), j = 1, ..., S, (3)

where H−1
j = Vj,NjT (F 0

j F̂j/T )−1(Λ0′

j Λ0
j/Nj)

−1, and Vj,NjT satisfies





1

NjT

Nj
∑

i;ĝi=j

(yi − Xiβ̂)(yi − Xiβ̂)′



 F̂j = F̂jVj,NjT .

The estimated individual membership satisfies ĝi = argminj∈{1,...,S}‖yi − Xiβ̂ −
F̂jλ̂j,i‖2. The estimates of β, {Fj, Λj; j = 1, ..., S}, and G ∈ {g1, ..., gN} depend on

each other, and we therefore denote the estimator of group membership ĝi as ĝi(β̂, F̂ , Λ̂)

in the following theorem. Here, F̂ = {F̂1, ..., F̂S} and Λ̂ = {Λ̂1, ..., Λ̂S}. Although the

group indicator is unknown in practice and needs to be estimated, the following theorem

shows that the estimated group membership converges to the true group membership

as T and N goes to infinity.

Theorem 2 : Consistency of the estimator of group membership. Suppose

that the assumptions in Theorem 1 hold. Then, for all τ > 0 and T,N → ∞, we have

P

(

sup
i∈{1,...,N}

∣

∣

∣ĝi(β̂, F̂ , Λ̂) − g0
i

∣

∣

∣ > 0

)

= o(1) + o(N/T τ ).

The result of Theorems 2 shows that if for some b > 0, N/T b → 0 as both N and T

tend to infinity simultaneously, the true group membership g0
i and the proposed group

membership estimator ĝi are asymptotically equivalent. This holds because N/T τ → 0

for τ > b. Theorem 2 is similar to a result obtained by Bonhomme and Manresa (2012).

Our proof for this result relies on the assumption that factor loadings λj,i cannot be very

small or zero. If individual i’s factor loading is zero, then obviously this individual does

not belong to any group. The uniform result holds over all individuals whose factor

loadings are bounded away from zero. That is, we can always replace supi∈{1,2,...,N} in

Theorem 2 over the set of individuals satisfying ‖λ0
g0

i ,i
‖ ≥ a > 0. Theorem 2 is a very

strong result.

Let us define β̃, F̃1, ..., F̃S, Λ̃1, ..., Λ̃S as the infeasible version of our estimator where

group membership G is fixed to its population G0. It is defined as the minimum of

LNT (β, G0, F1, ..., FS, Λ1, ..., ΛS) subject to the constraints F ′
jFj/T = Irj

(j = 1, ..., S),

and Λ′
jΛj (j = 1, ..., S) being diagonal.

10



Theorem 2 implies that our estimator {β̂, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S} is asymptotically

equivalent to the infeasible estimates {β̃, F̃1, ..., F̃S, Λ̃1, ..., Λ̃S} as N and T tend to

infinity. More precisely, if for some b > 0, N/T b → 0 as both N and T tend to infinity

simultaneously, the proposed estimator β̂, F̂j (j = 1, ..., S) and the infeasible estimator

β̃, F̃j (j = 1, ..., S) with known population groups are asymptotically equivalent.

Our proposed method can identify the set of explanatory variables with nonzero

coefficients. Let β0 = (β0
1

′
,β0

2

′
)′ be the true parameter value, and β̂ = (β̂

′

1, β̂
′

2)
′ be the

corresponding parameter estimate. Without loss of generality, assume that β0
2 = 0.

We show that the estimator must possess the sparsity property, β̂2 = 0. We denote

β̂1 as the parameter estimate of non-zero true coefficients β0
1. To show the asymptotic

normality of
√

NT (β̂1 − β0
1), we impose the following assumption.

Assumption F

Let Xi,β 6=0 be the submatrix of Xi corresponding to columns of nonzero elements of

the parameter vector β0, and q be the number of nonzero elements of β. For the

nonrandom positive definite matrix J0(F
0
1 , ..., F 0

S),

1√
NT

S
∑

j=1

∑

i:g0

i =j

Zj,i(F
0
j )′εi →d N(0, J0(F

0
1 , ..., F 0

S)),

where J0(F
0
1 , ..., F 0

S) is the probability limit of

Ĵ(F 0
1 , ..., F 0

S) =
1

NT

S
∑

j=1

S
∑

k=1

∑

i:g0

i =j

∑

ℓ:g0

ℓ
=k

Zj,i(F
0
j )′E[εiε

′
ℓ] Zk,ℓ(F

0
j )

with

Zj,i(F
0
j ) = X ′

i,β 6=0MF 0

j
− 1

Nj

∑

k:g0

k
=j

cj,kiX
′
k,β 6=0MF 0

j
,

where cj,ki = λ0′

g0

k
,k(Λ

0′

j Λ0
j/Nj)

−1λ0
g0

i ,i.

The notation J0(F
0
1 , F 0

2 , ..., F 0
S) does not mean it still depends on (F 0

1 , ..., F 0
S), but

rather the limit is taken under the true factors. We could have used the notation J0 in

place of J0(F
0
1 , F 0

2 , ..., F 0
S). The same comments apply to D0(F

0
1 , ..., F 0

S) (the notation

D0 could be used).

Then we have the following theorem. Here, we emphasize that the regularization

parameter κ depends on T , and thus denote it as κT .

Theorem 3 : Asymptotic normality and variable selection consistency. Sup-

pose that the assumptions of Theorem 1 hold, and T/N → ρ > 0. Let β̂1 as the

parameter estimate of non-zero true coefficients β0
1. Then,

√
NT (β̂1 − β0

1) is asymp-

totically normal with mean v0 and variance–covariance matrix Vβ(F 0
1 , ..., F 0

S), i.e.,

11



√
NT (β̂1 − β0

1) →d N(v0, Vβ(F 0
1 , ..., F 0

S)). Moreover, the following variable selection

consistency holds:

P (β̂2 = 0) → 1, N, T → ∞.

Here, v0 is the probability limit of

v =

√

T

N
×

S
∑

j=1

D̂(F 0
1 , ..., F 0

S , κ)−1ηj +

√

N

T
×

S
∑

j=1

D̂(F 0
1 , ..., F 0

S , κ)−1ζj,

with

ηj = − 1

NjT

∑

i:g0

i =j

∑

k:g0

k
=j

(Xi − Vj,i)
′F 0

j

(

F 0
j
′
F 0

j

T

)−1 (

Λ0′

j Λ0
j

Nj

)−1

λg0

k
,k

(

E[ε′
iεk]

T

)

,(4)

ζj = − 1

NjT

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF 0

j
ΩkF

0
j

(

F 0
j
′
F 0

j

T

)−1 (

Λ0′

j Λ0
j

Nj

)−1

λg0

i ,i, (5)

D̂(F 0
1 , ..., F 0

S , κT ) =
1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
i,β 6=0MF 0

j
Xi,β 6=0

− 1

NT

S
∑

j=1

1

Nj

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
i,β 6=0MF 0

j
Xk,β 6=0cj,ki +

1

NT
Σ(κT ),

where Vj,i = N−1
j

∑

k:g0

k
=j cj,kiXk, Xi,β 6=0 is the submatrix Xi corresponding to the

columns of the nonzero element of β0, cj,ki is defined in Assumption F, and Σ(κT )

is defined as

Σ(κT ) = diag
{

p′κT ,γ(|β10|)/|β10|, . . . , p′κT ,γ(|βq0|)/|βq0|
}

,

where q is the number of nonzero elements of β0, and Ωk = E[εkε
′
k]. The asymptotic

covariance matrix Vβ(F 0
1 , ..., F 0

S) is given by

Vβ(F 0
1 , ..., F 0

S) = D0(F
0
1 , ..., F 0

S)−1J0(F
0
1 , ..., F 0

S)D0(F
0
1 , ..., F 0

S)−1,

where D0(F
0
1 , ..., F 0

S) is the probability limit of D̂(F 0
1 , ..., F 0

S , κT ).

This indicates that we can perform statistical significance tests. Notice that the

bias v0 can be consistently estimated as in Bai (2009), Hahn and Kuersteiner (2002),

and Hahn and Newey (2004) so bias correction can be performed. Also, the bias v0

will become zero in the absence of correlations and heteroskedasticity. In particular,

ηj = 0 when cross-sectional correlation and heteroskedasticity are absent in εit, and

similarly ζj = 0 when serial correlation and heteroskedasticity are absent in εit. There

will be no bias if εit are i.i.d. over t and over i. Thus bias correction can be simplified

depending on the assumptions made on ǫit.
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The estimation algorithm requires knowledge of the number of groups, the number

of group-specific factors, and the size of the regularization parameter κ. In practice,

however, we have to select these quantities. An informal but frequently used approach

is to plot the value of the sum of squared errors for each S, and then try to find the

“screen point” at which the objective function starts to flatten. However, the sum of

squared errors depends also on the number of group-specific factors, and the size of

the regularization parameter κ. Thus, the determination of these quantities is not a

straightforward task. In the next section, we propose a new criterion to select these

parameters.

5 A new Cp-type criterion for model selection

5.1 Development of a new model selection criterion

Suppose that z1, . . . , zN are replicates of the response variables y1, . . . , yN given true

values of the factors Fj, factor loadings Λj and the design matrices Xi (i = 1, . . . , N).

To assess the predictive ability of the estimated model, we consider the expected MSE

η(S, k1, ..., kS, κ) := Ez





1

NT

S
∑

j=1

Nj
∑

i;ĝi=j

∣

∣

∣

∣

∣

∣
zi − Xiβ̂ − F̂ĝi

λ̂ĝi,i

∣

∣

∣

∣

∣

∣

2



 , (6)

where k1, ..., kS are the number of group-specific factors, κ is the regularization pa-

rameter and the expectation Ez[·] is taken with respect to the joint distribution of

z1, . . . , zN conditional on the true factor structure and the set of predictors Xi. The

best model is chosen by minimizing the expected MSE.

A natural estimator of the expected MSE in (6) is the sample-based MSE

η̂(S, k1, ..., kS, κ) :=
1

NT

S
∑

j=1

Nj
∑

i;ĝi=j

∣

∣

∣

∣

∣

∣
yi − Xiβ̂ − F̂ĝi

λ̂ĝi,i

∣

∣

∣

∣

∣

∣

2

.

This quantity is formally calculated by replacing the replicates zi with an observed

value yi. This sample-based MSE generally has some bias with respect to the expected

MSE because, among other reasons, the same data are used to estimate the parameters

of the model. We therefore consider a bias-corrected version of the measure.

The bias b of the sample-based MSE η̂ with respect to the expected MSE η is given

by

b := Ey [η(S, k1, ..., kS, κ) − η̂(S, k1, ..., kS, κ)] , (7)

where the expectation Ey[·] is taken with respect to the joint distribution of yi(i =

1, . . . , N) conditional on the true factor structure and the set of predictors Xi. We

discuss how to estimate b below. Let b̂(S, k1, ..., kS, κ) be an estimate of b. Taking

13



into account the consistency of the proposed model selection criterion, we suggest

minimization of the predictive measure

η̂(S, k1, ..., kS, κ) + b̂(S, k1, ..., kS, κ)

=
1

NT

S
∑

j=1

Nj
∑

i;ĝi=j

∣

∣

∣

∣

∣

∣
yi − Xiβ̂ − F̂ĝi

λ̂ĝi,i

∣

∣

∣

∣

∣

∣

2

+ b̂(S, k1, ..., kS, κ).

The first term on the right-hand side measures the goodness of fit of the model whereas

the second term is a penalty that depends on the complexity of the model. It remains

to construct a proper estimator of the penalty term. Another contribution of this paper

is the following theorem.

Theorem 4 Under the assumptions of Theorem 3, the penalty term is

b̂(S, k1, ..., kS, κ) =
1

NT
tr

[

KxVβ(F 0
1 , ..., F 0

S , κ)
]

+
S

∑

j=1

kj × gj(T,N1, ..., NS),

where Kx = 2(NT )−1
∑N

i=1 X ′
i,β̂ 6=0

Xi,β̂ 6=0 with Xi,β̂ 6=0 being the submatrix of Xi such

that the corresponding columns contain a nonvanishing component of the parame-

ter estimate, and Vβ(F 0
1 , ..., F 0

S , κ) = D̂(F 0
1 , ..., F 0

S , κ)−1Ĵ(F 0
1 , ..., F 0

S)D̂(F 0
1 , ..., F 0

S , κ)−1.

Here, Ĵ(F 0
1 , ..., F 0

S) and D̂(F 0
1 , ..., F 0

S , κ) are defined in Assumption F and Theorem 3.

The function gj(T, N1, ..., NS) satisfies (a) gj(T, N1, ..., NS) → 0 and (b) min{N, T} ×
gj(T, N1, ..., NS) → ∞ as T,N → ∞. Under the criterion, the numbers of factors are

consistently estimated.

An example of the function gj(T,N1, ..., NS) that satisfies conditions (a) and (b) of

the theorem is

gj(T,N1, ..., NS) =
Nj

N
× T + Nj

TNj

log (TNj) .

Note that Nj/N = O(1) from the assumption E. Substituting gj(T, N1, ..., NS) into

the criterion function, we have the following criterion

Cp(k1, ..., kS, κ) =
1

NT

S
∑

j=1

∑

i;ĝi=j

‖yi − Xiβ̂ − F̂ĝi
λ̂ĝi,i‖2

+
1

TN
tr

[

KxVβ(F̂1, ..., F̂S, κ)
]

+
S

∑

j=1

kjσ̂
2Nj

N

(

T + Nj

TNj

)

log (TNj) , (8)

where σ̂2 is a consistent estimator of (NT )−1
∑S

j=1

∑

i;g0

i =j ‖yi − Xiβ̂ − F̂g0

i
λ̂g0

i ,i‖2.

We can regard the proposed criterion as a generalization of the Cp criterion of

Mallows (1973) for selecting panel data models with unobservable interactive effects in a

data-rich environment. Like the Cp criterion, σ̂2 provides proper scaling for the penalty

term. In applications, it can be replaced by (NT )−1
∑S

j=1

∑

i;ĝi=j ‖yi−Xiβ̂−F̂ĝi
λ̂ĝi,i‖2,
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which is obtained under the maximum possible dimension of Xi, the maximum possible

number of groups Smax and the maximum possible number of group-specific factors

rj,max, j = 1, ..., S. Finally, we provide the following theorem.

Theorem 5 Let Ŝ be the minimizer of the proposed Cp(k1, ..., kS, κ) criterion. Under

the assumptions in Theorem 4, the determined number of groups, Ŝ, will converge to

the true number of groups S0 as T, N → ∞.

Thus, the value of S can also be identified as the minimizer of our Cp criterion.

The following is a procedure for selecting the value of the regularization parameter κ,

the number of factors and the groups S.

5.2 Model selection algorithm

Step 1. Prepare a set of candidate values of the regularization parameter κ, the num-

ber of groups S = {1, 2..., Smax}, and the number of group-specific factors

{k1, ..., kS}.
Step 2. Fix the value of the number of groups S.

Step 3. Fix the value of the regularization parameter κ.

Step 4. Given the number of groups S and the regularization parameter κ, we optimize

the number of group-specific factors {k1, ..., kS}.
Step 5. Repeat Steps 3 and 4 under the different values of κ.

Step 6. Repeat Steps 2 ∼ 5 under the different number of groups S. Then select the

combination of the regularization parameter κ, the number of group-specific

factors {k1, ..., kS} and the number of groups S that minimize the Cp score.

6 Simulation study

6.1 Data-generating processes

The first data-generating model considered is yi = Xiβ + Fgi
λgi,i + εi, where the

rj-dimensional group-specific pervasive factor f j,t (j = 1, .., S) is a vector of N(j, 1)

variables, and each element of the factor loading matrix Λj follows N(0, j). The N -

dimensional vector εt has a multivariate normal distribution with mean 0 and covari-

ance matrix IN . The number of columns of Xi is set to p = 80, while the true number

of predictors is q = 3. Each of the elements of Xi is generated from the uniform dis-

tribution over [−2, 2]. The nonzero true parameter values of β are set to be (1, 2, 3).

These nonzero elements are put into the first three elements of βi and thus the true

parameter vector is β = (1, 2, 3, 0, 0, ..., 0)′. We set the number of groups S = 3, and

the true numbers of group-specific pervasive factors are r1 = 3 r2 = 3, r3 = 3. Set-
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ting the number of units in each group as N1 = N2 = N3, we generated a set of T

observations. The variables Nj (j = 1, 2, 3) and T take various values.

We next investigate the case in which the noise term is nonhomoscedastic. The

second data-generating model considered is yi = Xiβ + Fgi
λgi,i + εi and εit = 0.9e1

it +

δt0.9e
2
it, where δt = 1 if t is odd and is zero if t is even, and the N -dimensional vectors

e1
t = (e1

1t, . . . , e
1
Nt)

′ and e2
t = (e2

1t, . . . , e
2
Nt)

′ follow multivariate normal distributions

with mean 0 and covariance matrix S = (sij), with sij = 0.3|i−j|, and e1
t and e2

t are

independent. The noise terms are not serially correlated. The group-specific pervasive

factors and the loading matrices, the design matrix Xi and the true parameter vector

β are generated by the same method as before. The key feature of the model is that

the noise terms are not homoscedastic.

