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Abstract

We compare several confidence intervals after model selection in the
setting recently studied by Berk et al. (2013), where the goal is to cover
not the true parameter but a certain non-standard quantity of interest
that depends on the selected model. In particular, we compare the PoSI-
intervals that are proposed in that reference with the ‘naive’ confidence
interval, which is constructed as if the selected model were correct and
fixed a-priori (thus ignoring the presence of model selection). Overall, we
find that the actual coverage probabilities of all these intervals deviate only
moderately from the desired nominal coverage probability. This finding
is in stark contrast to several papers in the existing literature, where the
goal is to cover the true parameter.

1 Introduction and Overview

There is ample evidence in the literature that model selection can have a detri-
mental impact on subsequently constructed inference procedures like confidence
sets, if these are constructed in the ‘naive’ way where the presence of model
selection is ignored. Such results are reported, for example, by Brown (1967);
Buehler and Feddersen (1963); Dijkstra and Veldkamp (1988); Kabaila (1998,
2009); Kabaila and Leeb (2006); Leeb (2006); Leeb and Pötscher (2003, 2005,
2006a,b, 2008a,b); Olshen (1973); Pötscher (1991, 2006); Pötscher and Leeb
(2009); Pötscher and Schneider (2009, 2010, 2011); Sen (1979); Sen and Saleh
(1987).

Recently, Berk, Brown, Buja, Zhang, and Zhao (2013) proposed a new class
of confidence intervals, so-called PoSI-intervals, which correct for the presence
of model selection, in the sense that these intervals guarantee a user-specified
minimal coverage probability, even if the model has been selected in a data-
driven way. However, the setting of Berk et al. (2013) differs from earlier studies,
because they consider confidence intervals for a different quantity of interest: In
the aforementioned analyses, the quantity of interest (the coverage target) is
always a fixed parameter or sub-parameter of the data-generating model. Berk
et al. (2013), on the other hand, consider a different and non-standard coverage
target that depends on the selected model. [Even if an overall correct model is
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assumed, that non-standard coverage target does not coincide with a parameter
in the model, except for degenerate and trivial situations.] By design, the PoSI-
intervals do not provide a solution to the more traditional problem, where the
goal is to cover a parameter in the overall model after model selection.

Berk et al. (2013) motivate the need for PoSI-intervals by the poor perfor-
mance of the ‘naive’ interval as observed in the studies mentioned in the first
paragraph of this section. However, these studies do not cover the performance
of the ‘naive’ procedures post-model-selection when the coverage target is as in
Berk et al. (2013). This raises the question of how the ‘naive’ interval performs
when it is used to cover the coverage target considered in Berk et al. (2013).
The main contribution of this paper is to answer this. In particular, we com-
pare ‘naive’ confidence intervals and PoSI-intervals in the setting of Berk et al.
(2013). [The results in the present paper are partly based on Ewald (2012), and
we refer to this thesis for additional results and discussion.]

We find that the minimal coverage probability of the ‘naive’ interval is
slightly below the nominal one, while that of the PoSI interval is slightly above,
when the coverage target is as in Berk et al. (2013) and when AIC or similar
procedures are used for model selection. In the scenarios that we consider, the
coverage probabilities of all these intervals are within 5% of the nominal coverage
probability, the only exception being one scenario that is designed specifically
so that the difference between these intervals is most pronounced (design 3 in
Section 4). In the more traditional setting where the coverage target is a pa-
rameter in the overall model, however, all these intervals generally fail to deliver
the desired minimal coverage probability. [Note that the PoSI-interval is not de-
signed to deal with this coverage target.] For illustration, consider the scenario
depicted by the solid curves in Figure 1 on page 9: There, a ‘naive’ confidence
interval post-model-selection with nominal coverage probability 0.95 has a min-
imal coverage probability of about 0.91 and the corresponding PoSI-interval has
a minimal coverage probability of about 0.96, if the coverage target is as in Berk
et al. (2013). But if the coverage target is a parameter in the overall model, the
minimal coverage probabilities of the ‘naive’ interval and of the PoSI-interval
drop to about 0.56 and 0.62, respectively.

The paper is organized as follows: In Section 2, we introduce the data-
generating process, the model-selection procedures, the coverage targets, and
various confidence procedures including the PoSI-intervals. We consider the
same assumptions and constructions as Berk et al. (2013). The (minimal) cov-
erage probabilities of ‘naive’ intervals and of PoSI-intervals are studied in Sec-
tion 3 and Section 4. In particular, Section 3 contains an explicit finite-sample
analysis of these procedures in a simple scenario with two nested candidate
models. Section 4 contains a simulation study where we compare these intervals
in three more complex scenarios; the first scenario is also studied by Kabaila
and Leeb (2006), and the other two scenarios are taken from Berk et al. (2013).
Finally, in the Appendix, we present an example with a coverage target that is
similar to, but slightly different from, those considered in Berk et al. (2013). The
interesting feature of this example is that the ‘naive’ confidence interval here is

2



valid, in the sense that its coverage probability is never below the nominal level.

