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Abstract

This article offers the modification of the Uzawa-Lucas growth model. The model

also includes natural resources as a factor of production. The necessary and sufficient

conditions for this model are considered. Growth rates of the main macroeconomic

indicators along balanced growth path are obtained. The analysis of influence of natural

resources on economic growth along balanced growth path is considered.
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1 Introduction

The question of the influence of human capital on the development of the economic system is

quite important today. There is considerable attention devoted to this question in economic

literature nowadays. There is a variety of economic models now where human capital is

the factor of economic growth, for example the two-sector endogenous Uzawa-Lucas model

of economic growth. Nevertheless, we observe that in the real economy the presence of

significant amount of accessible and demanded natural resources also plays an important

and mixed role in economic development. This role’s analysis is especially important for

the countries where the economy depends highly on the results of extractive industries.

Therefore, the object of this article is to combine the influences of human capital and natural

resources within one model. For this consideration the Uzawa-Lucas growth model was

chosen and it was modified by including natural resources as the factor of economic growth.

Characteristic feature of the two-sector Uzawa-Lucas growth model is the presence

of the human capital and its influence on economic growth. Hirofumi Uzawa in his arti-

cle (Uzawa 1965) analyzed the model of economic growth with Harrod-neutral technological

progress. The aggregate production function of this model is written as

F [K(t), AU(t)LP (t)] ,

where K(t) is the fixed capital stock, AU(t) is the labor efficiency, and LP (t) is the amount

of labor employed in production sector. Uzawa assumed that labor efficiency depends on

education, health, public goods, etc. In his model the influence of these factors was described

by the educational sector. It was written as

�

AU(t) /AU(t) = φ [LE(t)/L(t)] ,

where LE(t) is the labor employed in educational sector,
�

AU(t) is the improvement of the

labor productivity at time t and
�

AU (t)
AU (t)

is the growth rate of the labor productivity. Us-

ing Pontryagin’s Maximum Principle Uzawa analyzes dynamics of his model. While Uzawa

2



didn’t mention human capital directly in his article (though this conception is felt intu-

itively), later, Robert Lucas introduced in his research (Lucas 1988) slightly different model

where human capital is included explicitly. Technological progress in his model is mixed and

is not strictly Harrod-neutral as it was in Uzawa’s model. Production function now is given

by

Y (t) = AK(t)β[bL(t)h(t)L(t)]
1−βha(t)

ξ, (1)

where A is a technological level which is assumed to be constant, bL(t) is the fraction of

worker’s non-leisure time devoted to production, h(t) is the level of per worker’s human

capital and ha(t)
ξ is the external effect of human capital. The second, educational sector,

which is responsible for accumulation of the human capital is written as

�

h(t) = h(t)ζG (1− bL(t)) , (2)

where 1−bL(t) is the fraction of worker’s non-leisure time devoted to human capital accumu-

lation; function G (�) is decreasing in bL(t) and ζ reflects the degree of influence of existing

human capital on its accumulation. In the further analysis Lucas assumed that ζ = 1. Lucas

as well as Uzawa considered dynamics of his model using optimal control theory.

Since this model was introduced, it has been used many times by researchers for the

analysis and empirical estimation of human capital influence on the economic system develop-

ment. In Rebelo (1991) author tries to analyze the influence of tax policy on long-term rates

of economic growth. He generalizes the described above model by including fixed capital in

the educational sector (2). Therefore, the Uzawa-Lucas growth model is becoming the special

case of the Rebelo model. At the same time he doesn’t take into account the external effect

of ha(t)
ξ in production function (1). As the result he concluded that relationship between

income tax and rates of economic growth is inverse. Taxation is also considered in Gomez

(2003) and Gorostiaga et al. (2011) by using the Uzawa-Lucas growth model. In Benhabib

and Perli (1994) authors consider the dynamics of the Uzawa-Lucas growth model and its

balanced path in more details. They analyze the range of model parameters which may lead
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to positive rates of economic growth. The analysis of the balanced path, transitional dynam-

ics and model parameters we can see also in Bethmann (2008), Gomez (2006), Jones and

