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Abstract

Spatial effects and common-shocks effects are of increasing empirical importance.
Each type of effect has been analyzed separately in a growing literature. This pa-
per considers a joint modeling of both types. Joint modeling allows one to determine
whether one or both of these effects are present. A large number of incidental param-
eters exist under the joint modeling. The quasi maximum likelihood method (MLE) is
proposed to estimate the model. Heteroskedasticity is explicitly estimated. This paper
demonstrates that the quasi-MLE is effective in dealing with the incidental parameters
problem. An inferential theory including consistency, rate of convergence and limiting
distributions is developed. The quasi-MLE can be easily implemented via the EM al-
gorithm, as confirmed by the Monte Carlo simulations. The simulations further reveal

the excellent finite sample properties of the quasi-MLE. Some extensions are discussed.
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1 Introduction

There is a large and yet still rapidly growing literature on spatial interactions and common
shocks, both of which lead to cross-sectional dependence. In spatial models, the cross sec-
tional dependence is captured by spatial weights matrices based either on physical distance,
and relative position in a social network or on other types of economic distance. The cross-
sectional dependence in a common-shocks model arises from the response of individuals to
the shocks. The common shocks model is characterized by a common factor structure. All

these models are motivated by empirical considerations.!

The existing literature largely
analyzes the two types of models separately. This paper integrates spatial interactions
and common shocks. We show that the maximum likelihood method is an effective way of
estimating the resulting model.

Early development of spatial models has been summarized by a number of books,
including Cliff and Ord (1973), Anselin (1988), and Cressie (1993). GMM estimation of
spatial models are studied by Kelijian and Prucha (1998, 1999, 2010), and Kapoor et
al. (2007), among others. The maximum likelihood method is considered by Ord (1975),
Anselin (1988), Lee (2004a), Yu et al. (2008) and Lee and Yu (2010), and so on. For
panel data models with multiple common shocks, Ahn et al. (2013) consider the fixed-
T GMM estimation. Pesaran (2006) proposes the correlated random effects method by
including additional regressors, which are the cross-sectional averages of dependent and
the explanatory variables. The principal components method is studied by Bai (2009) and
Moon and Weidner (2009). Bai and Li (2014) consider the maximum likelihood method.

The joint presence of spatial interactions and common shocks calls for a different esti-
mation procedure, as the existing method is not directly applicable. Under joint modeling,
there exist a large number of incidental parameters. This paper also allows cross sec-
tional heteroskedasticity, giving rise to further incidental parameters. We show that the
maximum likelihood method can effectively deal with the incidental parameters.

This paper considers the following spatial panel data model with common shocks, in
which both the dependent variables y;; and the explanatory variables x;; are impacted by

the common shocks f;:

N k

Yit = 0 + P Z Wij, NYjt + Z TitpBp + Aéft + eit,
j=1 p=1 (1.1)

xitp:Vip—i_sz{pft—i_vitp? p:17277k7

where y;; is the dependent variable; x4 = (zit1, Tit2, - - -, Tix)' 18 a k-dimensional vector of
explanatory variables; f; is an r-dimensional vector of unobservable common shocks; A; is
the corresponding heterogenous response to the common shocks; Wy = (wi;n)nxn is a

specified spatial weights matrix whose diagonal elements w;; n are 0; and e;; and v;; are the

'For spatial interaction and economic distance, see, e.g., Case (1991), Case et al. (1993), Conley (1999),
Conley Dupor (2003), and Topa (2001); for common factors, see Ross (1976), Chamberlain and Rothschild
(1983), Stock and Watson (1998), to name a few.



idiosyncratic errors. In model (1.1), the term X, f; captures the common shock effects, and
ij-V:l w;j NYj¢ captures the spatial effects. The joint modeling allows one to test which
type of effects is responsible for the cross sectional dependence. We may test p = 0 while
allowing common shocks. Similarly, we may determine if the number of factors is zero in
a model with spatial effects. It may be possible that both effects are present.

An additional feature of the model is the allowance of cross sectional heteroskedasticity.
The importance of permitting heteroskedasticity is noted by Kelejian and Prucha (2010)
and Lin and Lee (2010). The heteroskedastic variances can be empirically important,
e.g., Glaeser et al. (1996) and Anselin (1988). In addition, if heteroskedasticity exists
but homoskedasticity is imposed, then MLE can be inconsistent. Under large N, the
consistency analysis for MLE under heteroskedasticity is challenging even for spatial panel
models without common shocks, owing to the simultaneous estimation of a large number
of variance parameters along with (p, 3). The existing quasi maximum likelihood studies,
such as Yu et al. (2008) and Lee and Yu (2010), typically assume homoskedasticity. These
authors show that the limiting variance of MLE has a sandwich formula unless normality is
assumed. Interestingly, we show that the limiting variance of the MLE is not of a sandwich
form if heteroskedasticity is allowed.

Spatial correlation and common shocks are also considered by Pesaran and Tosetti
(2011), who specify the spatial autocorrelation on the unobservable errors e;; while we
specify the spatial autocorrelation on the observable dependent variable y;;. Both specifi-
cations are of practical relevance. Spatial specification on observable data makes explicit
the empirical implication of the coefficient p. From a theoretical perspective, the spatial
interaction on the dependent variable gives rise to the endogeneity problem, while the spa-
tial interaction on the errors, in general, does not. As a result, under the Pesaran and
Tosetti setup, existing estimation methods on the common shocks models such as Pesaran
(2006) and Bai (2009) can be applied to estimate the model. As a comparison, these
methods cannot be directly applied to model (1.1) due to the endogeneity from the spatial
interactions.

In this study, we consider the pseudo-Gaussian maximum likelihood method (MLE),
which simultaneously estimates all parameters of the model, including heteroskedasticity.
We give a rigorous analysis of the MLE including the consistency, the rate of convergence
and limiting distributions. The asymptotic theory does not rely on normality.

In subsequent exposition, the matrix norms are defined in the following way. For any
m x n matrix A, || A|| denotes the Frobenius norm of A, i.e., [|A|| = [tr(A’A)]*/2, || A2 the
spectral norm, i.e., ||All2 = [Amax(A’A)]"/2, where Apax(-) denotes the largest eigenvalue.
In addition, [[Alle is defined as [|Allc = maxi<i<m > j— |a;;| and ||Af]; is defined as
|Al1 = maxi<j<n > jvq |aij|, where a;; is the (7, j)th element of A. We use a; to denote
ar = a;— % S>T_ | ay for any column vector a; and My, to denote % S L | @b} for any vectors
a; and b;.

The rest of the paper is organized as follows. Section 2 gives the matrix form of model



(1.1) and the assumptions needed for the subsequent analysis. Section 3 presents the
objective function and the associated first order conditions. The asymptotic properties
including the consistency, the convergence rates and the limiting distributions are derived
in Section 4. Computing algorithm is discussed in Section 5. Section 6 reports simulation
results. Section 7 discusses extensions of the model. The last section concludes. Technical

proofs are given in a supplementary document.

2 Model description and assumptions

Let vy = (vit1, Vie2, - - - Vi) and v = (v, Vi, - .., Vi)', and let v = (i1, %2, - - - Vik)-
The x equation in model (1.1) is equivalent to

Tit = Vi + i ft + vit.
Now model (1.1) can be rewritten as

N
[yu — P 2j=1 Wi, NYjt — Ty 3

= pi + P fr + €t
Lit

with ®; = [N\, vil, pi = [, V)] and e = [eqr, v},)'. Let D(p,3) be an N(k+1) x N(k + 1)
matrix, whose (i, j) subblock, denoted by D;;(p, ), is equal to

Ll) _Iﬂ if =
Di;(p, B) = . (2.1)
[_'MSW o] if i ]

Now model (1.1) can be further written as

D(p,B)zt =p+ Pfe + e (2.2)

where zx = (214, 221, ..., 2n¢) With zip = (yir, 2fy), © = (@1, Po, ..., Pn), u = (), pb,
o iy) and € = (€)y, €5, . . ., €)' Hereafter, we suppress p, 8 from D(p, §) for notational
simplicity. Throughout the paper, we assume that the number of factors r is fixed and
known. Determining the number of factors is discussed in Section 6, where a modified
information criterion of Bai and Li (2014) is proposed. Our simulation results are based

on the estimated number of factors.
To analyze model (1.1), we make the following assumptions. Comments on these as-

sumptions are given in a number of remarks below.

Assumption A: The f; is a sequence of constants. Let My = 71 E?:l fi ft’ , where
ft = fi — % 23:1 ft. We assume that Mff = limy_, My is a strictly positive definite

matrix.

Assumption B: The idiosyncratic errors €;; = (e, v},)" are such that



B.1 The e is independent and identically distributed over ¢ and uncorrelated over ¢ with
E(ei) =0and E(e,) < ocforalli=1,--- ,Nand t=1,--- ,T. Let 0? denote the
variance of e;;.

B.2 v, is also independent and identically distributed over ¢ and uncorrelated over ¢ with
E(vy) = 0 and E(|jvy|*) < oo foralli=1,--- ,Nandt=1,---,T. We use $j, to
denote the variance matrix of vj;.

B.3 e; is independent of v for all (4, j, ¢, s). Let ¥;; denote the variance matrix €;. So
we have %;; = diag(0?, 3, ), a block-diagonal matrix.

Assumption C: There exists a C' > 0 sufficiently large such that

C.1 |w| < C, where w = (p,3");

C2 ||®;| <Cforallj=1,---,N;

Cc3cCc!t < Tmin(L4) < Tmaz(Xg) < C for all j = 1,--- | N, where 7,,(X;) and
Tmaz(2jj) denote the smallest and largest eigenvalues of X ;;

C.4 there exists an r x r positive matrix () such that Q = ]\}gnm N71o'Y1®, where  is
defined earlier, and ¥ = diag(311, Y92, ..., 2NN ), a block diagonal matrix.

Assumption D: The variances Y;; for all ¢ and My, are estimated in a compact set,
i.e. all the eigenvalues of S and M #f are in an interval [C~1 O] for a sufficiently large

constant C. In addition, p and 3 are estimated in a compact set A x B C R x RF,

Remark 2.1 Assumptions A-D are made in the context of factor analysis, and are used in
Bai and Li (2012, 2014). Assumption A assumes that the sequence { f;} is fixed. If random
factors are assumed instead, the analysis remains valid if we assume that f; is independent
of the errors ¢;; for ¢t and s, and f; has finite 4th moment. The fixed f; is consistent
with the fixed effects assumption. It also allows arbitrary dynamics in f;, either a linear
or broken trend or stochastic processes. By estimating My instead of individual f;, we
avoid incidental parameters in the time dimension. If 7" is much smaller than N, we could
estimate individual f; and the sample variance of \; (not individual \;) by switching the
role of N and T. Assumption B assumes that the variance of idiosyncratic errors is a block-
diagonal matrix. This assumption allows the k regressors to be correlated. This assumption
also extends the traditional factor analysis in which the variance of errors is assumed to
be diagonal. Assumption C assumes that the underlying values of parameters are in a
compact set. This assumption is standard in the econometric literature. Assumption D
requires that parameters be optimized in a compact set. This assumption is often made
when dealing with highly nonlinear objective functions, e.g. Jennrich (1969), and Newey

and McFadden (1994). Our objective function is nonlinear.

Assumption E: The weights matrix Wy satisfies that Iy — pWy is invertible and

lim sup ||[Wx|leo < 00; limsup |[Wi |1 < o0; (2.3)
—00 —0

limsup ||(7 — pWx) oo < 00; limsup ||(1 — pWx) |1 < oc. (2.4)
—00 — 0

In addition, all the diagonal elements of Wy are zeros.



Remark 2.2 Assumption E is standard in spatial econometrics, see Kelejian and Prucha
(1998), Lee (2004a), Yu et al. (2008), Lee and Yu (2010), to name a few. Under this
assumption, some key matrices, which play important roles in asymptotic analysis such as
Sw in Assumption F below, can be handled in a tractable way. A set of sufficient conditions

for (2.4) are limsup ||[Wx|leo < 1, limsup |[Wx |1 <1 and |p| < 1 because
N—o0 N—o0

o
. _ . . 1
lim sup (1 — p W)~ < limsup - ([pWilloc < 1= < o0,

N—o0 —00 =0 n

. > j 1
limsup (7 = pWi) ™| < limsup 3 _(lpWy 1) < 7= < co.

—00 =0 =0

Assumption F: One of the following conditions holds:

(i) B # 0 and, for all N,

N
(32 SvTeeSy] + tr[SF] = 237 82 ) > 6, (2.5)

1
N i=1

(i) For all pf € A with pf # p,

N N N

. 1 2

liminf — > > (Sz'j,NU? + Sjino; — (o' = p) D Sip,NSjp,N0§> #0 (2.6)
i=1 j=1,j#i =1

where Sy = Wy (Iy — pWyx)~! and Sij,n be the (7, j)th element; p denotes the true spatial

coefficient, and ¥, = diag(c?,03,...,0%).

Remark 2.3 Assumption F makes further restrictions on the spatial weights matrix Wy
to guarantee the identification of p. Part (i) is a local identification condition since it
depends on 3 # 0. Part (ii) does not depend on 3, and it can be regarded as a global
identification condition for p. In this viewpoint, the condition (2.6) should be stronger
than (2.5). It is indeed the case. To see this, note that the expression in (2.5) can be
regarded as the variance of NV —1/24 EééQS’]"\}Ee_@l/ 211, when v is taken as a standard normal
N(0, Iy), where S%, = Sy — S% with S¢ = diag(S11,n5, S22,N, - - -, Snw,nv) and (see Remark
4.3 below for more related details). For pf = p, the expression in (2.6) is twice the variance
of N~1/20/%,.S8%v. So condition (2.5) can be viewed as a variant of (2.6) when pf is
restricted to p. Thus condition (2.6) is stronger than (2.5). The weaker condition (2.5)

implies that the inclusion of explanatory variables x;; (with 5 # 0) helps identification.

Remark 2.4 The two sets of identification conditions in Assumption F are stated in dif-
ferent ways in the existing literature. Part (i) corresponds to Assumption 8 in Yu et al.
(2008) but it is different from theirs because we allow heteroskedasticity. Part (ii) is related
to Assumption 9 in Lee (2004a) and the condition in Theorem 2 of Yu et al. (2008). To



see this, we show in Appendix A that condition (2.6) is related to the unique solution of
ﬂN(pT,O'Iz, e ,O‘}L\?) = 0 with

1 _ 1 _ 1
Tin(p' ol o) = — 5l RIS RVSL + o n RIS VS + 2,

where RY = (Iy — piWx)(Iy — pWy)7L, 3, = dlag(al ,0;2, . .,a}?), and where p and
Yee = diag(ot, o3, ..., 012\,) denote the true parameters. When homoskedasticity is assumed,
TN reduces to T, in Yu et al. (2008). After concentrating out the common variance oi2,
T1,, leads to Assumption 9 in Lee (2004a) and the assumption of Theorem 2 in Yu et al.

(2008). Because of heteroskedasticity our identification condition takes a different form.

Remark 2.5 Condition (2.5) implies that

1 N N
Nz > o Sin=d (2.7)
i=1j=1,j%i

for some positive ¢’. To see this, notice that the left hand side of (2.5) is equal to

1 N
v X j2S1217N+ Z Z Sij,NSji,N-
z:lj:l,j;ﬁz i=1j=1,j7#1

By the Cauchy-Schwarz inequality,

72 Z S’L]NS]ZN< [N

1=1 j=1,j#1i

N 1/2

Z S5 | [ ZZ ]
=1 =1 75=1,77#1
N
Z
=1,

ﬂMz

Z]N

||Mz

Let A = max; o2 2/ min; o 2. By Assumption C.3, we have A < co. Then

0 < %(tr[z SNZeeSN]"i'tr[SN _2; i )S A+1< i:: i\f: ZJN)

Jj=1,3

Letting ¢’ = ﬁé, the condition (2.7) follows.
Also, a sufficient condition for (2.6) is, for all pf € A and all N,

N

N 2
Z ( ij, NO' + S]z NU - (,0 —p Z Szp,NSjp,NU ) > 0,
i=1j=1 p=1

for some positive 4.
Identification conditions (IC hereafter). It is known in the factor literature that the

loadings ® can only be identified up to a rotation. To remove the rotational indeterminacy,

we impose the following normalization restrictions: (a) f = %Z?zl ft = 0; (b) My =



%Zle(ft — )(fe = f) = L; (c) %' 1@ is diagonal with the diagonal elements being
distinct and arranged in descending order.