2 Coverage Targets and Confidence Intervals

Throughout, we consider a set of n homoskedastic Gaussian observations with
mean vector µ ∈ R

n and common variance σ2 > 0, i.e.,

y = µ+ u, (2.1)

where u ∼ N(0, σ2In). We further assume that we have an estimator σ̂2 for σ2

that is independent of all the least-squares estimators that will be introduced
shortly. For the estimator σ̂2, we either assume that is distributed as a chi-
squared random variable with r degrees of freedom multiplied by σ2/r, i.e., σ̂2 ∼
σ2χ2

r/r, for some r ≥ 1; or we assume that the variance is known a-priori, in
which case we set σ̂2 = σ2 and r = ∞. Unless noted otherwise, all considerations
that follow apply to both the known-variance case and the unknown-variance
case. The joint distribution of y and σ̂ depends on the unknown parameters
µ ∈ R

n and σ > 0, and will be denoted by Pµ,σ.

For the available explanatory variables, consider a fixed n × p matrix X,
where we allow for p > n. We consider models where y is regressed on a (non-
empty) subset of the regressors in X. For each model M ⊆ {1, . . . , p} with M 6=
∅, writeXM for the matrix of those columns ofX whose indices lie inM . Writing
M as M = {j1, . . . , j|M |} ⊆ {1, . . . , p}, we thus have XM = (Xj1 , . . . , Xj|M|

),
where Xj denotes the j-th column of X, and where |M | denotes the size of
M . Write M for the collection of all candidate models under consideration.
Throughout, we only consider submodels of full column rank, i.e., we assume
that the rank of XM equals |M | and satisfies 1 ≤ |M | ≤ n for each M ∈ M.

Under a candidate model M ∈ M, y is modeled as

y = XMβM + vM ,

where βM corresponds to the orthogonal projection of µ from (2.1) onto the
column-space of XM , i.e., βM = (X ′

MXM )−1X ′
Mµ. The least-squares esti-

mator corresponding to the model M will be denoted by β̂M , i.e., β̂M =
(X ′

MXM )−1X ′
My. The working model M is correct if XMβM = µ; in that

case, we have vM = u. Otherwise, i.e., if XMβM 6= µ, the working model is in-
correct, and we have vM = µ−XMβM +u. Irrespective of whether the working
model is correct, we always have β̂M ∼ N(βM , σ2(X ′

MXM )−1); in particular,

β̂M is an unbiased estimator for βM , irrespective of whether or not the model
M is correct. As noted earlier, we assume that the variance estimator σ̂2 is
independent of the estimators β̂M for M ∈ M.

To identify the regression coefficient of a given regressor Xj in a model M
it appears in, we write βj·M for that component of βM that corresponds to the

regressor Xj for each j ∈ M . Similarly, the components of β̂M are indexed as
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β̂j·M for j ∈ M . This convention is called ‘full model indexing’ in Berk et al.
(2013).

Consider now a model selection procedure, i.e., a data-driven rule that selects
a model M̂ ∈ M from the pool of candidate models, and the resulting post-
model-selection estimator β̂M̂ . The coverage target considered in Berk et al.
(2013) is βM̂ , or components thereof. Note that this coverage target is random,
because it depends on the outcome of the model selection procedure.

Remark 2.1. (i) At least one author of the present paper believes that the
interpretation of this coverage target is debatable: For example, the meaning of
the first coefficient of βM̂ depends on the selected model and hence also on the
training data; the same applies to the dimension of βM̂ . We refer to Berk et al.
(2013) for further discussion and motivation for studying βM̂ .

(ii) While the model (2.1) is non-parametric, the distributional requirements
on σ̂2 are rather restrictive. However, these requirements are fulfilled if (2.1)
is replaced by the parametric model y = Xβ + u, if X is assumed to be of full
column rank p < n, if σ̂2 is the usual unbiased variance estimator in that model,
and if r is set to n−p. In that case, the true parameter β in the overall model is
well-defined and will then typically be the prime target of statistical inference.