Scrimgeour (2008), Mulligan and Sala-i-Martin (1993), Xie (1994). The two-sector Uzawa-

Lucas growth model is an essential part of the monographs which include theoretical concepts

of economic growth. We see the analysis of the model in Barro and Sala-i-Martin (2004)

and Acemoglu (2009). Also we can find it in Aghion and Howitt (1998) and Savvides and

Stengos (2009). It is necessary to mention monograph Mattana (2004) which is completely

devoted to the analysis of this model. Taking into account that in this article it will be

considered a modification of this model by including natural resources it is worth to mention

a few works where natural resources are the factors of economic growth model. For example

in Cavalcanti et al. (2011) authors consider oil production, oil rent and oil reserves as a

proxy of natural resources and in each case estimate production function. Also we can see

other works, for example Benchekroun and Withagen (2008), Färnstrand Damsgaard (2010),

Gaitan and Roe (2005), Groth and Schou (2002) where the influence of natural resources on

economic system development within macroeconomic models is considered. There are also

studies by Bravo-Ortega and De Gregorio (2002) and Valente (2007) where the influence of

human capital and natural resources on economic development is considered. In this work

we present modified Uzawa-Lucas growth model with natural resources included.

2 The Model

Let’s consider the two-sector model of economic growth which is given by

Y (t) = A(t)K(t)αS(t)β[b(t)H(t)]1−α−β, (3)

�

H(t) = H(t)z (1− b(t))− δHH(t), (4)

where Y (t) is the total amount of production of the final goods at time t; A(t) is the

technological level which is constant; K(t) is the fixed capital stock; S(t) is the natural
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resources; H(t) is the total amount of accumulated human capital; δH is the level of human

capital depreciation; b(t) is the share of human capital devoted to production and z is the

parameter which defines effectiveness of human capital accumulation.

It is possible to describe the volume of human capital as a product of labor and per

capita accumulated human capital. Using this definition, we can rewrite (3) and (4) as

y = Akαsβ(bh)1−α−β, (5)

�

h = hz (1− b)− δHh, (6)

where y, k, s and h are per capita values of the final product, fixed capital, natural resources

and human capital respectively.

Fixed capital and natural resources dynamics can be described in the following way:

�

k = iK − δKk, (7)

�

s = ηiγS − δSs, (8)

where iK is per capita investments in fixed capital; δK is the level of fixed capital depreciation;

δS is the rate of natural resources extraction; iS is per capita investments in natural resources;

γ and η are parameters which describe availability and accessibility of natural resources in

economic system.

Instantaneous utility function of representative agent is presented in isoelastic form

u(c) =
c1−θ − 1

1− θ
, (9)

where c is per capita consumption and θ is the coefficient of relative risk aversion which is a

constant in our case.

In infinite-horizon economy agents maximize received utility in accordance with

max

∞
∫

0

c1−θ − 1

1− θ
e−ρtdt, (10)

where ρ is the rate of time preference.
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3 Necessary and Sufficient Conditions

To find an optimal path of the economic system development we will use methods of the

theory of optimum control for the purpose of utility function maximization. The maximum

utility received by individuals corresponds to the most preferable path of economic system

development.

For solving optimization problem, we should consider two cases. The first one is the

situation when the decision taking process is centralized. This is so called the Social Planner’s

problem. Let’s describe the optimization problem in this case.

Production sector output can be used for consumption and investments in fixed capital

and natural resources. The following constraint holds:

c+ iK + iS = y = Akαsβ(bh)1−α−β. (11)

To solve optimization problem using (6), (7), (8), (10) and (11) we can write the

present-value Hamiltonian as follows:

HS =
c1−θ − 1

1− θ
+ λ1

[

Akαsβ(bh)1−α−β
− c− iS − δKk

]

+

+ λ2 [hz (1− b)− δHh] + λ3 (ηi
γ
S − δSs) ,

(12)

where λ1, λ2 and λ3 are adjoint variables which can be interpreted as shadow prices of the

state variables k, h and s; the control variables are c, b and iS.

