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COALITIONAL FAIRNESS: THE CASE OF EXACT FEASIBILITY

WITH ASYMMETRIC INFORMATION

ANUJ BHOWMIK

Abstract. Consider a pure exchange economy with asymmetric information.
The space of agents is a mixed measure space and the commodity space is
an ordered Banach space whose positive cone has an interior point. The con-
cept of coalitional fairness introduced in [9] is examined in the framework of
asymmetric information. It is shown that the private core is contained in the

set of privately coalitionally fair allocations under some assumptions. This
result provides an extension of Theorem 2 in [9] to an asymmetric information

economy with infinitely many commodities.

1. Introduction

It is well known that one of the crucial facts in the classical Debreu-Scarf’s
replica theorem is that each allocation in the core assigns the same consumption to
all agents of the same type, that is, no agent prefers his net trade to that of another
agent of the same type. Since the comparison was restricted among identical agents,
Schmeildler and Vind [11] introduced the concept of fair net trades in an exchange
economy with finitely many agents, where an agent was able to compare his net
trade with that of an another agent with different type. A net trade is fair if the
net trade of each agent is at least good for him as the net trade of any other agent
would be. Thus, each agent evaluates the other agent’s position on the same terms
that he judges his own. To define it formally, let x = (x1, · · · , xn) be an allocation
of commodities among agents in an exchange economy with n agents. The net trade
of agent i is xi − ai, where xi is the commodity bundle received by i at x and ai
is the initial endowment of agent i. The net trade y = (y1, · · · , yn), defined by
yi = xi − ai, is said to be fair if for all agents i and j, yi �i yj , where �i denotes
the preference relation of agent i. In other words, if a net trade is fair then the
market does not discriminate among the agents.

An analogous idea of discrimination was considered in Jaskold-Gabszewicz [9] in
terms of coalitions and it was termed as the coalitional fairness. The allocation x
is called coalitionally unfair if there exists two disjoint coalitions S1 and S2 such
that

∑

i∈S1
yi <

∑

i∈S2
yi. In this case, the agents in S1 could have benefited

by achieving the net trade of S2. Formally, there exists another allocation z =
(z1, · · · , zn) such that zi ≻ xi for all i ∈ S1 and

∑

i∈S1
(zi − ai) =

∑

i∈S2
yi. So,

S1 is treated under x in a discriminatory way by the market. The allocation x is
called coalitionally fair 1 if there does not exist any two such disjoint coalitions. In

JEL classification: D51; D82.
Keywords. Asymmetric information economy; Coalitional fairness; Private core.

1See Shitovitz [13] for a similar concept.
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2 A. BHOWMIK

a pure exchange mixed economy with finitely many commodities ([12]), Jaskold-
Gabszewicz [9] showed that the core is contained in the set of coalitionally fair
allocations if coalitions are restricted to those non-null measurable sets which are
either atomless or containing all atoms. The result may fail if a coalition is just a
non-null measurable set, refer to Proposition 2 in [9].

In the past two decades, an economy involving uncertainty and asymmetric in-
formation is one of the most important research areas in the theoretical economics.
Thus, it is interesting to know how far one can extend the results in [9] to this
framework. Due to different information and communication opportunities among
agents, several alternative core concepts had been introduced in [14, 15]. One of
them is the notion of the private core, which was based on the fact that agents have
no access to the communication system, that is, each member of the coalition uses
only his own private information whenever a coalition blocks an allocation, refer to
[15]. It is worth to point out that under standard assumptions, the private core is
non-empty, Bayesian incentive compatible and rewards the information superiority
of agents (see [10, 15]). Thus, it is essential to see whether a relation between the
core and the set of coalitionally fair allocations similar to that in [9] can be estab-
lished in a framework where allocations are privately measurable. The first attempt
was made to this problem by Graziano and Pesce2 in [8]. In fact, they showed that
in an asymmetric information economy with a mixed measure space of agents and a
finite dimensional commodity space, the private core is a subset of the set of coali-
tionally fair allocations if coalitions are restricted to those non-null measurable sets
which are either atomless or containing all atoms. In their result, the allocations
were restricted to a certain class of functions (refer to the assumption (A.6) in [8])
and the feasibility was taken as free disposal. However, when feasibility is defined
with free disposal, the private core allocations may not be incentive compatible and
contracts may not be enforceable, refer to [1]. Thus, to avoid this problem, it is
desirable to consider a framework without free disposal.