As a third example, we investigate the performance of the proposed method when

the idiosyncratic errors have some serial and cross-sectional correlations. The model is

yi = Xiβ+Fgi
λgi,i +εi with εit = 0.2εi,t−1 +eit, where t = 1, . . . , T , the N -dimensional

vector et = (e1t, . . . , eNt)
′ follows multivariate normal distributions with mean 0 and

covariance matrix S = (sij), where sij = 0.3|i−j|. The other variables are defined as

before.

6.2 Results

We generated 1,000 replications using each of the three data-generating models. We

then applied the proposed model selection criterion, Cp, to select simultaneously the

number of groups, the number of group-specific pervasive factors and the size of the

regularization parameter. We set the possible numbers of group-specific pervasive

factors to range from zero to eight. Thus, the maximum number of group-specific

pervasive factors was set to eight. The number of groups ranges from two to four.

Possible candidates for the regularization parameter κ are κ = {10, 1, 0.1, 0.01, 0.001}.
Table 1 reports the percentage of under-, correct, and overidentified values for the

proposed Cp criterion under the three data-generating models. With respect to the

number of groups, we can easily calculate the percentages of under- (U), correct (C),

and overidentified (O) values. The percentages with respect to the number of group-

specific factors are calculated under the condition that the number of groups is correctly

selected. This is because of the difficulty of the matching between the true number

of group-specific factors and the selected number of group-specific factors when the

selected number of groups and true number of groups are different. As shown in the

tables, the proposed Cp criterion is capable of selecting the true number of groups as

well as the true number of group-specific pervasive factors.

Finally, we discuss the regression coefficient estimation results. The simulation re-

sults for the parameter estimates of β̂ are reported in Table 2. Because the length of

β̂ is very long, we report the estimation results for the true predictors (β̂1, β̂2, β̂3)
′, and

that for the first three wrong predictors (β̂4, β̂5, β̂6). We point out that the remain-

ing elements of β̂ (i.e., β̂7, β̂8, ...,) are similar to the estimation results of (β̂4, β̂5, β̂6).
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As shown in Table 2, the parameters are well estimated in the simulation studies.

Furthermore, the accuracy improves as the size of the panel increases.

We point out that the proposed method implicitly assumes that each group should

not be completely overlapped. Additional experiments that we have performed suggest

that group separation, coming from the observable parts of Xiβ, or coming from the

group-specific factor structures f gi,t
λgi

, or both, is important. In summary, our simu-

lation results show that the proposed Cp criterion works well in selecting the number of

groups and the number of group-specific pervasive factors. Furthermore, the regression

coefficients β̂ are estimated very well.

7 Analysis of US mutual fund styles

A mutual fund is a portfolio of financial assets managed by a professional institution

on behalf of its clients. It is common that the professional institutions manage clients’

assets according to a particular investment style, which defines the nature of the fund.

There are well known criteria that define the investment styles, for example, “Value”

and “Growth”, “Large Cap” and “Small Cap”, etc. To provide investors with a guide to

the mutual funds market, some professional institutions issue classifications of existing

mutual funds according to the investment objectives stated by the funds. Practically,

one may rely on the institutional classification scheme; however, it does not always

provide consistent and representative peer groups of fund styles. In this section, we

aim at grouping mutual funds and identifying their styles by analyzing the time series

of past returns of each mutual fund.

7.1 Data and model

We analyze T = 85 monthly returns yit for N = 536 US mutual funds, collected from

Thomson Financial Datastream database for October 2003 to October 2010. Here we

focus mainly on the four mutual fund styles: Small Capital & Growth, Large Capital

& Growth, Small Capital & Value, and Large Capital & Value.

The specified model is

yit = β0 +
7

∑

s=1

yi,t−sβs +
7

∑

w=1

ui,twβw + MkttβMkt + HMLtβHML + SMBtβSMB

+LTRtβLTR + STRtβSTR + MomtβMom + f ′
gi,t

λgi,i + εit,

i = 1, . . . , N, t = 1, . . . , T,, where ui,tw =
∑w

k=0 I(yi,t−k > 0) is the number of past

months such that a positive return is realized, and I(·) is an indicator function that

takes the values 1 or 0. Therefore ui,tw is the cumulative sum of the months with

positive monthly returns. Fama and French (1993) suggested that an asset return

model on a stock index can be constructed using three different weighted averages of

the portfolio values: one based on size (SMB), another based on the book-to-market
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ratio (HML), and the third based on excess return (Mkt) on the market. We also

used the long-term return reversal factor (RTR), the short-term return reversal factor

(STR), and the momentum factor (Mom). These factors are obtained from the Fama

and French database.

7.2 Results

We applied the proposed model selection criterion, Cp, to select simultaneously the

number of groups, the number of group-specific pervasive factors and the size of the

regularization parameter. We set the possible numbers of group-specific pervasive fac-

tors to range from zero to eight. Thus, the maximum number of group-specific pervasive

factors was set to eight. The number of groups ranges from one to nine, i.e., Smax = 9.

Possible candidates for the regularization parameter κ are κ = {10, 1, 0.1, 0.01, 0.001}.
As a result, the selected number of groups is Ŝ = 6. A two-way table of the grouping

output against the four mutual fund styles is provided in Table 3. The two classification

schemes appear to be similar in several respects, although the classification based on

the mutual fund names is more parsimonious than in our grouping. Memberships

overlap considerably for the constructed groups and the classification by name. The

distribution of the funds’ memberships is easy to interpret according to mutual fund

names. For example, the constructed group 6 (G6) corresponds to Small Capital

& Growth. However, Small Capital & Growth mutual funds are divided into other

groups. Group 1 contains 64 Small Capital & Growth mutual funds and the “Growth”

factor plays a main role. Groups 2 and 4 contain 19 and 14 Small Capital & Growth

mutual funds and the “Small” factor is the most important characteristic. Group 3

mostly contains Large Capital & Growth mutual funds. Therefore, both “Large” and

“Growth” factors may characterize the fund returns. Group 5 is the group in which

“Large” and “Value” factors might be related. The comparisons in Table 3 show the

potential of the proposed method. The agreements between the two schemes suggest

that our procedure succeeds in recognizing the fundamental differences among funds.

The selected numbers of group-specific pervasive factors are r1 = 4, r2 = 3, r3 = 3,

r4 = 3, r5 = 2, r6 = 3, respectively. Therefore, there are group-specific pervasive fac-

tors that explain the mutual fund returns within the groups. The estimated regression

coefficients {β̂s, β̂w|s, w = 1, ..., 7} are estimated as zero, which partially implies that

the return prediction from the historical information is difficult. We found that the

estimated regression coefficients on the style factors {β̂Mkt, β̂HML, ..., β̂Mom} are also

zero. This result makes sense because the investment styles (i.e., a sensitivity to the

set of investment style factors {Mktt, HMLt, SMBt, LTRt, STRt,Momt}) are differ-

ent among the set of 536 mutual funds. In Section 8, we introduce the model with

heterogeneous regression coefficients that vary over the groups.

Table 4 provides the correlations between the estimated group-specific pervasive fac-

tors and the Fama and French (1993) factors (Mkt, HML, SMB), Short-Term Reversal

Factor (STR), Long-Term Reversal Factor (LTR), and Momentum Factor (Mom). If
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the absolute value of the correlations are larger than 0.18, 0.22, and 0.29, the corre-

sponding significance levels are 10%, 5% and 1%, respectively. From the table, we

make the following observations. First, the Mkt factors are mainly related to the first

group-specific pervasive factor for all six groups. In particular, the magnitude of the

correlation is the highest among those with other styles. Second, the SMB factor is

highly related to the first group-specific pervasive factor of group 1, while it has a

very low correlation with the factors of other groups. Third, the HML factor has high

correlations with the group-specific pervasive factors of groups 1 and 2. Fourth, the

momentum factor, short-term return reversal factor, and long-term return reversal fac-

tor also play an important role as the high-level correlations show. Fifth, some of the

estimated group-specific pervasive factors have low correlations with the six observable

investment styles (Mkt, HML, SMB, STR, LTR, and Mom). For example, the second

group-specific pervasive factor of group 5 has very low correlation with these variables.

It would be interesting to explore some possible investment styles that have a large

correlation with such factors. Overall, the estimated group-specific pervasive factors

vary over the groups.

8 Heterogeneous group-specific coefficients

The model (1) can be extended to the heterogeneous group-specific coefficients

yit = x′
itβgi

+ f ′
gi,t

λgi,i + εi,t, i = 1, . . . , N, t = 1, . . . , T, (9)

where the pi×1 vector βgi
contains the unknown regression coefficients for each group.

The regression coefficient is group-specific, but not individual-specific. It may be of

interest to extend the model to individual-dependent coefficients, which is not studied

in this paper. The model assumptions are the same as in Section 2.1, except we need

to modify Assumption D as follows.

Assumption D′: Observable predictors

(D1′) For the matrices Dj, Ej and Lj defined in Assumption D of Section 2.1, we

assume

Dj − L′
jE

−1
j Lj

is positive definite for all Fj such that F ′
jFj/T = I and for all groupings with a

positive fraction of membership. Assumption D2 is maintained.

(D2′): The vector of predictor xit satisfies max1≤i≤N T−1‖Xi‖2 = Op(N
α) with α <

1/16. We also assume N/T 2 → 0.

In D2′, we now require α < 1/16 instead of α < 1/8. Again, this is much weaker

than assuming xit has exponential tails. Assumption D′ ensures the existence of the

asymptotic variance matrix of the estimated regression coefficients. This condition is

used for the proof of consistency.
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8.1 Estimation procedure

Under a given number of groups S, number of factors r1, ..., rS, and size of the SCAD

penalty κ, our estimator {β̂1, ..., β̂S, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S} is defined as the minimizer

of

LNT (β1, ..., βS, G, F1, ..., FS, Λ1, ..., ΛS)

=
S

∑

j=1

∑

i;gi=j

‖yi − Xiβgi
− Fgi

λgi,i‖2 +
S

∑

j=1

NT · pκ,γ

(

|βj|
)

,

subject to the constraints on the factor and factor loading matrix imposed in Section

2.

Given the group membership G and the values of regression coefficient βj, the

factor structures are estimated as described in Section 2. Given the group membership

G and the factor structures, the regression coefficients βj can be updated. It is easy

to see that, for any given values of βj and Fjλj,i (j = 1, ..., S), the optimal assignment

for each individual unit is: g∗
i = argminj∈{1,...,S}T

−1‖yi − Xiβj − Fjλj,i‖2 + pκ,γ(|βj|).
The estimates of β, {Fj, Λj; j = 1, ..., S}, and G = {g1, ..., gN} depend on each other,

the estimators are obtained by almost the same procedures as in Section 2.

8.2 Asymptotic results

Here, we use {F 0
j , j = 1, ..., S} to denote the true parameter values of the group-specific

factors Fj that satisfies Assumptions A, B, C, D′ and E. As N and T increase, we

claim that the estimated factors are consistent in the sense of some averaged norm,

which will be specified below. We have the following theorem.

Theorem 6 : Consistency. Under Assumptions A, B, C, D′ and E, κ → 0 and

min{Nj, T} × κ → ∞ as T, N → ∞, the estimators β̂j are consistent

‖β̂j − β0
j‖ = op(1), for j = 1, ..., S,

In addition, {F̂j, j = 1, ..., S} are consistent in the sense of

T−1/2‖F̂j − F 0
j Hj‖ = op(1),

where H−1
j = Vj,NjT (F 0

j F̂j/T )−1(Λ0′

j Λ0
j/Nj)

−1, and Vj,NjT satisfies




1

NjT

Nj
∑

i;ĝi=j

(yi − Xiβ̂j)(yi − Xiβ̂j)
′



 F̂j = F̂jVj,NjT .

The estimates of β1, .., βS, {Fj, Λj; j = 1, ..., S}, and G ∈ {g1, ..., gN} depend

on each other, and we therefore denote the estimator of group membership ĝi as

ĝi(β̂1, ..., β̂S, F̂ , Λ̂) in the following theorem. The following theorem shows that the

estimated group membership converges to the true group membership as T and N

goes to infinity.
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Theorem 7 : Consistency of the estimator of group membership. Suppose

that the assumptions in Theorem 6 hold. Then, for all τ > 0 and T,N → ∞, we have

P

(

sup
i∈{1,...,N}

|ĝi(β̂1, ..., β̂S, F̂ , Λ̂) − g0
i | > 0

)

= o(1) + o(N/T τ ),

where F̂ = {F̂1, ..., F̂S} and Λ̂ = {Λ̂1, ..., Λ̂S}.

Let us define β̃1, ..., β̃S, F̃1, ..., F̃S, Λ̃1, ..., Λ̃S as the infeasible version of our estimator

where group membership is fixed to its population G0. It is defined as the minimizer

of LNT (β1...,βS, G0, F1, ..., FS, Λ1, ..., ΛS) subject to the usual constraints. Theorem 7

shows that, under a certain condition, our estimator {β̂1, ..., β̂S, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S} is

asymptotically equivalent to the infeasible estimates β̃1, ..., β̃S, F̃1, ..., F̃S, Λ̃1, ..., Λ̃S as

N and T tend to infinity. If for some b > 0, N/T b → 0 as both N and T tend to infinity

simultaneously, the proposed estimator β̂j, F̂j (j = 1, ..., S) and the infeasible estimator

β̃j, F̃j (j = 1, ..., S) with known population groups are asymptotically equivalent.

In the next theorem, we provide the asymptotic normality and the variable selection

consistency. Let β0
j = (β0

j,1

′
,β0

j,2

′
)′ be the true parameter vector such that β0

j,2 = 0. We

denote the corresponding estimate as β̂j = (β̂
′

j,1, β̂
′

j,2)
′. We show that P (β̂j,2 = 0) will

converges to 1 as N, T → ∞. Also, the parameter estimate β̂j,1 is the asymptotically

normal.

Assumption F′

Let Xi,βj 6=0 be the submatrix of Xi corresponding to columns of the nonzero elements of

the parameter vector βj. Let qj be the number of nonzero elements of βj (j = 1, ..., S).

For the nonrandom positive definite matrix J0(F
0
j ),

1
√

NjT

∑

i:g0

i =j

Zj,i(F
0
j )′εi →d N(0, J0(F

0
j )),

where Zj,i(F
0
j ) = X ′

i,β 6=0MF 0

j
−N−1

j

∑

k:g0

k
=j cj,kiX

′
k,β 6=0MF 0

j
, with cj,ki = λ0′

g0

k
,k(Λ

0′

j Λ0
j/Nj)

−1λ0
g0

i ,i,

and J0(F
0
j ) is the probability limit of

Ĵ(F 0
j ) =

1

NjT

∑

i:g0

i =j

∑

ℓ:g0

ℓ
=j

Zj,i(F
0
j )′E[εiε

′
ℓ]Zj,ℓ(F

0
j ).

Then, we have the following theorem.

Theorem 8 : Asymptotic normality and variable selection consistency As-

sume that the assumptions in Theorems 6 and 7 and F ′ hold. Then,
√

NjT (β̂j,1−β0
j,1)

is asymptotically normal with mean v0
j and variance–covariance matrix Vβ(F 0

j ), i.e.,
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√

NjT (β̂j,1 − β0
j,1) →d N(vj

0, Vβ(F 0
j )). Moreover, the following variable selection con-

sistency holds:

P (β̂j,2 = 0) → 1 N, T → ∞,

for j = 1, ..., S. Here, the variance–covariance matrix Vβj
(F 0

j ) is

Vβ(F 0
j ) = D0(F

0
j )−1J0(F

0
j )D0(F

0
j )−1,

where D0(F
0
j ) is the probability limit of

D̂(F 0
j , κT ) =

1

NjT

∑

i:g0

i =j

[

X ′
iMF 0

j
Xi −

1

Nj

∑

k:g0

k
=j

cj,kiX
′
iMF 0

j
Xk

]

+
1

NjT
Σj(κT ),

with Σj(κT ) = diag
{

p′κT ,γ(|βj,1|)/|βj,1|, . . . , p′κT ,γ(|βj,qj
|)/|βj,qj

|
}

, where qj is the number

of nonzero elements of β0
j , and v

j
0 is the probability limit of

√

T

Nj

× D̂(F 0
j , κT )−1ηj +

√

Nj

T
× D̂(F 0

j , κT )−1ζj,

where

ζj = − 1

NjT

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

ΩkF
0
j

(

F 0
j
′
F 0

j

T

)−1
(

Λ′
jΛj

Nj

)−1

λg0

i ,i,

ηj = − 1

NjT

∑

i:g0

i =j

∑

k:g0

k
=j

(Xi − Vj,i)
′F 0

j

(

F 0
j
′
F 0

j

T

)−1
(

Λ′
jΛj

Nj

)−1

λg0

k
,k

(

E[ε′
iεk]

T

)

,

with cj,ki = λ0′

g0

k
,k(Λ

0′

j Λ0
j/Nj)

−1λ0
g0

i ,i, and Vj,i = N−1
j

∑

k:g0

k
=j cj,kiXk.

