Two Concepts of ‘Centre Of Gravity’: Commentary on Contributions by Gary Mongiovi and Fred Moseley

Freeman, Alan

The University of Greenwich

23 February 2001

Online at https://mpra.ub.uni-muenchen.de/52819/
MPRA Paper No. 52819, posted 10 Jan 2014 10:06 UTC
TWO CONCEPTS OF ‘CENTRE OF GRAVITY’:
COMMENTARY ON CONTRIBUTIONS BY GARY
MONGIOVI AND FRED MOSELEY

Alan Freeman
Independent Researcher
IWGVT mini-conference, Eastern Economic Association
23 February 2001

ABSTRACT
This paper was submitted to the 2001 conference of the International Working Group on Value Theory at the Eastern Economic Association. It was an initial short response to the idea, which has become common amongst Simultaneoust Marxist Economists, that in Marx’s theory, equilibrium or simultaneous prices of production play the role of a ‘centre of gravity’ around which actual prices fluctuate. A more developed response was given in Freeman (2006). In that paper and in this one, I argue that this argument, as presented by Mongiovi (2001, 2002) and by Moseley (2000) involves a non-sequitur: just because a fluctuating time-series – such as the price of production of some good or of the output of some branch of production – fluctuates around some time-average, it cannot be concluded that this time average will be equal to the hypothetical equilibrium of that series. In general, the hypothetical equilibrium follows a trajectory that is different from the moving average of the same series, and in a number of important cases – such as the trajectory of the rate of profit – the time average (calculated temporally) and the hypothetical equilibrium diverge, so that one rises whilst the other falls.

The present paper providing a historical step in the genesis of this argument, being a precursor of the 2006 paper. It also however makes a distinct contribution to the discussion which appears neither in Freeman (1999), its predecessor, nor in Freeman (2006), its successor. It exhibits a simple numerical example in which the equilibrium measure of the rate of profit, and of the prices of production of each of the two sectors in the system, systematically diverges from the temporal measure. It further asks the question: can the ‘equilibrium profit=centre of gravity’ thesis account for any actual fluctuating sequence of market prices, that is, actual observed sale prices? It shows, by means of a simulation, that Either the equilibrium profit is centre of gravity for sectoral profit rates, and prices diverge, Or the equilibrium price is centre of gravity for sectoral prices, and profits diverge.

That is to say the notion that the equilibrium profit rate is a centre of gravity for the actual profit rate, is incompatible with the assertion that the equilibrium price of production is a centre of gravity for the actual prices corresponding to that same profit rate.

JEL codes: B12, B14, B31, B51

Keywords: Value, Value Theory, Equilibrium, TSSI, Temporalism
A central assertion in Gary Mongiovi’s paper is that Prices of Production, for Marx, function as ‘centres of gravity’ for market prices and that this is one of the senses in which such prices can be said to constitute an essence for which market prices are the appearance. Fred Moseley, in a number of papers and on the marxist discussion list OPE-L, makes the same argument.

Both authors identify the concept of ‘centre of gravity’ with various other concepts in political economy which they treat as identical. In particular both treat it, uncritically, as simply another term for ‘long-run’ price by which is clearly meant ‘long-run equilibrium’ price.

In my paper to the 1999 conference entitled ‘The Limits of Ricardian Value: Law, Contingency and Motion in Economics’ I pointed up two fatal flaws in this argument:

(1) long-run equilibrium prices are not the only concept which can instantiate the idea of a ‘centre of gravity’. TSS prices of production function as centres of gravity.

(2) Sraffian equilibrium prices possess a fatal flaw if one interrogates the idea that they function as centres of gravity. Namely, any actual sequences of market prices compatible with Sraffa’s assumptions diverges. This violates an important property required of any concept that instantiates ‘centre of gravity’, since it is difficult to see how they ‘attract’ market prices.

(3) For any arbitrary random sequence of market prices, TSS prices of production exhibit all the properties one might require of a ‘centre of gravity’. They constitute a time average of market prices, they attract market prices, and changes in them produce changes in market prices.

