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Simulation Estimation for Panel Data Models with 

Limited Dependent Variables 

M i c h a e l  P. K e a n e *  

1. Introduction 

Simulation estimation in the context of panel data, limited dependent-variable 

( L D V )  models poses formidable problems that are not present  in the cross- 

section case. Nevertheless,  a number  of practical simulation estimation meth- 

ods have been proposed and implemented for panel data L D V  models. This 

paper  surveys those methods and presents two empirical applications that 

illustrate their usefulness. 

The outline of the paper  is as follows. Section 2 reviews methods for 

estimating panel data models with serial correlation in the linear case. Section 

3 describes the special problems that arise when estimating panel data models 

with serial correlation in the L D V  case. Section 4 presents the essential ideas of 

method of simulated moments  (MSM) estimation, as developed by McFadden 

(1989) and Pakes and Pollard (1989), and explains why MSM is difficult to 

apply in the panel data case. Section 5 describes computationally practical 

simulation estimation methods for the panel data probit  model.  Section 5.1 

describes an efficient algorithm for the recursive simulation of probabilities of 

sequences of events. This algorithm is at the heart  of all the simulation 

estimators that have proven feasible for panel data L D V  models.  Section 5.2 

describes the simulation estimators for panel data probit  models that are based 

on such recursive simulation of probabilities. Section 5.3 describes some 

alternative estimators that are based on conditional simulation of the latent 

variables in the probit  model  via similar recursive methods.  Section 6 discusses 

issues that arise in simulation estimation of models more complex than the 

probit  model.  In Section 7, I use the simulation estimation methods presented 

in Sections 5 to 6 to estimate probit  employment  equations and selection 
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bias-adjusted wage equations on panel data from the national longitudinal 

survey of young men. Section 8 concludes. 

Throughout  the exposition in Sections 2-6,  I assume strict exogeneity of the 

regressors. I do this in order to focus on the special problems that arise due to 

simulation itself. Thus, I ignore the important issues that arise when the 

regressors are endogenous or predetermined rather than strictly exogenous. 

For discussions of these issues, the reader is referred to the excellent surveys of 

Heckman (1981) and Chamberlain (1985). 

I also ignore simulation estimation in the context of discrete dynamic 

programming models. This is despite the facts that the first important 

econometric application of simulation estimation was in this area (Pakes, 

1986), the area continues to be a fertile one (see, e.g., Berkovec and Stern, 

1991; Hotz and Miller, 1991; and Geweke,  Slonim and Zarkin, 1992), and that 

much of my current research is in this area (Keane and Wolpin, 1992; Erdem 

and Keane, 1992). This omission stems from my desire to focus on the special 

problems that arise in the simulation of probabilities of sequences of events, 

excluding those additional problems that arise when the solution of a dynamic 

programming problem must also be simulated. 

2. Methods for estimating panel data models with serial correlation in the 

linear case 

Since the pioneering work of Balestra and Nerlove (1966), the importance of 

controlling for serial correlation in panel data models has been widely 

recognized. There are many situations where, if an agent is observed over 

several time periods, we would expect the errors for that agent to be serially 

correlated. For instance, in wage data, those workers who have wages that are 

high at a point in time (after conditioning on the usual human capital variables 

like education and experience) tend to have persistently high wages over time. 

As Balestra and Nerlove pointed out, failure to account for such serial 

correlation when estimating linear regressions on panel data leads to bias in 

estimates of the standard errors of the regressor coefficients. To deal with this 

problem, they proposed the random effects model, in which the existence of a 

time-invariant individual effect, uncorrelated with the regressors and distribut- 

ed with zero mean in the population, is postulated. 

The random effects model produces an error structure that is equicorrelated. 

That  is, if the true model is 

y,, = Xi,/3 + e,,, (1) 

for t = 1, T and I = 1, N, where Yi, is the dependent variable for person i at 

time t, Xi, is a vector of strictly exogenous regressors, and ei, is the error term, 

and if 

(2) 
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whe r e /x  i is a time-invariant random effect and % is iid, then the covariance 

structure of the e~, is 

/ O'~2 for j = 0 ,  
Eeitei.,_j = (3) 

Lpo'~ for j # 0 .  

Here  p is the fraction of the variance of e due to the individual random effect. 

Thus, the correlation between the errors e~t for any two different time periods 

is p regardless of how far apart the time periods are. 

This equicorrelation assumption is obviously unrealistic in many situations. 

Its virtue lies in the fact that estimation of the random effects model is 

extremely convenient. The model (1 ) - (2)  may be estimated using a simple 

two-step GLS procedure that produces consistent and asymptotically efficient 

estimates of the model parameters and their standard errors. If the equicorrela- 

tion assumption is incorrect, the estimates of /3 remain consistent but the 

estimated standard errors are biased. 

In cases where equicorrelation does not hold, it is simple to replace (2) with 

a general covariance structure and apply the same two-step GLS procedure.  In 

the first step, obtain a consistent estimate of/3 under the assumption that the e 

are iid and use the residuals to estimate the covariance matrix Z = Eeie~, where 

e~ = ( e m . . . , e i r ) '  is a T x 1 column vector. Then,  letting ~ denote the 

estimate of X, take the Cholesky decomposition ~ = AA',  where A is a 

lower-triangular matrix, and premultiply the Yi and X~ vectors by A'. In a 

second step, estimate a regression of ]t'y~ on A'Xi to produce consistent and 

asymptotically efficient estimates of all model parameters and their standard 

errors. (See Amemiya and McCurdy, 1986 or Keane and Runkle, 1992.) Note 

that, with missing data, estimation of an unrestricted A matrix would be 

problematic. However ,  restricted structures where N is parameterized as, say, 

having random effects and A R M A  error components pose no problem. 

3. The problem of estimating LDV models with serial correlation 

In sharp contrast to the linear case, estimation of LDV models with serial 

corelation poses difficult problems. As a leading case, consider the panel data 

probit model. This model is obtained if we do not observe Yi, in equation (1), 

but only observe the indicator function d i t  , where 

{10 ifYi~>O, 
d,, = (4) 

otherwise,  

and if we further assume that the error terms have a normal distribution, 

e i - N ( 0 ,  X ). Given this structure, we can write ei=Arh,  where ~/;= 

0/il . . . .  , ~ir) '  and 7 h -- N(0, I) .  Define 0 as the vector consisting of elements 

of fi and the parameters determining the error covariance structure ~. Further,  

define 4, = {dil, - • •,  d~,} as the set of choices made by person i through period 
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t, and Prob(Jie IX i, O) as the probability of this set, where X i = ( X i l  . . . .  , N I T ) ' .  

Then the log-likelihood function evaluated at a trial parameter estimate 0 is 

N 

5f(0) = ~ In Prob(Jir INi, 0 ) .  (5) 
i = 1  

The difficulty inherent in evaluating this log-likelihood depends on the error 

structure. If the eit are iid, then 

Prob(J/t I N  i ,  0) = I~ Prob(dit I Nil, 0 ) .  
/=1  

Thus, only univariate integration is necessary to form the log-likelihood. If 

there are random effects, as in (2), then 

Prob(JitIXi, 0) = f~  [I  Prob(d, lXil, 0)f(/x) d/x . 
l = 1  

Here,  bivariate integration is necessary. If f( . )  is the normal density, such 

bivariate integrations can be evaluated simply using the Gaussian quadrature 

procedure described by Butler and Moffitt (1982). Unfortunately, for more 

general error structures, the order of integration necessary is T. This makes 

maximum-likelihood (ML) estimation infeasible for T 1> 4. 