The proof of the theorem is given in the Appendix.

8.3 Determining the number of groups/factors

Taking into account the consistency of the proposed model selection criterion, we again

suggest minimization of the predictive measure

1

NT

S
∑

j=1

∑

i;ĝi
=j

∥

∥

∥yi − Xiβ̂gi
− F̂ĝi

λ̂ĝi,i

∥

∥

∥

2

+ b̂(k1, ..., kS, κ).

The first term on the right-hand side measures the goodness of fit of the model whereas

the second term is a penalty that depends on the complexity of the model. It remains

to construct a proper estimator of the penalty term. We have the following result.
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Theorem 9 Under the assumptions of Theorems 6-8, the penalty term is

b̂(k1, ..., kS, κ) =
S

∑

j=1

1

NT
tr

[

Kj,xVβ(F 0
j , κ)

]

+
S

∑

j=1

kj × gj(T, N1, ..., NS),

where Kj,x = 2
∑

i;gi=j X ′
i,β̂j 6=0

Xi,β̂j 6=0/(NjT ) with Xi,β̂j 6=0 being the submatrix of Xi such

that the corresponding columns contain a nonvanishing component of the parameter

estimate, and Vβ(F 0
j , κ) = D̂(F 0

j , κ)−1Ĵ(F 0
j )D̂(F 0

j , κ)−1. Here Ĵ(F 0
j ) and D̂(F 0

j , κ) are

defined in Assumption F ′ and Theorem 8. The function gj(T, N1, ..., NS) satisfies (a)

gj(T, N1, ..., NS) → 0 and (b) min{N, T} × gj(T, N1, ..., NS) → ∞ as T, N → ∞.

Using the same investigations in Section 4, we have the following criterion:

Cp(k1, ..., kS, κ) =
1

NT

S
∑

j=1

∑

i;ĝi=j

‖yi − Xiβ̂ĝi
− F̂ĝi

λ̂ĝi,i‖2

+
S

∑

j=1

1

NT
tr

[

Kj,xVβ(F̂j, κ)
]

+
S

∑

j=1

kjσ̂
2Nj

N

(

T + Nj

TNj

)

log (TNj) , (10)

where σ̂2 is a consistent estimate of (NT )−1
∑S

j=1

∑

g0

i =j ‖yi−Xiβ̂g0

i
−F̂g0

i
λ̂g0

i ,i‖2. Under

the criterion, the numbers of factors are consistently estimated.

Similar to the Cp criterion, σ̂2 provides proper scaling for the penalty term. In

applications, it can be replaced by its consistent estimator. Finally, we provide the fol-

lowing theorem, which states that the value of S can also be identified as the minimizer

of the preceding information criterion.

Theorem 10 Let Ŝ be the minimizer of the proposed Cp(k1, ..., kS, κ) criterion in (10).

The determined number of groups, Ŝ, converges in probability to the true number of

groups S0 as T, N → ∞.

9 Analysis of China’s mainland stock markets

The relative strengths of industry versus exchange-listed effects can be of major impor-

tance for equity portfolio managers. If market-listed effects dominate, then primary

consideration can be given to the market allocation decision. In contrast, if China’s

mainland stock market integration is reducing the distinction between markets, then

an industry-first investment process may be more appropriate.

There are two stock exchange markets in mainland China: the Shanghai and Shen-

zhen stock exchanges. Because of the location of the markets, the underlying asset

return structure of the Shanghai stock exchange may be different from that of the

Shenzhen stock exchange.
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In these markets, two types of shares are traded, namely A- and B-shares. Al-

though A- and B-shares are listed and traded in the mainland market, the former are

denominated in RMB and were originally traded only among Chinese citizens, whereas

the latter are denominated in foreign currencies and were originally traded among non-

Chinese citizens or among Chinese residing overseas. The Chinese government launched

the qualified foreign institutional investors (QFII) policy in 2003 and introduced for-

eign investors into the domestic A-share market. Although Chinese mainlanders have

been eligible to trade B-shares with legal foreign currency accounts since March 2001,

the mainlanders may prefer to trade only in A-shares because of the currency barrier.

It therefore seems plausible that the underlying asset return structure of A-shares is

different from that of B-shares.

This paper investigates empirical questions such as the following: How many groups

exist in the stock markets in mainland China? How many group-specific pervasive

factors exist in the stock markets in mainland China? What types of observable risk

factors explain the stocks in each group? Finally, how can the unobservable factors be

understood in terms of observable variables in the economy?

9.1 Data

We use monthly excess returns of the Shanghai and Shenzhen stock exchanges from

Standard & Poor (S&P)’s Datastream Database. We consider an approximately eight-

year sample, covering March 2002 to October 2010, and systematically exclude stocks

with missing returns data. We calculate excess returns by subtracting the interest

rate on the one-month interbank offer rate from the individual stock returns. The

above filtering procedure yields 1,039 A-share firms and 102 B-share firms, listed on

the Shanghai stock exchange and the Shenzhen stock exchange respectively.

Numerous studies have analyzed the stock market reaction of developed countries

to changes in macroeconomic variables (Fama (1981), Chen et al. (1986), Fama and

French (1989)). Therefore, for the observable risk factors, we use two macroeconomic

variables: macroeconomic climate leading index and the money supply. We also use

commodity prices because they are a major cost factor for various economic activities in

China. Therefore, commodity prices include the prices of industrial metal, aluminum,

copper, crude oil, natural gas and nickel. In addition to these, we use the gold price

and the silver price, which affect the price of alternatives to these financial instruments.

Currency movements directly affect the earnings of Chinese firms. In this paper, we

use the Chinese yuan to US dollar exchange rate, the Chinese yuan to Japanese yen

exchange rate, the Chinese yuan to euro exchange rate, and the Chinese yuan to HK

dollar exchange rate. Finally, international stock market conditions may affect China’s

mainland stock markets. Therefore, we use the S&P 500 index, the MSCI World index,

the MSCI Europe index, TOPIX, the Hang Seng index, as well as the MSCI China

index.

24



9.2 Result

We fit the model (9) by minimizing the objective function. Then, we applied the

proposed model-selection criterion, Cp, to select simultaneously the number of groups

S, the number of group-specific pervasive factors, and the size of the regularization

parameter κ. We set the maximum number of groups to Smax = 20. The possible

number of group-specific pervasive factors rj range from 0 to 20. Although we set the

maximum number of possible factors more than 20, this number may be enough based

on the stock market analysis of other countries (see for e.g., Fama and French (1993)).

Possible candidates for the regularization parameter κ are κ = {10, 1, 0.1, 0.01, 0.001}.
The estimated number of groups is Ŝ = 6 because this achieved the smallest value of

the proposed model-selection criterion, Cp. This suggests that there are approximately

six groups in the Chinese mainland stock markets. Hereafter we denote each of these

six groups as G1∼G6. As the market/industry classifications are known, a two-way

table of the estimated group membership ĝi against these classifications is provided

in Table 5. The nominal classification schemes are based on: 1. Location of stock

exchanges, 2. Types of share (A-share or B-share), and 3. Industry. The estimated

group memberships appear to be more related to the A-share/B-share classification

rather than to the other two factors. Group G5 is comprised of almost exclusively

(approximately 90%) B-shares. Although group G3 also contains A-shares, we suspect

that the international investors are also buying the A-shares included in group G3.

This indicates that the investors may first consider the types of share (A-share/B-

share) rather than the industry or stock exchanges.

The estimated number of group-specific pervasive factors is: 3 group-specific perva-

sive factors with respect to groups G3 and G5, 2 group-specific pervasive factors with

respect to groups G2, G4 and G5, and 1 group-specific pervasive factor with respect

to group G1. Although the group G1 is a mix of A-shares and B-shares, the number

of group-specific pervasive factors of this group is smaller than that of group G5.

The estimated group-specific pervasive factors do not have an immediate economic

interpretation. We therefore further explore the economic meanings of the estimated

factors in each group. In this paper, we regress the estimated group-specific pervasive

factors f̂jk,t (j = 1, ..., S; k = 1, ..., rj) on some economic factors zt; f̂jk,t = z′
tγjk +ejk,t,

and then conduct statistical significance tests of the least squares estimate γ̂jk.

To make a link between the estimated group-specific pervasive factors, we consider

the following four observable market variables: the Chicago Board Options Exchange

(CBOE) volatility index, market excess returns of A-shares, market excess returns of

B-shares, and two factors considered by Fama and French (1993), HML and SMB. We

calculated the market excess returns of A-shares by subtracting the interest rate on

the one-month interbank offered rate from the average return of the Shanghai stock

exchange A-share price index and the Shenzhen stock exchange A-share price index.

The market excess returns of B-shares are calculated in the same way. The HML factor

accounts for the spread in returns between value and growth stocks, and thus shows
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the value premium. SMB measures the historic excess returns of small caps over big

caps. These variables are computed using Chinese data.

Table 6 summarizes the results. In Table 6, for each factor, the first row corre-

sponds to the estimated regression coefficients, whereas the second row corresponds to

the standard deviations. In the table, stars (***), (**) and (*) mean that the estimated

regression coefficient is statistically significant at the 1%, 5%, and 10% levels, respec-

tively. We can see from Table 6 that for the first group-specific pervasive factor, the

first element of f k,t relates to the market excess returns of A-shares. This is expected

because all groups contain many A-shares, and even for group G5, the number of A-

shares exceeds the number of B-shares. Furthermore, the size factor SMB also relates

to the first group-specific pervasive factor. Contrary to findings for the US market, the

book-to-market ratio factor (HML) is weakly related to the estimated factors. As we

expected, the group-specific factors of group G1 relate strongly to the market excess

returns of B-shares as well as A-shares. With respect to VIX, the group-specific fac-

tors of group G1 an G3 are weakly related. We suspect that the investors in B-shares

are monitoring the volatility index. Overall, we can see some differences among the

group-specific pervasive factors.

From Theorem 8, we can implement a statistical significance test for the estimated

regression coefficients β̂k k = 1, ..., 6. Thus, we can check whether the regression coef-

ficients β̂k for each security are statistically significant. Table 7 shows the statistically

significant observable risk factors for each group. In the table, stars (***), (**) and

(*) mean that the observable risk factor is statistically significant at the 1%, 5%, and

10% levels, respectively.

Table 7 presents the following results. First, together with the results of Table

6, market excess returns of A-shares, and size factor SMB exist in each group. This

indicates that although the set of observable risk factors listed in the table may affect

the shares in all groups, the major factors are these two extracted factors. Second,

groups G2∼G6 are partially explained by the money supply. Furthermore, a leading

indicator of the macroeconomic climate index is one of the risk factors for groups

G4∼G6. Thus, Chinese macroeconomic variables are important for explaining asset

returns. The exchange rate of the Chinese yuan to the U.S. dollar has a large impact

on the excess returns of groups G1∼G4. Third, table 7 shows that the S&P 500 and

TOPIX are important factors for the group G5. Although other stock market indexes

are not included, this does not indicate that the other markets are completely ignored.

This is because these five stock market indexes are highly correlated and, thus, some

of the indexes are sufficient for explaining the fluctuations of individual stock returns.

The empirical results show that the number of unobservable and observable factors

varies across groups. Group G5 is subject to a total of ten factors, including three

group-specific pervasive factors and seven observable risk factors. In contrast, group

G1 is subject to two group-specific pervasive factors and three observable risk factors.
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10 Conclusion

The proposed panel data modeling procedures provide a flexible yet parsimonious ap-

proach to capturing unobserved heterogeneity. The regression parameters, unobserv-

able factor structure, and group membership were all estimated jointly. The lasso

approach allows us to implement the model estimation procedure easily. We provided

a novel argument of consistency, which is the most difficult part to obtain. We also

proposed a Cp-type model selection criterion. The Monte Carlo results showed that

the proposed procedure performed well. The proposed procedure is then applied to

the study of US mutual fund style analysis. A two-way table of the grouping output

against the four mutual fund styles showed that our procedure succeeds in recognizing

the fundamental differences among funds.

We also consider heterogeneous regression coefficients that varies over the groups.

Asymptotic normality and the variable selection consistency of the estimated hetero-

geneous coefficients were again obtained. To determine the number of group-specific

factors, the magnitude of the regularization parameter and the number of groups, we

again developed a Cp-type model selection criterion for selecting these quantities.

The proposed modeling procedure was then applied to the analysis of the two Chi-

nese mainland stock markets, the Shanghai and Shenzhen stock exchanges. The em-

pirical result showed that there are approximately six groups in the Chinese mainland

stock markets. Using the proposed variable selection procedure, the set of important

predictors for each group were determined. We also found that the set of relevant pre-

dictors varied over the groups. Moreover, we provided a partial solution to the issue of

how to interpret the constructed unobservable factors from an economic perspective.

Again, the number of group-specific factors and their interpretations varied over the

groups.
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Appendix

We first introduce some notations to be used. Let G0 = {g0
1, ..., g

0
N} and G = {g1, ..., gN}

denote, respectively, the population grouping and any grouping of the cross-sectional

units into S groups. Thus for each i, we have gi ∈ {1, ..., S}. Let G be the collec-

tion of all such groupings. That is, G = {(g1, g2, ..., gN); gi ∈ (1, 2, ..., S)}. Define

FG = {(Fg1
, ..., FgN

); (g1, g2, ..., gN) ∈ G, F ′
jFj/T = Irj

, 1 ≤ j ≤ S}. The element of G
is denoted by G and the element of FG is denoted by FG. Each G = (g1, ..., gN) ∈ G is

associated with an element FG = (Fg1
, ..., FgN

) in FG. The true regression coefficient is

denoted by β0; F 0
g0

i
and λ0

g0

i ,i are the true factor and factor loading of individual i.

Lemma A1

Under the Assumptions of Theorem 1,

sup
G∈G,FG∈FG

‖ 1

NT

N
∑

i=1

X ′
iMFgi

εi‖ = Op(T
−1/4) + Op(N

−1/4),

sup
G∈G,FG∈FG

‖ 1

NT

N
∑

i=1

λ0
g0

i ,i

′
F 0′

g0

i
MFgi

εi‖ = Op(T
−1/4) + Op(N

−1/4),

sup
G∈G,FG∈FG

‖ 1

NT

N
∑

i=1

ε′
iPFgi

εi‖ = Op(T
−1/2) + Op(N

−1/2)

where MFgi
= I − Fgi

F ′
gi
/T and PFgi

= Fgi
F ′

gi
/T ;

Proof of Lemma A1. The proof of Lemma A1 is similar to that of Lemma A1 of Bai

(2009), also see Bonhomme and Manresa (2012). Lemma A1 is due to the boundedness

of S. If S is allowed to increase, the right hand side of the equations should be multiplied

by S. Because S is fixed, it is absorbed into the Op term. First note that T−1‖Fgi
‖2 = rj

if gi = j. Thus T−1/2‖Fgi
‖ ≤ √

rj ≤ √
r, where r = max{r1, r2, ..., rS}. In addition,

T−1‖X ′
iFgi

‖ ≤ r1/2T−1/2‖Xi‖ = Op(1).

Consider the first claim in the lemma. From 1
NT

∑N
i=1 X ′

iεi = Op((NT )−1/2), it is

sufficient to consider 1
NT

∑N
i=1 X ′

iPFgi
εi = 1

NT 2

∑N
i=1 X ′

iFgi
F ′

gi
εi. Its norm is bounded

by

1

N

N
∑

i=1

‖T−1X ′
iFgi

‖ · ‖T−1F ′
gi
εi‖ ≤

√
r
( 1

N

N
∑

i=1

‖T−1/2Xi‖2
)1/2( 1

N

N
∑

i=1

‖ 1

T
F ′

gi
εi‖2

)1/2

Next,

1

N

N
∑

i=1

‖ 1

T
F ′

gi
εi‖2 =

1

N

N
∑

i=1

‖
S

∑

j=1

1(gi = j)
1

T
F ′

jεi‖2 ≤ 1

N

N
∑

i=1

S
∑

j=1

‖ 1

T
F ′

jεi‖2

≤ S sup
F

1

N

N
∑

i=1

‖ 1

T
F ′εi‖2
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where the supremum with respect to F is taken over F such that F ′F/T = Ir. The

latter was shown to be Op(N
−1/2)+Op(T

−1/2) by Bai (2009). Taking the squared-root

gives the desired result. The proofs for the remaining two claims are similar. ¤

Proof of Theorem 1

Here, we will prove ‖β̂ − β0‖2 = Op(T
−1/4) + Op(N

−1/4) and 1
T
‖F̂σ(g) − F 0

g ‖2 =

Op(T
−1/8)+Op(N

−1/8), where (σ(1), σ(2)..., σ(S)) is a permutation of (1, 2, ..., S). The

result ‖β̂ − β0‖2 = Op(T
−1/4) + Op(N

−1/4) will be used in the proof of Lemma A.2.