Necessary conditions are

∂HS

∂c
=0,

∂HS

∂b
= 0,

∂HS

∂iS
= 0,

�

λ1 = ρλ1 −
∂HS

∂k
,

�

λ2 = ρλ2 −
∂HS

∂h
,

�

λ3 = ρλ3 −
∂HS

∂s
.

(13)

6



Using these conditions we can get the following equalities:

c−θ
− λ1 = 0, (14)

λ1 (1− α− β)
y

b
− λ2hz = 0, (15)

− λ1 + λ3γηi
γ−1
S = 0, (16)

�

λ1 = ρλ1 − λ1

(

α
y

k
− δK

)

, (17)

�

λ2 = ρλ2 − λ1 (1− α− β)
y

h
− λ2 [z (1− b)− δH ] , (18)

�

λ3 = ρλ3 − λ1β
y

s
+ λ3δS. (19)

The transversality conditions are given by

lim
t→∞

[

e−ρtλ1(t)k(t)
]

= 0,

lim
t→∞

[

e−ρtλ2(t)h(t)
]

= 0,

lim
t→∞

[

e−ρtλ3(t)s(t)
]

= 0.

(20)

Let’s analyze now the second situation when decision taking process is decentralized.

Budget constraint can be written now as

c+ iK + iS = w (bh) + rk + qs,

where w is the salary r and q are rental prices of fixed capital and natural resources respec-

tively. The present-value Hamiltonian in this case can be expressed as

Hd =
c1−θ − 1

1− θ
+ λ1 [w (bh) + rk + qs− c− iS − δKk] +

+ λ2 [hz (1− b)− δHh] + λ3 (ηi
γ
S − δSs) .
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Using necessary conditions (13) we can get the next equalities:

c−θ
− λ1 = 0, (21)

λ1wh− λ2hz = 0, (22)

− λ1 + λ3γηi
γ−1
S = 0, (23)

�

λ1 = ρλ1 − λ1 (r − δK) , (24)

�

λ2 = ρλ2 − λ1wb− λ2 [z (1− b)− δH ] , (25)

�

λ3 = ρλ3 − λ1q + λ3δS. (26)

The transversality conditions are the same as in the centralized case (20).

Agents profit maximization implies that

r = yk = α
y

k
,

q = ys = β
y

s
,

w = ybh = (1− α− β)
y

bh
.

(27)

If we substitute (27) into (21)–(26) we will get the same equalities as in centralized

case (14)–(19).

Sufficient conditions imply that Hamiltonian (12) should be concave function of state

and control variables. This is Mangasarian Sufficient Condition (Mangasarian 1966). Hamil-

tonian is concave function if and only if its Hessian is negative semidefinite. Taking into

account that we have three control and three state variables the Hessian is 6 × 6 matrix.

It is quite complicated to find out the sign of few principal minors because we don’t know

exactly the values of the model parameters. That’s why we can use Arrow Sufficiency Theo-

rem (Arrow and Kurz 1970) which states that if we substitute the values of control variables

derived from necessary conditions into Hamiltonian it will be enough to check concavity of

this maximized Hamiltonian only for the state variables.
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From (14)–(16) we may define the values of control variables:

c = λ
−

1

θ

1 , (28)

b =
1

h

(

λ1 (1− α− β)Akαsβ

λ2z

)
1

α+β

, (29)

iS =

(

λ1
λ3γη

) 1

γ−1

. (30)

If we substitute these values into (12) we will receive the following expression for

maximized Hamiltonian:

Hmax =
λ1

(1− 1
θ ) − 1

1− θ
+ λ1



Akαsβ
(

λ1 (1− α− β)Akαsβ

λ2z

)

1−α−β
α+β

− λ
−

1
θ

1
−

(

λ1

λ3γη

)
1

γ−1

− δKk



+

+ λ2

(

hz

[

1−
1

h

(

λ1 (1− α− β)Akαsβ

λ2z

)

1
α+β

]

− δHh

)

+ λ3

[

η

(

λ1

λ3γη

)
γ

γ−1

− δSs

]

.