The above normalization is used by the maximum likelihood method in classical fac-
tor analysis, e.g., Anderson (2003, Chapter 14); also see Bai and Li (2012). Under this
normalization, there is no need to estimate the sample variance matrix My, and the anal-
ysis is also simpler. If My # I,., we redefine the factor loading ® as ot = (IDM;JZQ, then
the corresponding M}f will be I,. There exist other normalization restrictions to fix the
rotational indeterminacy. Different normalizations will give different estimates of & and
M¢s, but the estimation of key parameters w = (p, 3) and ¥ is invariant to the different

normalization restrictions.

3 Objective function and First order conditions

Let 0 = (w, ®,3) be the parameters to be estimated. The objective function considered
in this paper is

L£(0) L X+ L |D| L [DM_. D' (3.1)

=——1In —In — —tr .
2N =N 2N ==

where X, = &’ + X; D = D(p, 3) is given in equation (2.1); and M,, = % S 55l s
the data matrix. The above objective function is the likelihood function when f; and €
are assumed to be iid normal and are independent. Such assumptions are not necessary; in
fact, f; does not have to be random, and €; does not have to be normal, as is demonstrated
in our theoretical analysis, as well as in the simulation analysis. The maximizer 0, defined
by

0 = argmax L(6),
0c®

is referred to as the quasi maximum likelihood estimator or MLE, where © is the parameters
space specified by Assumption D. By the definition of D = D(p, ), the determinant of D
is equal to the determinant of Iy — pWy, so In|D| = In|Ix — pWi|. Thus the Jacobian
term is relatively easy to handle. The more difficult part is that D also appears in the
second term of the likelihood, where it also depends on both p and 5. We can rewrite the

objective function as

1 1 1 _
L(w,®,3) = —ox 12| + ~ o Iy — pWi| — ﬁtr[DMzzD’Ezzl].
The first order condition for & is
SN DM.D' — %) =0 (3.2)
where D = D(p, 3). The first order condition for S, is

DM.D' —%_. =W (3.3)



where W is an N(k+ 1) x N(k + 1) matrix whose ith (k+ 1) x (k + 1) diagonal subblock
is such that the upper-left 1 x 1 and lower-right & x k£ submatrices are both zeros and the
rest elements of W are unspecified. The unspecified elements of W correspond to the zero

elements of Y. The first order condition for p is

1 o 1 XL )
—Ntr[(IN—pWN) "W +7ZZ;(yzt—pyn—w Bt

where gj;; = Z;-V:l w;j NYj¢ and G = (I, + @’2_1@)_1. The first order condition for 3 is

1 XX 1 X1 A
o= DS (i — Pl — ¥B) — o DY 5 Ea NGO E D =0 (3.5)
T =0 NT = = ; ’

These first order conditions are useful when deriving the rate of convergence and the
limiting distributions. They are not used for the consistency proof, nor are they used in
computing the MLE. That is, MLE does not need to solve for the first order conditions.
The MLE obtained by the EM algorithm automatically satisfies the first order conditions.

This is proved in Appendix E, and is also confirmed by numerical simulations.

4 Asymptotic properties of the MLE

In this section, we first show that the MLE is consistent, we then derive the convergence

rates, the asymptotic representation and the limiting distributions.

!/

Proposition 4.1 Under Assumptions A-F, when N,T — oo, we have, for w = (p, '),

~ Z szz - ZiiH2 = op(1).

In addition, if I1C holds, we also have
1 X . .
N DOIBEH - [19s — all* = 0p(1).
i=1

Remark 4.1 In the analysis of panel data models with common shocks but without spatial
effects, a difficult problem is to establish consistency. The parameters of interest 3 is
simultaneously estimated with high dimensional nuisance parameters ® and Y. The
analysis has to deal with these nuisance parameters. The presence of spatial effects further
compounds the difficult, partly due to the transformation matrix D and spatial endogeneity.
As shown in appendix A, we need D~ for further theoretical analysis. The expression of

D~ is given in Lemma A.1 of the supplement.



The consistency result allows us to further derive the rates of convergence.

Theorem 4.1 Under Assumptions A-F, when N, T — oo, we have

& —w=O,(NTV2P=Y2) 4 0,(T~3/?);
1.
N D IS = Sall? = 0, (T 7).
=1

In addition, if I1C holds, we also have
1N ety a
OIS - ] = 0,7,
=1

Remark 4.2 An implication of Theorem 4.1 is that the MLE of w is \/T-consistent when
N is finite. This means that the ML method considered in this paper is still applicable
in the “finite N” setting. But the asymptotic expression and limiting distribution will be
different.

Theorem 4.1 also has implications for asymptotic properties of ®; and ;. Given
that @ — w has a faster convergence rate, the limiting distributions of vech(@)i — ®;) and
Vech(iii — ¥;i) are not affected by the estimation of w, and are the same as the case of

without regressors.

To provide the asymptotic representation of & = (p, 3'), we define

i tr[S]QV] + tr[Z;}SN\IlS&] - 221N1 ‘92 N IBI(ZZ 1 Su szw/g )

N (Efil SZ%NEMU/O—?)ﬁ 21:1 Zzw/az

where VU is a diagonal matrix with the ith diagonal element being 01-2 + 3’303, that is,
U = diag(o? + ' S1100, - - - 0'12\, + 'Y NnuB). Then we have the following theorem.

Q0=

Theorem 4.2 Under Assumptions A-F, when N,T — oo and \/N/T — 0, we have

N
2o j=1 €itMNij,tSij,N

+ 0,(1).
€itUit p( )

where nijr = v B+ 1(i # j)ejt-

Remark 4.3 Ignoring Q~', we can write the asymptotic expression in Theorem 4.2 alter-

natively as

1 Y SN e+ iy i 2ezt(2§y=1 Sij NV5) B (4.1)
VNT DDARD Dl 01_2 CitVit '
where S}, = Sy — Sj‘(, with Sj‘{, = diag(S11,n, S22.N, - - ., Snn ). To obtain the variance of

(4.1), let

T

TR o- gl
N

2.

1
—5 €itVit-
[

%~ T
Mq

g

i=1t=1

10



It is easy to check that E(e,) = E(e;) = 0 and E(e.) = 0. By the well-known result that
E[(v,Avy)?] = [tr(A)]? + tr(A2) + tr(A’A) + ktr(A o A) (4.2)

where “o” denotes the Hadamard product and v; are iid over ¢ with zero mean and identity

variance matrix, and the elements of vy are also iid with the fourth moment 3 + k, we have
var(e,) = tr(S32) + tr(Zee SV TS ).

This follows from tr(EéfS’%E 1/2) =0 and tr[(EiéQS]O\;E 1/2) (EéfS’f\;E 1/2)} = 0. From
S% = Sy — 5%, and from S¢ being a diagonal matrix, the above result can be alternatively

written as

var(e,) =

]t(tr[SN] + tr[Zee SNEeeSN -2 Z SZZ N)
i=1

In addition, it is relatively easy to show that

VaI‘Eb ZZ 2 UNﬁE]U/B)

1—1] 1

Combining results, we have

var(e, + &) = var(eq) + var(ep) = - [tr[S}] + tr[S Sy wSy] — 2 Z S|

1
N =1

by the definition of W. In addition,

cov(eq + €y, €c) = cov(ep,ec) = [ﬂ Z Su sz} var(e.) = é[% % m}

These results imply that the variance of (4.1) is Q.
Corollary 4.1 Under the assumptions of Theorem 4.2, if \/N/T — 0, we have
VNT(@ —w) % N, Q).
where Q = lim (.
N—o0
Remark 4.4 2 can be consistently estimated by

Q_i tr[S?V]—i_tr[AilSN\ilS/ ]_221 1 zzzN /8/(22 1S11N21w/0')
N (Zz 1Sm szw/o' ) Zz]\i zzv/o'@

where Sy = Wi (Iy — pWyx) ™! and ¥ = diag(63 4+ /51100, . . ., 6% + F'Snnef).

Remark 4.5 To gain an intuition of the asymptotic results in Theorem 4.2, consider the

following spatial panel data model without common shocks

N
Yit = 0 +p Z wij NYjt + v+ et (4.3)
j=1

11



where e;; and v;; satisfies the conditions listed in Assumption B but v;; is assumed to be

observable. Conditional on vy, the likelihood function by concentrating out «; is

1 N 2 1 1 N T 1 . ./ 2
_WZIDUZ+NID|IN—pWN|—mZZﬁ ylt P?Jit_vz‘tﬂ)
=1

i=11t=1 %

where, again, §j;; = Z;V:1 wij NYjt- Let 0 = (p, 3,5%,...,5%) be the MLE of the above
likelihood function. It can be shown that © — w has the same asymptotic expression
as in Theorem 4.2. This means that the likelihood approach of this paper eliminates the
endogenous part of x;; (common factors). Theorem 4.2 also provides the asymptotic theory
of MLE under heteroskedasticity for the usual spatial models.

Remark 4.6 From Corollary 4.1, we see that the MLE achieves asymptotic efficiency for
heteroskedastic spatial models in the sense that the limiting variance is not a sandwich form.
This result contrasts with the existing results in the literature such as Yu et al. (2008) and
Lee and Yu (2010), in which the limiting variance of the MLE has a sandwich formula. The
reason for the difference is the heteroskedasticity estimation. In the present paper we allow
cross-sectional heteroskedasticity, while Yu et al. (2008) assume homoskedasticity. Under
heteroskedasticity, the asymptotic expression does not involve €%, as shown in Theorem
4.2. But under the homoskedasticity, the situation is different. Still consider model (4.3).
If homoskedasticity is assumed and is imposed in estimation, the asymptotic expression for
the MLE is

O—w=0"1 1 Zthl epSyer + Eij\il Z?:l ezt(Zjil Sz‘j,NUét)ﬁ +tuv +o0,(1)
N VNTo? Zi]\il ZtT:1 €itVit PRz
where v = Zfil Zthl[Sii,N — %tr(SN)](e%t —0?) and
O = i 2tI'[‘S'N\IISN} +tr(SNSN) +tr(SN) [tI‘(SN)]2 026, Sii, N Lo
N 02 Zz 1 Sm szwﬁ 02 ZZ 1 Zzw ’

here ¥ is a diagonal matrix with its ith diagonal element being 3'Y;;,3. From the above,
we can see that the asymptotic expression under the homoskedasticity involves e3,. So the
limiting variance of @ — w will depend on the kurtosis of e;;. Because € does not depend
on the kurtosis, the limiting variance of & — w has a sandwich formula. In contrast, the
MLE under heteroskedasticity has a limiting variance not of a sandwich form, regardless
of normality. This is an interesting result. Thus estimating heteroskedasticity is desirable
from two considerations: the limiting distribution is robust to the underlying distributions;

it avoids potential inconsistency when homoskedasticity is incorrectly imposed.

5 Computation and algorithm

We show how spatial panel data models with common shocks can be easily estimated by
the EM algorithm. Lee (2004a) uses the usual maximization procedures (e.g. the Newton-
Raphson method) to estimate the spatial models; Bai and Li (2014) use the EM algorithm
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to estimate panel data models with common shocks. Neither these methods are suitable
for models with both spatial interactions and common shocks without modification.

An obstacle to using the standard EM algorithm is that there is no closed form solution
for the maximizer p in (3.1) even other parameters are all known. However, this problem
can be easily overcome because p is a scalar and actual maximization (a low dimension
maximization) can be directly carried out. Thus the algorithm combines the usual max-
imization procedures with the EM algorithm. Let 8() = (p(®), 5(s) ®(s), Egi)) denote the
estimated value at the sth iteration. Our updating procedures consist of two steps. In the

first step, we update @, and (3 according to the EM algorithm

T -1
Pletl) = [ ZE (Dzf{10¢) HTZ (fefl0¢ } , (5.1)
t=1 t=1
Zgi-H) =Dg [D(S)MZZD(S)/ _ (I)(S—H)‘I)(S)/(Eg))_ID(S)MZZD(S),} (5.2)
and
(3+1) N 1 —1
’ :[Zuz—:l(a(sm iy
Twr (5.3)
S B A R N s
X{;;M%(%—P 2wt =N )]

where Dg is the operator which sets the entries of its argument to zeros if the counterparts
of E(eye}) are zeros; (0,"")? is the [(i — 1)(k + 1) + 1]th diagonal element of £ and
)\ESH) is the transpose of the [(i — 1)(k + 1) + 1]th row of ®(*1)_ In addition,

7

T
=3 B(Dzf{16%) = DOM. DO (5) e,
t=1

T
Z (feft |9(S =1, — CI)(S)’(Ezi))*l(I)(s) + @(S)’(zg))le(S)MmD(S)’(ES))*1<I>(3),
and
ft(S) = o) (RN pB) s, (5.4)

In the second step, we update p by maximizing (3.1) with respect to p at § = 6+t), & =
P+ and B, = EE‘:H) with an initial value of p at p{*). The suggested procedure is a

version of the ECME procedure of Liu and Rubin (1994). Putting together, we obtain
glst+1) — (p(sﬂ-l)’ﬁ(s—i-l)’ Pls+1) ES“)).

This procedure guarantees that the value of likelihood function in each iteration does

not decrease. This is because
L(p®), gD, o+ ) > £(pl), 89 00 500, (5.5)

L(pT, pEFD, @l mHD) > £(p), gl oo+ me+ D), (5.6)
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Letting p = p® be fixed, inequality (5.5) can be verified by the standard theory of the
EM algorithm, see Dempster et al. (1977) and McLachlan and Krishnan (1997). Inequality
(5.6) is due to the definition of pt)  In Appendix E, we show that the limit of the
iterated solution satisfies the first order conditions (3.2)-(3.5) and therefore possesses the
local optimality property.

For the initial value () = (p(l),ﬁ(l), o), EE?), pM and M) can be set to the within
group estimator, ignoring the endogeneity problem. And ®1) and Zgi) is then the maxi-
mizer of (3.1) at p = p and g = 3.

6 Finite sample properties

In this section, we run simulations to investigate the finite sample properties of the MLE.

The data are generated according to

N

Yit = o+ p Y Wi Nyt + T f1 + Taa B2 + Aify + eqr
=1

Titp = Vip + ,.Y'L{pft =+ Vitp, for p=1,2.

The dimension of f; is fixed to 2. We set §; = 1 and B = 2. All the elements of «,
Vip, Ai and f; are generated from N(0,1) and v;, = A\ + u;p with both elements of u,
being independent N(0,1) for p = 1,2. This allows correlations between \; and v;p. To
generate the errors and heteroscedasticity, we use the method of Bai and Li (2014) to set
€1 = \/diag(Z) Ve, where ¢; is an N(k + 1) dimensional vector with all the elements being
(x2 — 2)/2, where x3 denotes the chi-squared distribution with two degrees of freedom,
which is normalized to zero mean and unit variance. In addition, = is also N(k + 1)
dimensional, whose ith element is set to

:izl_m%, i=1,2,...,Nk+1)

where 7; is drawn from UJ[0.1,0.9] and ¢ is the ith row of ®; T is defined as diag(Y1,
Yo,...,Ty) with T; = diag{l,(Mi’Mi)_l/QMi} where M; is a k x k standard normal
random matrix for each 1.

The generated data exhibit heteroskedasticity. The generated x;; is correlated with the
factors and factor loadings in the y;; equation, and the two regressors x;;1 and x;0 are also
correlated; the errors are non-normal and skewed. The simulation results under the normal
and student’s ¢ distributions are given in Appendix F.