Let G = {g1, ..., gN} denote an arbitrarily given grouping of the N cross-sectional

units (gi ∈ {1, 2, ..., S}). Let Nj denote the number of cross-sectional units within the

jth group (j = 1, 2, ..., S) with N = N1 +N2 + · · ·+NS. The true population grouping

is denoted by G0 = (g0
1, ..., g

0
N).

The estimator {β̂, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S} is defined as the minimizer of

LNT (β, G, F1, ..., FS, Λ1, ..., ΛS)

=
N

∑

i=1

‖yi − Xiβ − Fgi
λgi,i‖2 + NT · pκ,γ (|β|)

subject to the constraints F ′
jFj/T = Irj

(j = 1, ..., S), Λ′
jΛj (j = 1, ..., S) being diag-

onal. Here Λj = (λj,1, ...., λj,Nj
) is the rj × Nj factor loading matrix (j = 1, ..., S) for

the group-specific factors.

We first show that β̂ is consistent for β0. Without loss of generality, we assume

β0 = 0 for notational simplicity and we concentrate out the factor loadings through

Λj = W ′
jFj(F

′
jFj)

−1 = W ′
jFj/T where Wj = (wj,1, ..., wj,Nj

) such that wj,i = yi −Xiβ

for gi = j. Note that the set of estimates {β̂, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S} that jointly

minimizes the objective function LNT (β, G, F1, ..., FS, Λ1, ..., ΛS), and the set of esti-

mates {β̂, Ĝ, F̂1, ..., F̂S} that jointly minimizes the following concentrated and centered

objective function

UNT (β, G, F1, ..., FS)

=
1

NT

[

N
∑

i=1

(yi − Xiβ)′MFgi
(yi − Xiβ)

]

+ pκ,γ (|β|) − 1

NT

N
∑

i=1

ε′
iMF 0

g0
i

εi

are the same. The term 1
NT

∑N
i=1 ε′

iMF 0

g0
i

εi is for the purpose of centering. It does not

depend on unknown parameters.

Noting that the true data generating process is yi = F 0
g0

i

λ0
g0

i ,i + εi (Xiβ
0 = 0), the

objective function UNT (β, G, F1, ..., FS) is further expressed as

UNT (β, G, F1, ..., FS)

= β′

(

1

NT

N
∑

i=1

X ′
iMFgi

Xi

)

β +
1

NT

N
∑

i=1

λ0
g0

i ,i

′
F 0′

g0

i
MFgi

F 0
g0

i
λ0

g0

i ,i
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+2β′

[

1

NT

N
∑

i=1

X ′
iMFgi

F 0
g0

i
λ0

g0

i ,i

]

+ 2β′

(

1

NT

N
∑

i=1

X ′
iMFgi

εi

)

+2
1

NT

N
∑

i=1

λ0
g0

i ,i

′
F 0′

g0

i
MFgi

εi +
1

NT

N
∑

i=1

ε′
i(PF 0

g0
i

− PFgi
)εi + pκ,γ (|β|) .

Lemma A1 implies that the fourth to the sixth terms are bounded by Op(T
−1/4) +

Op(N
−1/4) (assuming β is bounded) uniformly over the parameter space. By choosing

κ to be small, we make the last penalty term also this order of magnitude. Thus we

have

UNT (β, G, F1, ..., FS) = ŨNT (β, G, F1, ..., FS) + Op(T
−1/4) + Op(N

−1/4), (11)

uniformly over the parameter space, where

ŨNT (β, G, F1, ..., FS)

= β′

(

1

NT

S
∑

j=1

∑

i;gi=j

X ′
iMFgi

Xi

)

β +
1

NT

S
∑

j=1

∑

i;gi=j

λ0
g0

i ,i

′
F 0′

g0

i
MFgi

F 0
g0

i
λ0

g0

i ,i

+2β′

[

1

NT

S
∑

j=1

∑

i;gi=j

X ′
iMFgi

F 0
g0

i
λ0

g0

i ,i

]

. (12)

We rewrite ŨNT as

ŨNT (β, G, F1, ..., FS) =
S

∑

j=1

[

β′Djβ + ζ ′
jEjζj + 2β′L′

jζj

]

where Dj, Ej, Lj and ζj are

Dj =
1

NT

∑

i;gi=j

X ′
iMFj

Xi, Ej = diag{Ej1, ..., EjS},

Lj = (L′
j1, ..., L

′
jS)′ ζj = (ζ ′

j1, ..., ζ
′
jS)′,

with Ejk, Ljk and ζjk (k = 1, ..., S) being

Ejk =
1

N

∑

i;gi=j,g0

i =k

(

λ0
k,iλ

0
k,i

′
)

⊗ IT , ζjk = vec(MFj
F 0

k ),

Ljk =
1

NT

∑

i;gi=j,g0

i =k

λ0
k,i ⊗ MFj

Xi.

Completing the square of ŨNT (β, G, F1, ..., FS), we have

ŨNT (β, G, F1, ..., FS) (13)

=
1

N

[

β′

(

S
∑

j=1

Dj −
S

∑

j=1

L′
jE

−1
j Lj

)

β +
S

∑

j=1

(ζ ′
j + β′L′

jE
−1
j )Ej(ζj + E−1

j Ljβ)

]

.
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By Assumption D, the matrix
∑S

j=1 Dj −
∑S

j=1 L′
jE

−1
j Lj is positive definite. Also, Ej

is semi-positive definite, so ŨNT (β, G, F1, ..., FS) ≥ 0 for all (β,G, F1, ..., FS). Further

note that

ŨNT (β0, G0, F 0
1 , ..., F 0

S) = 0

This can be easily seen from (12) by replacing β by β0 = 0 and MF 0

j
F 0

j = 0 for

gi = g0
i = j (j = 1, 2, ..., S). Note that we use the notation β0 = 0. Otherwise, β

should be replaced by β − β0.

Evaluate (11) at (β0, G0, F 0
1 , ..., F 0

S), and noting ŨNT (β0, G0, F 0
1 , ..., F 0

S) = 0,

Op(T
−1/4) + Op(N

−1/4) = UNT (β0, G0, F 0
1 , ..., F 0

S)

≥ UNT (β̂, Ĝ, F̂1, ..., F̂S)

= ŨNT (β̂, Ĝ, F̂1, ..., F̂S) + Op(T
−1/4) + Op(N

−1/4).

The last equality follows from by evaluating (11) at (β̂, Ĝ, F̂1, ..., F̂S). Combined with

ŨNT (β̂, Ĝ, F̂1, ..., F̂S) ≥ 0, it must be

ŨNT (β̂, Ĝ, F̂1, ..., F̂S) = Op(T
−1/4) + Op(N

−1/4). (14)

Because the two terms in ŨNT (see equation (13)) are both non-negative, so each term

must be Op(T
−1/4) + Op(N

−1/4). Thus (note we used the notation β0 = 0),

‖β̂ − β0‖2 = Op(T
−1/4) + Op(N

−1/4), (15)

which implies that β̂ is consistent for β0. As discussed in Bai (2009), we cannot

deduce that F̂j is consistent for F 0
j Hj. This is because the number of elements of

F 0
j goes to infinity, so the usual consistency is not well defined. However, because

‖β̂ − β0‖ = Op(T
−1/8) + Op(N

−1/8), the expressions in (12) together with (14) imply

that

1

NT

S
∑

j=1

∑

i;ĝi=j

[

λ0
g0

i ,i

′
F 0′

g0

i
MF̂j

F 0
g0

i
λ0

g0

i ,i

]

= Op(T
−1/8) + Op(N

−1/8). (16)

We can rewrite (16) as the trace of the following matrix

[ 1

T
F 0′

1 MF̂1
F 0

1

][ 1

N

N
∑

i=1

1(ĝi = 1)λ0
1,iλ

0′
1,i

]

+ · · · +
[ 1

T
F 0′

1 MF̂S
F 0

1

][ 1

N

N
∑

i=1

1(ĝi = S)λ0
1,iλ

0′
1,i

]

+
[ 1

T
F 0′

2 MF̂1
F 0

2

][ 1

N

N
∑

i=1

1(ĝi = 1)λ0
2,iλ

0′
2,i

]

+ · · · +
[ 1

T
F 0′

2 MF̂S
F 0

2

][ 1

N

N
∑

i=1

1(ĝi = S)λ0
2,iλ

0′
2,i

]

...

+
[ 1

T
F 0′

S MF̂1
F 0

S

][ 1

N

N
∑

i=1

1(ĝi = 1)λ0
S,iλ

0′
S,i

]

+ · · · +
[ 1

T
F 0′

S MF̂1
F 0

S

][ 1

N

N
∑

i=1

1(ĝi = S)λ0
S,iλ

0′
S,i

]

.
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The first line involves distributing the true group 1 individuals over S different esti-

mated groups, the second line involves distributing true group 2 individuals into S

estimated groups, and so on. Because the trace of each term is non-negative and the

sum of the traces is bounded by Op(T
−1/8)+Op(N

−1/8), the trace of each term cannot

exceed Op(T
−1/8) + Op(N

−1/8).

For ease of exposition and to be concrete, consider the case of S = 3. Then the

above becomes
[ 1

T
F 0′

1 MF̂1
F 0

1

]

A11 +
[ 1

T
F 0′

1 MF̂2
F 0

1

]

A12 +
[ 1

T
F 0′

1 MF̂3
F 0

1

]

A13

+
[ 1

T
F 0′

2 MF̂1
F 0

2

]

A21 +
[ 1

T
F 0′

2 MF̂2
F 0

2

]

A22 +
[ 1

T
F 0′

2 MF̂3
F 0

2

]

A23

+
[ 1

T
F 0′

3 MF̂1
F 0

3

]

A31 +
[ 1

T
F 0′

3 MF̂2
F 0

3

]

A32 +
[ 1

T
F 0′

3 MF̂3
F 0

3

]

A33

where

Akh =
1

N

N
∑

i=1

1(ĝi = h)λ0
k,iλ

0′
k,i, h, k = 1, 2, ..., S.

The earlier argument shows that

tr
([ 1

T
F 0′

k MF̂h
F 0

k

]

Akh

)

= Op(T
−1/8) + Op(N

−1/8), k, h = 1, 2, ..., S

Let A denote the matrix A = (Aij). In the following discussion, the first row of A

refers to A1j (j=1,2,3), and the first column of A refers to Aj1 (j=1,2,3), etc. Each

row sum of the Aij matrices converges to a positive definite matrix by Assumption, for

example, A11 + A12 + A13 = 1
N

Λ0′
1 Λ0

1, where Λ0
1 is the factor loading matrix associated

with true group 1 individuals. Because we require that each estimated group have a

positive fraction of individuals, each column sum of these matrices also converges to a

positive definite matrix. For example, the first estimated group contains the fraction

of individuals 1
N

∑N
i=1 1(ĝi = 1) → c1 > 0. This implies

A11 + A21 + A31 =

[ 1

N

N
∑

i=1

1(ĝi = 1)λ0
1,iλ

0′
1,i

]

+
[ 1

N

N
∑

i=1

1(ĝi = 1)λ0
2,iλ

0′
2,i

]

+
[ 1

N

N
∑

i=1

1(ĝi = 1)λ0
3,iλ

0′
3,i

]

→ Ψ1 > 0

(note that the limit is not required to exist, but the lim infN being positive is sufficient.

For notational simplicity, we assume the limit exists). From A11 +A21 +A31 → Ψ1 > 0,

one of the three matrices will have a non-zero limit. Suppose the first matrix A11 has

a non-zero limit, so that A11 → A0
11 > 0, then from tr( 1

T
F 0′

1 MF̂1
F 0

1 A11) = Op(T
−1/8) +

Op(N
−1/8), we must have

1

T
F 0′

1 MF̂1
F 0

1 = Op(T
−1/8) + Op(N

−1/8) (17)

because A11 is positive definite. This implies that

T−1‖F̂1 − F 0
1 H1‖2 = Op(T

−1/8) + Op(N
−1/8) (18)
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for some rotation matrix H1.
3 Once A11 is assumed to have a non-zero limit, then the

limits of A21 and A31 must be zero. Otherwise, the same reasoning implies that F̂1 will

also be consistent for F 0
2 and F 0

3 . This is impossible since a limit is unique.

The preceding argument assumes A11 has a non-zero limit. In case that A21 has a

non-zero limit, then F̂1 is consistent for F 0
2 (and in this case, A11 and A31 will have a

zero limit because the limit of F̂1 is unique). But this is just a matter of re-labeling (a

permutation). So without loss of generality, we assume the limit of A11 is nonzero so

that the limits of A21 and A31 are zero.

Next consider the second column of the A matrices. Given that A11 has non-

zero limit, we argue that either A22 or A32 has a non-zero limit. We show this by

a contradiction argument. If not, suppose that both A22 and A32 have zero limit.

Then A23 will have a non-zero limit because the row sum for the second row has a

nonzero limit (as argued earlier, each row sum has a positive definite limiting matrix).

Similarly, A33 will also have a nonzero limit because the row sum for the third row

has a nonzero limit (we already know A31 and A32 have zero limit). This implies that
1
T
F 0′

2 MF̂3
F 0

2 = Op(T
−1/8)+Op(N

−1/8) and 1
T
F 0′

3 MF̂3
F 0

3 = Op(T
−1/8)+Op(N

−1/8). This

further implies that F̂3 is consistent for both F 0
2 and F 0

3 . This is a contradiction since

the limit is unique. So without loss of generality, we assume A22 has a nonzero limit.

Then we have 1
T
F 0′

2 MF̂2
F 0

2 = Op(T
−1/8) + Op(N

−1/8), or equivalently,

1

T
‖F̂2 − F 0

2 H2‖2 = Op(T
−1/8) + Op(N

−1/8)

for some notational matrix H2. Since each column can only have a single matrix to

possess a nonzero limit, this implies that A12 and A32 have zero limit.

Next consider the third column (or the third row) of the A matrices. Since we

already obtain that A31 and A32 in the third row have zero limit, then A33 must have

a nonzero limit. This implies that 1
T
F 0′

3 MF̂3
F 0

3 = Op(T
−1/8) + Op(N

−1/8), or

T−1‖F̂3 − F 0
3 H3‖2 = Op(T

−1/8) + Op(N
−1/8),

for some H3. Again, each column can only have a single matrix with a nonzero limit

by the uniqueness of a limit so that the limits of A13 and A23 are zero.

The preceding analysis shows that there is a permutation σ(·) of {1, 2, 3} with

σ({1, 2, 3}) = {σ(1), σ(2), σ(3)} such that for each j, we have 1
T
‖F̂σ(j) − F 0

j Hj‖2 =

Op(T
−1/8) + Op(N

−1/8).

Using the same argument, in the general case, we can show that for each j ∈
{1, 2, ..., S}, there is a permutation of {σ(1), ..., σ(S)} such that

1

T
‖F̂σ(j) − F 0

j Hj‖2 = Op(T
−1/8) + Op(N

−1/8).

3To be exact, (17) implies ‖PF̂1
−PF 0

1

‖2 = Op(T
−1/8)+Op(N

−1/8), where PF̂1
= IT −F̂1(F̂

′

1
F̂1)

−1F̂ ′

1

and PF 0

1

is similarly defined (see Bai, 2009, page 1265). That is, the space spanned by F̂1 and F 0

1

are asymptotically the same. In fact, ‖PF̂1
− PF 0

1

‖2 = Op(T
−1/8) + Op(N

−1/8) is sufficient for our
purpose, and this result is used in the proof of Lemma A2 below. A direct proof of (18) requires
additional argument.
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This result is similar to that of Bonhomme and Manresa (2012, p.51). By simple

re-labeling of the elements of σ(j), we take σ(j) = j so that

1

T
‖F̂j − F 0

j Hj‖2 = Op(T
−1/8) + Op(N

−1/8) , j = 1, 2, ..., S (19)

This proves Theorem 1. ¤

To proof Theorem 2, we use the following lemma.

Lemma A2

Under the Assumptions of Theorem 1, for all j ∈ {1, 2, ..., S}, we have

(a) max
i∈{1,...,N}

1

T
(β0 − β̂)′X ′

iMF̂j
Xi(β0 − β̂) = op(1),

(b) max
i∈{1,...,N}

1

T
(β0 − β̂)′X ′

iMF̂j
F 0

g0

i
λ0

g0

i ,i = op(1),

(c) max
i∈{1,...,N}

1

T
(β0 − β̂)′X ′

iMF̂j
εi = op(1),

(d) max
i∈{1,...,N}

1

T

(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)′

(MF̂j
− MF 0

j
)
(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)

= op(1),

Proof of Lemma A2. Consider (a). Note that X ′
iMF̂j

Xi ≤ X ′
iXi, thus

max
i

1

T
(β0 − β̂)′X ′

iMF̂j
Xi(β0 − β̂)

≤ max
i

1

T
(β0 − β̂)′X ′

iXi(β0 − β̂)

≤ ‖β0 − β̂‖2 ×
(

1

T
max

i
‖Xi‖2

)

.

From Assumption (D2), max1≤i≤N T−1‖Xi‖2 = O(Nα). Together with ‖β0 − β̂‖2 =

Op(T
−1/4) + Op(N

−1/4), we have

max
i

1

T
(β0 − β̂)′X ′

iMF̂j
Xi(β0 − β̂) ≤ Op

(

Nα

T 1/4

)

+ Op

(

1

N1/4−α

)

.

From Assumption D2 on α, both terms are op(1). This proves part (a).