Results in Robinson (1982) indicate that, regardless of the correlation 

structure of the eit, if the ei, are assumed iid, then the resultant misspecified 

model produces consistent estimates of/3. Such an estimator is inefficient and 

produces biased estimates of the standard errors. However,  a covariance 

matrix correction is available. Given these results, the value in having a 

capability to deal with complex serial correlation patterns in LDV models 

resides in four things. First, there is a potential for efficiency gain in estimating 

models with richer correlation structures. Second, no proof is available that 

misspecification of the correlation structure of eit results in a consistent 

estimator of/3 for cases other than that in which eit is specified to be iid. Third, 

in the presence of lagged dependent variables, consistent estimation requires 

that the serial correlation structure be properly specified. Fourth, and most 

importantly, allowing for more complex serial correlation patterns can poten- 

tially improve out-of-sample prediction of agents' future choice behavior. 

4. MSM estimation for LDV models 

A natural alternative to ML estimation for LDV models is simulation-based 

estimation, recently studied by McFadden (1989) and Pakes and Pollard 

(1989). McFadden developed the MSM estimator for the probit model. To 

motivate the MSM estimator, it is useful to first construct the method of 

moments (MOM) estimator for the panel data probit model. 
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To construct the MOM estimator, let k = 1, K index all possible choice 

sequences Jir. Let Dik = 1 if agent i chooses sequence k and Di~ = 0 otherwise. 

Then, following McFadden (1989), the score of the log-likelihood can be 

written 

N K 

V05f(0 ) = ~ ~ W,.k[Dik --Prob(Di~ = I lX~, 0) ] ,  (6a) 
i - 1  k - 1  

where 0 is a particular trial parameter estimate and 

V 0 Prob(Dik = I IX/, 0) 

Wi~ = Prob(Dik = l IX ~, 0) (6b) 

Note that (6a) has the~form of mean zero moments [Di~ - Prob(Dik = 11X~, 0)] 

times orthogonal weights W~k. Thus, it can be used to form the first-order 

conditions (FOCs) of an MOM estimator for 0. The MOM estimator, 0MOM, 

sets the FOC vector in (6a) equal to the zero vector. If the optimal weights W~k 

are used, this MOM estimator is asymptotically as efficient as ML. Other 

choices of weights that are asymptotically correlated with the Wig and 

orthogonal to the residuals produce consistent and asymptotically normal but 

inefficient MOM estimators. Of course, for general specifications of the error 

structure, this MOM estimator is not feasible because the choice probabilities 

are T-variate integrals. 

The idea of the MSM estimator is to replace the intractable integrals 

Prob(Di~ = l IX i, 0) in (6a) by unbiased Monte Carlo probability simulators. 

The most basic method for simulating the choice probabilities is to draw, for 

each individual i, a set of iid error vectors (~/~1,.-- ,7/~r) using a univariate 

normal random number generator and to count the percentage of these vectors 

that generate D~ = 1. This is called the frequency simulator. More accurate 

probability simulators will be discussed below. 

Because the simulation error enters linearly into the MSM FOCs, it will tend 

to cancel over observations. As a result, the MSM estimator based on an 

unbiased probability simulator is consistent and asymptotically normal in N for 

a fixed simulation size. If the frequency simulator is used, 0MSM has an 

asymptotic covariance matrix that is (1 + S -1) times greater than that of 0MOM, 

where S is the number of draws used in the simulation. Use of more accurate 

probability simulators improves relative efficiency. If consistent independent 

simulators of the optimal weights are used, then 0MS M is asymptotically (in N 

and S) as efficient as ML. 

Unfortunately, the MSM estimator in (6a) is not practical to implement. The 

source of the problem is that K grows large quickly with T. In the binomial 

probit case, K = 2 r. Thus, for reasonably large T construction of (6a) requires 

a very large number of calculations. If a simple frequency simulator is used, 

such calculations can be done quickly. However, according to McFadden and 

Ruud (1987), frequency simulation does not appear to work well for this 
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problem. One difficulty is that the FOCs based on frequency simulation are not 

smooth functions. This makes it impossible to use gradient-based optimization 

methods. This problem can, however, be dealt with by use of the simplex 

algorithm. A more serious problem is that the denominators of the optimal 

weights in (6b) are the probabilities of choice sequences. These probabilities 

will tend to become very small as T gets large, and frequency simulators based 

on reasonable numbers of draws will therefore tend to produce simulated 

probabilities of zero for many choice sequences. This makes it quite difficult to 

form good approximations to the optimal weights, so that the MSM estimator 

based on frequency simulation will tend to be very inefficient. 

The natural solution to this problem is to use more efficient probability 

simulators that can accurately simulate small probabilities. Such simulators, 

based on importance sampling techniques, are considerably more expensive to 

construct than crude frequency simulators. Thus, it is not practical to use them 

in conjunction with (6a) to form the FOCs of an MSM estimator. In the next 

section, I describe a highly efficient algorithm for simulating probabilities of 

sequences of events and describe practical simulation estimators for panel data 

probit models based on this algorithm. 

5. Practical simulation estimators for the panel data probit model 

Recently, Keane (1990) and Hajivassiliou and McFadden (1990) have de- 

veloped computational practical simulation estimators for panel data LDV 

models. Both methods rely on a highly accurate recursive algorithm for 

simulating probabilities of sequences of events that I describe in Section 5.1. In 

Section 5.2, I explain how these simulators can be used to construct practical 

simulation estimators for the panel data probit model. In Section 5.3, I 

describe some alternative estimators that are based on conditional simulation 

of the latent variables in the probit model via similar recursive methods. 

5.1. Recursive simulation o f  probabilities o f  sequences o f  events 

In Keane (1990), I developed a highly accurate algorithm for simulating the 

probabilities of choice sequences in panel data probit models. To see the 

motivation for this method, first observe that the choice dit = 1 occurs if 

eit >1 -Xit[~ while the choice dit = 0 Occurs if --eit > Xit[3. Thus, the boundary of 

the ei, distribution conditional on d .  is 

(2d.  - 1)e./> (1 - 2d,t)Xit fi . 

Since e; = A~?~, this constraint may be written 

(1 - 2d,)X,~8 - (2d,  - 1)(A,1~/il + . . .  + At,  ̀  17q,,,_~) 
(2di, - 1)~. t> A ,  
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Recal l  that  Jit = { d i l ,  • • • ,  dit} denotes  the set of  choices made  by person  i in 

per iods  1 through t. Fur the r  define 

TI(J/1 ) = {T]i 1 ] (2dil - 1)rl~ ~ > (1 - 2 d i 1 ) S i l t g } ,  

7(4,) = {we1, . . . ,  ~ ,  I (2d,s - 1)T}is 

(1 - 2dis )Xis  ~ - (2d~s - 1 ) ( A s l r l i l  + . . .  + A s , s _ j l i , s _ l )  
> 

A s s  

for  all s ~< t } .  (7) 

These  are the sets of  r/~ vectors  that  are consistent  with the set of  choices made  

by person  i in per iods 1 th rough  t. The  probabi l i ty  of a choice sequence  

Prob(J~, [X~, 0) can be fac tored  into a first-period uncondi t ional  choice prob-  

ability t imes transit ion probabil i t ies as follows: 

erob(J/ ,  IX/, 0 ) 

= Prob(ni l ,  • • . ,  "Oi, • n(J i , ) )  

= Pr°b(r/~l • n(Jia)) Prob(ni l ,  r/i2 • "O(Ji2) l Vii • n ( J i l ) )  

x . . -  x P r o b ( r h l , . . .  ,Vi, • 'O(J~, ) IVia , . - .  ,n~,,-i • V(J~.,-1)) - (8) 

An  unbiased s imulator  of  this probabi l i ty  may  be ob ta ined  by the following 

sequent ia l  p rocedure :  

(1) Draw an r/i I f rom the t runca ted  univariate  normal  distr ibution such that  

Vii •V( J i l ) -  Call the par t icular  value that  is drawn rhl.* 

(2) Given  ~/i1,* there  is a range of  the values such that  

(2di2 - 1~ i  2 > [(1 - 2d~z)X,-2/3 - (2di2 - 1)Az171~*~]/Az2 . 