In this paper, we will mainly focus on confidence intervals for the coefficient
of one particular predictor in the selected model. Without loss of generality,
assume that X1 is the predictor of interest, and that the coverage target is
β1·M̂ . To ensure that this quantity is always well-defined, we assume that the
first predictor X1 is contained in all candidate models under consideration, i.e.,
we assume that 1 ∈ M for each M ∈ M. We seek to construct confidence
intervals for β1·M̂ that are of the form

β̂1·M̂ ±Kσ̂1·M̂

for some constant K > 0, with σ̂2
1·M defined by σ̂2

1·M = σ̂2[(X ′
MXM )−1]1,1,

where [. . . ]1,1 denotes the first diagonal element of the indicated matrix. For a
given level 1 − α with 0 < α < 1, the constant K should be chosen such that
the minimal coverage probability is at least 1− α, i.e., such that

inf
µ,σ

Pµ,σ

(

β1·M̂ ∈ β̂1·M̂ ±Kσ̂1·M̂

)

≥ 1− α. (2.2)

Because the distribution of (β̂1·M − β1·M )/σ̂1·M is independent of unknown
parameters and also independent of M , it follows, for fixed M , that a confidence
interval for β1·M with minimal coverage probability 1−α is given by the textbook
interval β̂1·M±KN σ̂1·M , whereKN is the (1−α/2)-quantile of the distribution of

(β̂1·M−β1·M )/σ̂1·M – a standard normal distribution in the known-variance case
and a t-distribution with r degrees of freedom in the unknown-variance case.
In view of this, it is tempting to consider, as a confidence interval for β1·M̂ , the

interval β̂1·M̂ ± KN σ̂1·M̂ . Because this construction ignores the model selection

4



step and treats the selected model M̂ as fixed, we will call this the ‘naive’
confidence interval.

The PoSI-interval developed in Berk et al. (2013) is obtained by first con-
structing simultaneous confidence intervals for the components of βM that are
centered at the corresponding components of β̂M , for each M ∈ M, with cov-
erage probability 1− α: More formally, the PoSI-constant KP is such that

inf
µ,σ

Pµ,σ

(

βj·M ∈ β̂j·M ±KP σ̂j·M : j ∈ M,M ∈ M
)

= 1− α, (2.3)

where the quantities σ̂2
j·M are defined like σ̂2

1·M but with j replacing 1. By
construction, the PoSI-constant KP is such that we obtain simultaneous confi-
dence intervals for the components of βM̂ that are centered at the corresponding

components of β̂M̂ . In other words, we have

inf
µ,σ

Pµ,σ

(

βj·M̂ ∈ β̂j·M̂ ±KP σ̂j·M̂ : j ∈ M̂
)

≥ 1− α. (2.4)

In particular, (2.2) holds when KP replaces K. For computing the constant

KP , we note that the probability in (2.3) can also be written as P(|β̂j·M −
βj·M |/σ̂j·M ≤ KP : j ∈ M,M ∈ M). This probability is not hard to compute,

because it involves only the random variables (β̂j·M − βj·M )/σ̂j·M , which are
(correlated) standard normal in the known-variance case and (correlated) t-
distributed in the unknown variance case. In particular, the probability in (2.3)
does not depend on µ or σ2. Similar considerations apply, mutatis mutandis, to
the constant KP1 that is introduced in the following paragraph.

A modification of this procedure, which is also proposed in Berk et al. (2013),
is useful when inference is focused on a particular component of βM̂ , instead of
on all components. Recall that the coverage target in (2.2) is the first component
of βM̂ , i.e., β1·M̂ . The PoSI1-constant KP1 provides simultaneous confidence

intervals for β1·M centered at β̂1·M for each M ∈ M. In particular, KP1 is
chosen so that

inf
µ,σ

Pµ,σ

(

β1·M ∈ β̂1·M ±KP1σ̂1·M : M ∈ M
)

= 1− α.

Again by construction, (2.2) holds when KP1 replaces K.

Like the PoSI-constants discussed so far, other procedures for controlling the
family-wise error rate can be used. Consider, for example, Scheffé’s method:
Recall that X denotes the matrix of all available explanatory variables, and
note that (β̂j·M −βj·M ) is a linear function of Y −µ, i.e., a function of the form
ν′(Y − µ), for a certain vector ν in the span of X. The Scheffé constant KS is
chosen such that

Pµ,σ






sup

ν∈span(X)

ν 6=0

ν′(Y − µ)

σ̂‖ν‖ ≤ KS






= 1− α.
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Then the relations (2.3), (2.4), and, in particular, (2.2) hold when KS replaces
both K and KP . Note that the probability in the preceding display does not
depend on µ and σ, and that the constant KS is easily computed as follows:
Let p denote the rank of X. In the known-variance case, KS is the square root
of the (1−α)-quantile of a chi-square distribution with p degrees of freedom. In
the unknown-variance case, KS is the square root of the product of p and the
(1− α)-quantile of an F -distribution with p and r degrees of freedom.