Next, consider (b). Similar to the proof of (a), we have

max
i

1

T
(β0 − β̂)′X ′

iMF̂j
F 0

g0

i
λ0

g0

i ,i

≤ ‖β0 − β̂‖ ×
(

1

T
max

i
‖XiF

0
g0

i
‖2

)1/2

≤ ‖β0 − β̂‖ ×
(

1

T
‖F 0

g0

i
‖2

)1/2

×
(

1

T
max

i
‖Xi‖2

)1/2

Op(1)
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= Op

(

Nα/2

T 1/8

)

+ Op

(

1

N1/8−α/2

)

,

by Assumption D2, where we assume maxi ‖λ0
g0

i ,i‖2 ≤ C < ∞ and T−1‖X ′
iF

0
g0

i

‖ ≤
T−1‖Xi‖ · ‖F 0

g0

i

‖ = T−1/2‖Xi‖ × Op(1). The two terms in the last line are op(1) and

thus part (b) is proved. It is easy to relax the assumption maxi ‖λ0
g0

i ,i‖2 ≤ C < ∞
by allowing the upper bound to be increasing with N , or by considering the product

maxi(‖Xi‖ · ‖λ0
g0

i ,i‖) to be increasing with N .

Part (c) is proved in a similar manner. For part (d), note that MF̂j
− MF 0

j
=

PF 0

j
− PF̂j

. We have

1

T

(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)′

(MF̂j
− MF 0

j
)
(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)

=
1

T
(β0 − β̂)′X ′

iMF̂j
Xi(β0 − β̂) +

1

T
(β0 − β̂)′X ′

iMF 0

j
Xi(β0 − β̂)

+2
1

T
λ0′

g0

i ,iF
0′

g0

i
MF̂j

Xi(β0 − β̂) + 2
1

T
λ0′

g0

i ,iF
0′

g0

i
MF 0

j
Xi(β0 − β̂)

+2
1

T
(β0 − β̂)′X ′

iMF̂j
εi + 2

1

T
(β0 − β̂)′X ′

iMF 0

j
εi

+
1

T
λ0′

g0

i ,iF
0′

g0

i
(PF 0

j
− PF̂j

)F 0
g0

i
λ0

g0

i ,i +

+2
1

T
λ0′

g0

i ,iF
0′

g0

i
(PF 0

j
− PF̂j

)εi +
1

T
ε′

i(PF 0

j
− PF̂j

)εi

= I1i + I2i + · · · + I9i.

Parts (a)-(c) of Lemma A2 imply that the first six terms are op(1) uniformly in i. Using

‖PF 0

j
− PF̂j

‖ ≤ T−1/2‖F 0
j − F̂jHj‖ = Op(T

−1/16) + Op(N
−1/16), we have

| 1
T

λ0′

g0

i ,iF
0′

g0

i
(PF 0

j
− PF̂j

)F 0
g0

i
λ0

g0

i ,i| ≤ ‖PF̂j
− PF 0

j
‖ · 1

T
‖F 0

g0

i
‖2 · ‖λ0

g0

i ,i‖2

But maxi
1
T
‖F 0

g0

i

‖2 ≤ maxj≤S ‖F 0
j ‖2 = Op(1) and maxi ‖λ0

g0

i ,i
‖2 ≤ C < ∞ by assump-

tion, the 7th term is shown to be Op(T
−1/16) + Op(N

−1/16) = op(1). The proof of the

last two term being op(1) is similar. For example,

| 1
T

ε′
i(PF 0

j
− PF̂j

)εi‖ ≤ ‖PF̂j
− PF 0

j
‖ · 1

T
‖εi‖2

The assumption of exponential tails on εit implies that 1
T
‖εi‖2 = 1

T
|∑T

t=1 εit|2 is a

smaller order than Op(T
1/16) + Op(N

1/16) for large T , uniformly in i. Thus its product

with ‖PF 0

j
− PF̂j

‖ is op(1) uniformly in i. This proves Lemma A2. ¤

Proof of Theorem 2

Note that ĝi satisfies

ĝi = argminj∈{1,...,S}

1

T
(y − Xiβ̂)′MF̂j

(y − Xiβ̂).
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Using yi = Xiβ
0 + F 0

g0

i

λ0
g0

i ,i + εi, we have

1

T
(y − Xiβ̂)′MF̂j

(y − Xiβ̂)

=
1

T

(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)′

MF̂j

(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)

=
1

T

(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)′

MF 0

j

(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)

+
1

T

(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)′

(MF̂j
− MF 0

j
)
(

Xi(β0 − β̂) + F 0
g0

i
λ0

g0

i ,i + εi

)

.

By Lemma A2, the last expression is op(1) uniformly in i. The terms involves (β̂ − β0)

are also op(1) uniformly in i, again by Lemma A2. Thus

1

T
(y − Xiβ̂)′MF̂j

(y − Xiβ̂) =
1

T

(

F 0
g0

i
λ0

g0

i ,i + εi

)′

MF 0

j

(

F 0
g0

i
λ0

g0

i ,i + εi

)

+ op(1)

Expanding the right hand side, we rewrite the above as

1

T
(y − Xiβ̂)′MF̂j

(y − Xiβ̂)

=











1

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
F 0

g0

i
λ0

g0

i ,i +
2

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
εi +

1

T
ε′

iMF 0

j
εi + op(1) (g0

i 6= j)

1

T
ε′

iMF 0

g0
i

εi + op(1) (g0
i = j)

where op(1) is uniform in i. We have used the fact that MF 0

j
F 0

g0

i

= 0 if g0
i = j.

To compare 1
T
(y − Xiβ̂)′MF̂j

(y − Xiβ̂) for j 6= g0
i and j = g0

i , define the event Aij

such that

Aij =

{

1

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
F 0

g0

i
λ0

g0

i ,i +
2

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
εi +

1

T
ε′

iMF 0

j
εi < ε′

iMF 0

g0

i

εi + op(1)

}

.

Then

1(ĝi 6= g0
i ) =

S
∑

j=1;j 6=g0

i

1(Aij).

Now, we can show ,

1

T
ε′

iMF 0

j
εi −

1

T
ε′

iMF 0

g0
i

εi = ε′
i(PF 0

g0
i

− PF 0

j
)εi = op(1)

where op(1) is uniformly over i. This means for any small δ > 0 and η > 0, under large

N and T ,

P

(

max
i∈{1,...,N}

∣

∣

∣

∣

1

T
ε′

iMF 0

j
εi −

1

T
ε′

iMF 0

g0
i

εi

∣

∣

∣

∣

> δ

)

≤ P

(

max
i∈{1,...,N}

∣

∣

∣

∣

1

T
ε′

iPF 0

j
εi

∣

∣

∣

∣

>
δ

2

)

+ P

(

max
i∈{1,...,N}

∣

∣

∣

∣

1

T
ε′

iPF 0

g0
i

εi

∣

∣

∣

∣

>
δ

2

)

< η
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In addition, for the op(1) term inside Aij, which is uniform in i, P (|op(1)| > δ) ≤ η.

Thus,

P (Aij) ≤ 2η + P

(

2

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
εi < − 1

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
F 0

g0

i
λ0

g0

i ,i + 2δ

)

.

Suppose g0
i = k. For j 6= g0

i = k, the minimum eigenvalue of 1
T
F 0

g0

i

′
MF 0

j
F 0

g0

i

=
1
T
F 0′

k MF 0

j
F 0

k is positive. So for individuals with ‖λ0
g0

i ,i‖2 > a > 0, we have

λ0
g0

i ,i

′
(
1

T
F 0

g0

i

′
MF 0

j
F 0

g0

i
)λ0

g0

i ,i ≥ ca > 0

for some c > 0. Choose δ small enough such that 2δ < ca/2, then

P

(

2

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
εi < − 1

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
F 0

g0

i
λ0

g0

i ,i + 2δ

)

≤ P

(

2

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
εi < −ca/2

)

= O(T−τ )

for any given τ > 0, for j 6= g0
i . The last equality follows from the assumption of

tail probability for εi and the same argument of Bonhomme and Manresa (2012). In

summary, we have for j 6= g0
i ,

P (Aij) ≤ 2η + O(T−τ ).

Since S is finite, this implies that

P (ĝi 6= g0
i ) ≤ 2Sη + O(T−τ ),

where the right hand side is uniform in i. It follows that the average over i is also

bounded by the above, that is

1

N

N
∑

i=1

P (ĝi 6= g0
i ) = o(1) + O(T−τ ).

We next further show that

P

(

sup
i∈{1,...,N}

1(ĝi 6= g0
i ) > 0

)

= o(1) + NO(T−τ ).

Let us define

A∗
ij = 1 (Aij) ,

Bij = 1

(

2

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
εi < − 1

T
λ0

g0

i ,i

′
F 0

g0

i

′
MF 0

j
F 0

g0

i
λ0

g0

i ,i + 2δ

)

,

Cij = 1

(∣

∣

∣

∣

1

T
ε′

iMF 0

j
εi −

1

T
ε′

iMF 0

g0
i

εi

∣

∣

∣

∣

+ |op(1)| > 2δ

)

.
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Then, A∗
ij ≤ Bij + Cij and thus

sup
i∈{1,...,N}

A∗
ij ≤ sup

i∈{1,...,N}

Bij + sup
i∈{1,...,N}

Cij.

Give the assumption of tail probability for εi, supi∈{1,...,N} Cij = op(1). Also 0 ≤ Cij ≤ 1

is bounded so by the dominated convergence theorem,

E

[

sup
i∈{1,...,N}

Cij

]

= o(1).

However, for j 6= g0
i ,

E

[

sup
i∈{1,...,N}

Bij

]

≤ NE[Bij] = NO(T−τ ).

In summary,

P

(

sup
i∈{1,...,N},j 6=g0

i

1(Aij)

)

= o(1) + NO(T−τ ),

which implies

P

(

sup
i∈{1,...,N}

1(ĝi 6= g0
i ) > 0

)

= o(1) + NO(T−τ ).

This completed the proof of Theorem 2. ¤

Let β̃, F̃1, ..., F̃S, Λ̃1, ..., Λ̃S be the infeasible version of our estimator where group

membership is fixed to its population G0. It is defined as the minimizer of the objective

function LNT (β, G0, F1, ..., FS, Λ1, ..., ΛS) subject to the constraints F ′
jFj/T = Irj

(j =

1, ..., S), Λ′
jΛj (j = 1, ..., S) being diagonal. Because the group membership is known,

a special case prior proof shows consistency of β̃, F̃1, ..., F̃S. For completeness and for

useful notation introduced, we state additional intermediate result.

Lemma A3

Under Assumptions A–E, κ → 0 and min{N, T}×κ → ∞ as T, N → ∞, the infeasible

estimator β̃ is consistent β̃ →p β0. Also,

T−1/2‖F̃j − F 0
j Hj‖ = op(1), j = 1, ..., S,

where H−1
j = Vj,NjT (F 0

j F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1, and Vj,NjT satisfies





1

NjT

Nj
∑

i;g0

i =j

(yi − Xiβ̃)(yi − Xiβ̃)′



 F̃j = F̃jVj,NjT .
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Proof of Lemma A3. If G0 is known, the proof is similar to that of Bai (2009). With-

out loss of generality, we here assume that β0 = 0 (for notational simplicity). We also

concentrate out the factor loadings as we can express them as Λj = W ′
jFj(F

′
jFj)

−1 =

W ′
jFj/T where Wj = (wj,1, ..., wj,Nj

) such that wj,i = yi − Xiβ and g0
i = j. Noting

that the true data generating process is yi = F 0
g0

i

λ0
g0

i ,i + εi (Xiβ
0 = 0), {β̃, F̃1, ..., F̃S}

is also expressed as the minimizer of

1

NT
SNT (β, F1, ..., FS)

=
1

NT





S
∑

j=1

∑

i;g0

i =j

(yi − Xiβ)′MF
g0
i

(yi − Xiβ)



 + pκ,γ (|β|) − 1

NT

S
∑

j=1

∑

i;g0

i =j

ε′
iMF 0

g0
i

εi

= β′





1

NT

S
∑

j=1

∑

i;g0

i =j

X ′
iMF

g0
i

Xi



 β +
S

∑

j=1

tr

{(

F 0
j
′
MFj

F 0
j

T

)(

Λ0
j
′
Λ0

j

N

)}

+2β′





1

NT

S
∑

j=1

∑

i;g0

i =j

X ′
iMF

g0
i

F 0
g0

i
λ0

g0

i ,i



 + op(1)

= β′
S

∑

j=1

Ajβ +
S

∑

j=1

η′
jBjηj + 2β′

S
∑

j=1

C ′
jηj + op(1)

= β′

(

S
∑

j=1

Aj −
S

∑

j=1

C ′
jB

−1
j Cj

)

β +
S

∑

j=1

(η′
j + β′C ′

jB
−1
j )Bj(ηj + B−1

j Cjβ) + op(1)

=
1

NT
S̃NT (β, F1, ..., FS) + op(1),

where the op(1) term follows from Lemma A.1 and Aj, Bj, Cj and ηj are defined as

Aj =
1

NT

∑

i;g0

i =j

X ′
iMF

g0
i

Xi, Bj =
Λ0

j
′
Λ0

j

N
⊗ IT

Cj =
1

NT

∑

i;g0

i =j

λg0

i ,i ⊗ MF
g0
i

Xi, ηj = vec(MFj
F 0

j ).

Similar to the discussion in Bai (2009), the leading term in the last equation achieves

unique minimum at β0 (where β0 = 0) and {F 0
1 , ..., F 0

S}. Clearly, S̃NT (β, F1, ..., FS) = 0

at β0 and {F 0
1 , ..., F 0

S}. On the other hand, for ‖β‖ > 0, S̃NT (β, F1, ..., FS) > 0. This

implies that β̃ is consistent for β0, i.e., ‖β̃ − β0‖ = op(1). Using Proposition A.1 of

Bai (2009), we can also show that T−1‖F 0
j Hj − F̃j‖2 = op(1), for j = 1, ..., S. The

remaining claim also follows from Bai (2009). This completes the proof. ¤

Proof of Theorem 3

By Theorem 2, P (supi |ĝi − g0
i | > 0) = o(1) when N/T τ → 0. This implies that

P (ĝ1 = g0
1, ĝ2 = g0

2, ..., ĝN = g0
N) → 1. Thus to prove Theorem 3, it is sufficient to
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assume that the group membership is known. We first investigate the convergence rate

for the estimated factors F̃j under the true group membership. We use the following

facts. T−1‖Xi‖2 = T−1
∑T

t=1 ‖xit‖2 = Op(1), or T−1/2‖Xi‖ = Op(1). Averaging over i,

(TN)−1
∑N

i=1 ‖Xi‖2 = Op(1). Similarly, T−1/2‖Fj‖ = Op(1), T−1‖X ′
iFj‖ = Op(1), and

so forth.

Using





1

NjT

∑

i;g0

i =j

(yi − Xiβ̃)(yi − Xiβ̃)′



 F̃j = F̃jVj,NT

and yi = Xiβ
0 + F 0

g0

i ,i
λ0

g0

i ,i + εi, we have

F̃jVj,NT =
1

NjT

∑

i;g0

i =j

Xi(β
0 − β̃)(β0 − β̃)′X ′

iF̃j +
1

NjT

∑

i;g0

i =j

Xi(β
0 − β̃)λ0

g0

i ,iF
0
j
′
F̃j

+
1

NjT

∑

i;g0

i =j

Xi(β
0 − β̃)ε′

iF̃j +
1

NjT

∑

i;g0

i =j

F 0
j λ0

j,i(β
0 − β̃)′X ′

iF̃j

+
1

NjT

∑

i;g0

i =j

εi(β
0 − β̃)′X ′

iF̃j +
1

NjT

∑

i;g0

i =j

F 0
j λ0

j,iε
′
iF̃j +

1

NjT

∑

i;g0

i =j

εiλ
0′

j,iF
0
j
′
F̃j

+
1

NjT

∑

i;g0

i =j

εiε
′
iF̃j +

1

NT

N
∑

i=1

F 0
j λ0

g0

i ,iλ
0′

g0

i ,iF
0
j
′
F̃j

= Ij
1 + · · · + Ij

9 .

Multiplying (F 0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1 on each side of the prior formula, and then using

the results of Bai (2009, Equation (43)) and Assumption (E) we have

T−1/2‖F̃jVj,NT (F 0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1 − F 0
j ‖

= Op(‖β̃ − β0‖) + Op(1/ min{
√

N,
√

T}),

which implies

T−1/2‖F̃j − F 0
j Hj‖ = Op

(

‖β0 − β̃‖
)

+ Op

(

1

min{N1/2, T 1/2}

)

,

where H−1
j = Vj,NT (F 0

j F̃j/T )−1(Λ0′
j Λ0

j/Nj)
−1. Here we used the property that Vj,NT

invertible (See Bai (2009)).

The proof for the variable selection consistency P (β̂20 = 0) → 1 as N, T → ∞,

is provided later. We next prove the asymptotic normality of β̂10. For notational

simplicity, we denote the non-zero true coefficient β0
1 as β0, and denote Xi as the

corresponding columns of design matrix.