(4) Thus, whether or not Marx treated Prices of Production as ‘centres of gravity’ (and the textual evidence suggests he considered value, not price of production, to function as centre of gravity), Mongiovi’s and Moseley’s argument does not prove that Marx employed equilibrium prices. The term ‘centre of gravity’ cannot be uncritically or automatically taken to mean ‘equilibrium price’

This short contribution summarises the evidence of my 1999 paper. A spreadsheet detailing the calculations can be found on www.greenwich.ac.uk/~fa03/iwgyt/1999

THE PHYSICAL SYSTEM
The system assumes the following physical sequence:

<table>
<thead>
<tr>
<th>t</th>
<th>C_I</th>
<th>C_{II}</th>
<th>L_I</th>
<th>L_{II}</th>
<th>X_I</th>
<th>X_{II}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>Etc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There are two sectors I, II both of which consume commodity I and labour. The production system is thus (in aggregate)

\[
\begin{bmatrix}
C_I & 0 \\
C_{II} & 0
\end{bmatrix}
\text{with labour}
\begin{bmatrix}
L_I \\
L_{II}
\end{bmatrix}
\text{produces outputs}
\begin{bmatrix}
X_I \\
X_{II}
\end{bmatrix}
\]

The real wage \(w\) is assumed equal to 0.5 units of commodity II. Thus the output (and input) of sector I steadily increases, for a constant labour input, constant real wage, producing rising productivity in this sector, constant labour productivity in sector II, and falling values throughout (these assumptions can be altered by the reader after downloading the spreadsheet to any desired physical sequence).

If for simplicity we suppose that \(p_{II}\) is 1 throughout (again, the reader can modify this supposition), this yields the following sequence of equilibrium profits and production prices \(p_I, p_{II}\):

<table>
<thead>
<tr>
<th>(1+r)</th>
<th>(p_I)</th>
<th>(p_{II})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.37</td>
<td>0.84</td>
<td>1</td>
</tr>
<tr>
<td>1.39</td>
<td>0.89</td>
<td>1</td>
</tr>
<tr>
<td>1.40</td>
<td>0.93</td>
<td>1</td>
</tr>
<tr>
<td>1.42</td>
<td>0.97</td>
<td>1</td>
</tr>
<tr>
<td>Etc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Letting \(c_i\) stand for the coefficient \(C_i/X_i\), etc, these are the profits and prices that satisfy the simultaneous equations:

\[
\begin{align*}
(1a) & \quad (p_CI + p_{II}wL_I)(1+r) = p_Ix_I \\
(1b) & \quad (p_CI + p_{II}wL_{II})(1+r) = p_{II}x_{II}
\end{align*}
\]

and hence the eigenvalue equation

\[
\begin{align*}
(2) & \quad \lambda^2 + (c_I + l_{II}w)\lambda + (c_{II}w - l_{II}wc_{II}) \\
(3) & \quad \lambda^2 = (c_I + l_{II}w) + \sqrt{\Delta} \\
& \quad \Delta = (c_I + l_{II}w)^2 - 4(c_{II}w - l_{II}wc_{II})
\end{align*}
\]

However this is not the only way to calculate prices of production. Temporal prices of production are yielded, for a constant MELT of 1, by the equations

\[
\begin{align*}
(4a) & \quad (p_{II}C_I + p_{II}WL_{II})(1+r) = p_{II+1}x_{II} \\
(4b) & \quad (p_{II}C_{II} + p_{II}WL_{II})(1+r) = p_{II+1}x_{II}
\end{align*}
\]

where \(r\), the profit rate, is given by

\[S_t/(C_t+V_t)\]

where \(S\), (total)surplus value, \(V\), (total)variable capital and \(C\), (total)constant capital, are given by

\[
\begin{align*}
(5a) & \quad \text{total labour:} \quad L = L_I + L_{II} \\
(5b) & \quad \text{total variable capital:} \quad V_t = p_{II}WL_I \\
(5c) & \quad \text{total constant capital} \quad C_t = p_{II}(C_I + C_{II}) \\
(5d) & \quad \text{total surplus value} \quad S_t = L_I - V_t
\end{align*}
\]
This yields the sequence

<table>
<thead>
<tr>
<th>r</th>
<th>p_I</th>
<th>P_{II}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.84</td>
<td>1.00</td>
</tr>
<tr>
<td>0.36</td>
<td>0.82</td>
<td>0.99</td>
</tr>
<tr>
<td>0.37</td>
<td>0.80</td>
<td>0.97</td>
</tr>
<tr>
<td>0.38</td>
<td>0.77</td>
<td>0.95</td>
</tr>
<tr>
<td>0.39</td>
<td>0.74</td>
<td>0.93</td>
</tr>
<tr>
<td>0.40</td>
<td>0.72</td>
<td>0.91</td>
</tr>
</tbody>
</table>

THE NON-IDENTITY OF EQUILIBRIUM AND TEMPORAL PRODUCTION PRICES.