Using the constants KP , KP1 or KS gives valid confidence intervals post-
model-selection, i.e., intervals that satisfy (2.2), because these constants give
simultaneous confidence intervals for all quantities of interest that can occur;
for example, (2.4) follows from (2.3), which in turn guarantees that (2.2) holds
when KP replaces K. One advantage of this is that the minimal coverage
probability is guaranteed, irrespective of the model selection procedure M̂ . In
particular, coverage is guaranteed even if the model is selected by statistically
inane methods like the SPAR-procedure mentioned in Section 4.9 of Berk et al.
(2013). The price for this is that the PoSI constants KP and KP1 may be overly
conservative for a particular model selection procedure M̂ .

Lastly, we will also consider the obvious approach where one chooses the
smallest constant K such that (2.2) is satisfied. We will denote this constant
by K∗. This is, of course, a well-known standard construction; see Bickel and
Doksum (1977, p.170) for example. By definition, the interval in (2.2) with
K∗ replacing K is the shortest interval of that form whose minimal coverage
probability is 1 − α. Note that K∗ depends on the model selection procedure
in question, and that computation of this quantity can be cumbersome as it
requires computation of the finite-sample distribution of β̂1·M̂/σ̂1·M̂ . However,
explicit computation of this constant is feasible in some cases (cf. the results
in Section 3 and also the more general results of Leeb and Pötscher (2003)),
and this constant can also be computed or approximated in a variety of other
scenarios (for example, by adapting the results of Pötscher and Schneider (2010)
or the procedures of Andrews and Guggenberger (2009)). Also note that we have
K∗ ≤ KP1 ≤ KP ≤ KS by construction.

The procedures discussed so far are concerned with coverage targets like
βM̂ that depend on the selected model. This should be compared to the more
classical parametric setting where the coverage target is the underlying true
parameter: Assume that the data is generated by a linear overall model, i.e.,
assume that the parameter µ in (2.1) satisfies µ = Xβ for some overall regressor
matrix X. And assume that inference is focused on (components of) the param-
eter β. In this setting, the effect of model selection on subsequently constructed
confidence intervals can be dramatic. For example, Kabaila and Leeb (2006)
show that the minimal coverage probability of the ‘naive’ confidence interval for
β1, i.e., the quantity

inf
β,σ

PXβ,σ

(

β1 ∈ β̂1·M̂ ±KN σ̂1·M̂

)

,

can be much smaller than the nominal coverage probability 1− α; in fact, this
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minimal coverage probability can, e.g., be smaller than 0.5, depending on the
regressor matrix X in the overall model y = Xβ + u. The main reason for
this more dramatic effect is that β̂1·M is a biased estimator for β1 whenever
the model M is incorrect, whereas β̂1·M is always unbiased for β1·M . Of course,
valid confidence intervals post-model-selection can also be constructed when the
coverage target is β1, namely by replacing KN in the preceding display by the
smallest constant K such that the resulting minimal coverage probability equals
1 − α. For the computation or approximations of this constant in particular
situations, we refer to the papers cited in the preceding paragraph.

3 Explicit Finite-Sample Results

In this section we give a finite-sample analysis of the confidence intervals dis-
cussed so far, where we consider a simple model selection procedure that se-
lects among two nested models using a likelihood-ratio test. More precisely,
let X be an n × 2 matrix of rank 2, and assume that M = {M1,M2} with
M1 = {1} and M2 = {1, 2} throughout this section. For the model-selector,

we set M̂ = M2 if |β̂2·M2 |/σ̂2·M2 is larger than C, and M̂ = M1 otherwise,
where C > 0 is a user-specified constant. [Recall that in the known-variance
case, we have σ̂j·M = σ2[(X ′

MXM )−1]j,j .] Arguably, any reasonable model se-
lection procedure in this setting must be equivalent to a likelihood-ratio test,
at least asymptotically; cf. Kabaila and Leeb (2006). In the numerical ex-
amples that follow, we will choose C =

√
2, such that the resulting model

selector M̂ corresponds to selection by the classical Akaike information cri-
terion (AIC). Throughout this section, let φ(·) and Φ(·) denote the density
and the cumulative distribution function of the univariate standard Gaussian
distribution, and set ∆(x, c) = Φ(x + c) − Φ(x − c). And, lastly, we will

write ρ for the correlation coefficient between the two components of β̂M2
, i.e.,

ρ = −[(X ′
M2

XM2)
−1]1,2([(X

′
M2

XM2)
−1]1,1[(X

′
M2

XM2)
−1]2,2)

−1/2.