We again consider the estimator where group membership is fixed to its population

G0, in view of Theorem 2. We denote β̃ as the parameter estimate of the non-zero
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element of the true parameter β0 and the corresponding sub-matrix Xi,β 6=0 of Xi as

Xi. An alternative expression for the solution of the non-zero component of regression

coefficients of β0 is

β̃ =





S
∑

j=1

∑

i;g0

i =j

XiMF̃j
Xi + Σ(κ)





−1
S

∑

j=1

∑

i;g0

i =j

XiMF̃j
yi,

where MF̃ = IT − F̃ F̃ ′/T , and Σ(κ) = diag{p′κ,γ(|β̃1|)/|β̃1|, ..., p′κ,γ(|β̃q|)/|β̃q|}.
Noting that yi = Xiβ

0 + F 0
g0

i

λ0
g0

i ,i + εi, we have

1

NT





S
∑

j=1

∑

i;g0

i =j

XiMF̃j
Xi + Σ(κ)



 (β̃ − β0) +
1

NT
Σ(κ)β0

=
1

NT

S
∑

j=1

∑

i;g0

i =j

XiMF̃j
F 0

j λ0
j,i +

1

NT

S
∑

j=1

∑

i;g0

i =j

XiMF̃j
εi.

Using F̃jVj,NT = Ij
1 + · · · + Ij

9 , we have

1

NT

S
∑

j=1

∑

i;g0

i =j

XiMF̃j
F 0

j λ0
j,i = − 1

NT

S
∑

j=1

∑

i;g0

i =j

X ′
iMF̃j

[

8
∑

k=1

Ij
k

]

(F 0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i,

where we used MF̃j
F̃jH

−1
j = 0 and Ij

k is defined earlier. Each of the components in the

right hand side of equation above are evaluated. For term involving Ij
1 ,

1

NT

S
∑

j=1

∑

i;g0

i =j

X ′
iMF̃j

Ij
1(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

=
1

NT

S
∑

j=1

∑

i;g0

i =j

X ′
iMF̃j





1

NjT

∑

k:g0

k
=j

Xk(β
0 − β̃)(β0 − β̃)′X ′

kF̃j



 (F 0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

= op(1) × (β̃ − β0).

Next, we have

1

NT

S
∑

j=1

∑

i;g0

i =j

X ′
iMF̃j

Ij
2(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

=
1

NT

S
∑

j=1

∑

i;g0

i =j

X ′
iMF̃j





1

NjT

∑

k:g0

k
=j

Xk(β
0 − β̃)λ0′

j,k(Λ
0′
j Λ0

j/Nj)
−1



λ0
j,i

=
1

T

S
∑

j=1

Nj

N





1

Nj

1

Nj

∑

i;g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

Xkλ
0′

j,k(Λ
0′
j Λ0

j/Nj)
−1λ0

j,i



 (β0 − β̃).
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The third term can be evaluated as

1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃j

Ij
3(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

=
1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃G,F̃j





1

NjT

∑

k:g0

k
=j

Xk(β
0 − β̃)ε′

kF̃j



 (F 0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

= op(1) × (β0 − β̃).

The next two terms are also

1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃j

Ij
4(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i = op(1) × (β0 − β̃),

1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃j

Ij
5(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i = op(1) × (β0 − β̃).

Next, using the result of Bai (2009), we have

1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃j

Ij
6(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

=
1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃j





1

NjT

∑

k:g0

k
=j

(F 0
j − F̃jH

−1
j )λ0

j,kε
′
kF̃j



 (F 0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i.

Using

1

NjT

∑

k:g0

k
=j

λ0
j,kε

′
kF̃j =

1

NjT

∑

k:g0

k
=j

λ0
j,kε

′
kF

0
j Hj +

1

NjT

∑

k:g0

k
=j

λ0
j,kε

′
k(F̃j − F 0

j )

= Op

(

1
√

NjT

)

+ Op

(

1

N

)

+ N−1/2Op

(

1

min{N, T}

)

and

1

NjT

∑

k:g0

k
=j

X ′
iMF̃j

(F̃j − F 0
j Hj)(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

= Op

(

β0 − β̃
)

+ Op

(

1

min{N, T}

)

which can be derived from Lemma A3 and Lemma A4 of Bai (2009). We have

1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃j

Ij
6(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i
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= op(β̃ − β0) + op

(

1√
NT

)

+
1

N
Op

(

1

min{N, T}

)

+
1

N1/2
Op

(

1

min{N2, T 2}

)

.

Next, we have

1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃j

Ij
7(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

=
1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃G,F̃j





1

NjT

∑

k:g0

k
=j

εkλ
0′

j,kF
0
j
′
F̃j



 (F 0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

=
S

∑

j=1

Nj

N
× 1

N2
j T

∑

i:g0

i =j

∑

k:g0

k
=j

λ0′

j,k(Λ
0′
j Λ0

j/Nj)
−1λ0

j,iX
′
iMF̃j

εk.

Defining E[εkε
′
k] = Ωk, we have

1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃j

Ij
8(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

=
1

NT

S
∑

j=1

∑

i:g0

i =j

X ′
iMF̃j





1

NjT

∑

k:g0

k
=j

εkε
′
kF̃j



 (F 0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

=
S

∑

j=1

Nj

N
× 1

N2
j T 2

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

(εkε
′
k − Ωk)F̃j(F

0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

+
S

∑

j=1

Nj

N
× 1

N2
j T 2

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

ΩkF̃j(F
0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

=
S

∑

j=1

Nj

N
× 1

N2
j T 2

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

ΩkF̃j(F
0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i

+op(1) × Op

(

‖β0 − β̃‖2
)

+
1√
NT

Op

(

1

min{N1/2, T 1/2}

)

+
1√
N

Op

(

1

min{N, T}

)

,

which follows from Bai (2009). Then, we have





1

NT

S
∑

j=1

∑

i:gi=j

X ′
iMF̃j

Xi −
1

T

S
∑

j=1

Nj

N

1

N2
j

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

Xkcj,ki +
1

T
Σ(κ)



 (β̃ − β0)

=
S

∑

j=1

Nj

N

∑

i:g0

i =j

1

NjT

[

X ′
iMF̃j

− 1

Nj

∑

k:g0

k
=j

cj,kiX
′
kMF̃j

]

εi

+
S

∑

j=1

Nj

N
× 1

N2
j T 2

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

ΩkF̃j(F
0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
j,i
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+op((NT )−1/2) +
1√
N

Op

(

1

min{N, T}

)

,

where cj,ki = λ0′

g0

k
,k(Λ

0′
j Λ0

j/Nj)
−1λ0

g0

i ,i. Using the Lemmas A.8 and A.9 of Bai (2009), we

have the following expression

1√
NT

∑

i:g0

i =j

[

X ′
iMF̃j

− 1

Nj

∑

k:g0

k
=j

cj,kiX
′
kMF̃j

]

εi =
1√
NT

∑

i:g0

i =j

[

X ′
iMF 0

j
− 1

Nj

∑

k:g0

k
=j

cj,kiX
′
kMF 0

j

]

εi

+

√

T

N
×



− 1

Nj

∑

i:g0

i =j

∑

k:g0

k
=j

(Xi − Vi)
′F 0

j

T

(

F 0
j
′
F 0

j

T

)−1
(

Λ0′
j Λ0

j

Nj

)−1

λg0

k
,k

(

ε′
iεk

T

)



 + op(1)

=
1√
NT

∑

i:g0

i =j

[

X ′
iMF 0

j
− 1

Nj

∑

k:g0

k
=j

cj,kiX
′
kMF 0

j

]

εi +

√

T

N
ηj + op(1)

with Vj,i = N−1
j

∑

k:g0

k
=j cj,kiXk, and ηj is defined in Theorem 3. Also,

1

NjT

∑

i:g0

i =j

X ′
iMF̃j

Xi −
1

T

1

N2
j

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

Xkcj,ki

=
1

NjT

∑

i:g0

i =j

X ′
iMF 0

j
Xi −

1

T

1

N2
j

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF 0

j
Xkcj,ki + op(1).

Then, we have

D̂(F 0
1 , ..., F 0

S , κ)
[√

NT (β̃ − β0)
]

=
1√
NT

S
∑

j=1

∑

i:g0

i =j

[

X ′
iMF 0

j
− 1

Nj

∑

k:g0

k
=j

cj,kiX
′
kMF 0

j

]

εi

+
√

NT

S
∑

j=1

Nj

N

1

N2
j T 2

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

ΩkF̃j

(

F 0
j
′
F̃j

T

)−1
(

Λ0′
j Λ0

j

Nj

)−1

λ0
g0

i ,i + op(1)

=
1√
NT

S
∑

j=1

∑

i:g0

i =j

Zj,i(F
0
j )′εi +

√

T

N

S
∑

j=1

ηj +

√

N

T

S
∑

j=1

ζj + op(1),

where Zj,i(F
0
j ), D̂(F 0

1 , ..., F 0
S , κ), ηj and ζj are defined in Theorem 3. This leads to the

limit of covariance matrix of
√

NT (β̃ − β0) as

Vβ(F 0
1 , ..., F 0

S) = D0(F
0
1 , ..., F 0

S)−1J0(F
0
1 , ..., F 0

S)D0(F
0
1 , ..., F 0

S)−1,

where D0(F
0
1 , ..., F 0

S) is the probability limit of D̂(F 0
1 , ..., F 0

S) and J0(F
0
1 , ..., F 0

S) is de-

fined in Assumption F. By the preceding asymptotic representation and Assumption

F, we have

√
NT (β̃ − β0) → N

(

v0, Vβ(F 0
1 , ..., F 0

S)
)

,
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where v0 is defined in Theorem 3.

Finally, we prove the variable selection consistency P (β̂2 = 0) → 1 as N, T → ∞.

This part is almost identical to the proof of Fan and Li (2001). It is sufficient to show

that with probability tending to 1 as N, T → ∞, for some small δN,T = C/
√

NT with

a constant C, and for each element of β2 = (β21, ..., β2,p−q), we have

∂LNT (β, G, F1, ..., FS, Λ1, ..., ΛS)

∂β2k

> 0 (0 < β2k < δN,T ),

∂LNT (β, G, F1, ..., FS, Λ1, ..., ΛS)

∂β2k

< 0 (−δN,T < β2k < 0),

for k = 1, ..., p− q. Let Xi,2 be the set of p− q columns of Xi, corresponding to β2. So,

Xi,2 is T×(p−q) dimensional matrix. By the first derivative of LNT (β, G, F1, ..., FS)/(NT )

with respect to β2 = (β21, ..., β2,p−q), we have

1

NT
· ∂LNT (β̂, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S)

∂β2

= − 2

NT

N
∑

i=1

X ′
i,2(yi − Xiβ̂ − F̂ĝi

λ̂ĝi,i) +
∂pκ,γ

(

|β̂2|
)

∂β2

= − 2

NT

N
∑

i=1

X ′
i,2

(

Xi(β
0 − β̂) + (F 0

g0

i
λ0

g0

i ,i − F̂ĝi
λ̂ĝi,i) + εi

)

+
∂pκ,γ

(

|β̂2|
)

∂β2

= − 2

NT

N
∑

i=1

X ′
i,2Xi(β

0 − β̂) − 2

NT

N
∑

i=1

X ′
i,2(F

0
g0

i
λ0

g0

i ,i − F̂ĝi
λ̂ĝi,i)

+
2

NT

N
∑

i=1

X ′
i,2εi +

∂pκ,γ

(

|β̂2|
)

∂β2

= I1 + I2 + I3 +
∂pκ,γ

(

|β̂2|
)

∂β2

.

The third term I3 is Op((NT )−1/2). Together with the result of Theorem 1, we know

that β̂ − β0 = Op((NT )−1/2). Thus, the first term I1 is Op((NT )−1/2). The second

term is

1

NT

N
∑

i=1

X ′
i,2(F

0
g0

i
λ0

g0

i ,i − F̂ĝi
λ̂ĝi,i)

=
1

NT

N
∑

i=1

X ′
i,2(F

0
g0

i
− F̂ĝi

)λ0
g0

i ,i +
1

NT

N
∑

i=1

X ′
i,2F̂ĝi

(λ0
g0

i ,i − λ̂ĝi,i),

which is Op(1/ min{N, T}). Each element of the first derivative ∂pκ,γ

(

|β̂2|
)

/∂β2 is

p′κ,γ

(

|β̂2k|
)

sign(β2k) for k = 1, ..., p − q. Finally, we have

∂LNT (β̂, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S)

∂β2k
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= NT · κ
[

1

κ
p′κ,γ

(

|β̂2k|
)

sign(β̂2k) + Op (1/(min{N, T} · κ))

]

.

Thus the sign of β̂2k determines the sign of ∂LNT (β̂, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S)/∂β2k.

Hence, this result implies the sign claim. This completes the proof. ¤

Proof of Theorem 4

We divide the proof of Theorem 4 into two steps. In step 1, we develop an estimator of

the expected mean squared error, which can be used to select the number of predictors

x under no factor structure. In step 2, we derive an additional penalty term that

penalizes the model complexity caused by the factor structures.

Step 1: We decompose the bias b as

b = B1 + B2 + B3 + B4 + B5,

where

B1 = Ey

[

1

NT

N
∑

i=1

‖yi − Xiβ̃ − F̃g0

i
λ̃g0

i ,i‖2 − 1

NT

N
∑

i=1

‖yi − Xiβ̂ − F̂ĝi
λ̂ĝi,i‖2

]

,

B2 = Ey

[

1

NT

N
∑

i=1

‖yi − Xiβ
0 − F̃g0

i
λ̃g0

i ,i‖2 − 1

NT

N
∑

i=1

‖yi − Xiβ̃ − F̃g0

i
λ̃g0

i ,i‖2

]

,

B3 = Ey

[

Ez{
1

NT

N
∑

i=1

‖zi − Xiβ
0 − F̃g0

i
λ̃g0

i ,i‖2} − 1

NT

N
∑

i=1

‖yi − Xiβ
0 − F̃g0

i
λ̃g0

i ,i‖2

]

B4 = Ey

[

Ez

[

1

NT

N
∑

i=1

‖zi−Xiβ̃− F̃g0

i
λ̃g0

i ,i‖2

]

−Ez

[

1

NT

N
∑

i=1

‖zi−Xiβ
0− F̃g0

i
λ̃g0

i ,i‖2

]]

,

B5 = Ey

[

Ez

[

1

NT

N
∑

i=1

‖zi −Xiβ̂− F̂ĝi
λ̂ĝi,i‖2

]

−Ez

[

1

NT

N
∑

i=1

‖zi −Xiβ̃− F̃g0

i
λ̃g0

i ,i‖2

]]

,

where the expectations Ey[·] and Ez[·] are taken with respect to the joint distribution

of {y1, ..., yN} and {z1, ..., zN} given the predictors and factor structures. Define

ℓy(β, F1, ..., FS, Λ1, ..., ΛS) =
1

NT

S
∑

j=1

∑

i;gi=j

‖yi − Xiβ − Fgi
λgi,i‖2,

ℓz(β, F1, ..., FS, Λ1, ..., ΛS) = Ez

[

1

NT

S
∑

j=1

∑

i;gi=j

‖zi − Xiβ − Fgi
λgi,i‖2

]

.

It can be shown that B1, B3, and B5 are dominated by B2 and B4, thus can be

ignored. We next evaluate B2. Noting that

∂

∂β

{

ℓy(β, F̃1, ..., F̃S, Λ̃1, ..., Λ̃S) + pκ,γ(|β|)
}

∣

∣

∣

∣

∣

β=
˜β

= 0,
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the Taylor expansion of ℓy(β
0, F̃1, ..., F̃S, Λ̃1, ..., Λ̃S) around β̃ gives

ℓy(β
0, F̃1, ..., F̃S, Λ̃1, ..., Λ̃S) = ℓy(β̃, F̃1, ..., F̃S, Λ̃1, ..., Λ̃S) − ∂pκ,γ(|β̃|)/∂β′(β̃ − β0)

+
1

2

1

NT

√
NT (β̃ − β0)′Kx

√
NT (β̃ − β0) + op

(

N−1T−1
)

,

where Kx = 1
NT

∑N
i=1 X ′

iXi. For small κ, ∂pκ,γ(|β̃|)/∂β′(β̃ − β0) = op(1/(NT ). The

covariance matrix of
√

NT (β̃ − β0) is Vβ(F 0
1 , ..., F 0

S , κ). Thus, we can write B2 as

B2 =
1

2NT
tr

[

KxVβ(F 0
1 , ..., F 0

S , κ)
]

+ o(N−1T−1).

Using the same augment for B2,

B4 =
1

2NT
tr

[

KxVβ(F 0
1 , ..., F 0

S , κ)
]

+ o(N−1T−1).

Finally, summing up all terms B1 ∼ B5, the bias, contributed by the estimated observ-

able structure Xiβ̂ (the penalty on the estimated factor structures will be investigated

in Step 2), becomes

1

NT
tr

[

KxVβ(F 0
1 , ..., F 0

S , κ)
]

+ o(N−1T−1).