(31)

According to Arrow Sufficiency Theorem it is necessary for maximized Hamiltonian (31)

to be concave in k, h and s. The Hessian is written as

Hess =











Hkk Hkh Hks

Hhk Hhh Hhs

Hsk Hsh Hss











. (32)

It is necessary for the odd principal minors to be ≤ 0 and for the even ones to be ≥ 0.

The values of the principal minors are the following:

Hkk =
−αβλ2z

(

α+β

1−α−β

)

k2(α + β)2
(

λ2z
λ1(1−α−β)Akαsβ

) 1

α+β

< 0 (because of α + β < 1),

Hhh = 0,

Hss =
−αβλ2z

(

α+β

1−α−β

)

s2(α + β)2
(

λ2z
λ1(1−α−β)Akαsβ

) 1

α+β

< 0 (because of α + β < 1),
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∣

∣

∣

∣

∣

∣

Hkk Hkh

Hhk Hhh

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

Hkk Hks

Hsk Hss

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

Hhh Hhs

Hsh Hss

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hkk Hkh Hks

Hhk Hhh Hhs

Hsk Hsh Hss

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

We see that the Hessian (32) is negative semidefinite. As the result, we can say that

the conditions (14)-(19) are not only necessary but also sufficient.

4 Growth Rates Analysis

Let’s analyze dynamics of macroeconomic indicators along balanced growth path (BGP). It

is supposed that the growth rates of y, k, s, h, c, iK and iS are constants along BGP.

From (7) we can derive expression for the per capita fixed capital growth rate (gk):

gk =

�

k

k
=
iK
k

− δK .

Taking into account that δK is constant and the growth rate of per capita fixed capital

along BGP is constant also, the ratio iK
k

should be constant and the growth rates of per

capita investments in fixed capital and per capita fixed capital are equal.

From (14) we can derive the growth rate of per capita consumption (gc):

gc =

�

c

c
= −

1

θ

�

λ1
λ1
. (33)

Using equalities (17) and (33) we can get the next expression for the growth rate of

per capita consumption:
�

c

c
= −

ρ

θ
+
α

θ
·
y

k
−
δK
θ
.

Since ρ, θ, α and δK are constants and the growth rate of per capita consumption

along BGP is constant we can come to conclusion that ratio y

k
is constant too and it means
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that along BGP the growth rate of per capita final output is equal to the growth rate of per

capita fixed capital.

From (16) we can derive the growth rate of per capita investments in natural re-

sources (giS):

giS =

�

iS
iS

=
1

(γ − 1)





�

λ1
λ1

−

�

λ3
λ3



 . (34)

From (33) we see that along BGP the growth rate of λ1 is constant and since the

growth rate of per capita investments in natural resources along BGP is constant also we

have that growth rate of λ3 is also constant along BGP.

From (16) and (19) we can obtain

iγ−1
s =

(

ρ+ δS −

�

λ3

λ3

)

s

βyγη
. (35)

From (35) and taking into account that growth rate of λ3 is constant along BGP we

can obtain the next equality:

(γ − 1)

�

iS
iS

=

�

s

s
−

�

y

y
. (36)

From (8) we can get the expression for the growth rate of per capita natural re-

sources (gs):

gs =

�

s

s
=
ηiγS
s

− δS. (37)

Since the growth rate of per capita natural resources is constant along BGP we have

that the growth rate of function f(i) = iγS is equal to the growth rate of per capita natural

resources. Because of such relationship we have the following expression:

�

f(i)

f(i)
=
γiγ−1

S ·
�

iS
iγS

= γ

�

iS
iS

=

�

s

s
. (38)
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From (36) and (38) we have that growth rate of per capita investments in natural

resources is equal to the growth rate of per capita final production and as a consequence

equal to the growth rate of per capita fixed capital:

�

y

y
=

�

k

k
=

�

iS
iS
. (39)

Using (7) and (11) we can get the expression for the growth rate of per capita fixed

capital:
�

k

k
=
y

k
−
c

k
−
iS
k

− δK .