The following result describes the coverage probability of the interval β̂1·M̂ ±
Kσ̂1·M̂ in two scenarios, namely when the coverage target is β1·M̂ and when the
coverage target is β1·M2

. If the model M2 is correct, i.e., if we have µ = Xβ for
some β ∈ R

2, and hence also y = Xβ + u, then this second scenario reduces to
the classical parametric setting described at the end of Section 2; in particular,
we then have βM2

= β.

Proposition 3.1. In the setting of this section, we have

Pµ,σ

(

β
1·M̂ ∈ β̂

1·M̂ ±Kσ̂
1·M̂

)

=

E

[

∆

(

0,
σ̂

σ
K

)

∆

(

ζ,
σ̂

σ
C

)

+

∫ σ̂

σ
K

−

σ̂

σ
K

(

1−∆

(

ζ + ρz
√

1− ρ2
,

σ̂

σ
C

√

1− ρ2

))

φ(z)dz

]

,
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and

Pµ,σ

(

β1·M2 ∈ β̂
1·M̂ ±Kσ̂

1·M̂

)

= Pµ,σ

(

β
1·M̂ ∈ β̂

1·M̂ ±Kσ̂
1·M̂

)

+

E

[(

∆

(

ρζ
√

1− ρ2
,
σ̂

σ
K

)

− ∆

(

0,
σ̂

σ
K

)

)

∆

(

ζ,
σ̂

σ
C

)

]

,

with ζ = β2·M2
/SD(β̂2·M2

), where SD(·) denotes the standard deviation. The

expectations on the right-hand sides are taken with respect to σ̂/σ. In the known-

variance case, σ̂/σ is constant equal to one and the expectations are trivial; in

the unknown-variance case, σ̂/σ is distributed like the square root of a chi-

squared distributed random variable with r degrees of freedom divided by r, i.e.,
σ̂/σ ∼

√

χ2
r/r.

Proof. The statements for the known-variance case are simple adaptations of the
finite-sample statements of Proposition 3 in Kabaila and Leeb (2006). For the

unknown-variance case, it suffices to note that σ̂/σ is independent of (β̂M1 , β̂M2).
With this, the statements are then obtained by conditioning on σ̂/σ, and by
using the formulae for the known-variance case derived earlier.

Proposition 3.1 provides explicit formulas that also allow us to compute
(minimal) coverage probabilities numerically. For the following discussion, fix
the values of C andK, i.e., the critical value C of the hypothesis test that is used
for model selection, and the value K that governs the length of the confidence
interval post-model-selection. We first note that Pµ,σ(β1·M2

∈ β̂1·M̂ ±Kσ̂1·M̂ ) is

strictly smaller than Pµ,σ(β1·M̂ ∈ β̂1·M̂ ±Kσ̂1·M̂ ) whenever ρζ 6= 0, because the
two probabilities differ by a correction factor (namely the expectation term on
the right-hand side of the second display in Proposition 3.1) which is negative
whenever ρζ 6= 0. If ρζ = 0, the two probabilities are equal. And if ρ = 0, both
probabilities are equal to ∆(0,K) = Φ(K)−Φ(−K), irrespective of ζ, as is easily
seen. Next, we note that the coverage probabilities depend only on r, ζ and ρ.
[Recall that r denotes the degrees of freedom of σ̂2 in the unknown-variance, and
that we have set r = ∞ in the known-variance case.] Note that ζ is a function of
the regressor matrix XM2

and of the unknown parameters µ and σ2, while ρ is a
function of XM2 only. Moreover, it is easy to see that the coverage probabilities
are symmetric both in ζ and in ρ around the origin. Concerning the influence
of r, it can be shown that the coverage probabilities for the known-variance
case provide a uniform approximation to those in the unknown variance case,
uniformly in the unknown parameters, where the approximation error goes to
zero as r → ∞; this follows from the results of Leeb and Pötscher (2003) using
standard arguments. In the examples that follow, we found that the results
for the known-variance case and for the unknown-variance case are similar, and
that these results are visually hard to distinguish from each other, unless r is
extremely small like, e.g., 3. We therefore focus on the known-variance case
in the following, because it provides a good approximation to the unknown
variance case as long as r is not too small.
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We proceed to comparing the case where the coverage target is β1·M̂ as in
Berk et al. (2013) with the case where the coverage target is the parameter
β1·M2

, in terms of the coverage probabilities of confidence intervals post-model-
selection. For several of the confidence intervals introduced in the preceding
section, the results are visualized in Figure 1, for the case where the coverage
target is β1·M̂ (top panel), and for the case where the coverage target is β1·M2