The main purpose of this paper is to examine whether a result similar to that in
[8] can be obtained without free disposal assumption and the assumption (A.6) in
an asymmetric information economy with a mixed measure space of agents and an
ordered Banach space having the non-empty positive interior as the commodity
space. The rest of the paper is organized as follows. In Section 2, a general
description of the model is provided. Section 3 deals with some technical lemmas
which are useful in the proofs of the main results. In section 4, the main results
are presented.

2. Description of the model

A standard mixed model of a pure exchange economy with asymmetric informa-
tion is considered. The space of economic agents is denoted by a measure space
(T,T , µ) with a complete, finite, and positive measure µ. Since µ(T ) < ∞, the
set T can be decomposed into two parts: one is atomelss and the other contains
countably many atoms. That is, T = T0 ∪T1, where T0 is the atomless part and T1
is the countable union of atoms. Let

T0 = {S ∈ T : S ⊆ T0} and T1 = {S ∈ T : T1 ⊆ S}.

2For the recent developments of different (coalitonal) fairness notions, refer to [6, 8].
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Thus, T0 (resp. T1) is the subfamily of T containing no atoms (resp. all atoms).
Denote by

T2 = T0 ∪ T1 = {S ∈ T : S ∈ T0 or S ∈ T1}

the subfamily of T containing either no atoms or all atoms. The commodity space

is an ordered Banach space B whose positive cone has an interior point. The order
on B is denoted by ≤, and B+ = {x ∈ B : x ≥ 0} denotes the positive cone of B.
The symbol x≫ 0 is employed to denote that x is an interior point of B+, and put
B++ = {x ∈ B+ : x≫ 0}. The exogenous uncertainty is described by a measurable
space (Ω,F ), where Ω is a finite set denoting all possible states of nature and the
σ-algebra F denotes all events. The economy extends over two periods. In the
first period, agents arrange contracts that may be contingent on the realized state
of nature. Consumption takes place in the second period when agents receive their
private information.

Each agent t ∈ T is associated with a consumption set Y+ in every state of
nature. The private information of agent t is described by a partition Pt of Ω. If
ω∗ is the true state of nature in the second period then agent t observes the unique
element of Pt which contains ω∗. Let Ft ⊆ F be the σ-algebra generated by
Pt, denoted by Ft = σ(Pt). The preferences of agent t is represented by a state

dependent utility function Ut : Ω × B+ → R, and Qt is a probability measure on
Ω, denoting a prior beliefs of agent t. The ex ante expected utility of agent t for a
random bundle x : Ω → B+ is defined by

EQt(Ut(·, x(·))) =
∑

ω∈Ω

Ut(ω, x(ω))Qt(ω).

An allocation is a function f : T ×Ω → B+ such that f(·, ω) is Bochner integrable
for all ω ∈ Ω, and f(t, ·) is Ft-measurable µ-a.e. There is a fixed initial allocation
a; a(t, ω) represents the initial endowment density of agent t in the state of nature
ω. It is assumed that a(t, ω) ∈ B++ for all (t, ω) ∈ T × Ω. An allocation f is said
to be feasible if

∫

T

f(·, ω)dµ =

∫

T

a(·, ω)dµ

for all ω ∈ Ω. Any set S ∈ Σ with µ(S) > 0 is called a coalition of E . If S and S′

are two coalitions of E with S′ ⊆ S then S′ is termed as a sub-coalition of S. A
coalition S privately blocks an allocation f in E if there is an allocation g such that

EQt(Ut(·, g(t, ·))) > EQt(Ut(·, f(t, ·)))

µ-a.e. on S, and
∫

S

g(·, ω)dµ =

∫

S

a(·, ω)dµ

for all ω ∈ Ω. The private core of E , denoted by PC (E ), is the set of feasible
allocations which are not privately blocked by any coalition. The family of parti-
tions of Ω is denoted by P. Since Ω is finite, P also has finitely many elements:
P1, · · · ,Pn. It is assumed that the set Ti = {t ∈ T : Pt = Pi} is T -measurable
for all 1 ≤ i ≤ n. For any S ∈ T , let

PS = {i : S ∩ Ti 6= ∅} and P(S) = {i : µ(S ∩ Ti) > 0}.
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For any k ≥ 1, the (k − 1)-simplex of Rk is defined as

∆k =

{

x = (x1, · · · , xk) ∈ Rk
+ :

k
∑

i=1

xi = 1

}

.

