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Abstract 

In recent years, major advances have taken place in three areas of random utility modeling: (1) 
semiparametric estimation, (2) computational methods for multinomial probit models, and (3) com- 
putational methods for Bayesian estimation. This paper summarizes these developments and dis- 
cusses their implications for practice. 

1. Introduction 

Random utility models aim at modeling the choices of individuals among discrete 
sets of  alternatives. It is assumed in these models that the preferences of an in- 
dividual among the available alternatives can be described by a utility function. 
The individual chooses the alternative with the highest utility. The utility of an 
alternative depends on attributes of  the alternative and individual that the analyst 
observes (e.g., price of  a product  if utility is indirect, age of an individual) and 
attributes that the analyst does not observe (e.g., whether  the individual is buying 
for a special occasion). Observed attributes are represented in the utility function 
by explanatory variables. Unobserved  ones are represented as random variables, 
thereby giving rise to the term " random utility model ."  See Ben-Akiva and Ler- 
man (1985), Domencich and McFadden (1975), Hensher  and Johnson (1981) and 
McFadden  (1974, 1981) for discussions of the theory of  random utility modeling. 
Heckman (1981a, 1981b) discusses the use of  random utility models for the anal- 
ysis of  panel data. 

Utility is a random variable in a random utility model,  so one cannot use such 
a model to predict an individual's choice with certainty. Instead, a random utility 
model gives the probability with which each alternative is chosen. Consider an 
individual who chooses among J alternatives. Let  the utility of alternative j be 

B = y x « +  «» 

where Xj is a column vector  of  observed attributes of alternative j and the indi- 
vidual, fi is a conformable vector  of constant parameters ,  and ej is a random vari- 
able that accounts for the effects on preferences of  unobserved attributes of  the 
alternative and individual. Then the probability that the individual chooses alter- 

native i is 

P(iIX) = P(fi 'Xi + ei > fi'Xj + ej for all j = 1 . . . . .  J;  j # i), (1.1) 

where X = (X1 t, . . . .  X j ' ) ' .  

Except  in special cases, P(i[X) is a complicated function o f X  that has no closed 
analytic form and may be very  difficult to compute.  An important special case in 
which P(i[X) has a simple analytic form is when the components  of  e --- 
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(el . . . . .  er)' are independently and identically distributed (iid) across alternatives 
with the Type 1 extreme value distribution. P(ilX) is then given by the multinomial 
logit (MNL) model: 

J 

P(ilX) = [exp(/3'X,)]/~ [exp(/3'X~)]. 
j= l  

The MNL model is widely used in applications because of its analytic and com- 
putational tractability. However, the assumption that the components of e are iid 
is highly restrictive. Among other things, it excludes the possibility that tastes 
vary among individuals randomly (i.e., for reasons that are not observed by the 
analyst) or that different alternatives have similar unobserved attributes. It also 
precludes modeling repeated choices by the same individuals over time (panel 
data) unless one makes the restrictive and frequently incredible assumption that 
choices by the same individual on different occasions are independent conditional 
on the model's explanatory variables. 

These problems can be overcome by assuming that e is multivariate normal with 
a covariance matrix that may depend on X (as happens if there is random taste 
variation) or have nonzero oft-diagonal elements (as happens if different alterna- 
tives have similar unobserved attributes). When e is multivariate normal, P(i[X) 
is called a multinomial probit (MNP) model. MNP is a highly flexible model whose 
assumptions are much less restrictive than those of MNL. However, there is no 
closed analytic form for P(ilX) in a MNP model; P(ilX) can be expressed only as 
an integral of the multivariate normal density. If the number of alternatives is 
large, P(i[X) is a high-dimensional multivariate integral that cannot be evaluated 
accurately using simple analytic approximations such as the Clark approximation 
or standard numerical methods such as Gaussian quadrature. Similar computa- 
tional problems occur if the data consist of a multiwave panel in which there is 
unobserved heterogeneity or other forms of serial dependence in the random com- 
ponent of utility. As a result, there have been few applications of MNP models. 
As is discussed below, recent research has largely overcome the difficulty of eval- 
uating MNP choice probabilities. 