The first point is that the two sequences of production prices (and profits) are simply *not the same*. Two concepts are involved; one must choose between them. Figure 1 shows, first of all, the ratio of the temporal to the equilibrium prices of production and second, the ratio of the relative prices in both systems. Of course, equilibrium and temporal prices can be expected to differ in any case because of the arbitrary choice of numéraire in the equilibrium system. But this cannot account for all the difference since the two ratios move in *opposite directions* for the two sectors. Moreover the relative prices also diverge, which is not caused by the choice of numéraire.

MARKETISING EQUILIBRIUM PRICES

Second, however, there is an intractable problem with the equilibrium prices of production which can be seen if, in each period, we set next to each other the prices, in sector I, which producers pay for their inputs, and the price for which these same inputs were sold.
Because input prices equal output prices, the purchasers pay an amount of money different to the amount of money which the sellers of the same goods receive. That is, these ‘prices’ of production cannot possibly function as actual prices, as the actual basis of exchange. The term ‘prices’ is a misnomer. Note that for temporal prices this problem does not arise. By definition, the temporal price for which goods are sold at the end of a period, is equal to the price paid for the same goods at the beginning of the next period.

The claim is, however, not that these prices function as actual prices, but as centres of gravity for actual prices, and that this is what Marx intended. In that case, however, it is reasonable to ask: is there any actual sequence of market prices, conformable with the suppositions of the equilibrium paradigm, for which these prices of production could serve as a centre of gravity?

Suppose, then, the following sequence of market prices: in each period, the money actually paid by the producers is equal to the equilibrium price for which they were sold, thus:

<table>
<thead>
<tr>
<th>t</th>
<th>Sale price</th>
<th>Purchase price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>4</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

This is a perfectly reasonable sequence of market prices. What profit rates does it yield? Profits are, by the normal commercial definition, the difference between sales and revenue. This yields the sequence

<table>
<thead>
<tr>
<th>Sector I</th>
<th></th>
<th>Sector II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs</td>
<td>Sales</td>
<td>Profit</td>
</tr>
<tr>
<td>18.43</td>
<td>26.57</td>
<td>0.44</td>
</tr>
<tr>
<td>19.74</td>
<td>29.68</td>
<td>0.50</td>
</tr>
<tr>
<td>21.13</td>
<td>32.95</td>
<td>0.56</td>
</tr>
<tr>
<td>22.60</td>
<td>36.37</td>
<td>0.61</td>
</tr>
<tr>
<td>24.14</td>
<td>39.94</td>
<td>0.65</td>
</tr>
<tr>
<td>25.76</td>
<td>43.66</td>
<td>0.69</td>
</tr>
<tr>
<td>27.46</td>
<td>47.52</td>
<td>0.73</td>
</tr>
<tr>
<td>29.23</td>
<td>51.53</td>
<td>0.76</td>
</tr>
<tr>
<td>31.08</td>
<td>55.69</td>
<td>0.79</td>
</tr>
</tbody>
</table>

The profit rates in the two sectors diverge, as figure 2 shows. Thus, the equilibrium profit rate does not serve as centre of gravity for the sectoral profit rate.
In order to ‘save the phenomena’ we might ask the following question: is there a sequence of market prices for which profit rates do not diverge (that is, the equilibrium profit rate serves as centre of gravity for sectoral profit rates). The resultant prices are shown in Figure 3.

But now, as can be seen, the prices diverge: that is, the equilibrium price does not act as centre of gravity for the resultant market prices. In summary, thus:

 Either the equilibrium profit is centre of gravity for sectoral profit rates, and prices diverge

Or the equilibrium price is centre of gravity for sectoral prices, and profits diverge

Finally, it should be noted that the temporal production prices in general fulfil the role of centre of gravity: this is not tautological for two reasons

(1) they were not calculated as averages of the prices (it was the profit rate that was calculated as an average)

(2) it is conceivable that while the production price will serve as a centre in each period, over time it will lack some desirable properties of a centre of gravity, eg it might not be a time average, market prices might not oscillate around them, etc.

There are two tests of this property. The first is to set up a simulation in which we suppose some exogenously given process governing market prices that is stated independent of the production price, and observe whether the production price nevertheless serves as centre of gravity. I tested this hypothesis in 1991 with a simulation model in which it is simply supposed that in each sector, profits are re-invested, and that prices tend downwards for excess supply and upwards for excess demand, both measured by stock movements. Sectors with high prices will then invest more because of their excess profits, and vice versa.

A simple reproduction of this simulation is to suppose random market prices, randomised by supposing that sectoral profits are a random distance from average profits. The reader can supply whatever rule he/she chooses in the spreadsheet I have supplied. Below are the production and market prices for one such simulation which, I think, exhibit the centre of gravity property reasonably convincingly.
REFERENCES