Consider a function ϕ : (T,T , µ) → ∆|Ω| defined by ϕ(t) = Qt for all t ∈ T . For
each ω ∈ Ω, define a function ψω : T × B+ → R by ψω(t, x) = Ut(ω, x). The
following assumptions are needed to prove the main results of this paper, first three
of which are similar to those in [2, 3, 4, 7].

(A1) The function ϕ is measurable, where ∆|Ω| is endowed with the Borel structure.

(A2) For each ω ∈ Ω, the function ψω is Carathéodory, that is, ψω(·, x) is measur-
able for all x ∈ B+, and ψω(t, ·) is norm-continuous for all t ∈ T .

(A3) For each (t, ω) ∈ T × Ω, Ut(ω, x+ y) > Ut(ω, x) if x, y ∈ B+ with y ≫ 0.

(A4) For each (t, ω) ∈ T1 × Ω, Ut(ω, ·) is concave.

For any allocation f , define a correspondence Pf : (T,T , µ) ⇒ BΩ
+ such that

Pf (t) =
{

x ∈ Xt : E
Qt(Ut(·, x(·))) > EQt(Ut(·, f(t, ·)))

}

,

where

Xt = {x : Ω → B+ : x is Ft-measurable}.

Suppose that BΩ is endowed with the point-wise algebraic operations, the point-
wise order and the product norm. An element y ∈ BΩ

+ can be identified with the
function y : Ω → B+ and vise-versa. An integrable selection of Pf is a Bochner in-
tegrable function f : (T,T , µ) → BΩ

+ such that f(t) ∈ Pf (t) µ-a.e. The integration

of Pf over a coalition S in the sense of Aumann is a subset of B, defined as
∫

S

Pfdµ =

{
∫

S

fdµ : f is an integrable selection of Pf

}

Note that, under (A4), cl
∫

S
Pfdµ is convex for any coalition S.

3. Blocking Mechanism

In this section, some technical lemmas are established. These results will be
employed to prove the main results in the next section.

Lemma 3.1. Assume (A1)-(A3). Let f, g be two allocations and

EQt(Ut(·, g(t, ·))) > EQt(Ut(·, f(t, ·)))

µ-a.e. on a coalition S. Then there exist a λ ∈ (0, 1), a z ∈ B++, and an allocation

h such that

EQt(Ut(·, h(t, ·))) > EQt(Ut(·, f(t, ·)))

µ-a.e. on S, and
∫

S

h(·, ω)dµ+ z =

∫

S

((1− λ)g(·, ω) + λa(·, ω))dµ

for all ω ∈ Ω.
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Proof. Since f and g are Bochner integrable, there exist a sub-coalition R of S and
a separable closed linear subspace Z of BΩ such that f(R)∪g(R) ⊆ Z, µ(S \R) = 0
and

EQt(Ut(·, g(t, ·))) > EQt(Ut(·, f(t, ·)))

for all t ∈ R. Let {cm : m ≥ 1} ⊂ (0, 1) be a monotonically decreasing sequence
converging to 0. Define a function gm : R→ Z+ by

gm(t, ·) = (1− cm)g(t, ·)

for all t ∈ R. Note that gm+1(t, ·) ≥ gm(t, ·) for all t ∈ R and m ≥ 1. Pick an
i ∈ P(R) and define Qi

f : R ∩ Ti ⇒ Z+ such that

Qi
f (t) =

{

x ∈ Z+ : EQt(Ut(·, x(·))) > EQt(Ut(·, f(t, ·)))
}

for all t ∈ R∩ Ti. By Remark 6 in [7], GrQi
f
∈ T ⊗B(Z), where GrQi

f
denotes the

graph of Qi
f and B(Z) the Borel σ-algebra on Z. For all m ≥ 1, let

Ai
m =

{

t ∈ R ∩ Ti : gm(t, ·) ∈ Qi
f (t)

}

and

Bi
m = GrQi

f
∩ {(t, gm(t, ·)) : t ∈ R ∩ Ti}.