Even more flexibility in modeling can be achieved by completely avoiding any 
parametric assumptions about the distribution of «. Instead, one assumes only 
that this distribution satisfies certain regularity conditions. Models of this type 
are called "semiparametric" to reflect the fact that they involve an unknown fi- 
nite-dimensional parameter (the coefficients of the explanatory variables X) and 
an unknown function (the distribution of e). Semiparametric models are discussed 
in more detail in Section 2.1 of this paper. 

In applications, the values of the utility-function parameters/3 and any unknown 
parameters of the distribution of e (e.g., the covariance matrix in a MNP model) 
must be estimated from data consisting of observations of the choices made by 
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individuals and the corresponding values of the explanatory variables X. When 
the distribution of ~ is specified parametrically, estimation is usually carried out 
by the method of maximum likelihood. Statistical inference is then based on the 
asymptotic theory of maximum likelihood estimators and test statistics. See, for 
example, Amemiya (1985) or Ben-Akiva and Lerman (1985) for descriptions of 
this theory. An alternative approach is Bayesian estimation and inference. Com- 
pared to classical (e.g., maximum likelihood) estimation, Bayesian estimation has 
the advantages of avoiding reliance on asymptotic approximations and providing 
a natural way of incorporating prior information or beliefs about parameter values 
into the estimation process. In addition, the posterior distribution of the taste 
coefficients (nonintercept components of/3) in random coefficients models can be 
obtained much more easily than in classical models. A disadvantage of the Baye- 
sian approach is that its results may be quite sensitive to the choice of a prior 
distribution of the parameters, and there is often no compelling reason for prefer- 
ring one prior to others. Bayesian estimation can present severe computational 
difficulties when conventional numerical techniques are used, owing to the high- 
dimensional multivariate integrals that usually must be evaluated to obtain pos- 
terior moments. These difficulties have been largely overcome in recent research, 
as will be discussed below. 

2. Summary of recent advances 

In recent years, major advances have taken place in three areas of random utility 
modeling: 

1. Semiparametric estimation, 
2. Computational methods for multinomial probit models, and 
3. Computational methods for Bayesian estimation. 

These developments are summarized in the remainder of this section. 

2.1. Semiparametric estimation 

Methods for semiparametric estimation of binary response models are now ready 
for use in applications. There is software available for implementing some meth- 
ods. Others do not have readily available software but are quite easy to program 
and implement. There have been applications indicating that semiparametric 
methods can yield results that are different in important ways from the results 
obtained using conventional parametric models (Bult, 1993; Das, 1991; Gabler, 
Laisney, and Lechner, 1993; Goodwin, 1993; Horowitz, 1993a). However, be- 
cause semiparametric methods for binary response models are relatively new, ex- 
perience in using them in applications is limited. It would be very useful for other 
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researchers to undertake applications of these methods and to compare the results 
thus obtained with those obtained with standard parametric models. 

Horowitz  (1993b) reviews semiparametric estimators for binary response 
models. An outline of the most  important  estimators will now be given. A binary 
response model can be written in the form 

1 i f / 3 ' X +  v > 0  
Y= 

0 otherwise,  

where X is a vector  of explanatory variables, [3 is a vector  of  parameters  whose 
values are unknown and must be estimated from data, and v is an unobserved 
random variable. In an important  special class of  binary response models,  called 
single-index models, the probability distribution of v is either independent  of  X or 
depends on X only through the index/3'X. When this assumption is satisfied, the 

probability that Y = 1 is 

P(Y = I lX) = F(/YX), (2.1) 

where F is a function that is unknown in semiparametric models. Semiparametric 
estimators of/3 in (2.1) when X has both discrete and continuous components  have 
been described by Han (1987), Ichimura (1993), Klein and Spady (1993), and Sher- 
man (1993). Some of  these estimators are conceptually similar to the parametric  
estimator that would be obtained if F were known. For  example,  if F were known, 
/3 could be estimated by maximizing the log-likelihood function 

log L(b) = ~ {Yilog[F(b'Xi] + (1 - Y)log[1 - F(b'X)]}, 
i - I  

where { Yù Xi: i = 1, . . . , n} is a random sample of observations of  (Y, X). Apart  
from technical details that are unimportant  in applications, the estimator of Klein 
and Spady (1993) is obtained by replacing the unknown function F with a non- 
parametric estimate. The est imator of Ichimura amounts to nonlinear least- 
squares estimation with the unknown F replaced with a nonparametric estimate. 