Using the nota t ion  of  (7),  I deno te  this set of  T}i 2 values by {r/i 2 I r/i*~, T]i 2 • 

r/(J~2)}. Draw an ~h2 f rom a t runca ted  univar ia te  normal  distr ibution such that  

(r/il, ~1i2)•~/(J~2). Call the part icular  value that  is drawn * 77/2 • 

(3) Cont inue  in this way until a vec tor  (r/~*~, * • . . . ,  9 ~ i , T _ 1 )  n(Ji,t_l) is 
obta ined.  

(4) F o r m  the simulator:  

A 

erob(J/ ,  IX/, O) = Prob(r/i t • 'l~(J/1)) x e rob( r /n  • r/(J/2) [ ~7il) 

x - - .  × Prob(r/i , • 71(Ji,)l~Ti*l, * . • " ,rh,, 1) (9) 

This probabi l i ty  s imulator  has been  named  the G e w e k e - H a f i v a s s i l i o u - K e a n e  

or G H K  s i m u l a t o r  by Hajivassil iou,  McFadden  and Ruud  (1992) because  

re la ted  independen t  work  by G e w e k e  (1991a) and Hajivassi l iou led to the 

deve lopmen t  of the same method .  In an extensive study of  31te.rnntiv~ 
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probability simulators, they find that the G H K  simulator is the most accurate 

of all those considered. 

Note that simulators of the transition probabilities in (8) can be obtained by 

the same method. In Keane (1990), I showed that, for t~>3, an unbiased 

simulator of the transition probabilities is given by 

A 

Prob(d,t [J~,t-1, X i ,  O) 

= Prob(rti , ~ 'O(Jit) lglil ,  * , • T i t - l )  . . . .  ~ i , t - - 1 ) O ) ( ~ i l ,  . . . , (lOa) 

where 

£o * " " " t (rill, ,'1, ,-l) 

~o(m*, * . . . .  " q i , t - 2 ) P r o b ( ' q i , t - 1  • ~ ( J i , t - 1 )  I T~i l ,  . . • , T l i , t -2)*  

- -  P r ° b 0 / , , , - 1  • ' / ~ ( J / , t - 1 )1"1~11  , - ' -  ,3"~i.t-2 • T / ( J / , t - 2 ) )  

• " I rh~)Prob(w. •'0(41)) Pr°b(•ia-1 • 'O(Ji , t-1)[rli~,  . . . .  hi,t-2)* "Pr°b(r/2 •'q(Ji2) * 

Prob07il , . . . ,  r/i,,_l • T ~ ( / i , t _ I )  ) 

(10b) 

This procedure may be interpreted as importance sampling where the transi- 

tion probability is simulated conditional on the draw ~7il, . *  • • ,~Ti,t-l* from the 

importance sampling density defined by steps (1) - (3)  and w0h*~, . - . ,  ~h*t-1) is 

the importance sampling weight. The form of the weight is the ratio of (1) the 

probability of event sequence d n . . . .  , d~,t_ a as simulated by the G H K  method 

using the draw ~i1,*.. . ,rh,t_ 1 .  to (2) the actual probability of the event 

sequence d i l , .  . . , di, t_ 1. 

Unfortunately, for t -  1/> 3 it is not feasible to numerically evaluate the 

object Prob( r / i l , . . .  , ~i, t-1 E~q(J i , t -1) )  that appears in the denominator of the 

importance sampling weights. However,  this probability may itself be simu- 

lated by the G H K  method. If this is done, a denominator bias is induced, and 

the resultant transition probability simulator will be asymptotically unbiased as 

the number of draws used to form the G H K  simulator becomes large. 

Let S be the number of draws used to simulate the choice sequence and 

transition probabilities by the G H K  method. Letting (~*~s, • • -, ~/i*r-l,s) be the 

s-th sequence drawn in the G H K  procedure, one obtains, for the simulated 

sequence probabilities, 

A 1 ¸s 

Prob(J~, I X~, 0 ) = -~ ~--~1 Pr°b(rhl E r/(Jn))Prob('q,2 E r/(J~2 ) I rh*~s) 

x . . .  x ProbQ/i, @ r l ( J i , ) l ' q i l ~ , . . . ,  " ~ i t t - l , s )  

(11~ 
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and for the simulated transition probabilities, 

Prob(d,  1J/,t_a, Xi,  O) 

1 
Prob(n~t E rt(Jit) I rl~*~, * ~ * * = - -  . . .  , ~ i , t - - l , s )  O ) ( ~ i l s ,  , " " " ' ~ i  t - a , s )  S 

s = l  

(lZa) 

where 

^ * * 

0 ) ( T / i l  . . . . . .  ~ i , t - l , s )  

Prob(rh,,_ 1 E r/(/i,,_l)I rh*~,,... , tie*,_2,,) • • • Prob(rt~2 E 71(Ji2) 171i1~) 
S 

5-1 Z Prob(r/i,,-a E r/(J~,t_a) I r f f l r , . . . ,  g~i:t_2,r)''" Prob(r/i z E 7/(,//2 ) l~Ti*lr) 
r = a  

(12b1 

for t/> 3 and 

/.-. 1 s 

Pr°b(d/z [ Jil, X~, 0) = ~ s_~a Prob(7/; 2 E ~l(Jiz ) 17/ils) 

for t = 2. Note that if the importance sampling weights are simulated as in 

(12b), they are constrained to sum to one by construction. Constraining 

importance sampling weights to sum to one is a standard variance reduction 

technique often recommended in the numerical analysis literature. In (12b), 

the simulation error in the numerator is positively correlated with that in the 

denominator,  so in some cases a variance reduction in simulation of the ratio 

may be achieved by use of the simulated rather than the true denominator. 

5.2. Practical simulation methods  fo r  panel  data probi t  models  based on 
recursive simulation o f  probabilities 

Three classical methods of estimation for panel data probit models have been 

implemented in the literature, all based on the G H K  method for simulation of 

sequence and transition probabilities. In Keane (1990), I expressed the log- 

likelihood function as a sum of transition probabilities 

N N T 

5f(O) = ~ In Prob(Jir IX i, O) = ~ ~ In Prob(di, I J~,t_a, X~, O) 
i - - i  i - 1  t = a  

and proceed to express the score as 

N T 

v0 e(0) 2 2  1 = {W~,[d, - Prob(d,  = 11 J~,,_a, Xi, 0)] 
i = 1  t = a  

+ w ° , [ ( 1  - 4 , )  - P r o b ( d .  = 01J~,t_a, si, 0 ) ] } ,  

(13) 
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where the weights Wilt and W~t have the form 

V 0 Prob(dit = 1 ] Ji,t i, Xi, O) 
1 

Wit = Prob(dit = 1]J~,t_~,X,., 0) ' 

V 0 Prob(dit = O]J~,t_ 1, X i, O) 0 
W i t  

Prob(dit = O]Ji,t_l, Xi, O) 
(14) 

Note that (13) has the form of mean zero moments times orthogonal weights. 