Obviously, Ai
m is the projection of Bi

m on R ∩ Ti. Note that

{(t, gm(t, ·)) : t ∈ R ∩ Ti} ∈ T ⊗ B(Z)

for all m ≥ 1. Thus, by measurable projection theorem, one has Ri
m ∈ T for all

m ≥ 1. Define

Ri
m =

⋂

{Ai
k : k ≥ m}.

Applying (A2), one obtains

R ∩ Ti =
⋃

{Ri
m : m ≥ 1}.

Further, it is easy to verify that {Ri
m : m ≥ 1} is monotonically increasing. For all

ω ∈ Ω, let

ai(ω) =
1

2µ(R ∩ Ti)

∫

R∩Ti

a(·, ω)dµ

and then choose an b ∈ B++ such that b ≤ ai(ω) for all ω ∈ Ω and i ∈ P(R). Thus,
there exists some m0 ≥ 1 such that µ(Ri

m0
) > 0 and

b−
1

µ(Ri
m0

)

∫

(R∩Ti)\Ri
m0

g(·, ω)dµ≫ 0

for all ω ∈ Ω and i ∈ P(R). Define yi : Ri
m0

× Ω → B+ such that

yi(t, ω) = 2ai(ω)−
1

µ(Ri
m0

)

∫

(R∩Ti)\Ri
m0

g(·, ω)dµ.

Obviously, yi(t, ·) is σ(Pi)-measurable and yi(t, ·) ≫ b for all t ∈ Ri
m0

. Consider a

function hi : (R ∩ Ti)× Ω → B+ defined by

hi(t, ω) =

{

gm0
(t, ω) + cm0

(yi(t, ω)− b), if (t, ω) ∈ Ri
m0

× Ω;

g(t, ω) + 2cm0
ai(ω), otherwise.
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By (A3), E
Qt(Ut(·, h

i(t, ·))) > EQt(Ut(·, f(t, ·))) for all t ∈ R ∩ TQ and
∫

R∩Ti

hi(·, ω)dµ+ cm0
bµ(Ri

m0
) =

∫

R∩Ti

(gm0
(·, ω) + cm0

a(·, ω)) dµ

for all ω ∈ Ω. Thus, λ = cm0
, z = cm0

b
∑

i∈P(R) µ(R
i
m0

), and the allocation

h : T × Ω → B+, defined by

h(t, ω) =







hi(t, ω) +
cm0

bµ(Ri
m0

)

µ(R∩Ti)
, if (t, ω) ∈ (R ∩ Ti)× Ω, i ∈ P(R);

g(t, ω), otherwise,

are desired. �

Lemma 3.2. Let f be an allocation and z ∈ B++. Suppose that g, h : S×Ω → B+

are two functions satisfying
∫

S

gdµ,

∫

S

hdµ ∈ cl

∫

S

Pfdµ.

Under (A3)-(A4), there exists a function y : S × Ω → B+ such that y(t, ·) ∈ Pf (t)
µ-a.e. on S and

∫

S

(y − a)dµ =
1

2

∫

S

(g − a)dµ+
1

2

∫

S

(h− a)dµ+ z.

Proof. Pick an i ∈ P(S). Since cl
∫

S∩Ti
Pfdµ is convex,

1

2

∫

S∩Ti

(g + h)dµ ∈ cl

∫

S∩Ti

Pfdµ.

Choose an open neighbourhood W of 0 such that

z

|P(S)|
−W ⊆ B++.

It follows that
(

1

2

∫

S∩Ti

(g + h)dµ+WΩ

)

⋂

∫

S∩Ti

Pfdµ 6= ∅.

So, there exist a σ(Pi)-measurable function wi : Ω →W and an integrable selection
xi of Pf such that

1

2

∫

S∩Ti

(g + h)dµ+ wi =

∫

S∩Ti

xidµ.