Using (39) we can come to conclusion that along BGP ratio c
k
is constant and the

growth rates of per capita consumption and fixed capital are equal.

If we assume that the share of human capital devoted to production along BGP is

constant then using equality (5) we can derive the next expression:

�

y

y
= α

�

k

k
+ β

�

s

s
+ (1− α− β)

�

h

h
.

From (38) and (39) we can obtain the relationship between the growth rate of per

capita human capital and per capita final production:

gh =

�

h

h
= ψ ·

�

y

y
, (40)

where ψ =
(

1−α−βγ

1−α−β

)

.

Since γ < 1 (if we assume diminishing marginal return on investments in natural

resources) we have that growth rate of per capita human capital on BGP is higher than

growth rate of per capita final production.

According to (6) the growth rate of per capita human capital is

�

h

h
= z (1− b)− δH .
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As a result, we obtain the following relationship between the main macroeconomic

indicators along BGP:

�

y

y
=

�

k

k
=

�

c

c
=

�

iK
iK

=

�

iS
iS

=
1

γ

�

s

s
=

1

ψ

�

h

h
=

[z (1− b)− δH ]

ψ
. (41)

To find absolute values of these growth rates we need to find the share of human capital

devoted to production along BGP (b).

To determine steady state share of human capital devoted to production let’s introduce

the following variables:

ϕ1 =
h

k
, ϕ2 =

h

s
, ϕ3 =

c

k
, ϕ4 =

is
k
, ϕ5 =

ηiγs
s
.

From (15) we can obtain the ratio λ1/λ2:

λ1
λ2

=
hzb

(1− α− β) y
=

z

(1− α− β)A
ϕα
1ϕ

β
2b

α+β. (42)

From (17) we can express the growth rate of λ1:

�

λ1
λ1

= ρ− α
y

k
+ δK = ρ− αAb1−α−βϕ1−α

1 ϕ−β
2 + δK . (43)

Using (18) and (42) we can obtain the growth rate of λ2:

�

λ2
λ2

= ρ− z + δH . (44)

From (42) using (43) and (44) we can get the growth rate of λ1/λ2:

�

(

λ1

λ2

)

(

λ1

λ2

) =





�

λ1
λ1

−

�

λ2
λ2



 =

z
(1−α−β)A

ϕα
1ϕ

β
2b

α+β

(

α
�

ϕ1

ϕ1
+ β

�

ϕ2

ϕ2
+ (α + β)

�

b
b

)

z
(1−α−β)A

ϕα
1ϕ

β
2b

α+β
=

=



α

�

ϕ1

ϕ1

+ β

�

ϕ2

ϕ2

+ (α + β)

�

b

b



 .

(45)
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From equalities (6), (7) and (11) we can obtain the growth rate of ϕ1:

�

ϕ1

ϕ1

=





�

h

h
−

�

k

k



 = z (1− b)− δH −
y

k
+ ϕ3 + ϕ4 + δK . (46)

From equalities (6), (8) we can get the growth rate of ϕ2:

�

ϕ2

ϕ2

=





�

h

h
−

�

s

s



 = z (1− b)− δH − ϕ5 + δS. (47)

If we substitute (43), (44), (46) and (47) into (45) we can obtain the expression for the

growth rate of the share of human capital devoted to production:

�

b

b
= z · b−

α

(α + β)
(ϕ3 + ϕ4) +

β

(α + β)
ϕ5 + χ, (48)

where χ = (z−δH)(1−α−β)+δK(1−α)−δSβ

(α+β)
.