Therefore, in the first step, the expected mean squared error can be approximated as

1

NT

S
∑

j=1

∑

i;ĝi=j

∥

∥

∥
yi − Xiβ̂ − F̂ĝi

λ̂ĝi,i

∥

∥

∥

2

+
1

NT
tr

[

KxVβ(F 0
1 , ..., F 0

S , κ)
]

. (20)

which is bias-corrected only for the estimated structure of Xiβ̂.

Step 2: Under no factor structure, (20) can be used for selecting the regularization

parameter κ. We need an additional penalty term that penalizes the model complexity

caused by the factor structures. The overall criterion for selecting κ and kj group-

specific factors (j = 1, ..., S) has the form

1

NT

S
∑

j=1

∑

i;ĝi=j

∥

∥

∥yi − Xiβ̂ − F̂ĝi
λ̂ĝi,i

∥

∥

∥

2

+
1

NT
tr

[

KxVβ(F 0
1 , ..., F 0

S , κ)
]

+
S

∑

j=1

kjg(Nj, T )

and we will determine g(Nj, T ) such that this criterion can consistently estimate the

factor structure.

The proof of this step for selecting the number of factors consistently uses the

similar augment as that employed in Bai (2009). We focus on the selection of the true

number of group-specific factors rj. We first assume that rj ≤ kj, where kj is the given

number of group-specific factors in the estimation process. Under rj ≤ kj, we have

β̂(kj)−β = O(1/
√

NT ), where the script kj indicates kj factor models are estimated.

Then it is shown that, for the data within the j-th group,

yi − Xiβ̂(kj) = Fj(kj)λj,i + εi + Op

(

1/
√

NT
)

.

47



Thus, Op(1/
√

NT ) error term will not affect the analysis of Bai and Ng (2002), as

mentioned in Bai (2009). This indicates that

1

NjT

∑

gi=j

∥

∥

∥
yi − Xiβ̂(kj) − F̂j(kj)λ̂j,i

∥

∥

∥

2

− 1

NjT

∑

gi=j

∥

∥

∥
yi − Xiβ̂(rj) − F̂j(rj)λ̂j,i

∥

∥

∥

2

= Op

(

1

min{N, T}

)

.

If kj < rj, it is then, for some c > 0, not depending on Nj and T , we have

1

NjT

∑

gi=j

∥

∥

∥
yi − Xiβ̂(kj) − F̂j(kj)λ̂j,i

∥

∥

∥

2

− 1

NjT

∑

gi=j

∥

∥

∥yi − Xiβ̂(rj) − F̂j(rj)λ̂j,i

∥

∥

∥

2

> c.

This implies that any penalty function that converges to zero but is of greater magni-

tude than Op(1/ min{N, T}) will lead to consistent estimation of the number of factors.

The term (T +Nj)/TNj×log (TNj) satisfies these conditions. This completes the proof

of Theorem 4. ¤

Proof of Theorem 5

We first assume that S0 < S, where S0 is the true number of groups and S is the

number of groups set by researcher. Under S0 < S, at least for one particular group,

say the group j, the set of units within the j-th group will be divided into two (or

more) sub-groups, while they are within the same group. Suppose that the data within

the j-th group are divided into two-groups, j1 and j2. Depending upon the setting of

the number of groups S, the data within the j-th group may be divided into more than

two sub-groups. Or, in addition to the j-th group, some other groups may be divided

into several sub-groups. Even for such cases, the argument below applies in the same

manner.

Let Nj1 and Nj2 be the number of units that belong to the sub-groups j1 and j2.

First, if Nja
/N = o(1) for one of ja, the model can not be estimable and such model

setting will be deleted automatically. Next, consider the case: Nja
/N = O(1) for

a = 1, 2. Although the j-th group is divided two sub-groups j1 and j2, we have

yi − Xiβ̂(rj) − Fja
(rj)λja,i − εi = Op

(

1√
NT

)

,

for a = 1, 2, which implies that

1

NT

∑

i;gi=j

‖yi − Xiβ(rj) − Fj(rj)λj,i‖2

− 1

NT

∑

i;gi=j

I(i ∈ j1)
∥

∥

∥
yi − Xiβ̂(rj) − F̂j(rj)λ̂j,i

∥

∥

∥

2
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− 1

NT

∑

i;gi=j

I(i ∈ j2)
∥

∥

∥
yi − Xiβ̂(rj) − F̂j(rj)λ̂j,i

∥

∥

∥

2

= Op

(

1

min{N, T}

)

,

where I() is the indicator function. To avoid over identification, we need a penalty

function that is of greater magnitude than Op(1/(min{N, T})).
If S < S0, it is then, some different group(s), j and k are merged into one group,

say ℓ, while they are originally not in the same group. Then, for a positive constant

c > 0, which does not depend on N and T , we have

1

NT

∑

i;gi=k

∥

∥

∥
yi − Xiβ̂(rk) − F̂k(rk)λ̂k,i

∥

∥

∥

2

+
1

NT

∑

i;gi=j

∥

∥

∥
yi − Xiβ̂(rj) − F̂j(rj)λ̂j,i

∥

∥

∥

2

− 1

NT

∑

i;gi=ℓ

∥

∥

∥
yi − Xiβ̂(rℓ) − F̂ℓ(rℓ)λ̂ℓ,i

∥

∥

∥

2

> c.

To avoid under identification, we need a penalty function that converges to zero.

Applying the above argument to each group, any penalty function that converges to

zero but is of greater magnitude than Op(1/(min{N, T})) will lead to consistent esti-

mation of the number of groups S. The penalty term
∑S

j=1 kjσ̂
2 Nj

N

(

T+Nj

TNj

)

log (TNj) in

the proposed criterion Cp(k1, ..., kS, κ) in (8) satisfies these conditions. This completes

the proof. ¤

Proofs of Theorem 6

Let G0 = {g0
1, ..., g

0
N} and G = {g1, ..., gN} denote the population grouping and any

grouping of the cross-sectional units into S groups. First, we note that the estimator

{β̂1..., β̂S, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S} is defined as the minimizer of

LNT (β1, ..., βS, G, F1, ..., FS, Λ1, ..., ΛS)

=
N

∑

i=1

‖yi − Xiβgi
− Fgi

λgi,i‖2 + NT

S
∑

j=1

pκ,γ

(

|βj|
)

subject to the constraints imposed in Section 8.1.

Consistency of β̂j can be obtained by modifying the proof of Theorem 1. With-

out loss of generality, we again assume that β0
j = 0 and concentrate out the factor

loadings as we can express them as Λj = W ′
jFj(F

′
jFj)

−1 = W ′
jFj/T where Wj =

(wj,1, ..., wj,Nj
) such that wj,i = yi −Xiβj and gi = j. Note again that the set of esti-

mates {β̂1, ..., β̂S, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S} that jointly minimizes the objective function

LNT (β1, ..., βS, G, F1, ..., FS, Λ1, ..., ΛS), and the set of estimates {β̂1, ..., β̂S, Ĝ, F̂1, ..., F̂S}
that jointly minimizes the following concentrated and centered objective function

UNT (β1, ..., βS, G, F1, ..., FS)
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=
1

NT

[

N
∑

i=1

(yi − Xiβj)
′MFgi

(yi − Xiβj)

]

+
S

∑

j=1

pκ,γ

(

|βj|
)

− 1

NT

N
∑

i=1

ε′
iMF 0

g0
i

εi

are equal. Note that the group membership is not fixed to its population.

Noting that the true data generating process is yi = F 0
g0

i

λ0
g0

i ,i + εi (Xiβ
0
j = 0), the

estimator, the objective function UNT (β1, ..., βS, G, F1, ..., FS) is further expressed as

UNT (β1, ..., βS, G, F1, ..., FS)

=

(

1

NT

S
∑

j=1

∑

i;gi=j

β′
jX

′
iMFgi

Xiβj

)

+
1

NT

S
∑

j=1

∑

i;gi=j

λ0
g0

i ,i

′
F 0′

g0

i
MFgi

F 0
g0

i
λ0

g0

i ,i

+2

[

1

NT

S
∑

j=1

∑

i;gi=j

β′
jX

′
iMFgi

F 0
g0

i
λ0

g0

i ,i

]

+ 2

(

1

NT

S
∑

j=1

∑

i;gi=j

β′
jX

′
iMFgi

εi

)

+
2

NT

S
∑

j=1

∑

i;gi=j

λ0
g0

i ,i

′
F 0′

g0

i
MFgi

εi +
1

NT

N
∑

i=1

ε′
i(MFgi

− MF 0

g0
i

)εi +
S

∑

j=1

pκ,γ

(

|βj|
)

=
S

∑

j=1

β′
j

(

1

NT

∑

i;gi=j

X ′
iMFgi

Xi

)

βj +
1

NT

S
∑

j=1

∑

i;gi=j

λ0
g0

i ,i

′
F 0′

g0

i
MFgi

F 0
g0

i
λ0

g0

i ,i

+2
S

∑

j=1

β′
j

[

1

NT

∑

i;gi=j

X ′
iMFgi

F 0
g0

i
λ0

g0

i ,i

]

+ Op(T
−1/4) + Op(N

−1/4)

=
1

N

S
∑

j=1

[

β′
jDjβj + ζ ′

jEjζj + 2β′
jL

′
jζj

]

+ Op(T
−1/4) + Op(N

−1/4)

=
1

NT
ŨNT (β1, ..., βS, G, F1, ..., FS) + Op(T

−1/4) + Op(N
−1/4),

where we have used Lemma A.1, and Dj, Ej, Lj and ζj are defined in the proof of

Theorem 1.

Completing the square of ŨNT (β1, ..., βS, G, F1, ..., FS) in terms of βj and then using

Assumption D′ and the argument in the proof of Theorem 1, we obtain

‖β̂j − β0
j‖2 = Op(T

−1/4) + Op(N
−1/4).

The argument for T−1‖F̂j−F 0
j Hj‖2 = Op(T

−1/8)+Op(N
−1/8) is the same as in Theorem

1. The details are omitted. This proves Theorem 6. ¤

Proof of Theorem 7

Note that ĝi satisfies

ĝi = argminj∈{1,...,S}

[

1

T
(y − Xiβ̂j)

′MF̂j
(y − Xiβ̂j) + pκ,γ(|β̂j|)

]

.

Using yi = Xiβ
0
g0

i
+ F 0

g0

i

λ0
g0

i ,i + εi, we have

1

T
(y − Xiβ̂j)

′MF̂j
(y − Xiβ̂j)
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=
1

T

(

Xi(β
0
g0

i
− β̂j) + F 0

g0

i
λ0

g0

i ,i + εi

)′

MF̂j

(

Xi(β
0
g0

i
− β̂j) + F 0

g0

i
λ0

g0

i ,i + εi

)

=
1

T

(

Xi(β
0
g0

i
− β̂j) + F 0

g0

i
λ0

g0

i ,i + εi

)′

MF 0

j

(

Xi(β
0
g0

i
− β̂j) + F 0

g0

i
λ0

g0

i ,i + εi

)

+
1

T

(

Xi(β
0
g0

i
− β̂j) + F 0

g0

i
λ0

g0

i ,i + εi

)′

(MF̂j
− MF 0

j
)
(

Xi(β
0
g0

i
− β̂j) + F 0

g0

i
λ0

g0

i ,i + εi

)

= a1 + a2

We first show a2 = op(1) uniformly in i whether g0
i = j or gi 6= j. From T−1‖F̂j−F 0

j ‖2 =

Op(T
−1/8) + Op(N

−1/8) (j = 1, ..., S), we have ‖MF̂j
− MF 0

j
‖2 = ‖PF̂j

− PF 0

j
‖2 =

Op(T
−1/8) + Op(N

−1/8). If g0
i = j, then ‖β̂j − β0

j‖2 = Op(T
−1/4) + Op(N

−1/4), and

a2 = op(1) follows from Lemma A2. Suppose g0
i = k 6= j, then ‖β̂k − β0

j‖2 = Op(1)

(k 6= j), we need a different argument. Consider the term

1

T
‖

(

Xi(β
0
g0

i
− β̂j)

)′

(MF̂j
− MF 0

j
)
(

Xi(β
0
g0

i
− β̂j)

)

‖ ≤ Op(1)‖PF̂j
− PF 0

j
‖2 1

T
‖Xi‖2

By Assumption D2′, maxi
1
T
‖Xi‖2 = Op(N

α), the above is bounded by

[Op(T
−1/8) + Op(N

−1/8)]Op(N
α) = op(1)

because α < 1/16 and N/T 2 → 0. The remaining terms in a2 are all op(1) by similar

argument (some are already covered by Lemma A2(d)). Thus

1

T
(y − Xiβ̂j)

′MF̂j
(y − Xiβ̂j) = a1 + op(1)

The behavior of a1 is different for g0
i = j and g0

i 6= j. If g0
i 6= j

1

T
(y − Xiβ̂j)

′MF̂j
(y − Xiβ̂j)

=
1

T

(

Xi(β
0
g0

i
− β̂j) + F 0

g0

i
λ0

g0

i ,i

)′

MF 0

j

(

Xi(β
0
g0

i
− β̂j) + F 0

g0

i
λ0

g0

i ,i

)

+
2

T

(

Xi(β
0
g0

i
− β̂j) + F 0

g0

i
λ0

g0

i ,i

)′

MF 0

j
εi +

1

T
ε′

iMF 0

j
εi + op(1).

=
1

T

(

Xi(β
0
g0

i
− β0

j) + F 0
g0

i
λ0

g0

i ,i

)′

MF 0

j

(

Xi(β
0
g0

i
− β0

j) + F 0
g0

i
λ0

g0

i ,i

)

+
2

T

(

Xi(β
0
g0

i
− β0

j) + F 0
g0

i
λ0

g0

i ,i

)′

MF 0

j
εi +

1

T
ε′

iMF 0

j
εi + op(1).

In the last equality, we replace β̂j by β0
j . This is permissible because β̂j is for β0

j and

because ‖β0
j −β̂j‖2 1

T
‖Xi‖2 = op(1), ‖β0

j −β̂j‖ 1
T
‖Xi‖‖F 0

g0

i

λ0
g0

i ,i
‖2 = op(1), etc, with op(1)

being uniform in i.

On the other and, if g0
i = j,

1

T
(y − Xiβ̂j)

′MF̂j
(y − Xiβ̂j) =

1

T
ε′

iMF 0

g0
i

εi + op(1),

which follows by noting that MF 0

j
F 0

g0

i

= 0 and β̂j is consistent for β0
g0

i
for g0

i = j
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Similar to the proof of Theorem 2, let us define the event Aij such that

Aij =

{

1

T

(

Xi(β
0
g0

i
− β0

j) + F 0
g0

i
λ0

g0

i ,i

)′

MF 0

j

(

Xi(β
0
g0

i
− β0

j) + F 0
g0

i
λ0

g0

i ,i

)

+
2

T

(

Xi(β
0
g0

i
− β0

j) + F 0
g0

i
λ0

g0

i ,i

)′

MF 0

j
εi +

1

T
ε′

iMF 0

j
εi < ε′

iMF 0

g0
i

εi + op(1)

}

,

where op(1) is uniform in i and j, we have also used pκ,γ(|β̂j|) = op(1). Thus

1(ĝi 6= g0
i ) =

S
∑

j=1;j 6=g0

i

1(Aij)

From the proof of Theorem 1, we also know that

P

(

max
i∈{1,...,N}

∣

∣

∣

∣

1

T
ε′

iMF 0

j
εi −

1

T
ε′

iMF 0

g0
i

εi

∣

∣

∣

∣

> δ

)

< η.

Now suppose that g0
i = k, as long as [Xi, F

0
k ] has full column rank, which is necessary

for identification of β0
k anyway, then Xi(β

0
g0

i
−β0

j)+F 0
g0

i

λ0
g0

i ,i 6= 0. Given the assumption

of tail probability for εi, and using the same argument in Theorem 2, we have for j 6= g0
i ,

P (Aij) ≤ η + O(T−τ ).

Since S is finite, this implies that

P (ĝi 6= g0
i ) ≤ Sη + O(T−τ ),

where the right hand side is uniform in i. It follows that the average over i is also

bounded by the above, that is

1

N

N
∑

i=1

P (ĝi 6= g0
i ) = o(1) + O(T−τ ).

Using the same argument as in Theorem 2, we can further show that

P

(

sup
i∈{1,...,N}

1(ĝi 6= g0
i ) > 0

)

= o(1) + NO(T−τ ).

This completes the proof of Theorem 7. ¤

Proof of Theorem 8

The proof of Theorem 8 is almost same as that of Theorem 3. By Theorem 7,

P (supi |ĝi − g0
i | > 0) = o(1) when N/T τ → 0. This implies that P (ĝ1 = g0

1, ĝ2 =

g0
2, ..., ĝN = g0

N) → 1. Thus to prove Theorem 8, it is sufficient to assume that the

group membership is known.
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First, similar to the proof of Theorem 3, we can show

T−1/2‖F̃j − F 0
j Hj‖ = Op

(

S
∑

j=1

‖β0
j − β̃j‖

)

+ Op

(

1

min{N1/2
j , T 1/2}

)

,

where β̃j is the infeasible version of our estimator where group membership is fixed to

its population G0, H−1
j = Vj,NT (F 0

j F̃j/T )−1(Λ0′
j Λ0

j/Nj)
−1.