Thus, it can be used to form the FOCs of an MOM estimator for 0, where 

0MO M sets (13) to zero and the optimal weights are given by (14). 

In Keane (1990), I formed an MSM estimator by substituting the simulated 

transition probabilities given by (12) into equation (13) and using independent 

simulations of the transition probabilities to simulate the optimal weights in 

(14). Using results in McFadden and Ruud (1991), I showed in Keane (1992) 

that the resultant MSM estimator is consistent and asymptotically normal if 

S/V~- -~  ~ as N---~ ~. In a series of repeated sampling experiments on models 

with random effects plus AR(1) error components, setting S = 10, N = 500, 

and T = 8, I also showed that the bias in this MSM estimator is negligible, even 

when the degree of serial corelation is very strong. 

The generalization of this method to more than two alternatives is straight- 

forward and is discussed in Keane (1990). Elrod and Keane (1992) successfully 

applied this MSM estimator to detergent choice models with eight alternatives 

and up to 30 time periods per household. By allowing for a complex pattern of 

serial correlation, Elrod and Keane were able to produce more accurate 

out-of-sample forecasts of agents' future choices than could be obtained with 

simpler models. This is a good illustration of why the ability to estimate LDV 

models with complex patterns of serial correlation is important. 

Hajivassiliou and McFadden (1990) expressed the score of the log-likelihood 

as  

V 0 Prob(Jir [ Xi, 0 ) 
V05f( 0 ) 

i=1 Prob(J ir lX,  O) (15) 

They implemented a method of simulated scores (MSS) estimator by using the 

GHK probability simulator in (11) to simulate the numerator and denominator 

of (15). 0MS s is obtained by setting the simulated score vector to zero. 

Hajivassiliou and McFadden showed that 0MS s is consistent and asymptotically 

normal if S / V ~ - ~  ~ as N--~ ~. 

A third alternative is simply to implement a simulated maximum likelihood 

(SML) estimator by using the GHK probability simulator to simulate the 

log-likelihood function (5) directly. 0SM L maximizes the simulated log-likeli- 

hood function. By construction, 0SM L is also a root of the simulated score 

expression (15), provided the same smooth probability simulators (with the 

same draws) are used in both. Thus the MSS estimator given by applying the 
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GHK simulator to (15) is identical to the SML estimator obtained by applying 

the GHK simulator to (4). 0sM L is also consistent and asymptotically normal if 

S / V ~ - - ~  as N--->~. See Gourieroux and Monfort (1991) for a proof. 

Hajivassiliou and McFadden (1990) reported good results using the MSS 

procedure based on the GHK simulator with 20 draws to estimate panel data 

probit models in which the existence of repayment problems for less-developed 

countries is the dependent variable. B6rsch-Supan, Hajivassiliou, Kotlikoff and 

Morris (1991) used the SML approach based on the GHK simulator to 

estimate panel data probit models where choice of living arrangements is the 

dependent variable. 

In Keane (1992), I reported repeated sampling experiments for SML based 

on the GHK simulator, using the same experiment design I used to study the 

MSM estimator. In this experiment, SML based on GHK with S = 10 exhibits 

negligible bias when the degree of serial correlation is not extreme. However, 

in experiments on a model with AR(1) errors and an individual effect, with 

p =0.20 and the AR(1) parameter set to 0.90, the SML estimator greatly 

overstates the fraction of variance due to the individual effect and understates 

the AR(1) parameter. The MSM estimator based on the GHK simulator does 

not exhibit this problem. 

Finally, McFadden (1992) observed that the FOGs used in Keane (1990, 

1992) can be rewritten in such a way that they have the form of weights times 

mean zero moments. The FOGs used in Keane (1990, 1992), obtained by 

substituting the simulators (12) into equation (13), have the form 

121 FOG(0) : W i t  dit - P r o b ( d i t  : 1 [ ~ i l s ,  • • • , ~i,t-l,s)* 

i = l  t = l  = 

• , )] 
× w(Tqil s, . . . , r l i , t - l , s  

0 . 

+ W i t  ( 1 - d i , ) - x  Pr°b(di '= 0l * ' ~ = ~ i l s ,  " " " 1 , t - l , s )  

X (.0 ~ i l s ,  " " " , 7 ~ i , t - l , s  

where the importance sampling weights w(7//1 . . . . .  , ~7/*~-1,s) are given in (12b) 
^ 1 ~ 0  

and the weights Wi~ and Wi, are simulations by the GHK method of the 

optimal weights given in (14). 

Define * * * * * o~(rlm, , is the . . .  T ~ i , t _ l , s )  = where O O A i , t - - l , s / g ' O B i , t - - l , S '  O ' ) A i , t  1 , s  

numerator of (12b) and wBi,t_l, s is the denominator. Then the FOGs can be 

rewritten as 

i = 1  t = l  k ( - O B i , t - l , S  

1 Pr°b(dit l l n i * ~ s ,  * ) ~ o A ~ , t _ l , s  = " " " , ~ i , t - l , s  
S s = l  
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+ , ( 1 -  * - -  d i t ) O ~  B i , t _  l , S  
O) B i , t -  l , S  

1 ~ P r o b ( d i = O i  . , , ]} 
__ - -  g ] i l s , .  • . ~ " O i , t - l , s ) O ) A i , t - l , s  • 

S s = l  

The terms in brackets are now mean zero residuals, so an MSM estimator 

based on these FOCs is consistent and asymptotically normal for fixed S. The 

potential drawback of this procedure is that, while the optimal weights W;~t and 

W~ ° for the Keane (1990, 1992) estimator have transition probabilities in the 
1 * 0 * 

denominator, the optimal weights W i , / w s i , , _  1 and Wit/oosi,t_ 1 for this new 

estimator (where * * have probabilities in the ('OBi,t 1 --'~ E ( t ° B i , t - I . S ) )  sequence 

denominator. Since sequence probabilities will generally be very small relative 

to transition probabilities, the denominator bias in simulation of the optimal 

weights will tend to become more severe, and efficiency relative to ML may 

deteriorate. An important avenue for future research is to explore the small- 

sample properties of this estimator. 

5.3.  A l terna t ive  m e t h o d s  based on condi t ional  s imula t ion  o f  the latent 

variables in the L D V  m o d e l  

Hajivassiliou and McFadden (1990) discussed a fourth classical method for 

estimating panel data probit models that has not yet been implemented in the 

literature. This is based on the idea, due to Van Praag and Hop (1987) and 

Ruud (1991), that the score can be written in terms of the underlying latent 

variables of the model as follows: 

N 

= x;P - E[yi- 1 4 d ,  
i - 1  

N 

VA~(0 ) = ~ { - 2  - IA + 2 E [ ( y / -  X ~ ) ( y ~  - X/})' I J~r]~, -1A}.  (16) 
i = 1  

Unbiased simulators of this score expression can be obtained if the error terms 

e i = y~ - Xi f l  can be drawn from the conditional distribution determined by J/v, 

X/, and O as in equation (7). Given such draws, unbiased simulators of the 

conditional expectations in (16) may be formed. An MSS estimator that sets 

the resultant simulated score vector to zero is consistent and asymptotically 

normal for fixed S. The first application of this MSS procedure was by Van 

Praag and Hop (1987). They used MSS to estimate a cross section tobit model, 

for which it is feasible to draw error vectors from the correct conditional 

distribution. 