From (7), (11), (14) and (17) we can get the growth rate of ϕ3:

�

ϕ3

ϕ3

=





�

c

c
−

�

k

k



 =
y

k

(

α− θ

θ

)

−
ρ

θ
− δK

(

1

θ
− 1

)

+ ϕ3 + ϕ4. (49)

From (7), (8), (11) and (38) we can obtain the growth rate of ϕ4:

�

ϕ4

ϕ4

=





�

iS
is

−

�

k

k



 =
1

γ

�

s

s
−

�

k

k
=
ϕ5

γ
−
δS
γ

−
y

k
+ ϕ3 + ϕ4 + δK . (50)

Using (40) we can derive the following equality:

z (1− b)− δH − ψ
(y

k
− ϕ3 − ϕ4 − δK

)

= 0. (51)

From (48), (49), (50) and (51) and taking into account that on BGP
�

b ,
�

ϕ3 , and
�

ϕ4

are zeroes we can obtain the following system of equations:






























z · b− α
(α+β)

(ϕ3 + ϕ4) +
β

(α+β)
ϕ5 + χ = 0

y

k

(

α−θ
θ

)

−
ρ

θ
− δK

(

1
θ
− 1
)

+ (ϕ3 + ϕ4) = 0

ϕ5

γ
−

δS
γ
−

y

k
+ (ϕ3 + ϕ4) + δK = 0

z (1− b)− δH − ψ
[

y

k
− (ϕ3 + ϕ4)− δK

]

= 0

.
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If we solve this system with respect to (b, ϕ3 + ϕ4, ϕ5,
y

k
) we will obtain the next

solution:

b∗ =
(z − δH) (1− θ) (1− α− β)− ρ (1− α− β · γ)

z [β (γ − 1 + θ) + θ (α− 1)]
, (52)

(ϕ3 + ϕ4)
∗

=
α2 (ρ+ δH − z − θ · δK) + ρ [β (α+ γ − 1)− α] + δK [β (α− 1) (1− γ − θ)− θ (1− 2α)]

α [θ (α+ β − 1)− β (1− γ)]
+

+
δH [θ (1− α− β)− α (1− β)] + z [(1− β) (α− θ) + α · θ]

α [θ (α+ β − 1)− β (1− γ)]
,

ϕ5
∗ =

γ (δH − z + ρ) (1− α− β) + δS [θ (β + α− 1)− β (1− γ)]

β (γ − 1 + θ)− θ (1− α)
,

(y

k

)

∗

=
θ (1− α− β) (δH − δK − z) + β (γ − 1) (δK + ρ)

α [θ (α− 1)− β (1− θ − γ)]
.

If we substitute (52) into (41) we will get the expressions for the growth rates of the

main macroeconomic indicators along BGP:

�

y

y
=

�

k

k
=

�

c

c
=

�

iK
iK

=

�

iS
iS

=
z − δH
ψ

−
(z − δH) (1− θ) (1− α− β)− ρ (1− α− β · γ)

ψ [β (γ − 1 + θ) + θ (α− 1)]
,

�

s

s
=
γ (z − δH)

ψ
−
γ [(z − δH) (1− θ) (1− α− β)− ρ (1− α− β · γ)]

ψ [β (γ − 1 + θ) + θ (α− 1)]
,

�

h

h
= z − δH −

(z − δH) (1− θ) (1− α− β)− ρ (1− α− β · γ)

β (γ − 1 + θ) + θ (α− 1)
.

Let’s try to analyze the influence of natural resources on economic growth along BGP.

We will try to check two hypotheses under the plausible values of parameters. These hy-

potheses are concerned with the influence of natural resources on the economic development.

Hypothesis 1. The parameter γ increasing causes reduced human capital growth rate

as scientific and innovation incentives might be reduced in economics along BGP. (γ defines

marginal return on investments in natural resources (equation (11)). As has been already

mentioned this parameter maybe understood as availability and accessibility of natural re-

sources. Thus, the more accessible natural resources are, the closer γ to unity is).