The spatial weights matrices generated in the simulation are similar to Kelejian and
Prucha (1999) and Kapoor et al. (2007). More specifically, all the units are arranged in a
circle and each unit is affected only by the ¢ units immediately before it and immediately
after it with equal weight. Following Kelejian and Prucha (1999), we normalize the spatial
weights matrix by letting the sum of each row be equal to 1 (so the weight is qu) and call
this specification of spatial weights matrix “q ahead and ¢ behind.”
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Adapting a criterion in Bai and Li (2014), the number of factors is determined by
7= argmin IC(m)
0<m<rmaz
with
1

Nk + a In[min(Nk, T)].
2NkT

1
———InlIy — 0"Wx|+m
NT Iy — p"Wh|

where p™, ™ and f]’;} are the respective estimators of p, ® and 3. when the factor number
is set to m; k=Fk+1. We set rpax = 4.

The following four tables present the simulation results which are obtained based on
1000 repetitions. Biases and root mean square errors (RMSE) are both computed. The
percentage that the factor number is correctly estimated is given in the third column of
each table. Different values of p and different spatial weights matrices are considered. The
tables show that the MLE has good finite sample properties. The number of factors can
be correctly estimated with high probability. The biases are small. The RMSE of the

estimators decreases as the sample becomes larger, indicating that they are consistent.

Table 1: The performance of the MLE under p = 0.2
with “1 ahead and 1 behind” spatial weights matrix

N T %0 p i B2

rF=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.7 | 0.0004 0.0039 | 0.0001 0.0095 | 0.0003 0.0090
50 50 | 99.9 | 0.0000 0.0025 | -0.0001 0.0058 | -0.0003 0.0059
100 50 | 100.0 | 0.0000 0.0016 | 0.0000 0.0037 | -0.0002 0.0036
25 100 | 99.7 | -0.0000 0.0027 | 0.0000 0.0068 | 0.0001 0.0063
50 100 | 100.0 | 0.0000 0.0018 | 0.0000 0.0041 | -0.0001 0.0042
100 100 | 100.0 | 0.0001 0.0011 | 0.0001 0.0026 | -0.0001 0.0026

Table 2: The performance of the MLE under p = 0.9
with “1 ahead and 1 behind” spatial weights matrix

N T % p B B2

F=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.6 | -0.0000 0.0011 | 0.0003 0.0097 | 0.0004 0.0099
50 50 | 100.0 | 0.0000 0.0006 | 0.0001 0.0058 | -0.0002 0.0059
100 50 | 100.0 | -0.0001 0.0004 | 0.0000 0.0036 | 0.0000 0.0038
10 100 | 99.8 | 0.0000 0.0007 | -0.0001 0.0067 | -0.0001 0.0068
50 100 | 100.0 | -0.0001 0.0005 | 0.0001 0.0040 | 0.0004 0.0042
100 100 | 100.0 | -0.0001 0.0003 | 0.0001 0.0026 | 0.0003 0.0027
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Table 3: The performance of the MLE under p = 0.2
with “3 ahead and 3 behind” spatial weights matrix

N T % p B B2

F=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.3 | -0.0002 0.0062 | 0.0004 0.0092 | 0.0004 0.0095
50 50 | 100.0 | -0.0002 0.0037 | -0.0001 0.0058 | -0.0003 0.0057
100 50 | 100.0 | 0.0001 0.0025 | -0.0001 0.0037 | -0.0001 0.0037
25 100 | 100.0 | -0.0002 0.0045 | 0.0001 0.0069 | -0.0000 0.0067
50 100 | 100.0 | 0.0000 0.0028 | 0.0002 0.0040 | 0.0001 0.0040
100 100 | 100.0 | 0.0000 0.0017 | -0.0001 0.0024 | 0.0000 0.0025

Table 4: The performance of the MLE under p = 0.9
with “3 ahead and 3 behind” spatial weights matrix

N T %0 p b1 B2

r=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.4 | 0.0000 0.0013 | 0.0005 0.0093 | 0.0000 0.0094
50 50 | 99.9 | -0.0000 0.0008 | -0.0002 0.0065 | -0.0001 0.0060
100 50 | 100.0 | 0.0000 0.0005 | -0.0001 0.0037 | -0.0001 0.0038
25 100 | 99.9 | 0.0000 0.0009 | -0.0003 0.0063 | -0.0002 0.0067
50 100 | 100.0 | 0.0000 0.0006 | 0.0000 0.0039 | -0.0001 0.0041
100 100 | 100.0 | 0.0000 0.0004 | -0.0001 0.0027 | 0.0000 0.0026

7 Extensions

This section discusses two extensions: one allows time-invariant and common regressors,
and the other allows a spatial autoregressive (SAR) specification for the errors. Both

extensions are of practical relevance, and both can be studied within the ML framework.

7.1 Models with time-invariant and common regressors

Consider the following extended spatial panel data models with common shocks

k

N
Yit = P Y Wii NYjt + Y TitpOp + Tihe + Tipe + N fy + €ir;
7=1 p=1 (71)

Titp = Tistp + Nipbt + Vipft + vip;  for p=1,2,... k.

where r; represents a vector of observable time-invariant variables such as race, gender, and
education; p; represents a vector of observable common variables (not varying with ) such
as aggregate prices, unemployment rates, and other macroeconomic policy variables. Note
that we allow the regression coefficients of time-invariant regressors to be time-varying, and
allow the coefficients of common regressors to be individual dependent. This is a sensible
way to include time-invariant and common regressors. For example, returns to schooling

are likely to be time varying, and individual responses to policy variables are likely to be
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individual dependent. Imposing constant coefficients for these variables are also easy (Bai,
2009). Also note that we allow z;; to be correlated with the time-invariant regressors r;
and with the common regressors p;, as shown in the x equation.
Model (7.1) falls within the framework of commons shocks. Let f,;r = (R, D}, Shrs -+ Shes J1)
and let CD;L be defined as
/ / /
o — [ri TZ; 0 )‘i]

‘ 0 n Ly®r; v
where 7; = (i1, ..., k) and v; = (i1, - -, Yik). We can rewrite model (7.1) as
[yit - PZévzl Wij NYjt — Z’;zl $itpﬂp] _ (I);‘ftt + e,
Lt

which is similar to the model in Section 2. The difference here is that some components
of the common factors f: are observable, and some components of the factor loadings <I>2»L
are observable. The maximum likelihood method is good at imposing restrictions. The
observed components of ftT and of <I>Z are not estimated but are restricted to their observed
values.

We will not pursue the asymptotic analysis for this model to conserve space. A related
investigation is given in Bai and Li (2014) in the absence of spatial effects. Instead we
run a small simulation to demonstrate the performance of the MLE. The data are gen-
erated according to (7.1). The way to generate the factors, factor loadings, errors and
heteroscedasticity is similar to Section 6. Other prespecified parameters are also the same
except p = 0.5. The spatial weights matrix is that of “3 ahead and 3 behind.” The di-
mensions of f;, hy and p; are all one. We do not report the estimated coefficients for the
time-invariant regressor and the common regressor (r;,p;) (there are many of them). For
simplicity, we assume that the number of factors is known (it can also be estimated easily).
Table 5 reports the simulation results based on 1000 repetitions. It is seen that the MLE

performs quite well in the presence of time-invariant and common regressors.

Table 5: The performance of the MLE

in the presence of time-invariant and common regressors

N T p b1 B2

Bias RMSE Bias RMSE Bias RMSE
25 50 | 0.0000 0.0065 | 0.0001 0.0138 | 0.0009 0.0133
50 50 | 0.0002 0.0042 | -0.0002 0.0084 | 0.0004 0.0088
100 50 | -0.0001 0.0028 | -0.0001 0.0056 | -0.0001 0.0056
25 100 | 0.0001 0.0049 | 0.0007 0.0108 | 0.0004 0.0109
50 100 | 0.0000 0.0030 | -0.0002 0.0064 | -0.0004 0.0060
100 100 | 0.0000 0.0020 | -0.0002 0.0039 | -0.0002 0.0041

7.2 SAR disturbances

Spatial autoregressive (SAR) disturbances have been an important part of spatial modeling,

and to which recent panel literature pays further attention; for example, Baltagi et al.
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(2003), Baltagi et al. (2007), Kapoor et al. (2007), and Lee and Yu (2010). Here we
consider spatial effects both in the dependent variable and in the errors, together with

common shocks. Consider the following model
Yi =« -+ pWNY;f + Xt,g + Aft + Ut (72)

with Uy = wMyU; + e, where My is another spatial weights matrix with its diagonal
elements being zeros; Y;, o, and U; are N x 1 vectors, Xy is N x k, and A = (A1, ..., An)".
If the common shock term A f; does not exist, the preceding model reduces to that of Lee
and Yu (2010); but again we allow cross sectional heteroskedasticity.

To render an expression consistent with model (1.1), premultiply Iy — 7My on both
sides. Then

Y = (a—mMpya)+pWNY+7MNY, — pr MNWNY, + Xy 8 —MN X 5+ (A—7MNA) fi + €.

We can treat @ — mMya as a new o and A — tMyA as a new A since they are free

parameters. Now the above equation can be written as
Vi =a+ pWnY, + 7MyY; — pr MNWNY; + X8 — TMN X8 + Afi + ey,

which can be alternatively written as
N N N
Yit = oy + P( Z wij,N?th) + 7T< Z mz’j,Nyjt) - PW( Z Z mij,ijl,Nylt)
j=1 j=1 j=11=1 (7.3)

N
+ @3 — 7T< > mz'j,NUC}t)ﬁ + Xifi + eit
=1

where w;; v and m;j v are the elements of Wy and My. Similar to model (1.1), we allow

the regressors also to be affected by the common shocks,
Tit = V; + %{ft + vit. (7.4)
Combining (7.3) and (7.4), by the same method in Section 2, we can rewrite the model as
D(p,B,m)zt = p+ @ft + & (7.5)

where u, ® and ¢, are defined in the same way as in Section 2; D(p, 3, 7) is an N(k+ 1) x
N(k + 1) matrix, whose (4, j) subblock, denoted by D;;(p, 3, 7), is equal to

if i=j

14 prmis Wi N —f'
0 Iy,

Dij(p, B,7) = 5

—PWijN — TMj N + PTMjx NWsj,N  TMjj N ey

[ 0 0 ] if i

where m;, y is the ith row of My and wy; n is the jth column of Wy.
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Model (7.5) is similar to (2.2) except that the transformation matrix D is more com-
plicated. Nevertheless, the inverse matrix of D(p, 3, 7), denoted by V(p, 3, ), still has a
closed form. Let Vj;(p, 3, 7) be the (i, j)th subblocks of V(p, 3, 7), then we have

l[(IN —mMy)(Iy — pWN)I"* (Iy — PWN)“ﬁ'] if Q=
0 I
Vis(p, o) = ) L
l[(fN —mMn)(In — pWN)]7 (In — PWN)”H] if i#j
0 0

where [(In — 7My)(Iny — pWy)]¥ and (Iy — pWy)¥ are the respective (i, j)th elements
of [(Iy —mMy)(In — pWy)] 7! and (Iy — pWyx)~!. Using the above result, the analysis of
the MLE is similar as model (1.1).

We use simulations to illustrate the performance of the MLE. The data are generated
according to (7.5). The factors, factor loadings, errors and heteroskedasticity are generated
in the same way as in Section 6. Other prespecified parameters such as the number of
factors, the number of regressors and the true values of § are also the same; we set p = 0.5
and m = 0.4; Wy and My are set equal to each other and to be the “3 ahead and 3 behind”
weights matrix. For simplicity, the number of factors is assumed to be known. Table 6
reports the simulation results based on 1000 repetitions.

Table 6 shows that the maximum likelihood method continue to perform well. The

RMSE decreases as the sample size becomes larger, implying that the MLE is consistent.

Table 6: The performance of the MLE under SAR disturbances

N T p B B2 4

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
25 50 | -0.0002 0.0069 | -0.0002 0.0092 | -0.0002 0.0091 | -0.0014 0.0185
50 50 0.0001  0.0042 | 0.0003 0.0056 | 0.0000 0.0055 | -0.0004 0.0113
100 50 0.0002  0.0026 0.0001  0.0035 0.0000 0.0036 | -0.0003 0.0073
25 100 | 0.0002 0.0049 | -0.0001 0.0062 | 0.0000 0.0066 | -0.0008 0.0126
50 100 0.0001  0.0031 0.0001  0.0041 | -0.0001 0.0039 | -0.0004 0.0079
100 100 | 0.0000 0.0019 | 0.0000 0.0025 | 0.0000 0.0026 | -0.0002 0.0049

A further extension is to consider spatial weights on the lag Y; 1. The idea of joint

modeling of spatial effects and common shocks is similar and the MLE is still applicable.

8 Conclusion

This paper considers spatial panel data models with common shocks, in which the spatial
lag term is endogenous and the explanatory variables are correlated with the unobservable
common factors and factor loadings. The proposed maximum likelihood estimator is capa-
ble of handling of both types of cross sectional dependence. The results make it possible to
determine which type of cross-section dependence or both are present. Heteroskedasticity
is explicitly allowed. It is found that when heteroskedasticity is estimated, the limiting

variance of MLE is no longer of a sandwich form regardless of normality. We provide a
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rigorous analysis for the asymptotic theory of the MLE, demonstrating its desirable prop-
erties. We also show that a version of the EM algorithm is very effective in estimating the
model. The Monte Carlo simulations show that the MLE can be easily computed and has

good finite sample properties. We also discuss some extensions of the model.
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Appendix: Proofs for the theorems in the main text

In the appendix, we provide the detailed proofs for the theorems in the main text. We first

define some notations which will be used throughout the appendix.

A

H=(9'3 <i>)—1;
G=(+

o b

=N
nN=N-
Appendix A: Proof for consistency

While in the main text, we use (p, 3, ®,X.) to denote the true value of the coefficients.
For proving consistency, we shall use a superscript “*” to denote the true values of param-

eters; the variables without “*” denote the input variables of the likelihood function. This
Wk

notation is only used in Appendix A. Once consistency is established, we will drop in
Appendices B to F. The following lemmas are useful for the proof of consistency.
Lemma A.1 Let V(p,[3) be the inverse matrixz of D(p,3), then
_ i _ i g
(L —pWn)" (I —pWn)"p i
0 Iy
T R T (A1)
[ PO N P ; N 1 if i

where Vi;j(p,B) is the (i,j)th subblock of V and (I — pWn)¥ is the (i,j)th element of
(I — pWyx)~. Furthermore, let R = (Iy — pWn)(In — p*Wx)~! and D = DD*~! with
D* = D(p*, 3*). We have
Rr” R’Ll * / op - .
]Dij =
Rz‘j Rijﬂ*/ o .
where D;; is the (i, j)th subblock of D and R;; is the (i, j)th element of R.

Proof of Lemma A.1. This follows from direct verification.

Lemma A.2 Let(p,3) € AxB, where A and B are both compact sets. Under Assumptions
A-F, uniformly on A x B,

a) | ZRU 1O+ X)) —

< C, for alli;



1 N 1 T N 71
(b) N; ’th::(;Rw eje + B7vjt) — 5Uzt>ftH ),
1 L1 ¢ =2 212 -1
) N 72l — Ee)]l] = 0p(T77),
©) 7 L |7 Xk~ B@)] =0y
@ LSS ewen - Bewen]| = 0y
N = T — it €t 1tCit D 5
© L34 S e - B = 0pr
Ni:1 thl 1t Vit 1t Vit — Up 3
1 N N 1 T 9
(f) WZZ‘TZ[eltejt_E(eztejt)]’ —Op(T_l),
i=1j=1 t=1
1 N N 1 T 9
(g) WZZ’Tz[e“eﬂ_E(elte]t)H —Op(T71)7

@
I
—
<.
I
_
-

where €;; = Zévzl Sij N (eje + B3 vj) with Sij n being the (i, j)th element of Sy = Wy (In —
p*Wa)"Y R and R;; are defined in Lemma A.1.

Lemma A.3 Under Assumptions A-F,

1 g1 _
N N“[D‘D (7 2 5it)P'= ]| = (1)
1 T
b D— X ]D)’E = 1
4) sup | o 7 2l | =(m)
(¢c) sup %tr[DEE/]D)’Z;I] = 0p(1)
USS]

where D = DD*~1 and £, = P’ + 3,
The proofs of the preceding two lemmas are given in Appendix D.