Of course, it is difficult to draw the e~ directly from complex conditional 

distributions such as that given by (7). One method, investigated by Albert and 

Chib (1993), Geweke (1991a,b) and McCulloch and Rossi (1992), is Gibbs 

sampling. The Gibbs sampling procedure is related to the GHK sampling 

scheme described earlier in that it requires recursive draws from univariate 
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normals. Steps (1 ) - (3 )  of the G H K  procedure generate a vector ~/il . . . .  , r//*r 

that is drawn from an importance sampling distribution rather than from the 

true multivariate distribution of ~i conditional on Jir, X~, and 0. However ,  

under mild conditions, the Gibbs sampling procedure produces, asymptotically, 

draws from the correct distribution. To implement the Gibbs procedure,  first 

implement steps (1 ) - (3)  of the G H K  procedure to obtain a starting vector 
, 

• . - , ~ i r ) .  Note that step (3) must be amended so the r/* vector is 

extended out completely to time T. Then perform the following steps: 

(1) Starting with an initial vector (~*~, • • •, ~7ir),* drop rh1* and draw a new r/il 

from the truncated univariate normal distribution such that (~il, * "1"~ i2~  . . . , 

tie3) ~ ~(Jir). Replace the old value of ~il with the new draw for ~7ia- 

(2) Starting with the vector (~/il . . . .  , ~Ti*r) from step (1), drop 7/~2 and draw 

a new ~i2 from the truncated univariate normal distribution such that 

(7/1, r/i2, ~3 ,  • • •,  ~Tir) E "q(J~r). Replace the old value of rh2 with the new draw 

for ~2. 

(3) Continue in this way until a complete new vector (rh~, * . . . .  ,7i ) 

is obtained. 

(4) Return to step (1) and, using the W* vector from step (3) as the new 

initial rt vector, obtain a new draw for rh~ , etc. 

Steps (1 ) - (3)  are called a cycle of the Gibbs sampler. Suppose that steps 

(1 ) - (3 )  are repeated C times, always beginning step (1) with the ~/* vector that 

was obtained from the previous cycle. Gelfand and Smith (1990) showed that, 

under mild conditions, as C--+ ~ the distribution of (~il, • • •,  rhr)* converges to 

the true conditional distribution at a geometric rate. Hajivassiliou and McFad- 

den (1990) showed that using Gibbs sampling to simulate the score expression 

(16) results in an estimator that is consistent and asymptotically normal if 

C/log N-+  w as N---> w. 

The drawback of the Gibbs sampling approach to simulating the score 

expression (16) is that each time the trial parameter  estimate 0 is updated in 

the search for 0Ms s the Gibbs sampler must converge. I am not aware of 

applications in cross-section or panel data settings. (Recall that Hajivassiliou 

and McFadden,  1990 actually implemented 0Ms s based on (15) in their work.) 

An alternative GHK-like approach may also be used to simulate the 

conditional expectations in (16). As both Van Praag and Hop (1987) and 

Keane (1990) noted, weighted functions of the (~ii, • • • * • , r/it ) vectors obtained 

by steps (1 ) - (3)  of the G H K  procedure,  with importance sampling weights of 

the form (10b), give unbiased estimators of the conditional expectations in 

(16). That is, given a set of v e c t o r s  ( ~ i l s ,  • • • ,  ~ir,)* for s = 1, S obtained by 

steps (1)-(3a)  of the G H K  procedure,  one obtains unbiased simulators 

1 s 

= 7  = + " "   l'?Ti' S°Jt Ti' . . . . . .  T~i,T--l,s) 

1 s 

l = 'S s~l {At, 'q,i, + " "  + A.~?i*.} 

x{A,irh*l,+'-" .%ur/,,sj'Oatrhis,...,rl,,r_,,,). (17) 
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Of course, as was discussed above, it is not feasible to construct the exact 

weights when T - 1/> 3. In that case the weights must be simulated as in (12b), 

and the resultant conditional expectation simulators will only be asymptotically 

unbiased in S. An estimator based on substituting the expectation simulators 

(17) into the score expression (16) has not been tried in the panel data case. 

Albert and Chib (1993), Geweke (1991b) and McCulloch and Rossi (1992) 

have observed that Gibbs sampling may be used as a Bayesian inference 

procedure, rather than merely as a computational device for simulating the 

conditional expectations in (16). This procedure has the following steps. 

(1) Given a starting parameter value 0 = (/~0, Y]0) and an initial vector e0, 

use steps (1)-(3) of the Gibbs sampler described above to obtain a draw ~1 

from the distribution of e conditional on Jr, X, /~0, and Y]0- 

(2) Construct 331 = X/~ 0 + ~1. Regress 331 on X, using a seemingly unrelated 

regression framework to account for the cross-equation correlations deter- 

mined by A 0. The resultant point estimates and variance-covariance matrix for 

the /3 vector give the normal distribution of/3 conditional on Jr, X, 3)1, and 

~10. Draw /~1 from this conditional distribution. 

(3) Given 331 and/~1, we may form the residuals from the regression. These 

residuals determine an inverse Wishart distribution of Z conditional on Jr, X, 

331, and /~1. Draw ~1 from this conditional distribution, and form -'~1. 

(4) Return to step (1), using ~1 as the new initial e vector, and obtain a new 

draw ~2 from the distribution of e conditional on Jr, X, /~1, and A l. 

Steps (1)-(3) are a cycle of the Gibbs sampling inference procedure. 

Observe that e, /3, and A have a joint conditional distribution given by X and 

the observed choice sequences Jr. These can be decomposed into conditionals, 

and steps (1)-(3) represent sequential draws from these conditionals. Thus, 

the Gelfand and Smith (1990) result holds. Letting C index cycles, if steps 

(1)-(3) are repeated C times, then as C--~% the distribution of (@, /~c, fl~c) 

for C > C* can be used to integrate the true joint distribution of e,/3, and A by 

Monte Carlo. Both Geweke (1991b) and McCulloch and Rossi (1992) show 

how priors for /3 and A may be incorporated into this framework by simple 

modifications of the normal and inverse Wishart distributions from which /~ 

and Y] are drawn on steps (2)-(3). 

This Gibbs sampling inference procedure has been applied successfully to 

cross-section probit problems by McCulloch and Rossi (1992) and Geweke, 

Keane and Runkle (1992), and to cross-section tobit models by Chib (1993) 

and Geweke (1991b). McCulloch and Rossi (1992) have also successfully 

applied the method in a panel data setting. They estimate a probit model on 

margarine brand choice data, allowing for random effects in the brand 

intercepts and in the price coefficient. 

The simulated EM algorithm, due to Van Praag and Hop (1987) and Ruud 

(1991), is a method for obtaining 0MS s that is closely related to the Gibbs 

sampling inference procedure. The essential difference is that, on steps (2) and 

(3), which correspond to the M or 'maximization' step of the EM algorithm, 
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the point estimates for/3 and A are used rather than taking draws for/3 and A 

from the estimated conditional distributions. With this amendment,  repetition 

of steps (1)-(3) results in convergence of ([3c, Ac )  to a consistent and 

asymptotically ncrmal point estimate as C---~ ~. Note that step (1) of the Gibbs 

inference procedure corresponds to the E or 'expectation' step of the EM 

algorithm. Here, any method for forming the conditional expectations in (16) 

may be substituted for the Gibbs sampler. Applications of the simulated 

EM algorithm to cross-section LDV models can be found in Van Praag and 

Hop (1987) and in Van Praag, Hop and Eggink (1991), who draw directly 

from conditional distributions in the E step. To my knowledge the simulated 

EM algorithm has not yet been applied in a panel data case. 