Define a function yi : (S ∩ Ti)× Ω → B+ such that for all (t, ω) ∈ (S ∩ Ti)× Ω,

yi(t, ω) = xi(t, ω) +
1

µ(S ∩ Ti)

(

z

|P(S)|
− wi(ω)

)

.

By (A3), one has

EQt(Ut(·, y
i(t, ·))) > EQt(Ut(·, f(t, ·)))

and yi(t, ·) ∈ Xt µ-a.e. on S ∩ Ti, and
∫

S∩Ti

yidµ =
1

2

∫

S∩Ti

(g + h)dµ+
z

|P(S)|
.
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Define the allocation y : S × Ω → B+ such that

y(t, ω) =

{

yi(t, ω), if (t, ω) ∈ (S ∩ Ti)× Ω, i ∈ P(S);

h(t, ω), otherwise.

Obviously, y is the desired function. �

Lemma 3.3. Assume f be an allocation and that S ∈ T0. Suppose also that

g : S × Ω → B+ is a function such that
∫

S

gdµ ∈ cl

∫

S

Pfdµ.

Let (A3)-(A4) be satisfied, λ ∈ (0, 1) and z ∈ B++. Then there exist a sub-coalition

R of S and a function h : R× Ω → B+ such that h(t, ·) ∈ Pf (t) µ-a.e. on R and
∫

R

(h− a)dµ = λ

∫

S

(g − a)dµ+ z.

Proof. Pick an i ∈ P(S). Applying an argument similar to that in the proof of
Lemma 3.2, one obtains a function yi : (S ∩Ti)×Ω → B+ such that yi(t, ·) ∈ Pf (t)
µ-a.e. on S ∩ Ti, and

∫

S∩Ti

yidµ =

∫

S∩Ti

gdµ+
z

2λ|P(S)|
.

By Lemma 3.3 in [3], one can find a sequence {Si
n : n ≥ 1} ⊆ ΣS∩Ti

such that

lim
n→∞

∫

Si
n

(yi − a)dµ = λ

∫

S∩Ti

(yi − a)dµ.

The function xin : Ω → B, defined by

xin(ω) = λ

∫

S∩Ti

(yi(·, ω)− a(·, ω))dµ−

∫

Si
n

(yi(·, ω)− a(·, ω))dµ,

is σ(Pi)-measurable for all n ≥ 1 and limn→∞ ‖xin(ω)‖ = 0 for all ω ∈ Ω. Choose
an ni ≥ 1 such that

z

2|P(S)|
+ xini

(ω) ≫ 0

for each ω ∈ Ω and then consider the function hi : Si
ni

× Ω → B+ defined by

hi(t, ω) = yi(t, ω) +
1

µ(Si
ni
)

(

z

2|P(S)|
+ xini

(ω)

)

.

By (A3), one has

EQt(Ut(·, h
i(t, ·))) > EQt(Ut(·, f(t, ·))),

and hi(t, ·) is σ(Pi)-measurable µ-a.e. on Si
ni
. Put

R =
⋃

{

Si
ni

: i ∈ P(S)
}

.

Then the coalition R and the function h : R×Ω → B+, defined by h(t, ω) = hi(t, ω)
if (t, ω) ∈ Si

ni
× Ω, are desired. �
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4. The Main Result

In this section, the main results are presented.

Definition 4.1. An allocation f is called privately C (T0,T1)-fair if there do not
exist two disjoint coalitions S1, S2 and an allocation g such that S1 ∈ T0, S2 ∈ T1,

EQt(Ut(·, g(t, ·))) > EQt(Ut(·, f(t, ·)))

µ-a.e. on S1 and
∫

S1

(g(·, ω)− a(·, ω))dµ =

∫

S2

(f(·, ω)− a(·, ω))dµ

for each ω ∈ Ω.

Theorem 4.2. Assume (A1)-(A4) and that f ∈ PC (E ). Then f is privately

C (T0,T1)-fair.

Proof. On the contrary, suppose that f is not privately C (T0,T1)-fair. Then there
exist two disjoint coalitions S1, S2 with S1 ∈ T0 and S2 ∈ T1 and an allocation g
such that

EQt(Ut(·, g(t, ·))) > EQt(Ut(·, f(t, ·)))

µ-a.e. on S1 and
∫

S1

(g − a)dµ =

∫

S2

(f − a)dµ.