PROOF OF PROPOSITION 4.1: Throughout the proof, we use the following centered
objective function:

1 1 1

E+1

(A.2)

* 1 *

The above objective function differs by a constant from the original one. By D*z =
w4+ O* fi + €;, we have
T

D*MZZD*’=2;+<I>*( thet) (TZetft><D*'+ Z (e€, — 5F) — €@,

t=1 t=1



where $%, = ®*®* + 7 and € = 1 S°L | €. The above equation uses the fact that f; = f;
for f = 0. Thus,

M, = D*'s* DYl 1§ (A.3)
where
1 & 1T
S=D""e" (f > fie) Dt 4 D (f > afi)er D!
t=1 t=1
*—1 1 d / * */—1 *—1 =/ yx/—1
+D T Z(etet - )DY" —D* e DY .
t=1
Substituting (A.3) into (A.2),
L(0) = L£1(0) + L2(0), (A.4)
where
L£1(0) = — L S| + LR |D| — itr[DD*—lz* D* YD’y
! 2N =N 2N = =
1 1 k+1
—In|S%| - — In|D*| + ——
+ g[S - < In D]+
and .
Ly(0) = ——tr[DSD'S Y. (A.5)

2N
By Lemma A.3, we have sup |£2(6)| = o,(1). Since § maximizes £(6), we have £(§) >
0cO

>
L(60%), implying £1(0) > £1(6%) + L2(6*) — L2(f). By Lemma A.3, |La(60%) — L2()| >
—2sup |L2(0)| = —|op(1)|. Given this result, together with £1(0*) = 0, we have
fcO

L1(6) = ~lop(1)]. (A.6)
Letting D = D(p, 3)D*!, we rewrite £1(0) as

A 1 - 1 N 1 N A
1 L1 L k1

First consider ﬁtr[]ﬁm;]ﬁ)’i;], which can be written as, in view of X%, = ®*®* 4 3*

€€

1 o rye I ns e | S
ﬁtr[DE&D’E;] = ﬁtr[DE;D/Z;] + 5 trD® DN N £ iy + iy, say.

By the Woodbery formula $2! = $7! — 510G’ 5!

can be written as
. 1 A * A/ A—1 A «
11 = ﬁtr[DEGED/E& ] — Q—tr[DEE

Let



Algebra shows that

1 N N Y 02 1 N 1
23_722}%1]7]2_‘_727( “6 /8) zw( llﬁ ﬁ)
2 5 ok 2 op
1=17=1 1 =1
JEEA A A I .
T O RIS +—tr[22m i
i=1j=1j#i O

where R;; is the (i,7)-th element of R. In addition, we also have ig = 0p(1) uniformly
on ©. To see this, by the boundedness of 3 and X%, DX DS is less than? CDD for
some C, which is further less than CC'I N(k+1) for some constant (', as shown in the proof
of Lemma A.3(c). This result leads to iy < C1C5 ﬁtr[@’iﬁﬁ)@} = Op(N71). Given the

results on i1, 72, %3 and 44, together with

E

N
In|S.| =In|Se| + In|L + 'S 10| =D (Ino} + In [Sip|) + In| L + 'S,
=1

we have

N : R
£100) = ~55 S0 R B = 5 D (Rt = )i (Rt — )

< 1 N\ * AT S —
Zzzwzzw} ﬁtr[DQ) o /D,Ezzl]

wl
2| -
g
™
d
=
SR
=<
%
g
a*
d

N N
R N 1 a a1 a 1
-— ?:1:(111 62 +1n|Xi|) — o I+ 'Y 10|+ N § 1j(lnor +1In|2%,))

1 ’
ol + B8 4 1n|R| + i > —jo,(1)] (A7)

where we use the fact that In|D| — In|D*| = In|DD*"!| = In|D| and det(D) = det(R).

Consider

1 N N R 0.>52 1 N
Ly %y L
2N P op N
which is equivalent to
RS RS + o RS RS 4 o ia “et?) (AS)
o n oN 2 né no; .

Substituting (A.8) into (A.7), we can rewrite £1(0) as

£10) = ~{ ot 257 - w57 - L) - (L apereprey)
1 S 1 1 = = 1 RZ gk *
_{2]\[;5@2 zzﬁ ﬁ) zw( Zzﬁ ﬁ)} {2N ;]12‘;#112 1j ﬁ ijﬂ }

2For matrices A and B, we say A < B if B — A is a semi-definite positive matrix.



N
—{2}2 (0SS!l + 0155,550 — 8) } — {5 I + #5281} > —loy(1)]

.
where we use the fact that % In|l, + ®¥S:7'®*| = o(1). In the above equation, all
the expressions in the braces are nonnegative. The non-negativity can be easily verified
for the expressions in the 2nd, 3rd, 4th and 6th braces. For the first expression, let
L1,12,- ..ty be the eigenvalues of matrix RY* R'S-!. Then the first expression is equal
to 75 SN (ts — Ine; — 1), Consider the function y = x — Inz — 1, which achieves its
minimum value 0 at x = 1. The same arguments also work for the 5th expression. Given
that all the expressions in the braces are nonnegative, and £ () > —|op(1)], each of the

five expressions must be op(1), that is,

1 o 1
ﬁtr[}zz;}z’z;@ |5y RS RS — 5 =o(1) (A.9)
1 X1 .
ﬁZﬁ( nﬁ ﬁ) zw( mﬁ _ﬁ)zop(l) (A.lO)
=1 "t
1 N
TVZ Z 7325*’2mﬂ*=op(1) (A.11)
i=1j=15#i 7
1 Y .
s > (612525 - B 25t - k) = 0,(1) (A.12)
=1
%n[@@*@*’@'iy] =0,(1) (A.13)

Now we first prove p & p* under the local identification condition (2.5). By pg* # 0,
together with the boundedness of X7, 67,
AQﬁ*’Emﬁ* > ¢ for all ¢ and j. This result, together with (A.11), implies

there exists a positive constant ¢ such that

1
o) =55 .

N

1
Z 587 58" >C*Z S B
Jj=1,j

i=1j=1,j7#1

||Mz

A

implying ﬁ PO E;-V:l’#i ]%12] =o0p(1). By R= Iy — (p — p*)Sn, the above result can be

written as

implying p & p* by (2.7).
We next prove p & p* under the global identification condition (2.6). Consider (A.9),

which can be written as

1
tr[S 2R RIS — N 1nyz V2R RS;M?| — 5 =o(1) (A.14)

We use ¢; (i =1,2,...,N) to denote the eigenvalues of f]eel/QRE* R’Eee 1/2 temporarily. By

the boundedness of p, 62, it is easy to see ¢; € [C~1, C] for all i for some large constant C. In



addition, there exists a constant b (for example b = 402) such that z —Inz —1 > b(z —1)?
for all z € [C~1, C]. Given this result, we have

RS 12 fy 512 125 RS2 }_LN , _
2Nt[ R RS2 — 1n|2 RY: RS2 — 2_2N;(% Ine —1)
1N
> by Sl =1 = b SR RS
implying
HZ 1/2RZ* RS 1/2 H2 _

The above result is equivalent to
%t {( 1/2R2* R/ 1/2 N) ( 1/2RE* R/ 1/2 IN)} _ Op(l),

which can be written as

1 A A A A A A

FUELPRELR - L) (RELR — Be) £ = 0,(1).
However, by the boundedness of 02 there exists some constant ¢ such that Eee/ > cly.
Thus 1

0p(1) = Ltr (SRS — See) SRR - See) S22

1 A A A A A A A

> C4Ntr[(REZeR' — S ) (RELR = o) | = ¢ ||RE* B =S| >0

So we have
—||RE* R —

By R= Iy — (p — p*)Sn, the above results is equivalent to

1 N
=2 (072 = 62 =200 p)Sunot + (6= ) ZSWNJ)

i=1

1 N N 2
p—p*)? Z > (ZJNU;ZJrsz',NUfQ—(ﬁ—ﬂ*)zsip,NSjp,NU;2> = op(1).

i=1j=1,j7#1 p=1

The two expressions on the left hand side are both nonnegative, so we have

1 N
NZ(U;Z—&f—a(ﬁ—p*)s”Na + ( Z 2 o' ) = 0,(1), (A.15)

X ) ) X 2
(p—r )2N > D (Sij,NO'j2+Sji,NUz‘2 —(p=0"> Sip,NSjp,N0p2> = 0p(1). (A.16)
L ‘ =

@
Il
i
<
Il
—
<.
e
3

Result (A.16) implies p 2 p* in view of (2.6). So we have proved the consistency of p

under both the local and global identification conditions.



By p & p*, we have R; 2 1 for all i. This result, together with (A.10), leads to
3% B*. Given oL pr, (A.15) implies that

£ (37-0) = 0p0)

i=1
From (A.12), using the arguments of Bai and Li (2014), we can show
1 & .
~ 2 10 = X5 12 = 0p(1).
N P ZZU

Combining the above two results, we have

1L
N D 1% — S5l = o0p(1).
=1

The last claim of Proposition 4.1 can be proved from (A.13) in a similar way as in Bai and
Li (2014). The details are omitted. This completes the proof. [J

Appendix B: Detailed proofs for the convergence rates

Given consistency, we now drop the superscript “*” from the true parameters for notational
simplicity. We also drop the terms involving € because they are negligible. Let w = (p, 3')’

and © = (p, Jé4 ). The following lemmas are useful for the subsequent analysis.

Lemma B.1 Under Assumptions A-F, together with IC, we have

(@) A3 @S5 5 S bl = B)(3 - BYb S5 @)

i=1j=1 t=1
~ N N o 1 T o
(©) [0 = nEY Y @25 5" au(B - 825 88| = Oyl - )
i=1j=1 t=1
. N . 1 T
(d) ||(0—=p)H Y @35 = > ainfi|| = Op([|& = w])
i=1 t=1
. N N o 1 T o
() [(p—pE B35 = > auey S5 W H| = O0p(|@ — w]))
T =g
i=1j=1 t=1
R N o 1 T
(f) HZM;%Z bit(B = B)f7|| = Op(l& —
1=1 t=1
R N N o T . o
(9) ||H XD @35 fZ B)ejdy OiH || = Op([|& — wl))

&
Il

—
<
Il

—

where aiyy = (Yit, 01xk)’; bit = (zit, Opxr)” with Gsy = Zé\[ﬂ Wij NYjt-



Lemma B.2 Under Assumptions A-F, together with IC,

N N
(a) ||H @125151-#251@;1{“:op(T—W)
i=1j=1
1 N T
SN—1 &/ 1 —1/2
() HfZthégtEﬂ OGH | = Op(T ?)
j=1t=1
LA 1477 1 & . 911/2
(&) A3 @i (8 — L) £ @1 | = 0y ([ 5 2o 1S — 2] )
i=1 i=1

The proof of Lemma B.1 is given in Appendix D. The proof of Lemma B.2 is similar
to that of Lemma A.5 in the supplement of Bai and Li (2014) and hence are omitted.

Proposition B.1 Under Assumptions A-F, together with IC, we have
1 N 1 N %
_ &H—1 & & ~
A= 0p(T7 ) 405 (5 LIS 19— ill”) + 05 (| 57 2o 12— Zall*]*) +Oplll& =),
i=1 i=1
where A = (& — ®)YS1OH with H = (¥'S1d) 1.

PROOF OF PROPOSITION B.1. By (3.2), we have

SN DM.D' - )5 e =0, (B.1)
which is equivalent to
N N ol T N N P . P
Z Z CI)ZEZ_Z [T Z (Z Dilzlt) (Z Djlzlt) - (I)iq)g- - 2”1(1 = j)} E]; CI)]‘ =0. (BQ)
i=1j=1 t=1 I=1 =1

/.

Let @it = (¥it, 01xk)’; bit = (zit, Ok xx)’, then

> Dazyy = —ais(p — p) — bu(B — B) + O} fy + €. (B.3)

N
=1

Substituting (B.3) into (B.2), with some algebra, we have

A+A’:AA’+EI§:§:<E2T11
(23 T

i=1j=1

T
> bul(B - B)(B - B)b), S5 ¥ H
t=1



N T N T
N AN & o L 1 S—1 A7 £ A
—(p— p)HZq%z“lT S anfiI—A)—(I- A)’T D> a3 H(p— p)
i=1 t=1 j=1t=1
~ N N o 11 T P . N o 11 T
—(p—pHD > &%y Tz%egt% O H—HY ;5" = bu(8—B)f{(I - A)
i=1j=1 t=1 i=1 =1
ANNAAfllT I =1 1A /1NT I v—1&/7 13
—H) Y 0 fzeltajt g LiHP—p) = (I - A) fzzft(ﬁ_m bj 2y 3 H
i=1j=1 t=1 j=1t=1
& al NAA—ll d I 1§/ 1) 2 NAA—lA S —1 &/ 1
DD D Tszt(ﬂ—ﬁ)eﬁEﬂ OH — HY ;55" (3 — Si) Sy, O H
i=1j=1 t=1 i=1
N N T
70 D) DY TRl P B SF ) B.4
ZZ 12444 TZen(ﬁ 5) Gty it ( )
i=1j=1 t=1

where g;;; = %EtT:l[eite;t — E(eite;t)]. Consider the right hand side of (B.4). Term AA’
is of smaller order term than A and hence negligible. The magnitudes of the remaining 16

terms are given in Lemmas B.1 and B.2. Then (B.4) can be written as

A+ A =0, 4 o0p([ Zuzm sal?] )+ oplle —wl). (B5)

A

Furthermore, %@’ S and +®'2 1@ are both diagonal matrices, thus

. Laens 1 ooe1g]
Nondlag{ﬁq) LR b o} =0
where Nondiag denotes non-diagonal elements. Adding and subtracting terms, the above

equation can be written as

A

Nondiag{ AQ + QA’} = Nondiag{%(@ — D) o5 - v e}

1
1(<1>—<1>)—N

N
~ Nondiag{ 0, (; an”lu 18— @:1P) + 0, ([ S lIgu -l )} @)
1=1

Given (B.5) and (B.6), together with Q 2 @, we solve for A as

A= 0,17 +0,(x SIS i) +0,([ 5 ann Sl ) + 0, (16wl

=1

This completes the proof. [J

Lemma B.3 Under the assumptions of Proposition B.1,

1 & N T )
(@) 20— prPEY 855 T 2w T=o,(l@ — wl),
1 al 2 al SRS 11 d ! 2
) 2 [(=nBEY 855 2> aneh| = 0p(1@ - wl?),
i=1 j=1 t=1



1 N . N o 1 T 9
(© 2 [(=nBEY 55 2> cjealy | = 0p(1& — ),
i=1 j=1 t=1
1 N ~ N o 11 T R 2 )
@) 5 2|0 — VB DD @55 % > a5~ 0)b||” = op(ll — ).
i=1 j=1 t=1
1 N R N o 11 T )
(€ S [0 0B 8550 S b5~ Ba|| = o6 — w2,
N = j=1 Ti=
1 N R N R 11 T )
1) w2 [0-nEY 8,552 S ajfid]| = 010 - wl),
N = j=1 T
y AR
(9) v 2 |(0-pHY @55 e th ay| = 0p(l|e — w|?).

s
Il

-
<
Il

-

Lemma B.4 Under the assumptions of Proposition B.1,

1N LN 1 . . )
() 2 [EY 55 5 Y bieB = B)(B = BBl = op(l@ = ),
i=1 j=1 t=1
1 N R N . 11 T . 2 )
— / A
(0) ~ 20 |[H D 255" 5 0B~ B)f{%i] = Opl(|l& — ),
i=1 j=1 t=1
1 X
CIS 9l I:5 et B2 7= thﬂ B = 0(lle - wl?).
i=1 j=1
1 N . N o 1 T . 2
() 22 [A D855 = D bin(B = B)eir| = op(lle — wl?),
i=1 j=1 t=1
1 N . N o 11 T ~ 2 )
— 11/ A,
(€) w7 2 B 208555 7 D el = B)Bly|| = op(llo — w]®).
i=1 j=1 t=1

Lemma B.5 Under the assumptions of Proposition B.1,

1 N R N . 1 T 9
(a) NZ HZ(DJE;?Z[EJ%E%*E(Gjtfgt)]H ZOp(T_l),
i=1 j=1 t=1
1NN L1 T 9
(0) & D || H D@35 5= > fucir|| = Op(T ),
i=1 j=1 t=1
1 N . N o 1 T
(0 %2 Hzcbjz;izeﬁf;@ = 0,(T7),
i=1 j=1 t=1
| NI
(d) NZ H(I)lzzzl(zll E _Op ZHE” Zu”

s
Il
i

The proofs of Lemmas B.3 and B.4 are similar to that of Lemma B.1. The proof of
Lemma B.5 is similar to that of Lemma A.7 in the supplement of Bai and Li (2014). So
the proofs of the three lemmas are omitted.