We can prove the variable selection consistency by using the same argument in

the proof of Theorem 3. For a simplicity of notation, we denote the non-zero true

coefficient of j-th group as β0
j , and denote Xi as the corresponding columns of design

matrix. Then the asymptotic normality part is proved as follows. We have

1

NjT





∑

i:g0

i =j

XiMF̃j
Xi + Σj(κ)



 (β̃j − β0
j) +

1

NjT
Σj(κ)β0

j

=
1

NjT

∑

i:g0

i =j

XiMF̃j
F 0

j λ0
g0

i ,i +
1

NjT

∑

i:g0

i =j

XiMF̃j
εi,

where Σj(κ) is defined in Theorem 8. Using the same argument of Theorem 3, it then

follows




1

NjT

∑

i:g0

i =j

X ′
iMF̃j

Xi −
1

TNj

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

Xkcj,ki +
1

T
Σj(κ)



 (β̃j − β0
j)

=
1

NjT

∑

i:g0

i =j

[

X ′
iMF̃j

− 1

Nj

∑

k:g0

k
=j

cj,kiX
′
kMF̃j

]

εi

+
1

NjT 2

∑

i:g0

i =j

∑

k:g0

k
=j

X ′
iMF̃j

ΩkF̃j(F
0
j
′
F̃j/T )−1(Λ0′

j Λ0
j/Nj)

−1λ0
g0

i ,i

+op((NjT )−1/2) +
1√
N j

Op

(

1

min{Nj, T}

)

.

Similar to the proof of Theorem 3, replacing the F̃j by F 0
j in the above formula leads

D̂(F 0
j , κ)

[

√

NjT (β̃j − β0
j)

]

=
1

√

NjT

∑

i:g0

i =j

[

X ′
iMF 0

j
− 1

Nj

∑

k:g0

k
=j

cj,kiX
′
kMF 0

j

]

εi

+

√

T

Nj

ηj +

√

Nj

T
ζj + op(1),

where ζj and ηj are defined in Theorem 8. This leads to the limit of covariance matrix

of
√

NjT (β̃j − β0
j) given as Vβ(F 0

j ) = D0(F
0
j )−1J0(F

0
j )D0(F

0
j )−1, where D0(F

0
j ) and

J0(F
0
j ) are defined in Theorem 8. ¤
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Proofs of Theorems 9 and 10

The proof of Theorem 9 is similar to that of Theorem 4. There are two steps. In step

1, we decompose the bias b as b = B1 + B2 + B3 + B4 + B5, where

B1 = Ey

[ 1

NT

N
∑

i=1

‖yi − Xiβ̃g0

i
− F̃g0

i
λ̃g0

i ,i‖2 − 1

NT

N
∑

i=1

‖yi − Xiβ̂ĝi
− F̂ĝi

λ̂ĝi,i‖2
]

,

B2 = Ey

[ 1

NT

N
∑

i=1

‖yi − Xiβ
0
g0

i
− F̃g0

i
λ̃g0

i ,i‖2 − 1

NT

N
∑

i=1

‖yi − Xiβ̃g0

i
− F̃g0

i
λ̃g0

i ,i‖2
]

,

B3 = Ey

[

Ez[
1

NT

N
∑

i=1

‖zi − Xiβ
0
g0

i
− F̃g0

i
λ̃g0

i ,i‖2] − 1

NT

N
∑

i=1

‖yi − Xiβ
0
g0

i
− F̃g0

i
λ̃g0

i ,i‖2
]

B4 = Ey

[

Ez

[ 1

NT

N
∑

i=1

‖zi−Xiβ̃g0

i
−F̃g0

i
λ̃g0

i ,i‖2
]

−Ez

[ 1

NT

N
∑

i=1

‖zi−Xiβ
0
g0

i
−F̃g0

i
λ̃g0

i ,i‖2
]]

,

B5 = Ey

[

Ez

[ 1

NT

N
∑

i=1

‖zi−Xiβ̂gi
− F̂ĝi

λ̂ĝi,i‖2
]

−Ez

[ 1

NT

N
∑

i=1

‖zi−Xiβ̃gi
− F̃g0

i
λ̃g0

i ,i‖2
]]

,

where the expectations Ey[·] and Ez[·] are taken with respect to the joint distribution

of {y1, ..., yN} and {z1, ..., zN} conditioned on the design matrix Xi and the factor

structure. Also, we denote

ℓy(β1, ..., βS, F1, ..., FS, Λ1, ..., ΛS) =
1

NT

N
∑

i=1

‖yi − Xiβgi
− Fgi

λgi,i‖2,

ℓz(β1, ..., βS, F1, ..., FS, Λ1, ..., ΛS) = Ez

[ 1

NT

N
∑

i=1

‖zi − Xiβgi
− Fgi

λgi,i‖2
]

.

The same argument as in the proof of Theorem 4 applies. This gives Theorem 9. The

proof of Theorem 10 is almost identical to that of Theorem 5. The details are omitted.

This completes the proof. ¤
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Table 1: The percentages of under- (U), correct (C), and overidentification (O) of
the various factor selections over 1,000 replicates for the data generated by the three
data-generating processes considered in the text. The data shown are the number of
selected groups S and the number of selected group-specific factors (rj, j = 1, .., 3).
The number of units in each group is N1 = N2 = N3 = N/3.

Data 1
S r1 r2 r3

T N U C O U C O U C O U C O
100 300 0 96 4 0 91 9 0 89 11 0 92 8
200 300 1 95 4 0 90 10 0 90 10 1 84 15
100 600 0 85 15 0 93 7 0 91 9 0 94 6
200 600 0 89 11 0 92 8 0 85 15 0 89 11

Data 2
S r1 r2 r3

T N U C O U C O U C O U C O
100 300 0 87 13 0 89 11 0 86 14 0 87 13
200 300 0 85 15 0 84 16 0 84 16 0 85 15
100 600 0 83 17 0 87 13 0 88 12 0 85 15
200 600 0 84 16 0 85 15 0 85 15 0 87 13

Data 3
S r1 r2 r3

T N U C O U C O U C O U C O
100 300 0 96 4 0 91 9 0 92 8 0 92 8
200 300 0 95 5 0 92 8 0 90 10 0 92 8
100 600 0 83 17 0 92 8 0 93 7 0 91 9
200 600 0 92 8 0 86 14 0 91 9 0 89 11
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Table 2: Simulation results of the parameter estimates for β̂ based on 1,000 repetitions.
We report the mean and standard deviation (Std.Dev.) of the parameter estimates.
Because β̂ is a long vector (80 × 1), we report the estimation results only for the true
predictors (β̂1, β̂2, β̂3)

′ with true value (β1, β2, β3) = (1, 2, 3)′, and for the first three
irrelevant predictors, which are (β̂4, β̂5, β̂6)

′ with true value (β4, β5, β6) = (0, 0, 0)′. The
remaining elements of β̂ are similar to (β̂4, β̂5, β̂6)

′ .

Data 1

T N β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

100 300 Mean 0.986 1.980 2.970 0.000 0.000 0.000
Std.Dev. 0.024 0.024 0.025 0.005 0.005 0.004

200 300 Mean 0.989 1.985 2.973 0.000 0.000 0.000
Std.Dev. 0.016 0.017 0.017 0.003 0.003 0.004

100 600 Mean 0.995 1.990 2.984 0.000 0.000 0.000
Std.Dev. 0.017 0.016 0.016 0.003 0.002 0.003

200 600 Mean 0.996 1.992 2.986 0.000 0.000 0.000
Std.Dev. 0.012 0.011 0.011 0.002 0.001 0.001

Data 2

T N β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

100 300 Mean 0.991 1.979 2.969 0.000 0.000 0.000
Std.Dev. 0.024 0.023 0.024 0.006 0.004 0.005

200 300 Mean 0.991 1.980 2.970 0.000 0.000 0.000
Std.Dev. 0.018 0.017 0.016 0.005 0.004 0.003

100 600 Mean 0.992 1.987 2.984 0.000 0.000 0.000
Std.Dev. 0.017 0.016 0.016 0.004 0.005 0.004

200 600 Mean 0.994 1.989 2.985 0.000 0.000 0.000
Std.Dev. 0.011 0.011 0.012 0.002 0.003 0.002

Data 3

T N β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

100 300 Mean 0.988 1.980 2.967 0.000 0.000 0.000
Std.Dev. 0.023 0.023 0.023 0.005 0.004 0.004

200 300 Mean 0.989 1.986 2.969 0.000 0.000 0.000
Std.Dev. 0.016 0.017 0.016 0.004 0.003 0.003

100 600 Mean 0.990 1.987 2.980 0.000 0.000 0.000
Std.Dev. 0.017 0.016 0.017 0.003 0.002 0.003

200 600 Mean 0.995 1.991 2.985 0.000 0.000 0.000
Std.Dev. 0.011 0.012 0.011 0.001 0.001 0.001
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Table 3: Scatter matrix of our grouping vs. the classification by mutual fund names
(Small Capital & Growth, Large Capital & Growth, Small Capital & Value, and Large
Capital & Value. )

Our grouping
Classification by names G1 G2 G3 G4 G5 G6
Small Capital & Growth 64 19 0 14 0 50
Large Capital & Growth 68 7 42 5 0 0
Small Capital & Value 2 95 1 49 1 0
Large Capital & Value 1 0 5 5 108 0
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Table 4: The correlations between the estimated group-specific pervasive factors and
the Fama and French (1993) factors (Mkt, HML, SMB), Short-Term Reversal Factor
(STR), Long-Term Reversal Factor (LTR), and Momentum Factor (Mom). If the ab-
solute values of the correlations are larger than 0.18, 0.22, and 0.29, the corresponding
significance levels are 10%, 5% and 1%, respectively.

Observable 6 styles
Group Estimated factor Mktt SMBt HMLt LTRt STRt Momt

G1 First 0.43 -0.22 -0.28 -0.15 -0.17 0.20
Second -0.16 -0.07 0.07 0.19 0.18 0.02
Third 0.10 -0.03 -0.14 -0.04 -0.07 0.15
Fourth -0.24 0.04 0.23 -0.21 0.19 -0.02

G2 First 0.37 -0.08 -0.29 -0.08 0.39 0.11
Second 0.05 -0.19 0.01 0.11 0.09 -0.08
Third -0.15 0.01 -0.15 0.16 -0.32 -0.17

G3 First 0.46 -0.01 0.04 -0.18 0.02 -0.01
Second 0.03 0.08 -0.03 0.13 0.10 -0.04
Third -0.11 -0.03 0.00 0.20 0.02 0.04

G4 First 0.36 -0.09 0.18 -0.06 0.1 -0.26
Second 0.07 0.03 -0.11 0.11 0.04 0.09
Third -0.13 0.16 -0.07 0.18 -0.16 0.17

G5 First 0.46 -0.01 -0.02 0.06 0.02 -0.06
Second 0.14 0.06 -0.13 0.04 0.13 0.14

G6 First 0.33 0.14 -0.05 -0.19 -0.02 0.21
Second 0.11 0.07 0.07 0.07 -0.11 0.00
Third -0.09 -0.03 0.00 0.26 0.01 0.10
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Table 5: Scatter matrices of the estimated group membership ĝi against nominal clas-
sification schemes based on 1. Location of stock exchanges, 2. Types of share, and 3.
Industry.

Classification G1 G2 G3 G4 G5 G6
1 Location of stock exchanges

Shanghai stock exchange 179 67 132 77 105 81
Shenzhen stock exchange 125 29 94 64 95 93

2 Types of share
A-shares 211 95 224 141 196 172
B-shares 93 1 2 0 4 2

3 Category based on Industry
Chemicals, Construction, Manufacturing 76 15 70 36 53 49
Food, Beverages, Personal Goods 40 14 24 21 25 13
Gas, Metals, Mining, Oil 42 16 16 17 17 26
Banks, Financial Services, Real Estate 30 6 25 15 23 17
Retails 29 18 26 19 19 21
Utilities 17 8 16 6 19 9
Pharmaceuticals, Health 24 6 21 10 16 12
Information Technology 27 8 21 9 19 11
Others 11 4 4 5 7 13
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Table 6: The results of regression of group-specific pervasive factors f̂jk,t (j =

1, ..., S; k = 1, ..., rj) on some economic factors zt; f̂jk,t = z′
tγjk + ejk,t, and then

conduct the statistical significance test of the least squared estimate γ̂jk. The four ob-
servable market risk factors zt are market excess returns of A-shares (ER–A), market
excess returns of B-shares (ER–B), the book-to-market ratio (HML), and the market
capitalization (SMB). These variables are computed with Chinese data. For each fac-
tor, the first row corresponds to the estimated regression coefficients γ̂G, whereas the
second row is the corresponding standard deviations. (***), (**) and (*) means that
the estimated regression coefficient is statistically significant at the 1%, 5%, and 10%
levels, respectively.

VIX ER–A ER–B HML SMB
Group 1 First 0.516 7.872∗∗∗ -1.275 -2.819 7.518∗∗∗

SD 0.318 1.454 1.347 1.865 1.543
Second 0.676∗∗ -13.321∗∗∗ 14.922∗∗∗ 0.449 -1.438
SD 0.300 1.370 1.269 1.757 1.454

Group 2 First 0.469 10.151∗∗∗ -4.056∗∗∗ -2.205 6.444∗∗∗

SD 0.349 1.596 1.478 2.047 1.694
Group 3 First 0.599∗ 11.995∗∗∗ -4.409∗∗∗ -1.627 4.992∗∗∗

SD 0.305 1.394 1.291 1.788 1.480
Second 0.464 -2.366 -0.618 -2.555 2.597
SD 0.469 2.145 1.987 2.752 2.277

Group 4 First 0.105 10.20∗∗∗ -3.737∗∗ -1.960 6.618∗∗∗

SD 0.338 1.545 1.431 1.982 1.640
Group 5 First 0.425 11.039∗∗∗ -4.428∗∗∗ -3.519∗ 6.115∗∗∗

SD 0.331 1.513 1.402 1.941 1.606
Second 0.550 0.534 0.139 1.464 -0.134
SD 0.482 2.201 2.039 2.824 2.337
Third 0.178 -3.424 -0.547 -5.126∗ 5.907∗∗∗

SD 0.453 2.071 1.918 2.657 2.199
Group 6 First 0.369 9.322∗∗∗ -2.896∗∗ -3.560∗ 7.086∗∗∗

SD 0.331 1.514 1.403 1.943 1.608
Second 0.062 -3.076 1.514 -4.188 0.003
SD 0.476 2.176 2.016 2.792 2.311
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Table 7: Statistically significant regressors xt for each group. (***), (**) and (*) means that the estimated regression coefficient is
statistically significant at 1%, 5%, and 10% level, respectively.

Variables G1 G2 G3 G4 G5 G6
China macroeconomic variables

MACROECONOMIC 0.975∗∗∗ 0.000 0.160 0.679∗∗∗ 0.936∗∗∗ 0.447∗∗∗

INDEX (LEADING)
MONEY SUPPLY - M2 1.022 1.158∗∗∗ 0.370∗∗∗ 0.927∗∗∗ 2.021∗∗∗ 2.110∗∗∗

Exchange rates
CHINESE YUAN to US 0.872∗∗∗ 0.557∗∗∗ 0.284∗ 1.296∗∗∗ 0.103 0.000
CHINESE YUAN to YEN 0.000 0.000 0.000 0.000 0.018 0.043∗∗∗

CHINESE YUAN to EURO 0.000 0.000 0.000 0.000 0.000 0.000
CHINESE YUAN to HK 0.000 0.000 0.000 0.000 0.000 0.000

Commodity price index (Spot)
S&P GSCI Industrial Metals 0.000 0.000 0.000 0.000 0.000 0.000
S&P GSCI Aluminum 0.000 -0.027∗∗∗ 0.000 0.000 0.000 0.000
S&P GSCI Copper 0.000 0.000 0.000 0.000 0.000 0.000
S&P GSCI Crude Oil 0.000 -0.001 0.000 0.000 0.000 0.000
S&P GSCI Gold 0.141 0.152∗∗∗ 0.150∗∗∗ 0.241∗∗∗ 0.073∗∗∗ 0.000
S&P GSCI Natural Gas -0.007 -0.024∗∗∗ -0.020∗∗∗ 0.000 -0.021∗∗∗ 0.000
S&P GSCI Nickel 0.000 0.000 0.000 0.008 0.000 0.014∗∗∗

S&P GSCI Silver 0.000 0.000 0.000 0.000 0.000 0.000
Major stock market indexes

S&P 500 0.000 0.000 0.000 0.000 -0.092∗∗∗ 0.000
MSCI WORLD 0.000 0.000 0.000 0.000 0.000 0.000
MSCI EUROPE 0.000 0.000 0.000 0.000 0.000 0.000
TOPIX 0.000 0.000 -0.019 0.000 -0.048∗∗∗ 0.000
HANG SENG 0.000 0.000 0.000 0.000 0.000 0.000
MSCI CHINA 0.291∗∗∗ 0.304∗∗∗ 0.398∗∗∗ 0.242∗∗∗ 0.390∗∗∗ 0.240∗∗∗
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