If all of  the components  o f X  are continuous,/3 can be estimated by the density- 
weighted average derivative method of  Powell, Stock, and Stoker  (1989). This 
method has the considerable advantage of  not requiring nonlinear optimization. 
This makes it easy to program and fast to compute.  

Given an estimate b of/3, P(Y = I[X) in a single-index model can be estimated 
by carrying out the nonparametr ic  mean regression of  Y on b'Xù See Härdle (1990) 
for a discussion of  nonparametr ic  regression techniques. 

In models with random taste variation, P(Y = IlX) does not have the single- 
index form (2.1), so the estimation methods just  described cannot be used. The 
parameter /3  in semiparametric models with random taste variation can be esti- 
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mated using either the maximum score method (Manski, 1975, 1985) or the 
smoothed maximum score method (Horowitz, 1992). Maximum score estimation 
consists, essentially, of choosing the estimator b of/3 to maximize the number of 
correct predictions of Y when one predicts that Y = 1 if b'X >- 0 and Y = 0 
otherwise. In smoothed maximum score estimation, the predictor of Y is a con- 
tinuous function of b'X, so there can be predicted values between 0 and 1. The 
estimator b is chosen to optimize a measure of the distance between the predicted 
and observed values of Y. Smoothing speeds the rate of convergence of the esti- 
mator and greatly simplifies its asymptotic distribution. 

The maximum score and smoothed maximum score estimators do not require 
the analyst to know the form of any random taste variation. Software for imple- 
menting the maximum score estimator is available in the LIMDEP package. A 
GAUSS program for implementing the smoothed maximum score estimator is 
available by e-mail at the Inte~-net address JHorowit@scout-po.biz.uiowa.edu. 

Semiparametric methods for multinomial response models are not as well de- 
veloped as methods for binary response. The maximum score method can be ex- 
tended to certain types of multinomial response models (Manski, 1975), but there 
have been no applications of this method. Progress in semiparametric estimation 
is being made very rapidly, however, and semiparametric methods for multinomial 
response models are likely to be available for applied use soon. 

There has also been research on completely nonparametric estimation of binary 
response models. In nonparametric estimation, the term/3'X on the right-hand 
side of (2.1) is replaced by an unknown function of X. Thus, both this function 
and the distribution of e are unknown in nonparametric estimation. See Matzkin 
(1992) for details. 

2.2. Computational methods for classical estimation of MNP models 

There has been much recent progress in the development of simulation methods 
for estimating the parameters and computing the choice probabilities of MNP 
models. Using the best simulation methods, the time required to compute choice 
probabilities and other quantities required for estimation is roughly linear in the 
number of alternatives in the choice set. The required computations are very fast 
on a modern microcomputer, so the advent of efficient simulation methods has 
essentially removed the number of alternatives as a factor in computing MNP 
choice probabilities. 

Roughly speaking, a simulator evaluates choice probabilities by repeatedly 
sampling the probability distribution of e, determining the utility-maximizing 
choice corresponding to each sample, and computing the proportion of draws on 
which each alternative is chosen. Although this idea is simple, several difficult 
problems taust be solved to construct a practical, accurate simulator. For exam- 
ple, to use a simulator in connection with standard numerical techniques for max- 
imizing a log-likelihood function, the simulated choice probabilities must be dif- 
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ferentiable functions of the utility-function parameters and bounded away from 0 
and 1. In addition, to achieve computational efficiency, the simulator taust pro- 
duce accurate results with a small number of draws from the distribution of e. 

Hajivassiliou (1993a) reviews all known simulation methods for classical esti- 
mation of MNP models. Hefe we outline one easy-to-use method, the smoothed 
simulated maximum likelihood (SSML) method based on the GHK simulator. 
"GHK"  stands for John Geweke, Vassislis Hajivassiliou, and Michael Keane, 
who independently developed the GHK simulator. A detailed description of the 
SSML/GHK method is given by Börsch-Supan and Hajivassiliou (1993). Software 
for using this method to estimate MNP models with cross-sectional or panel data 
is available by anonymous FTP at the Interner site "econ.yale.edu" in directory 
"pub/vassilis/simulation." Comparisons of the performances of the SSML/GHK 
and other simulation estimators are given by Geweke, Keane, and Runkle (1992), 
Börsch-Supan and Hajivassiliou (1993), Hajivassiliou (1993b), Hajivassiliou, 
McFadden, and Ruud (1992), and Keane (1994). These comparisons have found 
that the SSML/GHK method is very accurate except when the random compo- 
nents of utility include autoregressive terms with first-order correlation coeffi- 
cients that are near one. Keane (1994) describes a different simulation method 
that is more accurate than SSML/GHK in the presence of highly correlated au- 
toregressive terms. Other simulation approaches to MNP estimation are described 
by Lerman and Manski (1981), McFadden (1989), Pakes and Pollard (1989)0 Ha- 
jivassiliou and McFadden (1992), and Stern (1992). 