10



Proposition B.2 Under the assumptions of Proposition B.1, we have
1 X - .
~ 2 It -1 = @il = Op(T ™) + Op(|& = w]*),
i=1
1 X .
~ 2 % = Sisl[* = Op(T71) + Op(l& — ).
i=1

PROOF OF PROPOSITION B.2. Consider the first order condition (3.2). Using (B.3),

we can rewrite (3.2) as

=1
N1 E . .
—-H Z QJZ};T Z Ejt(ﬁ - ﬁ),b;t + H Z I‘I)/ Z ftfzt
PUEAR | e
+HY @251? > eiefi®i — HOS (Si — Sai). (B.7)

for each i, where €;;; = T~ Zt 1lene, — E (ezte]t)] and a;; and b;; are defined in the proof

Jt
of Proposition B.1. There are 17 terms on the right hand side of (B.7), which we use

’L'Z‘71, ii72, - ,’l:l'717 to denote. Then

)2

1 X . R 1 N 1N
= SIS 1@ — @ < cfz 1®; — il]> < C=> (il +--- +l4;
Vs Nz NiF

<17C— Z (laall® + -+ + lgiazll?) (B.8)
=1
By Proposition B.1, we have
1. 2 - ~ 2
NZIIWH = Op(T ZHEu—EuII Op([|@ = w]]%).
i=1

11



The remaining 16 terms are governed by Lemmas B.3, B.4 and B.5. Given these results,

we have
1N
NZHE D — @412 = Op(T1) + O ( ZIIEM—EMII )+ Op(& —wl?).  (B.9)
=1 =1

The first order condition (3.3) gives

1 T 1 T 1 ) ~ 2
67—t =5y (eh— o)+ (h—p)P Zy2 + TZ (23 — B)]

=1
1 & . 1 &
+2(p — P)T > iy (B — 5) —2(p Z Git [ N - p)f > et
t=1 =1
1<, s 1 &
—2fzf’3;’t(ﬁ—5)ft -2 Z%t 3-8 Ezt+2)‘;Tth€it
=1 =1
—(Ai =) (i — )\i) — 2N (A = \). (B.10)
and
- 1 d ! / 1 d ! 1 d /
i = Biiv = 71 > (virviy — Siiw) + Vi > iy + T > v flvi (B.11)
t=1 t=1 t=1
A / /

—(% =) v — % —v) — B — %) (% — %)

N1 .1 I Nz
Xi—=Ai=—ANi+(p—p)?HY A= D i — (p—p)H Y A= Y djteit
; =T ; =T
Jj=1"J t=1 j=1"J t=1
LRSS VR A LA
+HZ TQA]T ijt(ﬁ - ﬂ)(ﬁ - /B) Zit + HZ (I)]E]; T Z{Ejtezt E(ejtezt)]
Jj=1"J t=1 j=1 t=1
R N o 11 T ~ N 1.1 T .
—(p=p)H Y %5 5> i+ (0= p)H Y 5 A > iije(B = ) wa
=1 t=1 j=1"17 t=1
e O Y1z
+(p— P HY =A== Y (B =i — (p—p)H Y 5 hj= > iljefi A
; T ~ ; 2T =
j=1"J t=1 j=1"J t=1
N N A
RE VD Tomr e thyzt—HZ i D w8 = B) fii (B.12)
]:1 ]:1 J t=1
ANAAl,lT . ANlAlT/A
—H) 2%y J*th(ﬂ_ﬁ) xﬁt_HZTz)‘j*Zl'jt(ﬁ Beit
~ T £ - T £
7j=1 t=1 Jj=1"J t=1
XL 1 E N T
—H ) QJEEIT D ei(B—B)wi+HY q’;%}“ﬁf > frei
j=1 t=1 j=1 t=1
N1 E o 52— o2
+HY O3 =S e fidi — HAi =5
j=1 Tt:l 9

12



Similarly we have

N T
N . A 11 .
Fi— i == Ay = (p = p)H 3 5N X i (B.13)
j=1"J t=1
R 1.1Z N 1 X
—(p—p)H Z TQAJ'T Z Yjevy + H Z P, Egglf Z[Gjtvzt E(ejtvj)]
j=1J t=1 j=1 t=1
L IO | L IO | X
—H Y7 N DB = B)fivi = H Y- 5 A D (B = By
j=1"J t=1 j=1"J t=1
N 1 T N g4I .
+HZ (I)jZEI(I);T Z ftvgt +H Z (I)jzﬁlf Z ejtft,% H'Yzzzw(ziiv - Eiiv)
j=1 t=1 j=1 t=1

1 T T .
67 —of = fZ(ef?t —a?)+(p—p) TZZ'/}‘H' fz [%(5-5)]2
N . ! /' H N 1 . / A~ 1 d .
+2(p = p) 5 D Ginwie (B = B) = 2(p = p) s X Ganfi N = 2(p p)f Z iteit
1 & R 1, 4
_2T ngt(ﬂ—mft/)\i —QTZx;t(ﬁ—ﬁ)eit-F?)\ thezt+2)\ A'N; (B.14)
t=1 t=1 =1

Ejtezt E]teit)]

k)y>
S|
M=
S
&
>/
m>
1=
>e<>
M)
&Mﬂ

<
Il
-
<.
Il
-
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There are 27 terms on the right hand side of (B.14), which are denoted by 4%; 1, ..., 9% 27.

Then
N

ZIIU —o; ||2<27 > (I,

=1

o Jlidor ).

Checking these 27 terms one by one, we have

1 B
NZHU?—U?H?:O;?(T D+ op(— ZHEulH @i — @4]|%) + Op(J|& — w]|?).
=1

=1

Applying the similar method to (B.11) and (B.13), we have

N

1 & .

¥ 2 B = Siwl|* = Op(T™1) + 0p(; ZHEmlH 1B; — i[1%) + Op(l|&> — w]?).
i=1 =1

Using the preceding two results, together with

N
1 N
NZHEM—ZMF ZHO’ e ZHE”U—EMHQ,
=1
we have

1. ~
NZH%—E“‘HQZ%(T D+ op(+ ZHEMIH [®; — ®4[|*) + Op(|l& — w|*).  (B.15)
i=1 =1

Substituting (B.9) into (B.15), we have

N

1 o _ N

& 2 15 = Sill* = Op(T ™) + Op (1|0 — w]?).
i=1

Substituting the above result into (B.9), we have

N
1 o 5 - .
~ 2 a1 119 = @il = Op(T ™) + Op([|o = ).
i=1
This completes the proof of Proposition B.2. [J

REMARK. Notice that the 10th term on the right hand side of (B.14) is 2\ A'\; =
N(A+ A")\;. However, the expression of A+ A’ is given in (B.4). Using the expression on
the right hand side of (B.4) to replace A+ A’, we have the following alternative expression

of 62 — o2, which is useful to prove Proposition B.3 and Lemma C.4 below.

T
. 1 3
67 — o7 =7 Sk — o) — (N = N)' (N = \) Zyztezt
t=1
N 1 E
OIS 6,55 L S e~ Blee)) + S+ Te (B9
j=1 t=1
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where

STiuai(B—8)  (B.17)

Nl =

Si,oz - Zyzt + = Z Lit 6 ﬁ + 2(p p)

T N
_2%Zx;t(3 B)es — 20 A"~ thxm@ 8) + 2T Zizxjfzx;t(ﬁ_@)eit
J

t=1 t 1 j

©
>
|
>
Rt
a
<.
NN
Y| =
>
<
M|
(]~
S:
=
e
|
X{
S~—
8
|
[\
~
s
|
>
R
n
[~]=
>
A

o
>
|
)
=
=
N~
M= -
—
Stf.
+
s>/
=
M=
M=
e

W
Il
—_
<.
Il
—
—
Il
N

X
>
|
b
~—
no
Red
Sy
<
)=
&MZ
kwo
$
~+~
<
}
>/

_l’_

[\
)
>
e

ey

<
=
>
(3]

>

<

M|
(]~
=

N
&

and

Trpe = 2N A Z fuei — 2N A 72 fiey Xy R oA T A,

T T= 9i

V]

N N N
NS &S e S N = NS 8,85 (8 - 2y) S5 R AN (B1S)

Using the results in Proposition B.2, we can strengthen Proposition B.1, which is given

in Proposition B.3 below. We need the following lemmas.

Lemma B.6 Under Assumptions A-F, together with I1C,

N N
|33 6:85 ey 855180 ]| = Op(NTV2T1) + Op(T /%) + 0y (& — w]));
i=17=1

= Op(NTV2T712) 4 0,(T71) + 0p (|| — w));

H T Z Z fteatzﬂlq)/

j=1t=1
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™
iy
L
o
=
|
3
S
=
=
_|_
<
©
£

z:la
1Y
) 3 22 N T = 0 A) + O,(N T3 5 0, (N7
+ 0p(T™3%) + 0p([|l& — wl));
11 1 &
/ 2 2\ —1/2m—1/2\.
(c) N;U?Ai)\if;(eit—gi)—Op(N I*T /),
1 X1, " 1 R
(d) N g)‘i)‘i()‘i_)‘i) ()\i_)\i):Op(T )+0p(||w_w||);
i=1 "1
X 1 X1
(e) (p—p)ﬁzj ZTZynen— (o= wl)
1 X1 . 4
() g)\i)\g/\gHZ Zeﬁen— (ejteit)]
i=1 "1t j=1 =

= Op(N_l/QT_ )+ Op(T=%2) + 0p([|& — wl);

The proofs of Lemmas B.6 and B.7 are given in Appendix D.

Proposition B.3 Under the assumptions of Proposition B.1, together with IC, we have
A= Op(NT2T12) 1 0p(T™1) + Op(|@ — ).

PROOF OF PROPOSITION B.3. Consider equation (B.4). Using the results in Lemmas
B.1 and B.6, we can be rewritten equation (B.4) as

A4 A = Op(NPT12) 4 0T ) + 0y — ) (B.19)
By equation (B.6), we have
. AL A ; i d>— YL (D - D) —
Nond1ag{AQ 104 } — Nondlag{ (@ - 2E @ - @)

The first term on the right hand side is O, (T~1)+0,(||&@—w]|) by Proposition B.2. Consider
the second term. From

—E ) = 2 (B2 )l = 2 =2 )2 =S (B =2 ) 2 (Bee— B ) 2



|
|
i
Eﬁ
H
|
M
I
™

ce — Yee) DLt @ = iy —ddg, say

€€

By the boundedness of ¥;;, in’ and ®;, we have

N
- 1 A o B
[i2]| = HN Z ;35 (Si — Ta) 5 (S — Ta) 25 @5

" K3

2

1 . - .
< CNZ 123 — Sl = Op(T™H) + 0p(ll& — wl)

by Proposition B.2.
Now consider ii1, which is equivalent to
Lo~ 1y 1
N Z g)‘l/\z( + Z ’77« zw ZW - ZZZU)ZZZU Yi-
i=1 %
Substitute (B.16) into the first expression. By Lemma B.7, we have
N P —1/27—1/2 -1 -
N 2 S NNi(07 = of) = Op(NTHETTH2) 4 O(T71) + Op([|0 — wl).
i=1 71

Similarly, we also have
1 .
5 2 % (Siie — Ziin)Sip7d = Op(N 72T 712) 4 Op(T 1) + Op([l& — w]).
i=1
Then it follows
Nondiag{ AQ + QA'} = O,(N"2T71/2) 1+ 0,(T ™) + Op(|& — w]))- (B.20)
By (B.19) and (B.20), together with Q & Q, we have, by solving for A,

A= Op(NTVPT2) 4 Op(T™1) + Op(|@ — wl])

as stated in Proposition B.3. [

Appendix C: Proof for Theorem 4.2

We define the following notations to simplify expressions.

=TT D)

I:Iquh = NT Z =1 Zs 1 yzsyﬁ)\ /U ij)\ NT Z =1 Zs 1 ezsy]s)\ /U

H?ﬁ = NT Z =1 Zs 1 y186]52]31q>/ Hzmy NT Z =1 Z =1 mzs(ﬂ ﬁ)yjs)\ /O-
ny)\ NT Zj 1 Zs 1 fSyJS)‘ /‘7 /e = NT Z] 1 Zs 1 fs(B — ﬁ) xjs)‘/ /U

Hyf T Z =1 yzsf Hile - NT Z =1 Z =1 i/zs(/B /6) x]s)\/ /02
i = s _y 28— B)f! I = xr L e _y eis(8 — B)'w;s X /67
ff = T Z =1 elsf, HIGCI) NT Z] 1 Zs 1 xzs(ﬁ 6) ]s ]qu)l'

erq) NT Z] 128 1f86]52]31¢)/ fop = TZJZI Zs:l fsxjsp)\]/O']
5 = g7 31 e 24,8 = B)(B — 8)'js);/63
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The proofs for the following four lemmas are given in Appendix D.
Lemma C.1 Under the assumptions of Theorem 4.2,
Sp = op([l& = wl]),
Spp = op([l& — wl]),
where S, and Sg,, are defined in (C.7) and (C.10) below.

Lemma C.2 Under the assumptions of Theorem 4.2

1

N 1z
1, = —NZAQ ZZN[ thelt:| [T;fté’it}

+ Op(NTVPT ™) + Op(NTIT7Y2) 4 Oy (T72) + 0y(|&0 — wl])-
Top = Op(NTV2T7Y) + Op(NTITV2) 4+ Op(T72) + 0p(|& = w])).

where T, and Tz, are defined in (C.8) and (C.11) below.

REMARK. The first term of 7, in Lemma C.2 is O,(T ') which comes from the 12th term
of 7, in (C.8).

Lemma C.3 Let ¢ = FEZ'SyE A, o) = FE SN Zeely, Up = FTEMA and g =
SISy, where Ty = (Yip,Y2p, - - -, INp) and E = A + Zkzl ﬂp p- Under the assump-
tions of Theorem 4.2 we have

1 NT 1 N

(9 N7 2 2 Fzlarir = trlen) + i 2 lS“NE“”IMO”(U

0 L3 (S Lid)an (L3 L) = w4 + 0,01
T NZ:1 51'2 N Nz:l 6-22 e 8 "



k

() o[ 220 52 flal (1 = )] = 3 trlip) By = By) + 0p (1 — )
i=1t=1 "1 —1
1 N.T 4 N -
) ﬁzzﬁxlt”x”q_tr(gpq)+NZ?Ezﬁjq + 0p(1)
i=1t=1 "1 =0
! 3 . Y ! \ 1 - 14 —1.q/
(m) tr[ﬁ22§ft%tpﬂ } Ztr gpq Bq)+0p(||w—W||)
i=1t=1 "1

Q
Il
-

1 N T 1 .
®) |57 >3 g haa Il (1 - A)] = tr(i2p) + 0p(1)

where Iﬁ is the pth column of the k dimensional identity matriz and Ez(ff) is the (p,q)th
element of 3. In addition, Bp and (3, are the pth element ofB and 3, respectively.

Lemma C.4 Under the assumptions of Theorem 4.2,

1 & . B
(@) o SOV e = o Z BVISNE er+ Op(NHPTT)
t=1

+ Op(T_3/2) +op([|w = wl)),

1 L s et . 1N T
(b) WgetsN(Eee _Eee )et: NFZIOA_Q uN[ thezt} [Tzfteit}
1 L Sun 1
N@ O—ZQNTZ(e [ ZS’L’LN:|

+ Op(N~V2T ! )+0( 1T—1/2)+0p(T_3/2)+0p(H@*wll),

1 NIy B
WZZT Vitp€it = ZZ Uztpezt +O ( 1/2T 1)
i=1 t:10' i=1t= 1
+ O,,(T—3/2) + Op(Hw —wl]),
where Vy = (v1g, vat, . - -, UNE)

REMARK. To prove (b), we need to substitute (B.16) into (b). The first term on the right
hand side of (b) comes from the second term of (B.16) and the third term comes from the
third term of (B.16). The proofs for Lemmas C.1-C.4 are in Appendix D.