By Lemma 3.1, one has a λ ∈ (0, 1), a z ∈ B++ and an allocation h such that

EQt(Ut(·, h(t, ·))) > EQt(Ut(·, f(t, ·)))

µ-a.e. on S1, and
∫

S1

(h− a)dµ+ 19z = (1− λ)

∫

S1

(g − a)dµ.

Applying Lemma 3.3, one can find a sub-coalition R1 of S1 and a function g1 :
R1 × Ω → B+ such that g1(t, ·) ∈ Pf (t) µ-a.e. on R1 and

∫

R1

(g1 − a)dµ = λ

∫

S1

(g − a)dµ+ z.

Combining above two equations, one has
∫

S1

(h− a)dµ+

∫

R1

(g1 − a)dµ+ 18z =

∫

S1

(g − a)dµ.

Lemma 3.2 implies that there must exist a function h1 : R1 × Ω → B+ such that
h1(t, ·) ∈ Pf (t) µ-a.e. on R1 and

∫

R1

(h1 − a)dµ =
1

2

∫

R1

(h− a)dµ+
1

2

∫

R1

(g1 − a)dµ+ z.

By Lemma 3.3, one has a sub-coalitionR2 of S1\R1 and a function h2 : R2×Ω → B+

such that h2(t, ·) ∈ Pf (t) µ-a.e. on R2 and
∫

R2

(h2 − a)dµ =
1

2

∫

S1\R1

(h− a)dµ+ z.

Thus, one concludes that
∫

R1

(h1 − a)dµ+

∫

R2

(h2 − a)dµ+ 7z =
1

2

∫

S2

(f − a)dµ.



COALITIONAL FAIRNESS 9

Let R3 = R1 ∪ R2 and define h3 : R3 × Ω → B+ by h3(t) = h1(t) if t ∈ R1; and
h3(t) = h2(t) if t ∈ R2. So,

∫

R3

(h3 − a)dµ+ 7z =
1

2

∫

S2

(f − a)dµ.

If
∫

S2

(f−a)dµ = 0 then f is privately blocked by the coalition R3 via the allocation

y : T × Ω → B+, defined by

y(t, ω) =

{

h3(t, ω) +
7z

µ(R3)
, if (t, ω) ∈ R3 × Ω;

g(t, ω), otherwise,

which is a contraction with the fact that f ∈ PC (E ). So,
∫

S2

(f − a)dµ 6= 0 which

means µ(T \ S2) > 0. In this case,
∫

R3

(h3 − a)dµ+
1

2

∫

T\S2

(f − a)dµ+ 7z = 0.

Using Lemma 3.3, the above equation can be written as
∫

R3

(h3 − a)dµ+

∫

R4

(h4 − a)dµ+ 6z = 0

for some sub-coalition R4 of T \ S2 and function h4 : R4 × Ω → B+ satisfying
h4(t, ·) ∈ Pf (t) µ-a.e. on R4. Again, applying Lemma 3.2 for the coalition R3 ∩R4

and Lemma 3.3 for coalitions R3 \R4 and R4 \R3, one can find three sub-coalitions

R5 = R3 ∩R4, R6 ⊆ R3 \R4, R7 ⊆ R4 \R3

and three functions hi : Ri × Ω → B+ for i = 5, 6, 7 such that

7
∑

i=5

∫

Ri

(hi − a)dµ = 0

and hi(t, ·) ∈ Pf (t) µ-a.e. on Ri for i = 5, 6, 7. Thus, the coalition R = R5∪R6∪R7

privately blocks f via the allocation y : T × Ω → B+, defined by

y(t, ω) =

{

hi(t, ω), if (t, ω) ∈ Ri × Ω, i = 5, 6, 7;

g(t, ω), otherwise,

which is again a contradiction. �

Definition 4.3. An allocation f is called privately C (T1,T0)-fair if there do not
exist two disjoint coalitions S1, S2 and an allocation g such that S1 ∈ T1, S2 ∈ T0,

EQt(Ut(·, g(t, ·))) > EQt(Ut(·, f(t, ·)))

µ-a.e. on S1 and
∫

S1

(g(·, ω)− a(·, ω))dµ =

∫

S2

(f(·, ω)− a(·, ω))dµ

for each ω ∈ Ω.

