
Munich Personal RePEc Archive

A note on the calculation of entropy

from histograms

Wallis, Kenneth

University of warwick

October 2006

Online at https://mpra.ub.uni-muenchen.de/52856/

MPRA Paper No. 52856, posted 10 Jan 2014 18:32 UTC



 

 

 

 

 

 

 

A note on the calculation of entropy from histograms 

 

 

 

Kenneth F. Wallis 

 
Department of Economics 

University of Warwick 

Coventry CV4 7AL, UK 

[K.F.Wallis@warwick.ac.uk] 

 

 

 

 

October 2006 
 

 

 

 

 

 

Abstract   An expression for the entropy of a random variable whose probability density 

function is reported as a histogram is given.  It allows the construction of time series of 

entropy from responses to density forecast surveys such as the US Survey of Professional 

Forecasters or the Bank of England Survey of External Forecasters, where the questionnaire 

provides histogram bins whose width changes from time to time. 
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The derivation presented in this note was prompted by discussion with Robert Rich and 

Joseph Tracy about the entropy-based measures of uncertainty and disagreement used in their 

study of the US Survey of Professional Forecasters (Rich and Tracy, 2006).  They cite no 

source for the expression for entropy which they implement, simply giving a general 

reference for entropy.  I could find no discussion of histograms in the literature, hence this 

note.  A useful recent reference is the “Entropy” entry by Harris in the new edition of the 

Encyclopedia of Statistical Sciences.  Harris begins by considering the entropy of a discrete 

random variable, but to treat the discrete probability distribution as analogous to the 

histogram of a continuous random variable needs some care. 

 

For a continuous random variable X, such as inflation or growth in the SPF data, with 

probability density function ( )f x , the definition of its entropy is 

  [ ]( ) log ( ) ( ) log ( )H X E f X f x f x dx= − = −∫ . 

To relate this definition to the situation in which the density is represented as a histogram, we 

divide the range of the variable into n intervals ( , )k kl u , k=1,…,n, so that 

  
1

( ) ( ) log ( )
k

k

n
u

l
k

H X f x f x dx

=
= −∑∫ . 

We then relate the kth term in this summation to the kth bin of a histogram, with width 

  k k kw u l= − . 

When the range of the variable is unbounded, so that 1l = −∞  and nu = ∞ , it is customary for 

computational purposes to assume 1l  and nu  finite, for example by assuming that the first 

and last intervals have width similar to that of the interior intervals. 

 

 The bin probabilities kp , k=1,…,n, defined as 

( )
k

k

u

k l
p f x dx= ∫ , 

can be approximated as ( )k kw f x , the area of a rectangle of height ( )kf x , where kx  is a 

representative value within the interval ( , )k kl u .  Similarly the kth integral in the above 

summation can be approximated as ( ) log ( )k k kw f x f x .  Rewriting this expression in terms of 

the bin probabilities then gives the entropy as 
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  ( )
1

( ) log
n

k k k

k

H X p p w

=
= −∑ .      (1) 

This corresponds to the expression given by Harris (2006) for a discrete distribution, and 

given by Rich and Tracy (2006) for a histogram, only if 1kw = .  In the typical case in which 

kw  is constant, but not necessarily equal to 1, we have 

  
1

( ) log log
n

k k

k

H X p p w

=
= − +∑ .      (2) 

If kw  is not constant, equation (1) calls for bin-by-bin adjustments before comparisons of 

entropy between histograms with different bin configurations can be made.  Correction (2) is 

required in constructing time series of entropy from responses to density forecast surveys 

such as the US Survey of Professional Forecasters or the Bank of England Survey of External 

Forecasters, where the questionnaire provides bins whose width changes from time to time. 

 

 Note that entropy is only defined up to a scale factor, since the base of the logarithms 

has not been specified.  For continuous random variables it is convenient to work with natural 

logarithms, and for a normal distribution we have 

  
2

2

1 ( )
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x
H X f x dx

μ
σ π σ

⎛ ⎞−
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫  

   ( )ln 2 0.5 ln 1.42σ π σ= + = + . 

This suggests that, when comparing entropy-based and moment-based uncertainty measures, 

natural logarithms should be used throughout.  The pattern of their respective variation over 

time will be clear from comparison of the time series of log standard deviation and the time 

series of entropy, perhaps without the log w  adjustment in the case of constant bin widths.  

However the levels of the two measures are not comparable unless all the above adjustments 

are made, the last adjustment being subject to the acceptability of the normality assumption. 
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