PROOF OF THEOREM 4.2. Consider (3.4), which is equivalent to

—%tr((l — W) W) - (NT ZZ AQ?/zt)

i=1t=1
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R 1 NI N T 1 NT
—(B-0) (ﬁ Z > 7$ityit) tNT Z > ;?Aéftyit T NT Z > ?Q’t?jz’t

i=1t=1 "1t

. Lon Ly
Z/it&-) Gn (N > 72)\iyit>} (C.1)

Let Y; = (§1e, §ot, - - - » iive)’, then
Y, = WY = Sn(XiB+ Afy +e) = Sn(In @ B)(®f; + e) = SNEfi + SnG. (C.2)

where 8 = (1,8), & = \i + Xh_1 Byips Git = €t + Yoney Bpvitp, = = (é1,&, ..., én)" and
Gt = (Cit, Coty - - -, Cve)' Substituting (B.2) into (B.1), we have

1 1, 1T1N1A,G1N1A,,A
[W ; ; ;lgyzt} (h—p)— [T ; (N 2 gzgyzt)‘z) N(N ; ;?Aiyit)} (P —p)
1 1 XX R
e[ Sv Wy = W) (5 = ) + (57 2o D 2adinale) (B = )
i=1t=1 "1
NEDSIES JEEB AN ED e N R ©3)
T pt N P 5'12 Yit A\ N N pt 5_12 1t .
T T T
= % > fINSNS e + % SNBSS e + % S el Sh (St — Soher
t=1 t=1 t=1
1 & ~ 1 e A
+ﬁ ; tr[SEVE el(etet 266)] tr [ﬁ ; (I)/Z)eel [6,5C£ - E(etg)]sg\fzeelAG}
. ii i<x — X)) fuijie + tr[i %XT: Lt NGO'S (P — @)]
NT Fr a_ZQ 1 1 tYit NT P 6’3 Yit Jt ) €€
+tr{%@’i;l( See — Zee) (I ® B)s;vi;;m} - tr[%(é — ) SSIAG
AR PN 1 & o x
—tr[ﬁ t; &S e fiZ SN AG) + tr[ﬁ t; FiGSh S A

1 N T 1 B R 1 1 N 1 1 L )
(ﬁ 12::1 ; &—Emitpyu) (p—p)— [T t; (N ; AgxztpAl) GN(N ; 6—?/\134“)} (- p)
1 T 1 ;5 1 T 1 N 1 N A 1 N 1. / R
—l-ﬁ ; ; ggﬂfitpfﬂit(ﬁ - ﬁ) - T ; (N ; &*szitp/\o GN(N ; ;ZZ)\Z:CZ-O (ﬁ — ﬂ)
1 ML L N1y
R —— —zi (i — ! = - SIAGIS—1&
= -7 ;; 52 Zitp(Ai — N) fe + 1o ;; 52 Lip N GO'S (D — @) f, (C.4)



1 T 1 R .. N N T B
—i—ﬁ A Z;%UitpA;Gft - tr[iGZZZq}' —1

1.4~
X5 [€itvitp — E(Ez’tvjtp)ﬁw]

i=1t=1
1 & 1 1,1
AN & -1 +1 1, A . N
+tr{NGZl<I%‘Eu' (X _Eii)I]I;-q-laTQ)‘i} _tr[NGz:l 672(%;; %p)w
1= 1=

The fifth term on the right hand side of (C.3) involves \; — A;, whose expression is given
by (B.12). Substituting (B.12) into (C.3), we have

[ESDIETITEVIFDWES DETRIINES SRS TR
NTzzuzl&zlet rer Tt:l N¢:1 Az‘zylt N Nizl &1‘2 Wi\ e
1 . 1 XL R
—|—Ntr [SNWN(IN — pWh) }(p —p)+ (ﬁ Z Z; ﬁyitxzt) (B—-0)

1=1t= 1
1,181, . 11 R
- [f t; (N ; ;12%‘%2) GN(N ; ;imwétﬂ (8- B)
1T///A—l 1T///A—l
= N7 2 FINSy S e+ 5w > B XISN S e (C.5)
t=1 t=1
1 & 1 I
7 2 SN (e = Beer + o5 D trlSy B (erel — e
t=1 t=1

1 N T 612_0_12A,A ) 1 N 1 -
+ﬁ;; &;1 )‘sztyzt_ (,0_/)) tr[T;;fta_lgyth H:|
1 LI 1 & , . ) 1K1 o
NT?2 ZZZ@Z[GZSGJS E(ezsﬁgs)]zﬂ (I)]Hftyit_tr{TZZ§ftyztnl H}
i=1j=1t=1 i s=1 i=1t=1 i
A« 1 LK1 . AeiiA 1 XL o e
+(P—P)tf[*2272ftyitﬂiy H} +(p P)tr{*ZZﬁft%tﬂf H}
T i=11=1 % T i1 1=1 %
. [IRARAS IR . R Y
_(P—P)tr[*ZZﬁftyitHiy H] (P—P)tr[*ZZﬁftyitH;y H}
Ti=i=0i T =7
+tr[1§:§:1f NI |+ (p - )tr[lgjilf i1 (1= 4)]
Ti:1 — 6_22 tYit g pP—p NT et L 6’12 tYitLL;
+(p— )tr[liilf "-)\’-ﬂf“ﬁ}ﬂr[liilf i1 (1 - A4)]
pP—p Ti:1 o 6’22 tYit A NT Ly Lo 5’12 tYitll;
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1S & 1 LA A AN | .
+tr{— Z Z Tgftyitﬂfm)‘H] + tr {— Z Z A—zftyitﬂf@ﬂ}
Tz:lt:l ( Tz:1t:1 0;
1 KOG L, e 1 L& e
_tr[— Z z gftyitﬂi (I - A)} —tr {T Z Z ﬁftyzt)\iﬂ H}
K3

The fifth term on the right hand side of (C.5) involves A + A’, which is given in (B.4).
Substituting (B.4) into (C.5), we have

B3 SELI (EPIIES STED JETRILNED S AP
NT == 67 ! TSN Zoi™ N6
N T
+%tr [SNWN(IN - PWN)A} (p—p)+ (% 2:21 ;::1 %?Jit%t) (B-0)
11881, 18 16\,
-7 2 (5 X k) an (7 X gzhwl)] (3~ 9) (C.6)

1 & .\ 1 & . - 1 & -
= ﬁ Z ﬁ,‘/t,SEVZeelet + ﬁ Z 6285\7(2661 - Eeel)et + ﬁ Ztr[sf\fzeel(eteg - 266)]
t=1 t=1 t=1
A 1 N T 1 .
—tr[[P AN (1 = A)] + (p - p)tr[ﬁ SN o fe U (1 - )]

i=1t=1 "1
N T
1 1 . A ~ A . A A .
x| 5o D2 D o Sl (1= A)] = (p = p)x [P NIV (1 = A)] 45, + 7,
i=1t=1 "1

where V; is defined in Lemma C.4 and

1 XL o 1 R
Sp=—(p— P)Qtr[f > gftyitﬂfy/\H} tr [f > ﬁftﬂitH?xAH}
i=1t=1 "1 i=1t=1 "1t
1 G ~eiid . 1 L, . ~jed 5
+(p — P)tf[f > ?ftyztni H} +(p— P)tr{f SN 5 friiall H}
i=1t=1%i i=1t=1%i
A [N | A . R
—(p— P)tl"[f > ?ftyztnz Y H] (P P)tf[f > gftyz‘tﬂzy H}
; i i=1t=1 i

@
I
—
~~
I
—

~2
=1 9; i=1
ATfUA Y1 A Gjed 7 fIXg - 1 19¢®' \ F)
—(p—p)tr[ﬂ Hzg&ﬂz N} - (p—p)tr[ﬂ HNZQHZ AZH} (C.7)
=1 "1 =1 "t
1 X G : £ . FiN gL
—(p—p)tr[fzzgftyn(& — ) H] +(p p)tr[ﬂ AT HN}
i=1t=1 "1
N o1 LA TR
[T YD g AT |+ (p = p)tr [TV Y S AT iy
i=1 "1 i=1 "1
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=

and

VS (S — ) Iy © HSKELAC] — [P AT 1

ee

Substituting the expression of M\i — \; into the first term on the right hand side of (C.4),

we can rewrite (C.4) as

1 N T 1
[Tzz?xitpﬂit}(ﬁ—p)+[

[~

Zapty| (B = B)

Z‘H
~
M=
M=
S

-
Il
—
-
I
—
~

@
Il
,_.
o+
Il
—

A R A N2 LA TR
_ {T ; (N ; ;g$itpAi)GN(N ; 2 lyzt)} (p—p)
A L O (A EUU
[ ; (% 2 ;?xztpAl)GN(N ; 6—3&%)] B -B)
1 N T 1 1 N T 1 o
:M;;(ﬁvmemtr[wgg(}? frap 177 (1 = 4)] (C.9)
- p)tr{AfszIfINﬁfﬁN(I _ A)} o {ﬁfxp)\ﬁ]vﬁfx/\/([ B A)}

N T
. 1 1 ~i
(o= p)tr[ o7 20D s Frap M1 (1= A)] + S5 + Ty
i=1t=1 "1
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5 11 T q e LN T

S,B,p _(p - p) tr [T Z Z A—thxztpl_[l H:| tr I:T Z Z TthmthHl H:|
i=1t=17 i=11=1%i
1 1 ciA R (NI

+(p — p)tr [f Z Z —5 fiwapl ;7 H | + (p — p)tr T Z Z — fiwiplL H}
i=1t=1 O-Z i=1t=1 Uz

M=
M=
‘H
=
8
=
=
=
\
>
|
=
.L_—:
N~
M=
M=
ﬁg\H

Q>
SN
<.
Il
—_
-+
Il
_

N
ATV A] — (5 o[ Ay 3 L 105

=1 1

N T
! > ift«%:p(;\z‘ - )\i)/ﬁﬁj/\ﬁ} + (p— p)tr {ﬂf"’fp)‘A’f[f@)‘ﬁIN}

N N
[T Ay %xiﬂgﬂm} +(p— [l A Y %Lﬂ?“ﬁfﬂ
7 i=1 "1

N T
1 Z Z iftfﬂitp(j‘i - )\i)/ﬂf‘r)‘]ﬂ + tr [ﬂffp)\A/ﬂf:MHN]

and

E(eisel- )]izl(i);ﬁftivltp + tl‘[ﬂpr)\AA/]

/
[61'56]-5 B js

@q[g‘ —
M=

—_

] NIy o
ftfslvitpeis} + tr[ﬁ Z Z ?ft$itpH§fA<

' i=1t=1 "1t

|~

+tr [

<.
—_
~
Il
-
@
Il
—
-

=

'ﬁ,, -
M=
M~ s
M= 4
2

A

—tr

o>
4

=

~
<
>

s

|~

frzip(Ni — )\i)’f[feq’HN} —tr {ﬂf%)‘ﬁNﬂf@’A:

= 1=

Q>

3-
-

@
Il
_
-
I
—
-

+tr [

[
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N N

sl SO ] (14 5 )]
i=1

=1
. R N N o . o 1 2_
+tr[nf1pmggq>z eija S5 B0 + ﬁ;; ; xztpftH)\ (C.11)

Consider (C.6). The five terms on the left hand side of (C.6) are given in Lemma C.3. The
fourth-seventh terms on the right hand side are also given in Lemma C.3. The first two
terms on the right hand side are given in Lemma C.4(a) and (b). The last two terms are

given in Lemmas C.1 and C.2. Given these results, we have

1 1
N [tr(S]ZV) + tr( SN\I/SN -2 Z i N} ‘l‘ N [ Z Sm szw)} (ﬂ ﬁ)
i=1 = 1
1 NIy | NIy
= N7 2 D o2 { Z S@J,Neat] ~T 2o D S3Cil { Z Sij»Nvﬁ't} s
i=1t=1 % =1 i=1t=1% =1
+O,(N7Y2TY) 4 Op(N7ITV2) 4 0,(T3/?). (C.12)

Further consider (C.9). Except for the fist term and the last two terms on the right hand
side, the remaining terms are given in Lemma C.3. The first term is dealt with by Lemma

C.4(c). The last two terms are given in Lemmas C.1 and C.2. Given these results, we have

1
N {ﬂ Sm NEuvI } + Z [ Z 2 Equ)} ﬂq)
g=1 =
1 L& 1
= 2 2 aeirtitp + Op(N 72T ™1 + Op(NTIT712) + Op(T7%2). (C.13)
i=1t=1 "1
for all p=1,2,..., k. Combining (C.12) and (C.13), we have, under VN /T — 0,
Si 1
— 0! =1 CitMijt9ij,N )
o NTZZ [ €it Vit +Op(\/NT>

where 7;;; = v;tﬁ + 1(i # j)eji. This completes the proof of Theorem 4.2. [

Appendix D: Detailed proofs for some lemmas

In this appendix, we provide the detailed proofs for some lemmas appearing in the earlier

sections.

PrOOF OF LEMMA A.2. Notice
R=(In = pWn)(In = pWn) "' = In = (p = p")Wn(In = p"Wn) " = In — (p — p*)Sw.
where Sy is defined in Assumption F. By Assumption E, we have

1SNl < Wirlloo - (In = P W) oo < C,
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for some constant C'. So R is uniformly bounded in row sums since p is in a compact
set, i.e., Zﬁvzl |R;j| < C for all i. Given this result, together with 3 in a compact set, (a)
follows.

Consider (b). Notice

N N
> Rijleje+ BYvje) — Boi = e — (B — B vie — (p — p*) Y _ Sijn(eje + 8vjt)
Jj=1 Jj=1

=eit — (B— 6% vie — (p— p*)és.

where €; = Zévzl Sijn(ejt + 5*vj). Now the left hand side of (b) is equivalent to

1 & 1 & 2
*ZH( Zeztft) *)/(T Z’Uz‘tft) - (P—P*)<Tzéitft)H
t=1 t=1
By the Cauchy-Schwarz inequality, the above expression is bounded by
1 &1 2 ol Xt L e
35 > X eun] +13- o Z |7 ZvnftH PPy 2l e }

The first two terms are both O,(T~1). To show the third term is also O, (T 1), it suffices

to prove

[

2 1 M1 LT
} - E[ﬁZﬁZZf{fséitéis} =0(T™).
—1s=1

i=1

1 X1 &
Ely Xz X fee

Since €;; is independent with é&;5 for ¢ # s by Assumption B, we have

~+

CE LS 9 WIXEA IR Pt oIEARTHIR S bt i}

t=1s=1 i=1 i=1 t=1

By the definition of é;,
Ly - 52 1< *2 gk 1
By e ] = *{Ngo + B E " (Z s2.)] = o),

where the last equation is due to

1

N
2
D Shv < (| max, ISv1) Z Sij| < ( max [Synl)lSwlle <. (D)

Thus (b) follows.

Consider (c). It suffices to prove

1M1 L 5 )
E[NZ!T;[%%— (@) ] =oa™.

The left hand side of the above is equal to

1 ol 21\12 1 4
NT ; E(e)]") < NT ;E(éit)
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By Assumption B, we have E(ej; + v}tﬁ*)‘l < (' for some constant C’. Given this result,
we have
B(&) = ZSUN ejt + 5,0 )) <C,(2:|SWN|)4é
Jj=1 j=1
Then (c) follows.
Consider (d). Similarly as (c), it suffices to show

1 L1 & 2
E[N 3 ‘T > e — Béaea)])| | = 0.
=1 t=1

The left hand side of the above expression is equal to
1 & =2 2 - 1 & (e2) 1Y 1/2 1/2
NT =~ (E( ztezt) [E(eitelt Ni ; ztezt Ni ; zt)] :
which is O(T~1) by E(&}) < C and E(eft) C for all ¢ and ¢. Thus we have (d).
Consider (e). Notice, for each p =1,2,...,k,
T 2
T Z ‘T Z eztvztp E(éitvitp)]‘

= Op(Til)a

which can be proved in the same way as (d). Then (e) follows since vj; is a finite dimensional
vector.