6. Extensions to more general models 

In deciding which simulation estimation method to use in a particular 

application, it is important to recognize that there are some models that are 

difficult to put in an MSM framework. This point was made by McFadden and 

Ruud (1991). Consider the case of the selection model: 

~Xit~l -t- Uit if d~t = 1, (18) 
wit = (unobserved otherwise, 

For t = 1, T, i = 1, N, where w~t is a continuous variable (1), that is observed 

only if dg t -- 1, X~, is the same vector of exogenous regressors as in (1), y is the 

corresponding coefficient vector, and vst is the error term. Redefine J~t to 

include the wit, giving J/t = {dil, w i l , . . . ,  dit, wit}. Let wit have conditional 

density f(wit I Ji,t 1, X ,  0). Assume that s~ and v~ are jointly normally distribut- 

ed with covariance matrix X. Any exclusion restrictions in the model (i.e., 

variables in X that affect y but not w) are represented by restricting to zero the 

appropriate elements of y. 

As is discussed in Heckman (1979), OLS estimation of (18) using only 

observations where d/~ = 1 produces biased estimates of/3 when e~ and v~ are 

correlated. Thus, equations (1), (4), and (18) must be estimated jointly. The 

log-likelihood function for the selection model given by (1), (4), and (18) is 

£g(0) = ~ {~v  lnPr°b(di t=O[Ji ' t - l 'Xi 'O)  
i = 1  t i 

+ ~ In Prob(d~t = l I J,,,_l, w. ,  Xz, O)f(w~t I J~., 1, Xi, 0)} ,  
t ~ E  i 

where U i is the set of time periods for which dit= 0 and E i is the set of time 

periods for which d~t = 1. 
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The score for this likelihood may be written as 

V°Sf(0)=i=~ ~ {~v, { W ° ' [ ( 1 - d i ' ) - ,  . Pr°b(di~=0lJ/,~ 1,AS, 0)] 

where 

1 
+ W~,[d~ - Prob(d~t = 11Ji,,_l, As, 0)]} 

+ Z {W~,[(1 - d ~ , ) -  Prob(d~ = 0[J~,, 1, w~, AS, 0)] 
tEE i 

+ W~,[di, - Prob(di~ = 1 [ Ji,t 1, wi,, AS, 0)] 

+ V 0 In f(wi, [ J~,,-1, As, 0)}} ,  (19a) 

W~i ~, = 7 o in Prob(d~, = 0 1J~,,- 1, AS, 0 ) ,  

W/1, = V 0 In Prob(d~, = 1 ] J~,,- 1, AS, 0 ) ,  

W~ = V 0 In Prob(d~, = 0 1J~,,- l, w~, AS, 0 ) ,  

Wi 3, = V 0 In Prob(d~, = 1 [ Ji.,_,, w~, AS, 0 ) .  (19b) 

Notice that (19a) is not interpretable as the FOCs for an MOM estimator 

because the objects [ ( 1 -  dit ) -  Prob(dit = 0[J/,~ 1, wi,, xi, 0)] and [di~- 
Prob(di, = 1 [ Ji,,-1, wi,, AS, 0)] are not mean zero residuals in the population 

for which t E E~ due to the correlation between v/t and ei,. Furthermore, the 

expression V 0 In f(wit 1.~,~ i, AS, O) can be written in terms of objects [w;~ - 

Xi~ ~ - E(vi, I Ji.,_l, Xi, 0)] times weights, but these objects also have nonzero 

expectation in the population for which t E E i because of the correlation 

between v~t and e~t. Thus (19a)-(19b) cannot be used to construct an MSM 

estimator. If the score as given by (19a)-(19b) is simulated using unbiased 

simulators for the choice probabilities, including those in the numerator and 

denominator of the W{~ for j =  0, 3, then it is an MSS situation, where 

consistency and asymptotic normality are achieved only if S/X/N--~ 0o as N---~ oo 

because of the bias created by simulating the denominators of the W{,. 

McFadden and Ruud (1991) discussed a bias correction technique that can 

be used to put a large class of models, including the selection model, into an 

MSM framework. The score contribution of person i at t is given by 

V02LP~,(0 ) = (1 - di,)V o In Prob(d,, = O I J i,,_1, AS, O) 

+ di,V o In Prob(di, = 1 [ Ji.,- 1, wi,, Xi, 0 ) 

x f ( w i t l J i . , _ l , X i ,  0 ) .  (20) 
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The expected value of this score contribution, conditional on X i and J/.t-1, is 

E[Vo~.~it( O ) [ Ji.,- l, Xi] 

= Prob(dit = 0 [ J i,,_i, X i, O)V 0 In Prob(d~t = O lJi,t_l, X i, O) 

+ E[d;,V 0 In Prob(dit = 1 I J i,,-1, wit, X~, O) 

× f(witlJi , t_l ,Xi,  O)lJi , t_l ,Xi].  (21) 

Although the expected value of the simulated score contribution at the true 

parameter  vector is not zero due to denominator  bias in the simulation, the 

difference between the simulated score contribution and the expected value of 

the simulated score contribution conditional on Ji,t-1 and X~ will have 

expectation zero at the true parameter  vector. Thus, by subtracting (21) from 

(20), to obtain 

Vo~ , - E[Vo~t( O ) I J,,,_I, Xi] 

= [(1 -- dit ) - Prob(d~, = O lJi,t_,, Si,  0)] 

× V 0 In Prob(d .  = 01L,,_I, x/, O) 

+ {d;y~ In Prob(du = 11 L,,-I, wit, Xi, O)f(w,, l J/,, 1, Xi, O) 

- E[di,V 0 In Prob(d .  = 11 w,,, s .  O) 

X f(wit  [ J / . t -1,  Si ,  0 ) I  J / t - l ,  Xi] } ,  (22)  

an expression is obtained that can be used to construct an MSM estimator. 

Both the term [(1 - d i t  ) -Prob(dit  = O]Ji,t_ 1, Xi, O) and the term in the braces 

{.} are mean zero residuals. The orthogonal weight on the former term is 

V 0 ln Prob(dit = 0]Ji,t_l, X~, 0) while the weight on the latter term is simply 

one. Thus, substitution of unbiased simulators for all the probabilities in (22) 

gives an MSM estimator that is consistent and asymptotically normal for fixed 

simulation size. Of course, the transition probabilities in (22) are difficult 

objects to simulate. Using the G H K  method described in Section 5.2 to 

simulate these probabilities would again produce an MSM estimator that is 

consistent and asymptotically normal if S/VN---~ ~ as N - ~  ~. 

Observe that in (22) the object E[ditV 0 In Prob(dit[Ji,t_l, wit , Xi, 

)f(w~t [ J~,t-1, X/, 0)[ J~t-1, Xi] must be simulated. This situation is particularly 

difficult because, to take the outer expectation, wit must be drawn from the 

f(wit [Ji.t-1, Xi, O) density, and then the term V 0 lnProb(dit [Ji,t-1, wit, Xi, O) 
must be simulated conditional on each wit draw. If the first term in braces, the 

term V 0 In Prob(dit [ J~,t-1, wit, Xi, O) that involves the observed wit , is simu- 

lated using S draws, then, in order for the difference in braces to have mean 

zero, the derivatives of the log-probabilities in the second term must also be 

simulated using S draws per each wit draw. 