(bottom panel). Note that the range of the vertical axes (displaying coverage
probability) in the two panels is quite different.
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Figure 1: Coverage probability of several confidence intervals in
the known-variance case, as a function of the scaled parameter
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ζ = β2·M2/SD(β̂2·M2), using the model selection procedure with
C =

√
2, i.e., AIC. The nominal coverage probability is 1−α = 0.95,

indicated by a gray horizontal line. The coverage target is β1·M̂

(top panel) and β1·M2
(bottom panel). In each panel, the four solid

curves are computed for ρ = 0.9, and the four dashed curves are for
ρ = 0.5. The curves in each group of four are ordered: Starting from
the top, the curves show the coverage probabilities for KS (Scheffé),
KP (PoSI), KP1 (PoSI1), and KN (naive).

In each panel of Figure 1, we see that the effect of model selection on the
resulting coverage probabilities depends on the correlation coefficient ρ, with
larger values of ρ corresponding to smaller minimal coverage probabilities. But
the strength of the effect varies greatly with the scenario, i.e., on whether the
coverage target is β1·M̂ or β1·M2

. When the coverage target is β1·M̂ (top panel
in Figure 1), we see that the effect of model selection is comparatively minor:
The smallest coverage probabilities are always obtained for the ‘naive’ interval,
whose coverage probability here can be smaller as well as larger than the nominal
0.95. Irrespective of the true parameters, the actual coverage probability of the
‘naive’ interval is quite close to the nominal one here. The other intervals, i.e.,
the PoSI1- the PoSI- and the Scheffé-interval, all have coverage probabilities
larger than 0.95. [The minimal coverage probabilities here are obtained for
ζ = 0, but we found this not to be the case for other model selection procedures,
i.e., for other values of C.] When the coverage target is β1·M2 (bottom panel in
Figure 1), however, we get a very different picture: For ρ = 0.9, the minimal
coverage probability of all the intervals considered there is smaller than 0.95,
with minima between 0.55 (‘naive’) and 0.65 (Scheffé). For ρ = 0.5, the minimal
coverage probabilities of the ‘naive’ interval and of the PoSI1-interval are below,
while those of the other intervals are above, the nominal 0.95. For very small
values of ρ, the coverage probabilities of all the intervals considered in Figure 1
are visually indistinguishable from straight lines as a function of ζ (and hence are
not shown here), irrespective of the coverage target. For ρ = 0.1, for example,
the coverage probability of the ‘naive’ interval is about 0.95, while that of the
other intervals is above 0.95, ordered by their length.

Figure 1 illustrates that the coverage probability of confidence intervals post-
model-selection depends crucially on whether the coverage target is β1·M̂ as in
Berk et al. (2013) or the more classical coverage target β1·M2 . We stress here
again that the PoSI-intervals and the Scheffé-interval are not designed to deal
with the case where the coverage target is β1·M2

, and that the performance of
these intervals is shown in the bottom panel of Figure 1 only for illustration.
For a more detailed analysis of the case where the coverage target is β1·M2

, we
refer to Kabaila and Leeb (2006). In the rest of this section, we focus on the
case where the coverage target is β1·M̂ .

We next compare the confidence intervals for β1·M̂ introduced in Section 2
through their minimal coverage probability as a function of the correlation coef-
ficient ρ. In particular, we compute the quantity (2.2) for various choices of K,
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namely for KN (‘naive’), for KP (PoSI), for KP1 (PoSI1), for KS (Scheffé), and
forK∗ (the smallest validK). By construction, we haveK∗ ≤ KP1 ≤ KP ≤ KS ,
so that the resulting curves of minimal coverage probabilities are also arranged
in increasing order.
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Figure 2: Minimal coverage probabilities of the confidence intervals
for β1·M̂ as a function of ρ in the known-variance case, using the

model selection procedure with C =
√
2, i.e., AIC. The nominal

coverage probability is 1−α = 0.95. The curves are ordered: Starting
from the top, the curves correspond to the intervals with KS , KP ,
KP1, K∗, and KN .

All the minimal coverage probabilities shown in Figure 2 are within 5% of the
nominal level 0.95. For the ‘naive’ interval corresponding to KN , the minimal
coverage probability is below 0.95 (except for the trivial case where ρ = 0),
but not by much. The interval with K∗ has a minimal coverage probability of
exactly 0.95 by construction. And, again by construction, all other intervals are
slightly too large in the sense that their minimal coverage probability exceeds
the nominal level 0.95. Overall, the difference between these intervals is not
dramatic.