Consider (f). Again, it suffices to prove

{N2 Z Z ‘T [€ieje — E(éitéjt)]ﬁ =0(T™). (D.2)

i=1j=1 " t=1

The left hand side of the above expression is equal to

ZZ zte E(éitéjt)]z] < 2 ZZE(é?té?t) = O(Til)-
N?T

i=1j=1 i=1 j=1

where the last equation uses the fact that
E(&,e5) < [B(e})][B(e),)]?.

Then (f) follows. The proofs of (g) and (h) are similar to those of (d) and (e) and the

details are hence omitted. This completes the proof. [
PrOOF OF LEMMA A.3. Consider (a). By
=y -vlege's ! (D.3)
we have that the left hand side of (a) is bounded by

Lir D" (l i fre)) D'
N T &t

sup
0O

[Dcp*(;g fre ) DS 0G|

1
+ sup
gco | N
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We use i1 and iio to denote the above expression, respectively. For ease of exposition,
let A (p,B) = Y001 Rij(7; 8"+ X5) — 77"B and cie(p, B) = S0 Rij(eje + Bvje) — Blvi.
We shall suppress p, 8 from the symbols for notational simplicity. Consider ii;. By the

expression of D in Lemma A.1, 441 is bounded by

tr[NT ZZ ;‘Qtftl]

zltl

1 ol *y—1 /
+ 21618 tr {ﬁ ; ; Yi Ziivvitft}

.. N ..
111 < sup =113 + 124.

0cO

Term ii3 is O,(T~/?) uniformly on © since

e 2 st < 05 LI (5 g ) - 0

i=1t=1
by Lemma A.2(a) and (b). Term iiy is also O,(T~/?) uniformly on © since

1NT*—1/ 1N*21/2
|7 2 it < (5 Xnil?) (% ZHT

Thus ii; = 0,(1) uniformly on ©. Now consider iiy, which is bounded by

1/2 3
) = Op(T 1/2)-

2 < sup tf[(NT;; JiaX)G (Z )]
t 1 NI 1 )\ —1_*/
+ sup r[(NT;;ZQ i) G (Z% el )H
ol (L 03 e )G(imm
eeg NT == o jfl UJQ' 7
N T
+ sup tl‘[(]vlT;;ftvlt i) G (Z% ﬂ}ﬂ}")H
= 115 + 116 + 117 + iig, say.
Consider ii5. Since
1 NT Noqo
(5 Basana(S )
= o

is bounded in norm by

c[}véu;imﬂ] [ ZHA*H} [Z IIAQHWIIQ]-II%H, (D.4)

=1

where % = (I + H™!)™! and H = ®'3_'®. Notice

N N
SIS PP = e [HYA (N @) B2 = we[H2HT HY =1 (D5)
i=1 =1

This implies >, L[N H'/2||? < r since

N N N

1 —1/2 -1/2
>0 S INH P+ YD S P P = 3 e ) =
=1 "1 i=1 =1
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Given the above result and Lemma A.2(b), we have that the expression of (D.4) is O, (T~/?),
which implies ii5 = Op(T_l/Q) uniformly on ©. Terms iig, 747 and iig can be proved to be
O,(T~"/2) uniformly on © in a similar way as the proof of ii5. Thus iiz = 0,(1) uniformly
on O. This result, combined with the result of ii;, leads to (a).

Consider (b). By (D.3), the left hand side of (b) is bounded by

1 1 &
+ sup ‘Ntr [ID)T > (e, - DD SOGERY|.
t=1

T
sup‘tr ]D > (ere; — TE)D'E }
t 1 0co

0cO

We use iig and ii1g9 to denote the above two expressions. Consider iig. By Lemma A.1, iig
is bounded by
£ jiyy + 1.

1 N T .
tr {ﬁ Z:ZI ; Ultvzt zw Zz_w}

119 = sup
0eO

where

zt_gzt (ZRU 0; Z */E;k]v ( “,8 ﬁ) zzv( Zlﬁ*_ﬁ))

J=1,j#i

By R= Iy — (p— p*)Sn, we can rewrite i12, as

N
iy =Gy — 0] = Z S (03 + B755,8%) = (8 = 5%, (8 = 57)

(D.6)
2(p Y )ﬂ S’L'L szv(/ﬁ - ﬁ*) - 2(p - IO*)SM,NO-%k2
Consider 74311. Notice
1 X1 NN
H NT ; ; Uztvzt zw zw - ( Z H v ) (N Z:ZI HT ;(Uitvgt - Ziiv) ) :

By the boundedness of ¥, the above expression is Op(Tfl/ 2) uniformly on O, implying
1i11 = Op(T_l/Q) uniformly on ©. Consider ii15. By

N
Gt = Rij(eje+ B7vje) — Bvie = e — (B — B*) vit — (p — p*)éxt
j=1
where €; = Zévzl Sijn(ejt + 5*v;t). Substituting the above result into (D.6), we have
@l = (e — 07) + (8= 8% (virvfy — T5,) (8 — B*) + (p — p)[65, — E(&}))
—2(8 — B%) vireir — 2(p — p*)[Eieir — E(Eiei)] + 2(p — p*) (B — B7) [vie€ir — E(vit€ir)).
By the boundedness of 02, ii1» is bounded by C'sup |5p SV, S°5, @2 |. Ignore C, the
0O

latter expression, by the preceding equation, is bounded by

o [ 33 ek — )| s 09— Y Sl — ) 9 )

0cO i=1t=1
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+su ‘( - *)2<1§:ZT:[62—E( )])‘—l-QSu ’( ( ! Z Ve )’
968 rr NT =iH ! g NT=H o
* 1 4 ~ ~
+2sup|(p = ) (77 20 Lloweu — Eleuea)])| (D7)
| NT
+2 Slelg ’(ﬁ - ﬁ*)(ﬁ ; t;[vztezt — E(Uztezt)])(f’ P

Consider the last term on the right hand side of (D.7), which is bounded by
. ! N1 N
28 =811 1o = 15 X 1 Lot - Bzl )

By the boundedness of 3, p, 3* and p*, this expression is O,(T ~1/2) yniformly on © by
Lemma A.2(e). The remaining 5 terms on the right hand side of (D.7) can be proved to be
O,(T~"/2) uniformly on © in a similar way. So i1z = O,(T~'/?) uniformly on ©. Given
the results of 7i11 and 412, we have iig = Op(T_l/Q) uniformly on ©.

We then proceed to consider i¢19. Using the same method in analyzing iig, we have

N N T
1 1
1110 < sup |tr| — HY2 )\ =N [eweje — Eleye ) |IN;HY > ‘
PcO {NT;]:]-UZZUJZ T; I e J :|
kEok )
. / 1/2
+oup| 2 2 (5 = )Py = ) tr[(NTZZa JiipadiH %)H
€O p=1¢=1 i=1j=1
1 XX 1 & 1 rrl/2
; eit€it — E(€ueit)|NoH Y “U
sl =P 2 o N S e~ Bleussl |
k 1 NN
+ 2sup Z(ﬂp— tr{NTZZ 2 2H1 2y, g”pXHl/z%H
e 1 p=1 i=1j=1
1 NN
+ 2sup |(p — — HY2)\; #i:N-HY?% ’
0co { T;jz:;a O'J2 i/ J ]
k
+2sup |(p— p){ (8, — Bt [NTZZ . 2Hl 2\ .,%,,A’Hl/%z/m
0cO p=1 i=1j=1 9 ]
+ 2sup tr{liilHl/2)\-1zT:e-tv'» 2174H1/2%H
; 5 -
oeo | NT == o? T3 He
k 1 NN 4 )
+ 2sup By — Bo)tr | — S HY2N Y Yy HY 2y ’
1 NN ) )
+2sup |(p — p*)tr| —= S HY2N LN HY 2y ‘
| NN ) 1 X )
+sup |tr| —= H! 27-22}— vy — E(vyv)) |27y HY 29 ‘
0c6 |:NT ;]Z::I 145 T;[ Y5t ( it jt)] v g }
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where 7 pq = % ZtT:l[vz'tpvjtq — E(itpvjig)l; Yijp = % Zthl[Uitpth = E(uipvjt)]; Gijp =
T Yimilewviy — Eleuvip)l; Fiy = 7 X i1l8ues — E@ueie)l; Lijp = 7 X1 [Eitviep —
E(énvjip)l; Lij = % Zle[éﬁvﬁ — E(&itvjr)] and % = (I + H~1)~!. Using the results in
Lemma A.2, we can show that the ten terms on the right hand side are all O, (T~/2). Since
the proofs are similar, we only choose the second term as an illustration. The expression
in | - | is bounded by

N 1 k k
(X ZINE PR 3018, - 531+ 16, - 5]

=1 "1 p=1qg=1
1 X 1E 2,1/2
< [z L3 | Ll — B[] H,

which is O,(T~'/2) uniformly on © given the boundedness of 3, 3* and S~ ; 0—12 INH?)? <
r. So we have ii19 = 0,(1). Given the results on iig and ii1o, we have (b). '
Consider (c). By

0< %tr [pee sz < %tr [DeemsZl,

it suffices to prove that sup +-tr[De€D’'S_ '] = 0,(1). By the boundedness of ¥;;, 'S D
/e
is bounded by CD'D for some C. Since ||Sy|l1 and ||Sn|/« are both uniformly bounded

by Assumption E, we have that ||R||s and ||R||; are both uniformly bounded for R =
In—(p—p*)Sn and for p in a compact set. This result means that D is uniformly bounded
in both row and column sums by the definition of D, which in turn implies that ||D|/; and
ID||s are both bounded. By [|D|2 < /[|D]|1 - [|D]|co, we have Tpq:(DD’) = Tipar (D'D)
is uniformly bounded, where 7(-) denotes the largest eigenvalue of the argument. Then
D'YID < CI N(k+1) for some constant C'. Given this result, we have

1 — /s —1 Lo
Ntr [Dee DY, } < Cﬁtr[ee] = o0p(1).
So we have (c). This completes the proof of Lemma A.3. [J

Proor orF LEMMA B.1. The proofs of the seven results in this lemma are similar and

we only choose (a) to illustrate. By the Cauchy-Schwarz inequality, the left hand side of
(a) is bounded by

OB B VA (SIS P (L S50 A5 Ibalib)
N P 1= N2 < LT it 5t .

i=1j=1 t=1

which is Op([|& — w|*) by (D.5), Hy = Q and 7 275, 5301 7 2oim [burll[bjell = Op(1).
O

PrROOF OF LEMMA B.6. The proof of (a) is similar to that of Lemma A.12(b) in the

supplement of Bai and Li (2014). Result (b) can be proved in a similar way as Lemma
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C.1(e) in the supplement of Bai and Li (2012). Consider (c). By the boundedness of 3,
the left hand side is bounded by

N
A A~ 2 a—-1/2 A A 124 A
O HM2 - (S0 IE2E8 1S5 — )85 @) - 1A,
=1

which, by the Cauchy-Schwarz inequality, is further bounded by

N
A A 2 a—1/2 A
C AR (3 1A 2es ) (Zn a—zossen?) . o)
=1
Notice
1 & . 14 1 & . f—1/24
N DI — Za) S @)% < CNZ 136 — Sail® - 1125512
i=1 i=1
1< . /24 1/2
<205 Y118 - Sall* (125" (% - @)1 + 1557 24)?)
i=1
P A 2 1971204 2 2 1e=1/24 112
=20 Y 180 — Sall - 1£5%(&: - @)I” + & an“—zun 3o N
=1

By the boundedness of % and Yy, the first term is bounded by C+ SN Y 2(<I> —

®,;)[|2 = O,(T~1) 4+ Op(||& — w]|?) by Proposition B.2. Furthermore, by the boundedness of
3 and ®;, the second term is bounded by C& SN | |55 =512 = Op(T™ ) +Op(J|l&—w|?)
by Proposition B.2. So we have

*ZH i — Zii) S5 17 = Op(T™1) + Op([l& — wlI?).

Given the above result, together with (D.8) and (D.5) as well as H = O,(N~1), we have
(c). O

PRrROOF OF LEMMA B.7. Result (f) can be proved similarly (and more easily) as Lemma
B.6(a). Results (b), (c¢), (d) and (e) can be shown easily and the details are omitted. We
only prove (a). By the boundedness of A, 02, the left hand side of (a) is bounded in norm
by C& SN, ||S; 42|l for some constant C. By (B.17), S, 02 con51sts of 21 terms, which we
use i1, . .., ii;2 to denote. Then 3 SN [S; 02| < Z 1N L SN | |léd;p||. Checking these

21 terms one by one, we obtain (a). [J

Proor oF LEMMA C.1. By (C.7), the expression of S, consists of 20 terms, which we
use 141, . . ., ¢ to denote temporarily. These 20 terms can be classified into three groups.
The first group, including i1, @19, 15, iig, 147, 118, 1413 and ii14, consists of the terms involving
cither (p — p)2, or ||B — B||2, or |p— p| - |3 — B|. The proof of the first group is similar
to that of Lemma B.1. The second group, including 4i15, ii1g, 4417, 1918, 1419 and iisg, only

involves 3 — 3. The proof of the second group is similar to that of Lemma A.10(b) in the
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supplement of Bai and Li (2014). The last group, including iis, iiq4, iig, ii10, 411 and iij9,
are the terms only involving p — p. The proofs of these six terms are similar and we choose
itz to illustrate. By (C.2),

Vi = SNEfi + SnG = Efi + { (D.9)

with £ = SyZ and ft = Sn¢;. Let 51 be the transpose of the ith row of Z and let C,t be
the ith element of ¢;. Then it follows that

it = Efr + Gt (D.10)

Now consider ii3. By (D.10), the expression in the trace operator is equal to

XA Ay
FCaINH + Z 252 5 H = digy + ids, say.

2
i 1= 1

By the definition of ﬂfy)‘, together with boundedness of 62, ii31 is bounded in norm by

N N N
C[% Z(Tzeisij)Z}l/Q[]i[Zl; 5\ }1/2[ ZHTthQt
=

J

1w

T
3N Y leisCys — Eleislo)] ) Hy (D.11)
e

The first expression of (D.11) is bounded in norm by

1M 1 X1 & 212,17 M1 N2
C(5 2 MEP) (5 2 |7 2 fe|) (NZA—QHAJ-H?) | fx ]
i=1 =1 " s=1 j=19j
which is O,(T~'/2). The second expression is equal to
1 X1 Y . 1 L& (62-02)SiN -«
WZTQ(ZSJuN&)/\;HN_WZZ : 52;2 = GATHN,
=1% =1 i=1j=1 %3

Hj‘]Hﬂ AN = Op(NY) + 0,(T~1/?).
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The last expression of (D.11) is bounded in norm by

N 1/2 ; . N1/2
o(+ ZH&H) (% Z}?\j B LSS S e - Bleatil[) il

i=17=1 s=1

which is also O,(T~'/2). Given this result, we have ii3 = 0,(||& — wl|). This proves the
first part of the lemma.

The proof for the second part is similar, and is omitted. [J

Proor oF LEMMA C.2. By (C.8), the expression of 7, consists of 18 terms, which we
use @iy, i, . .., 1113 to denote temporarily. By Lemma B.6(b), we have [1/e® = Op(T™1) +
Op(N=YV2T=1/2) 4 0,(||& — w]|). Given this result, together with Proposition B.3, it is rel-
atively easy to show that iia, i3, ii5, iig, 4914, 915, ii16, 1917 and i1g are all O,(N~V/2T~1) 4
Op(NTIT=12) £ 0,(T~3/?) +0,(||&—w]). In addition, 1o is shown to be O, (N~ T~1/2) +
op(||& —wl|) in Lemma B.6(c) and ii; can be proved similarly as ii12. Also, 4iq; is shown to
be Op(N~YV2T=1)+0,(T~3/2) +o0,(|| & — wH) in Lemma B.6(a) and 4i7 and iig can be proved
smilarly oy i 5 Op (N 1T 12) by SIS |- = O, ) (01 )
iit0 is Op(N~'T112) £ 0,(| — wl)) by & S2%, (62 — 2)2 = Op(T) + Oyl — wl?); s
is Op(N~1T-1/2) by

N
HNTthgtsNz A <C(;f§ol )1/2( ZHT ) 161
Finally, it is relatively easy to see
3=}Vi Six [ zftezt][ tzlften]wa %) + op([l& - ).