Keane and Moffitt (1991) implemented the MSM estimator based on (22) in 
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a cross-section choice problem-the choice by low-income single mothers of 

welfare program participation and work status - where it is feasible to construct 

unbiased probability simulators. Despite the fact that the MSM estimator is 

consistent and asymptotically normal for fixed S in this problem, Keane and 

Moffitt found that a very large number of draws is necessary for the estimator 

to produce reasonable results. This stems from the difficulty of simulating the 

expectation over wage draws described above. Thus, MSM estimation based on 

(22) may not be promising in the panel data case. Keane and Moffitt (1991) 

also reported results based on a direct simulation of the score as expressed in 

(19). This MSS estimator performed at least as well as the MSM estimator, and 

given that it is much easier to program, it may be the preferred course for 

panel data selection models. As discussed by McFadden and Ruud (1991), it is 

also rather difficult to put the tobit model in an MSM form. But Hajivassiliou 

and McFadden (1990) reported good results using MSS based on the GHK 

method to estimate panel data tobit models in which the dependent variable is 

the total external debt obligation of a country in arrears. 

7. Estimating the serial correlation structure in employment and wage data 

7.1. Results using NLS employment data 

In this section, I use the MSM estimator obtained by substituting the transition 

probability simulator (12a)-(12b) into the MSM first-order condition (13)-(14) 

to estimate panel data probit models that relax the equicorrelation assumption, 

using employment data from the national longitudinal survey of young men 

(NLS). The goal is to determine whether the simple random effects model with 

equicorrelated errors can adequately capture the pattern of temporal depen- 

dence in these data. As I discussed in Section 3, the random effects model has 

been the most popular specification for panel data LDV models. Prior to the 

advent of simulation-based inference, it was not computationaUy feasible to 

relax the equicorrelation assumption. Thus, the results in this section provide 

the first test of the equicorrelation assumption for labor market data. 

The NLS is a U.S. sample of 5225 males aged 14-24 selected in 1966 and 

interviewed in 12 of the 16 years from 1966 to 1981. Data were collected on 

employment status and other sociodemographic characteristics. The sample 

used here is exactly that employed by Keane, Moffitt and Runkle (1988). The 

data screens and overall properties of the data are discussed there. Following 

data screens, the analysis sample contains 2219 males with a total of 11 886 

person-year observations. The regressors used in the employment equation are 

a constant (CONST), the national unemployment rate (U-RATE), a time 

trend (TREND), years of school completed (EDUC), years of labor force 

experience (EXPER), the square of experience (EXPER2), a white dummy 

(WHITE), a dummy for wife present in the home (WIFE), and number of 

children (KIDS). 
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Estimation results are reported in Table 1. The first column gives constant 

cross-section estimates of the regressor coefficients obtained by ML. Columns 

(2)-(6) contain estimates when various patterns of serial correlation are 

assumed. These estimates are starred if they differ significantly from the 

Table i 

Estimates of probit employment equations on NLS young men 

Parameter /3 ML /3 ML-quadrature /3 MSM 

4 points 16 points Random RE + AR(1) RE + MA(1) 

effects error error 

(1) (2) (3) (4) (5) (6) 

p - 0.3792 0.3509 0.3577 0.3298 0.3377 

(0.0203) (0.0192) (0.0248) (0.0294) (0.0263) 

AR(1) . . . .  0.1901 - 

(0.0437) 

MA(1) . . . . .  0.1998 

(0.0685) 

CONST 0.4644 0.5454 0.5713 0.4895 0.3934 0.5411 

(0.1161) (0.1230) (0.1283) (0.1551) (0.1576) (0.1545) 

U-RATE -0.0740 -0.0678 -0.0697 -0.0647 -0.0590 -0.0664 

(0.0135) (0.0122) (0.0124) (0.0157) (0.0160) (0.0162) 

TREND -0.0121 -0.0091 -0.0124 -0.0185 -0.0205 -0.0164 

(0.0059) (0.0062) (0.0063) (0.0080) (0.0082) (0.0081) 

EDUC 0.0664 0.0599 0.0593 0.0680 0.0720 0.0634 

(0.0061) (0.0070) (0.0078) (0.0106) (0.0107) (0.0105) 

EXPER 0.0176 0.0076 0.0113 0.0094 0.0107 0.0060 

(0.0098) (0.0097) (0.0099) (0.0118) (0.0123) (0.0121) 

EXPER 2 -0.1521 -0.1260 -0.1280 -0.1140 -0.1120 -0.1040 

+ 100 (0.0414) (0.0400) (0.0400) (0.0470) (0.0490) (0.0490) 

WHITE 0.2022 0.2355 0.2453 0.2205 0.2101 0.2230 

(0.0503) (0.0639) (0.0646) (0.0637) (0.0637) (0.0627) 

WIFE 0.4548 0.3271"** 0.3394*** 0.3218"** 0.3316"* 0.3332*** 

(0.0352) (0.0363) (0.0365) (0.0448) (0.0457) (0.0453) 

KIDS 0.0716 0.0726 0.0712 0.0741 0.0713 0.0708 

(0.0138) (0.0147) (0.0150) (0.0195) (0.0196) (0.0195) 

3'(1) 0.0000 0.3792 0.3509 0.3577 0.4572 0.4520 

3,(2) 0.0000 0.3792 0.3509 0.3577 0.3540 0.3377 

7(3) 0.0000 0.3792 0.3509 0.3577 0.3344 0.3377 

Log-likelihood -3611 -3419 -3421 -3460 -3447 -3448 

function 

X2(9) - 24.68** 16.77" 15.16" 16.57" 15.83" 

CPU minutes 1.76 2.87 5.19 11.55 12.67 12.59 

Note: Standard errors of the parameter estimates are in parentheses. Three stars (***) indicate 

that a parameter differs from the ML no-effects estimate at the 1% significance level. Two stars 

(**) indicate the 5% level, and one star(*) indicates the 10% level. The X2(9) statistic is for the 

null hypothesis that the regressor coefficients equal the ML no-effects estimates (the 5% critical 

value is 16.92 and the 10% critical value is 14.68). The data set used is the NLS survey of young 

men. There are observations on 2219 individuals, with a total of 11 886 person-year observations. 

The MSM estimates were obtained using 10 draws for the GHK simulator. Log-likelihood function 

values for the MSM estimators are simulated. 
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consistent ML estimates in column (1). A X2(9) test for the null that all the 

regressor coefficients equal the column (1) values is also reported. 

Random effects estimates using approximate-ML via 4- and 16-point quadra- 

ture are reported in columns (2) and (3). There is a non-negligible change in 

the parameter estimates in moving from 4- to 16-point quadrature, as indicated 

by the fact that, for 4-point quadrature, the null that the regressor coefficients 

equal the cross-section estimates is rejected at the 5 percent level, while with 

16-point quadrature the null is only rejected at the 10 percent level. Thus, I 

will concentrate on the 16-point quadrature results. Random effects estimates 

obtained via MSM are reported in column (4). They were obtained using 

S = 10. The MSM estimates of both the parameters and their standard errors 

are quite close to the 16-point ML-quadrature estimates, and the null that the 

regressor coefficients equal the consistent cross-section estimates is again 

rejected at the 10 percent but not the 5 percent level. 

If the random effects assumption is correct, then both the cross-section and 

random effects estimates are consistent, and we would expect no significant 

difference in the regressor coefficients obtained via random effects and no 

effects estimators. The effect of the random effects estimator should be simply 

to adjust standard errors to account fo r  serial correlation. In going from 

column (1) to columns (2), (3), or (4) there is a general rise in the estimated 

standard errors. However, one of the estimated coefficients, that on the WIFE 

variable, changes substantially. The ML-quadrature and MSM estimates both 

show a drop of about three standard errors for this coefficient. 