To outline the SSML/GHK method, consider a sample consisting of observa- 
tions on a cross-section of n individuals. Let P~(O) denote the MNP probability of 
the alternative that individual i is observed to choose, where 0 denotes the param- 
eters of the model. The log-likelihood function is 

log L(O) = ~ log Pi(O). (2.2) 
i = l  

In general, Pi(O) depends on 0 through a multivariate integral that is difficult or 
impossible to evaluate using conventional numerical methods such as quadrature. 
The idea of the SSML/GHK method (as weil as several other simulation esti- 
mators) is to estimate the value of Pi(O) by Monte Carlo simulation and replace 
Pi(O) in (2.2) with the estimate. The GHK simulator is obtained by writing Pi(O) 
as the mean value of a certain function of independent random variables that have 
truncated standard normal distributions. The function is a product of standard 
normal probabilities, and its value is easy and fast to compute. A simulation es- 
timate of its mean can be obtained by sampling variables independently from the 
appropriate univariate truncated normal distributions, evaluating the function at 
the sampled values of the variables, and averaging the results obtained from sev- 
eral samples. Draws from the univariate truncated normal distribution can be gen- 
erated easily by sampling from the uniform distribution and applying the inverse 
truncated normal distribution function to the result. 
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This simulation method produces an estimate of Pi(O) that is a continuous, dif- 
ferentiable function of 0. Moreover, accurate results can be obtained using a rel- 
atively small number of repetitions of the sampling process. Börsch-Supan and 
Hajivassiliou (1993) and Geweke, Keane, and Runkle (1992) obtain very accurate 
results with only twenty to thirty repetitions in models with three to seven alter- 
natives. 

2.3. Computational methods for Bayesian estimation 

Bayesian estimation of MNP models also presents computational difficulties that 
are intractable with conventional numerical techniques. This is because evaluat- 
ing Bayesian posterior moments requires computing complicated multivariate in- 
tegrals whose integrands depend on the MNP choice probabilities. Recently, how- 
ever, McCulloch and Rossi (1992) (hereinafter referred to as MR) and Albert and 
Chib (1993) have developed computationally efficient simulation methods for 
evaluating Bayesian posterior moments. The MR approach is outlined below. 
Software for implementing this approach is available via anonymous FTP at the 
Internet site gsbper.uchicago.edu. The program is in pub/rossi/mnp, and the 
McCulloch and Rossi (1992) paper is in pub/rossi/papers/mnp. 

The MR approach consists of using the Gibbs sampler to generate draws from 
the posterior distribution of the MNP model, thereby avoiding the need to com- 
pute MNP choice probabilities. Posterior moments are estimated by the corre- 
sponding moments of the resulting sample. The Gibbs sampler is a method for 
generating draws from a multivariate distribution by successively drawing from 
suitable conditional distributions. For example, suppose we want to generate 
draws from the bivariate density f(x~, x2) but are able to sample only the condi- 
tional densities f~(xllx2) and f2(x21x0. The Gibbs sampler in this case consists of 
first drawing an X~ from f~ conditional on an initial value of X» then drawing an 
X2 from f2 conditional on the sampled X» then sampling a new X~ from fl condi- 
tional on the sampled )/2, etc. It can be shown that the resulting sequence of (XI, 
X2) pairs converges in distribution to the desired bivariate distribution, fixù x2). 

The MR approach specifies the prior distribution of the MNP utility-function 
parameters/3 to be multivariate normal and the prior distribution of the inverse 
of the covariance matrix of ej - e; to be Wishart independent of/3. The Gibbs- 
sampler simulation procedure consists of repeatedly sampling: 

1. Each utility difference Uj - Ui conditional on the remaining differences,/3, the 
covariance matrix of e r - e» and the observed choice. 