Theorem 4.4. Assume (A1)-(A4) and that f ∈ PC (E ). Then f is privately

C (T1,T0)-fair.
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Proof. On the contrary, suppose that f is not privately C (T1,T0)-fair. Thus, there
must exist two disjoint coalitions S1, S2 with S1 ∈ T1 and S2 ∈ T0 and an allocation
g such that

EQt(Ut(·, g(t, ·))) > EQt(Ut(·, f(t, ·)))

µ-a.e. on S1 and
∫

S1

(g − a)dµ =

∫

S2

(f − a)dµ.

Now, Lemma 3.1 yields a λ ∈ (0, 1), a z ∈ B++ and an allocation h such that

EQt(Ut(·, h(t, ·))) > EQt(Ut(·, f(t, ·)))

µ-a.e. on S1, and
∫

S1

(h− a)dµ+ 19z = (1− λ)

∫

S1

(g − a)dµ = (1− λ)

∫

S2

(f − a)dµ.

By Lemma 3.3, one obtains a sub-coalition R2 of S2 and a function g2 : R2×Ω → B+

such that g2(t, ·) ∈ Pf (t) µ-a.e. on R2 and
∫

R2

(g2 − a)dµ = λ

∫

S2

(f − a)dµ+ z.

Let R1 = S1∪R2 and define a function h1 : R1×Ω → B+ by h1(t) = h(t) if t ∈ S1;
and h1(t) = g2(t) if t ∈ R2. Then

∫

R1

(h1 − a)dµ+ 18z =

∫

S2

(f − a)dµ.

Applying lemma 3.2, one has a function x1 : R1×Ω → B+ such that x1(t, ·) ∈ Pf (t)
µ-a.e. on R1 and

∫

R1

(x1 − a)dµ =
1

2

∫

R1

(h1 − a)dµ+
1

2

∫

R1

(f − a)dµ+ z.

Thus, one has
∫

R1

(x1 − a)dµ+ 8z =
1

2

∫

R1∪S2

(f − a)dµ.

If
∫

R1∪S2

(f−a)dµ = 0 then f is privately blocked by a coalition R1 via the allocation

y : T × Ω → B+ defined by

y(t, ω) =

{

x1(t, ω) +
8z

µ(R1)
, if (t, ω) ∈ R1 × Ω;

g(t, ω), otherwise.

This is a contradiction. Now, consider the case when
∫

R1∪S2

(f − a)dµ 6= 0. Since

µ(T \ (R1 ∪ S2)) 6= 0 and T \ (R1 ∪ S2) is atomless, by Lemma 3.3, there exist
a sub-coalition R2 of T \ (R1 ∪ S2) and a function h2 : R2 × Ω → B+ such that
h2(t, ·) ∈ Pf (t) µ-a.e. on R2 and

∫

R2

(h2 − a)dµ =
1

2

∫

T\(R1∪S2)

(g − a)dµ+ z.

Define an allocation y : T × Ω → B+ by

y(t, ω) =











x1(t, ω) +
3z

µ(R1)
, if (t, ω) ∈ R1 × Ω;

h2(t, ω), if (t, ω) ∈ R2 × Ω;

g(t, ω), otherwise.
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Note that f is privately blocked by a coalition R1 ∪R2 via the allocation y, which
is again a contradiction. �

The following definition and theorem are extensions of those in [9] to an asym-
metric information economy.

Definition 4.5. An allocation f is said to be privately C -fair relative to T0 and T1

if it is privately C (T0,T1)-fair and privately C (T1,T0)-fair. The set of such allocations

is denoted by PC
{T0,T1}(E ).

Theorem 4.6. Assume (A1)-(A4). Then PC (E ) ⊆ PC
{T0,T1}(E ).

Proof. Let f ∈ PC (E ). By Theorem 4.2, f is privately C (T0,T1)-fair. Applying

Theorem 4.4, one has f is privately C (T1,T0)-fair. So, f ∈ PC
{T0,T1}(E ), and this

completes the proof. �
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