Lastly, we compare the confidence intervals for β1·M̂ through the values of
the constants K in (2.2) that correspond to the intervals in question. By con-
struction, KS and KN are constant as a function of ρ. Note that the constants
KN , KP , KP1, and KS do not depend on the model selection procedure that
is being used, while the constant K∗ does depend on M̂ . For a given model
selector M̂ , the constant K∗ is the smallest number K for which (2.2) holds;
in particular, the interval corresponding to K has minimal coverage probability
smaller/equal/larger than 1 − α if and only if K is smaller/equal/larger than
K∗.

11



0.0 0.2 0.4 0.6 0.8 1.0
1.9

2.0

2.1

2.2

2.3

2.4

2.5

Ρ

K

Pre-Test with C= 2 HAICL

Figure 3: The constants K that govern the width of the confidence
intervals as a function of ρ in the known-variance case, using the
model selection procedure with C =

√
2, i.e., AIC. The nominal

coverage probability is 1− α = 0.95. Starting from the top, the five
curves show KS , KP , KP1, K∗, and KN .

The interpretation of Figure 3 is similar to that of Figure 2, the main differ-
ence being that the lengths considered here are somewhat more distorted than
the minimal coverage probabilities considered earlier. The ‘naive’ interval is up
to about 10% too short, while the intervals corresponding to KP1, KP , and KS

are too long, namely by up to about 5%, 15%, 25%, respectively.

4 Simulation study

We now compare the ‘naive’ confidence interval and the PoSI-confidence interval
for β1·M̂ by their respective minimal coverage probabilities in a simulation study
where the data is generated from an Gaussian linear overall model of the form
Y = Xβ+u with 30 observations, 10 explanatory variables, and i.i.d. standard
normal errors. Moreover, we also study these intervals when the coverage target
is β1 (instead of β1·M̂ ). For the estimator σ̂2, we use the usual unbiased variance
estimator obtained by fitting the overall model; hence, we have r = n− p = 20
here. For the model selector M̂ , we use the step() function in R with its default
setting; this corresponds to minimizing the AIC objective function through a
greedy general-to-specific search over the 229 candidate models (the regressor of
interest, i.e., the first one, is included in all candidate models). Three designs
are considered for the design matrix X: For design 1, we take the regressor
matrix from the data-example from Section 3 of Kabaila and Leeb (2006) (for
which the minimal coverage probability of a ‘naive’ nominal 95% interval for
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β1 was found to be no more that 0.63 in that paper1). For design 2 and 3,
respectively, we consider the exchangeable design and the equicorrelated design
studied in Sections 6.1 and 6.2 of Berk et al. (2013). The exchangeable design is
such that the corresponding PoSI-constant KP is small asymptotically, and the
equicorrelated design corresponds to a large PoSI-constant asymptotically; cf.
Theorem 6.1 and Theorem 6.2 of Berk et al. (2013). For the equicorrelated de-
sign (design 3), the difference between the PoSI-interval and the ‘naive’ interval
is thus expected to be most pronounced.

More precisely, for the first design, we take the regressor matrix from a
dataset of Rawlings (1998) (p.179), where the response is peak flow rate from
watersheds, and where the explanatory variables are rainfall (inches), which
is the predictor of interest here, as well as area of watershed (square miles),
area impervious to water (square miles), average slope of watershed (percent),
longest stream flow in watershed (thousands of feet), surface absorbency index (0
= complete absorbency; 100 = no absorbency), estimated soil storage capacity
(inches of water), infiltration rate of water into soil (inches/hour), time period
during which rainfall exceeded 1/4 inch/hour, and a constant term to include
an intercept in the model. Logarithms are taken of the response and of all
explanatory variables except for the intercept. For the second design, we define
X(p)(a) as in Section 6.1 of Berk et al. (2013) with p = 30 and we choose a = 10
here, and we set X = UX(p)(a), where U is a collection of p orthonormal n-
vectors obtained by first drawing a set of n i.i.d. standard Gaussian n-vectors
and then applying the Gram-Schmidt procedure. And for the third design, we
define X(p)(c) as in Section 6.2 of Berk et al. (2013) such that the primary
predictor of interest is the first one, mutatis mutandis, where we choose c =
√

0.8/(p− 1), and we set X = VX(p)(c), where V is obtained by drawing an
independent observation from the same distribution as U before.