Given the above analysis, we have the first part of Lemma C.2. The proof of the second
part is similar and in fact is easier, thus omitted. This completes the proof of Lemma C.2.
O

Proor or LEMmA C.3. By (D.10), the proof of Lemma C.3 is similar to that of
Lemma A.9 in the supplement of Bai and Li (2014) and the details are omitted. [J

PrROOF OF LEMMA C.4. The proof of result (c) is similar to that of Lemma A.12(a)
in the supplement of Bai and Li (2014) and hence are omitted. We only choose result (b)
to prove since the proof of result (a) is similar and actually easier. Consider (b). The left

hand side of (b) is equal to

1
e D tr[See Sy (S — SN+ o D trl(ere) — Zee)Sh (S — B21)]
NT — NT =
1 Xs2 - 1 & 62-0? 1 &, . L
=% ; N ; ’&?03’ T ;[eiteit — E(eitéi)] = 111 +ii2, say.
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where é; = Sye; and € is its ith element. Further consider ii;. By (B.16), ii; is equal to

.. 1 NI Sii,N 2 2 1 al SnN 3 75N
le:—ﬁgz e (eit—Ui)Jrﬁg 2o (A = A) (A — M)
i=1t=1 i i=1 i
N N N
. 1 Siu.n 1 . 1 1 1 1
+2(p — P)N Z 52 (T z_:yiteit) N2 gsii,Nsi,ﬂ TN gsn',Nz,a?
=1 ? t=1 =1 "1 =1 "1
1 NN T
] l
+2tr [HN (—2 Z Z Z eirejt — B(eire;t)|Sij N = 52 )\])}
i=1 j=1 t=1 9j
= 1991 + 141 + - - - + 1ilg, say.
First consider #iis. By (B.12), we have
Ai — A = Z freir + Rem;
=
where Rem; denotes the remainder terms. So we have
lilR Rem; + 213" L, [ szf }/R
iils = — Y ——RemRem; +2— ; m;
112 N,L . 6'2 €1m,; heln; N 2 ,\2 ii,N 2 t€it | hveln;

l%i zzN[lzT:fteit}/[theit}
N Pt 62 T T

The first term is bounded in norm by C% S>N, |Rem;||?. The second term, by the bound-
edness of 67;2 and Sj; n, is bounded in norm by

N
c(+ zHT pea] )" (57 25 Imemit?) ™

Some calculation shows that 3 i]\il |Rem;||2 = Op(N7IT7Y) + O,(T72) 4+ Op(||& — w||?).

Given this result, we have

1 X Ly L
1ig = N Z 62 Sii N[ Z ftezt}/[ Z tezt} +O 1/2T71) +Op(T73/2) +OP(HLD_WH)'
i=1 t=1

Consider iii3. By (D.10), we have

1 L Siin (1 1 X Sy -
Nz; 5 (T;yiteit>:N; &3 & thelt—i— ZAQ N
1= = 1=
1 &L Sun 1 &
+ N ; :;.;QN T ;[Cztezt - (Cztezt)}

The first term is bounded in norm by

N
C(%ZHSM,N&'HQ) ( ZHTthezt
i=1

)=o),
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The third term is bounded in norm by

N 12 . 2, 1/2 12
(% Z 2) " (5 2| Sleen — BGenl|)) = 0,1,
i=1 "~ t=1
The second term is equal to
N N A2 2
2 2 o; — o
7252]\, 72 L 2y
N P 2, N P 0_7/ 1
Since N
1 57 =07 1 2 212\ /2
—Z S <C—Z(6-—U-) = 0,(1)
A2 7N - p
N P Ui 2 (N P (2 (2 )

we have that the second term is 25N, 82 ~ t0p(1). Given these results, we have iiiz =
(p—p)% Su N+ op(|l&—wl|). Substituting (B.17) into 4ii4 and checking the terms one
by one, we have iti4 = op(||&© — wl|). Substituting (B.18) into iiis and using the results of
Proposition B.3 and Lemma B.6, we can show that iiis = O,(N~/2T~1)4-0,(N~1T~1/2)+
O,(T73/%) 4 0,(||& — w]|). Next, diig can be shown to be O,(N~Y2T~1) + O,(T~3/?) +

0p(||&@ — w||) similarly as Lemma B.6(a). Summarizing the above results, we have

= il + — Z AQSMN[ then} [* thezt} ZS“ N
+ Op(N 1/2T )+ 0p(T732) + op([l& — wl).
We then consider iii1 + 229, which is equal to
N

202

= 1

T T
g; —O0;
P A ... L.
E N 2.7 T E eit( E Siijejt) = 4itg + 1ity, say
t=1 = Y S

Consider iii7. By (B.16), we have

T
Z ) + Rem;.

where Rem; denotes the remainder terms. Substituting the above result into iii7, we have

SR ERCLAER I Qe 2
i = < > o {—2 SN elt( Z Sij, Nejt> )}
i=19i%i t=1s=1  j=Lji
1 & Rem; 1 4 N S e = iii
+ N ; 62-201.2 T ; ezt(j:%# 1J7Ne]t) = 111q + 217, Say.

The second term is bounded in norm by

N N T N
C(]bz:lHRemin)l/Q(l Z’ Zezt( > Sij,N@t)’z)l/za

i=1 "~ t=1 j=1,j#i

Nl =
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which is Op(N7Y2T71) + O,(T73/2) + 0,(||& — wl|) by & S, [|[Rem;||2 = O (N 71T +
Op(T72) 4+ Op(||& — wl|?). Term iii, is equal to

N 1 T N ) )
N g = e et X Siwes)(ch —of)]

t=1s=1 j=1,j#i

g2 1 LT N
Tl e X Siwei)(eh - al)].

t=1s=1 j=1,j#i

[

The first term of the above expression is O,(N~Y/27~1) and the second term is bounded

in norm by
1 XN 1/2
oy 26t o) (3

which is O, (T~%/2) + 0,(||& — w]|). Summarizing all the results, we have (b). O

2] =
™=
3| -
]
]
o
]
2
=
Q('(3
o
6N
|
S}
—
s

Appendix E: Local optimality of the iterated solution

In this appendix, we show that the iterated solution from the suggested estimation pro-
cedure in Section 5 possesses the local optimality property. That is, the solution satisfies
the first order conditions. Let 6% = (p, 5%, &> ¥2°) be the converged solution, i.e.
lim p@® = p>®, lim B = 4%, lim &) = &> and lim B = ¥=°. By (5.1),

§—00 §—00 §—00 S§—00
1 T

T ZE(Dth£|9(S))~

t=1

s+1)[ ZE £l 9(5 )} _

By the expressions of & Y1 E(f,f{|0®)) and & >2/_; E(Dzf{|6(¥)), then

D(S)MZZD(S)/(ZS))_l(I)(S)
— pls+D) [Ir — (B~ 1epl) 4 @(S)/(Eg))—lp(S)M&D(S)/(E(S))—lqp(S)]_

Letting s — oo, we have

P> — (I)OO@OOI(EZZO)—I(I)OO _ DOOMaDOO,(Eg)_l‘I)OO
+ P> (SX) DO M, D™ (2X) 19> = 0.

2 the above equation can be written as

YL TIp® — uX(RX) T DX M, D>(22)71e> = 0.
pre-multiplying YX2°(3%°)~!, we have

O (RX°)H(D® M. D> — ) = 0. (E.1)
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By ®°(£2)~! = G®®>(¥%°)~! and G is invertible,
P (L)1 (DX M D> — £2) =0,

which is equivalent to (3.2).
We next consider (5.2). Letting s — oo, (5.2) is equal to

322 = Dg| DM D> — 40> (52) "1 D*M..D*|.
By (E.1), we can rewrite the above result as
5% = Dg [DOOMZZDOO’ . <I>°°<I>°°’},

which is equivalent to
0= Dg|D*M.D> - %],

the same as (3.3).
We then consider (5.3). Letting s — oo, (5.3) is equal to

[Z Z 0102 xltxzt} Z Z = Tt (yzt P Yit — /\fOIftOO).

zltll zltl

The above equation can be written as

N T
. ) 1 .
ZZ oozﬂfzt Git — P 0 — Ty 0%) = DY —m @i T =0
i—1t=17 i=1t=1 %

By (5.4),
ftoo —_ (I)oo/(zg)—lDoozt — GOO@OO/(ESS)_IDOOZt

By the preceding two equations, we have

N T
ZZ 002 Tit yzt Pooyit - jf;tﬁoo) - ZZ
i=1t=1

i=1t=1 2

1
xlt)\OO/GOO¢OO/(ZOO) 1Dooz':t =0

Dividing NT on both sides, we obtain the same equation as (3.5). The iterating formula
for p at each step satisfies the first order condition for p by way of computation. So p>
satisfies (3.4).

In summary, we show that the converged EM solutions of Section 5 satisfy the first
order conditions given in Section 3 and hence possess the local optimality property. We
have also verified that the numerical solutions indeed satisfy the first order conditions in

our simulations.
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Appendix F: Additional simulation results

The simulation results reported in the main text are based on an asymmetric error dis-
tribution (x2). This section presents additional simulation results when the idiosyncratic
errors €;; follow a normal distribution or student’s ¢-distribution (¢5) (standardized to have

a unit variance). The simulation results show that the MLE is not sensitive to the error

distributions, as predicted by the theory.

Table F1: The performance of the MLE under p = 0.2

with “1 ahead and 1 behind” spatial weights matrix, normal distribution

N T % p B1 o

F=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.7 |-0.0002 0.0044 | -0.0003 0.0092 | 0.0005 0.0096
50 50 | 100.0 | 0.0000 0.0025 | -0.0002 0.0062 | 0.0003 0.0059
100 50 | 100.0 | 0.0000 0.0017 | 0.0001 0.0038 | -0.0001 0.0038
25 100 | 99.8 | 0.0000 0.0030 | -0.0001 0.0069 | 0.0000 0.0069
50 100 | 100.0 | 0.0000 0.0018 | -0.0003 0.0041 | 0.0001 0.0042
100 100 | 100.0 | 0.0000 0.0011 | 0.0000 0.0026 | -0.0001 0.0027

Table F2: The performance of the MLE under p = 0.9

with “1 ahead and 1 behind” spatial weights matrix, normal distribution

N T % p 5 B2

F=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.8 | 0.0000 0.0011 | 0.0002 0.0099 | 0.0002 0.0106
50 50 | 100.0 | 0.0001 0.0006 | 0.0002 0.0061 | 0.0004 0.0061
100 50 | 100.0 | 0.0001 0.0004 | -0.0001 0.0037 | -0.0004 0.0039
25 100 | 99.6 | 0.0000 0.0007 | 0.0002 0.0068 | 0.0001 0.0072
50 100 | 100.0 | 0.0000 0.0005 | -0.0001 0.0041 | 0.0000 0.0043
100 100 | 100.0 | 0.0000 0.0003 | -0.0001 0.0026 | -0.0001 0.0027

Table F3: The performance of the MLE under p = 0.2

with “3 ahead and 3 behind” spatial weights matrix, normal distribution

N T %0 P 1 B2

F=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.8 | 0.0003 0.0065 | 0.0001 0.0094 | 0.0007 0.0102
50 50 | 100.0 | -0.0001 0.0039 | -0.0003 0.0058 | 0.0002 0.0061
100 50 | 100.0 | 0.0001 0.0025 | 0.0000 0.0037 | 0.0002 0.0039
25 100 | 99.7 | -0.0004 0.0043 | -0.0002 0.0064 | 0.0001 0.0068
50 100 | 100.0 | 0.0000 0.0028 | 0.0000 0.0041 | -0.0001 0.0041
100 100 | 100.0 | 0.0001 0.0017 | 0.0001 0.0026 | -0.0001 0.0026
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Table F4: The performance of the MLE under p = 0.9

with “3 ahead and 3 behind” spatial weights matrix, normal distribution

N T % p B B2
F=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 100.0 | 0.0000 0.0013 | 0.0005 0.0100 | -0.0005 0.0097
50 50 | 100.0 | 0.0000 0.0009 | -0.0001 0.0061 | 0.0000 0.0060
100 50 | 100.0 | 0.0000 0.0006 | -0.0001 0.0038 | 0.0001 0.0038
25 100 | 100.0 | 0.0000 0.0009 | -0.0002 0.0064 | 0.0001 0.0070
50 100 | 100.0 | 0.0000 0.0006 | 0.0000 0.0040 | -0.0003 0.0043
100 100 | 100.0 | 0.0000 0.0004 | 0.0000 0.0027 | -0.0002 0.0027
Table F5: The performance of the MLE under p = 0.2
with “1 ahead and 1 behind” spatial weights matrix, student’s ¢-distribution
N T % p b1 B2
F=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.7 | -0.0002 0.0041 | 0.0001 0.0090 | -0.0002 0.0097
50 50 | 99.9 | 0.0000 0.0026 | -0.0003 0.0060 | 0.0000 0.0058
100 50 | 100.0 | 0.0000 0.0016 | -0.0001 0.0037 | 0.0000 0.0036
25 100 | 99.8 | 0.0001 0.0029 | -0.0002 0.0068 | -0.0001 0.0065
50 100 | 100.0 | 0.0001 0.0018 | -0.0003 0.0042 | -0.0002 0.0039
100 100 | 100.0 | 0.0000 0.0011 | -0.0001 0.0026 | -0.0001 0.0026
Table F6: The performance of the MLE under p = 0.9
with “1 ahead and 1 behind” spatial weights matrix, student’s ¢-distribution
N T %o P B B2
F=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.7 | 0.0001 0.0010 | -0.0003 0.0096 | 0.0000 0.0099
50 50 | 99.9 | 0.0000 0.0006 | -0.0004 0.0061 | 0.0000 0.0060
100 50 | 100.0 | 0.0001 0.0004 | -0.0001 0.0038 | -0.0002 0.0038
25 100 | 99.9 | 0.0000 0.0007 | 0.0004 0.0065 | -0.0002 0.0067
50 100 | 100.0 | 0.0000 0.0004 | 0.0000 0.0041 | -0.0002 0.0042
100 100 | 100.0 | 0.0000 0.0003 | -0.0001 0.0025 | -0.0001 0.0027

Table F7: The performance of the MLE under p = 0.2
with “3 ahead and 3 behind” spatial weights matrix, student’s ¢-distribution

40



N T % p b1 B2

r=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.6 | -0.0006 0.0067 | 0.0001 0.0093 | 0.0000 0.0097
50 50 | 100.0 | -0.0001 0.0038 | -0.0002 0.0060 | -0.0001 0.0060
100 50 | 100.0 | -0.0001 0.0025 | -0.0001 0.0037 | 0.0001 0.0037
25 100 | 99.7 | -0.0001 0.0043 | -0.0001 0.0069 | 0.0000 0.0069
50 100 | 100.0 | -0.0001  0.0029 | -0.0001 0.0039 | -0.0002 0.0040
100 100 | 100.0 | -0.0001 0.0017 | 0.0000 0.0025 | 0.0001 0.0026

Table F8: The performance of the MLE under p = 0.9
with “3 ahead and 3 behind” spatial weights matrix, student’s ¢-distribution

N T % p b1 B2

F=r Bias RMSE Bias RMSE Bias RMSE
25 50 | 99.7 | 0.0000 0.0013 | 0.0001 0.0099 | 0.0005 0.0100
50 50 | 100.0 | 0.0000 0.0009 | 0.0003 0.0062 | -0.0001 0.0059
100 50 | 100.0 | 0.0000 0.0005 | 0.0000 0.0038 | -0.0001 0.0036
25 100 | 99.8 | 0.0000 0.0010 | 0.0000 0.0064 | 0.0001 0.0066
50 100 | 100.0 | 0.0000 0.0006 | -0.0002 0.0041 | -0.0002 0.0041
100 100 | 100.0 | 0.0000 0.0004 | -0.0001 0.0027 | 0.0000 0.0026
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