2./3 conditional on the utility differences and the covariance matrix. 
3. The covariance matrix conditional on the utility differences and/3. 

The resulting draws converge in distribution to draws from the Bayesian posterior 
distribution of the MNP parameters. This approach can be extended to handle 
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models with random coefficients and models for panel data. See MR for details. 
The computational requirements for implementing the MR procedure are similar 
to those of the SSML/GHK method for classical maximum likelihood estimation. 

3. Other issues in multinomial probit modeling 

The development of efficient simulation procedures has eliminated the computa- 
tion of MNP choice probabilities as a barrier to the use of MNP models. None- 
theless, MNP modeling remains a delicate marter that requires carefut judgment 
by the modeler. Some of the reasons for this will now be outlined. 

a. Because MNP choice probabilities depend only on the signs of utility differ- 
ences, the parameters of a MNP model are identified only up to certain location 
and scale normalizations. In particular, the covariance parameters of a fully pa- 
rameterized MNP model are not all identified. See Bunch (1991) and Dansie (1985) 
for discussions of identification in MNP models. 

b. The use of MNP models can lead to severe proliferation of random effects 
and parameters. A MNP model with K explanatory variables other than alterna- 
tive-specific constants may have K random effects associated with random taste 
variation as weil as additive effects that are independent of the explanatory vari- 
ables. If the estimation data are cross-sectional, there are M alternatives, and the 
additive effects are independent of the taste effects, there are [K(K + 1) + M(M 

- 1)]/2 - 1 distinct covariance matrix elements that taust either be estimated 
from data or set by assumption. Thus, for example, a MNP model with ten alter- 
natives and five explanatory variables has fifty-nine covariance parameters. Car- 
rying out a nonlinear optimization over such a large number of variables is rarely 
easy. Moreover, in MNP estimation, the log-likelihood function may have ridges 
or relatively flat regions in which the second derivative matrix of the logqikeli- 
hood function is nearly singular. In addition, the MNP log-likelihood function can 
be multimodal. These characteristics add to the usual difficulties of nonlinear nu- 
merical optimization. Moreover, the parameters of a large MNP covariance ma- 
trix may be imprecisely estimated, and this imprecision may be transmitted to 
estimates of utility function parameters, choice probabilities, and market shares. 

c. Proliferation of probit covariance parameters can be avoided by imposing 
prior restrictions on the covariance matrix. One way of doing this is by imposing 
a factor-analytic structure on e. This is analogous to selecting the tree structure 
in a nested logit model. Care is needed in choosing the structure, however, since 
different structures can yield substantially different predictions of market shares 
(Forinash and Koppelman, 1993). Particular attention should be given to the pos- 
sibility of random taste variation, which has been found in a variety of applica- 
tions of probit models (Fischer and Nagin, 1981; Gönül and Srinivasan, 1993; 
Hausman and Wise, 1978; Horowitz, 1993a; McCulloch and Rossi, 1992). Random 
taste variation causes e to be heteroskedastic and. therefore, has effects on choice 
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probabilities that are different from those of  correlated components  of e that are 
independent of  the explanatory variables. 

d. Careful specification testing is especially important when developing a MNP 

model. Virtually any specification error can create the appearance of random taste 
variation or additive random components  of utility that are not iid. In particular 

misspecifying the systematic component  of the utility function tends to have this 

effect. I f  specification testing is not carried out, an analyst may reach the conclu- 
sion that there is random taste variation or a complicated covariance structure 
when the real problem is that the utility function is misspecified. Horowitz  

(1993a), Horowitz  and Härdle (1992), and Horowitz and Louviere (1993) discuss 

some specification tests that may be useful for avoiding this problem. 

e. In models for panel data, it is important to distinguish between unobserved 
heterogeneity and state dependence (e.g., brand-loyalty), which are quite different 

conceptually and behaviorally but can create similar patterns in observed choices. 

Heckman (1981a, 1981b) discusses the econometric issues that are involved. Di- 

vakar (1993) presents evidence that failing to take proper account  of the effects of  

unobserved heterogeneity can lead to greatly exaggerated estimates of  the effects 

of brand loyalty in brand-choice models. 
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