Hypothesis 2. The parameter β increasing causes decrease of the economic growth along

BGP. (β defines the influence of natural resources dynamics on final production. Under the

final production we will mean GDP in further analysis).
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In order to check hypotheses let’s assign values to other parameters.

α = 0.3. This approximate value of the physical capital’s elasticity is frequently used

in economic literature.

δH = 0.033.. Depreciation of human capital is quite an abstract value. Its empirical

estimation is complicated. There is a lot of literature where this question is discussed. As

usual its estimation varies between 0% and 5% depending on the age, level of education and

sector of economic activity. We will take 1/30 corresponding to the 30-year period of full

depreciation calculated by straight line depreciation.

z = 0.2. This parameter shows an impact of accumulated human capital on its growth

(equation (6)) and its estimation is quite difficult. It should be less than one. Let’s take it

as 0.2.

θ = 2. Estimation of the coefficient of relative risk aversion is also quite difficult. We

will take this coefficient equal to 2. Such level we may see in Conniffe and O’Neill (2012).

ρ = 0.05. This value more or less corresponds to the interest rates of developed

economics, which probably are located closer to BGP.

The range of the parameter β, which is an elasticity of natural resources, will be taken

between 0.01 and 0.69. Thus, if β = 0.01 huge influence of human capital on economic

growth will be assumed (because elasticity of human capital will be 0.69) and if β = 0.69

influence of human capital will be extremely insignificant (elasticity of human capital will

be 0.01).

The parameter γ will be varied between 0 and 1.

The parameter ψ is defined through α, β and γ.

In figures 1-4 we can see the results of computation which show the influence of γ and β

variation on the growth rates of per capita GDP (figure 1), human capital (figure 2), natural

resources (figure 3) and influence on the share of human capital devoted to production

(figure 4).
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Figure 1. Influence of γ and β on the growth rate of per capita GDP (gy)

Figure 2. Influence of γ and β on the growth rate of per capita human capital (gh)
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Figure 3. Influence of γ and β on the growth rate of per capita natural resources (gs)

Figure 4. Influence of γ and β on the share of human capital devoted to production (b)
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To check the first hypothesis we may look at figure 2. We see that with γ increasing,

all other things being equal, the growth rate of per capita human capital decreases. Also, we

see that with γ increasing the growth rate of per capita natural resources increases too and

it is logical because with γ increasing marginal return on investments in natural resources

increases. We see also that the share of human capital devoted to production rises with γ

increasing (figure 4) and economic growth increases (figure 1).

To check the second hypothesis let’s look at figure 1. We see that results of computa-

tion, on the whole, confirm this hypothesis. All other things being equal, the higher β is,

the lower the growth rate of economy on BGP is.

We see that if γ is quite high, with β increasing the growth rate of per capita GDP

varies narrowly but if γ is not so high, β increasing has significant negative influence on

economic growth. There is very low (close to zero) growth rate of per capita GDP if β ≈ 0, 7

and γ is close to zero. We can conclude that within the Uzawa-Lucas growth model if the

economic system is highly depended on natural resources (β is high) and quick exhausting of

natural resources takes place (γ is becoming close to zero) the economy faces stagnation. Also

we see that with β increasing the share of human capital devoted to production decreases

(figure 4). It occurs because the final production is now less depended on human capital.

The most part of the human capital is now concentrated in educational sector and we see

that the growth rate of per capita human capital increases (figure 2).

5 Conclusions

In this article the modification of the Uzawa-Lucas growth model was offered. It was obtained

that the conditions for decentralized situation for this model are the same as for centralized

case. Necessary conditions for this model are also sufficient. One of the results of the

analysis is that on BGP the growth rate of per capita human capital should be higher than

the growth rate of per capita final production. It was shown that the more natural resources
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economic system has, the less the growth rate of per capita human capital is, all other things

being equal. Also it was shown that the more the economic system from natural resources

is depended, the less growth rate of per capita GDP it has.
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