For each of the three design matrices, we simulate coverage probabilities un-
der the model Y = Xβ + u for randomly selected values of the parameter β,
we identify those β’s for which the simulated coverage probability gets small,
and we correct for bias as explained in detail shortly. For example, consider the
case where the coverage target is β1 and where the ‘naive’ confidence interval
is used. We first select 10,000 parameters β by drawing i.i.d. samples from a
random p-vector b such that Xb follows a standard Gaussian distribution within
the column-space of X. For each of these β’s, we approximate the corresponding
coverage probability by the coverage rate obtained from 100 Monte Carlo sam-
ples. In particular, we draw 100 Monte Carlo samples from the overall model
using β as the true parameter. For each Monte Carlo sample, we compute the
model selector M̂ and the resulting ‘naive’ confidence interval, and we record
whether β1 is covered or not. The 100 recorded results are then averaged, re-

1 For the ‘naive’ intervals considered in Kabaila and Leeb (2006), the error variance is
always re-estimated in the selected submodel. Here, on the other hand, we always use the
variance estimator σ̂

2 based on the overall model (in order to be consistent with the setting
studied by Berk et al. (2013)). In additional simulations, we found that the coverage proba-
bility of the ‘naive’ interval is typically slightly smaller if the error variance is re-estimated as
in Kabaila and Leeb (2006).
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sulting in a coverage rate that provides an estimator for the coverage probability
of the interval if the true parameter is β. After repeating this for each of the
10,000 β’s, we compute the resulting smallest coverage rate as an estimator for
the minimal coverage probability of the confidence interval. The smallest cover-
age rate, as an estimator for the smallest coverage probability, is clearly biased
downward. To correct for that, we then take those 1,000 parameters β that gave
the smallest coverage rates and re-estimate the corresponding coverage proba-
bilities as explained earlier, but now using 1,000 Monte Carlo samples. For that
parameter β that gives the smallest coverage rate in this second run, we run the
simulation again but now with 500,000 Monte Carlo samples, to get a reliable
estimate of its coverage probability. This procedure is also used to evaluate the
performance of the PoSI-interval and also in the case where the coverage target
is β1·M̂ , mutatis mutandis. Table 1 summarizes the results.

Target Interval
Design 1 Design 2 Design 3

(watershed data) (exchangeable) (equicorrelated)

β1·M̂

PoSI CI 1.00 1.00 0.99
Naive CI 0.89 0.92 0.81

β1
PoSI CI 0.85 0.91 0.83
Naive CI 0.62 0.82 0.54

Table 1: Smallest coverage probabilities found in MC study for the
coverage targets β1·M̂ , and β1, and for the PoSI-interval and the
‘naive’ interval with nominal coverage probability 0.95.

The results of the simulation study reinforce the impression already gained
in the theoretical analysis in Section 3: When the coverage target is β1·M̂ ,
the PoSI-interval is somewhat too long and the ‘naive’ interval is somewhat
too short, resulting in moderate over-coverage and under-coverage, respectively.
Both over- and under-coverage are somewhat more pronounced than in the
simple model studied in Section 3. But when the coverage target is β1, then the
actual coverage probability of both intervals can be far below the nominal level.
As expected, the difference between the ‘naive’ interval and the PoSI-interval is
most pronounced for design 3.
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Appendix: Confidence sets under zero-

restrictions post-model-selection

Let y and σ̂2 be as in Section 2, and consider M = {M0,M1}, where each of
the two candidate models Mi is full-rank. Suppose we are interested in the
coefficient of the first regressor X1, that is present in M1 but absent in M0. In
the notation introduced in Section 2, we thus have 1 ∈ M1 and 1 6∈ M0. As
the model-dependent coverage target, which we denote by bM , we consider the
coefficient of X1, which is not restricted under M1, and which is restricted to
zero under M0. In other words, we have bM1

= β1·M1
and bM0

= 0. Let M̂
be any model selection procedure that chooses only between M0 and M1. We
consider a ‘naive’ confidence interval that is defined as

IM̂ =

{

β̂1·M1 ± kN σ̂1·M1 if M̂ = M1

{0} if M̂ = M0,

where kN is chosen so that Pµ,σ(β1·M1
∈ IM1

) = 1 − α. [The constant kN is
a standard normal quantile in the known-variance case and a t-quantile in the
unknown-variance case.] The actual coverage probability of IM̂ , as a confidence
interval for bM̂ , is at least equal to the nominal coverage probability 1 − α,
because

Pµ,σ(bM̂ ∈ IM̂ )

= Pµ,σ(β1·M1
∈ IM1

and M̂ = M1) + Pµ,σ(0 ∈ {0}, M̂ = M0)

= Pµ,σ(β1·M1
∈ IM1

and M̂ = M1) + Pµ,σ(M̂ 6= M1)

= Pµ,σ(β1·M1
∈ IM1

or M̂ 6= M1) ≥ 1− α,

where the inequality in the last step holds in view of the choice of kN .
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