Since random effects estimates may be inconsistent in the equicorrelation 

assumption fails and because we are interested in discovering whether the 

actual pattern of temporal dependence in the data is more complex, I relax the 

equicorrelation assumption in columns (5) and (6). Here, estimates are 

obtained which allow for AR(1) and MA(1) error components in addition to 

the random effects. Since the individuals in the data are observed for up to 12 

periods, these estimates require the evaluation of 12-variate integrals. Thus, 

the estimation is not feasible by ML and can only be performed using the MSM 

estimator. 

Turning to the MSM results, first note that the time requirements for the 

MSM estimations are quite modest - the  timings being about 12.6 cpu minutes 

on an IBM 3083 (compared to 5.2 for 16-point quadrature on the random 

effects model). Second, note that the equicorrelation assumption does fail. In 

column (5), the estimated AR(1) parameter is 0.1901 with a t-statistic of 4.4. 

In column (6), the estimated MA(I) parameter is 0.1998 with a t-statistic of 

2.9. The y(j) reported in the table are the j-th lagged autocorrelations implied 

by the estimated covariance parameters. The first lagged autocorrelation is 

about 30 Percent larger for the model with AR(1) components than it is for the 

models with random effects alone (0.46 vs. 0.35). Thus, the random effects 

model would overestimate the probability of a transition from employment to 

unemployment because it underestimates short-run persistence. 

Although these results show a significant departure from equicorrelation, 
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relaxing the equicorrelation assumption has little effect on the parameter 

estimates. Furthermore, the 10- to ll-point improvements in the simulated 

log-likelihood with inclusion of MA(1) or AR(1) components is not particular- 

ly great. Thus, it appears that false imposition of equicorrelation does not lead 

to substantial parameter bias or deterioration of fit in models of male 

employment patterns. 

7.2. Temporal dependence in wages and the movement of real wages over the 

business cycle 

In this section, I consider an application of the MSS estimator to nonrandom- 

sample selection models of the type described by Heckman (1979). In these 

models, a probit is estimated jointly with a continuous dependent-variable 

equation, where the dependent variable is only observed for the chosen state. 

Because of the truncation of the error term in the equation for the continuous 

dependent variable, OLS estimates of that equation are biased, and the 

residuals from the OLS regression produce biased estimates of the error 

structure for the continuous variable. Thus, joint estimation is necessary to 

obtain consistent estimates. As I described in Section 6, it is difficult to 

estimate such models by MSM. Instead, I implement an MSS estimator by 

simulating the score for the selection model as written in (19). 

The particular application considered here is the estimation of selection 

bias-adjusted wage equations. Keane, Moffitt and Runkle (1988) used selection 

models with random effects in order to estimate the cyclical behavior of real 

wages in the NLS. Their estimates controlled for the cross-correlation of 

permanent and transitory error components in wage and employment equa- 

tions. By controlling for these cross-correlations, they hoped to control for 

systematic movements of workers with high or low unobserved wage com- 

ponents in and out of the labor force over the business cycle. By so doing, they 

could obtain estimates of cyclical real wage movement holding labor force 

quality constant. Keane, Moffitt and Runkle found that real wage movements 

were procyclically biased by quality variation, with high-wage workers the most 

likely to become unemployed in a recession. It is possible that the Keane, 

Moffitt and Runkle results may be biased due to false imposition of the 

equicorrelation assumption. Thus, it is important to examine robustness of 

their results to the specification of the error structure. 

The NLS data used in this analysis were already described in Section 7.1 and 

used in the employment equation estimates presented there. The only new 

variable is the wage, which is the hourly straight time real wage (deflated by 

the consumer price index) at the interview date. The log wage is the dependent 

variable. 

Estimation results are reported in Table 2. The first column gives consistent 

cross-section estimates obtained by ML. Columns (2)-(6) contain estimates 

obtained assuming various patterns of serial correlation. These estimates are 

starred if they differ significantly from the consistent estimates in column (1). 
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Table 2 

Estimates of selection model on NLS young men 

Parameter /3 ML /3 ML-quadrature /3 MSM 

"4 points 9 points Random RE + AR(1) RE + MA(1) 

effects error error 

(1) (2) (3) (4) (5) (6) 

Wage equa~on 

U-RATE -0.0039 -0.0063 -0.0055 -0.0057 -0.0095** -0.0066 

0.0034 (0.0023) (0.0023) (0.0027) (0.0026) (0.0028) 

TIME 0.0073 0.0125"** 0.0105"* 0.0119"* 0.0124"* 0.0119" 

(0.0015) (0.0013) (0.0015) (0,0021) (0.0021) (0.0021) 

EDUC 0.0606 0.0520*** 0.0487*** 0.0500*** 0.0529** 0.0516"** 

(0.0016) (0.0018) (0.0023) (0.0032) (0.0033) (0.0032) 

EXPER 0.0263 0.0242 0.0260 0.0242 0.0276 0.0256 

(0.0024) (0.0015) (0.0016) (0.0027) (0.0030) (0.0028) 

EXPER 2 -0.0736 -0.0780 -0.0750 -0.0720 -0.0870 -0.0780 

+ 100 (0.0108) (0.0060) (0.0050) (0.0100) (0.0130) (0.0110) 

WHITE 0.1923 0.1767 0.1829 0.1936 0.1934 0.1932 

(0.0134) (0.0150) (0.0236) (0.0235) (0.0234) (0.0231) 

CONSTANT 0.0494 0.0967* 0.1510"** 0.1234" 0.0923 0.1054 

(0.0297) (0.0284) (0.0371) (0.0450) (0.0459) (0.0450) 

Employment equadon: 

U-RATE -0.0646 -0.0699 -0.0693 -0.0648 -0.0589 -0.0570 

(0.0133) (0.0131) (0.0126) (0.0157) (0.0160) (0.0160) 

TIME -0.0126 -0.0118 -0.0169 -0.0200 -0.0208 -0.0226 

(0.0058) (0.0058) (0.0062) (0.0081) (0.0081) (0.0082) 

EDUC 0.0610 0.0578 0.0655 0.0664 0.0645 0.0707 

(0.0060) (0.0058) (0.0076) (0.0106) (0.0104) (0.0104) 

EXPER 0.0014 0.0067 0.0084 0.0017 -0.0020 0.0022 

(0.0095) (0.0094) (0.0099) (0.0120) (0.0122) (0.0122) 

EXPER 2 -0.1034 -0.1020 -0.1130 -0.0920 -0.0740 -0.0860 

+ 100 (0.0401) (0.0390) (0.0400) (0.0480) (0.0500) (0.0490) 

WHITE 0.1961 0.2148 0.2493 0.2345 0.2229 0.2223 

(0.0492) (0.0500) (0.0637) (0.0635) (0.0632) (0.0635) 

WIFE 0.4597 0.3393** 0.3770** 0.3550** 0.3664** 0.3498** 

(0.0323) (0.0341) (0.0359) (0.0446) (0.0449) (0.0448) 

KIDS 0.1151 0.0621'** 0.0895* 0.0930 0.0869 0.0942 

(0.0127) (0.0131) (0.0142) (0.0198) (0.0199) (0.0199) 

CONSTANT 0.4922 0.6446 0.4936 0.5147 0.5083 0.4146 

(0.1142) (0.1117) (0.1274) (0.1554) (0.1551) (0.1536) 

Covariance parameters: 

Pwage 

Pemployment 

aR(1)w.g ° 

AR(1)emp,oy  . . . .  -- 

MA(1)wag e 

0.6073 0.5995 0.5449 0.4547 0.4807 

(0.0069) (0.0075) (0.0131) (0.0162) (0.0132) 

0.2364 0.3275 0.3548 0.3090 0.3285 

(0.0136) (0.0182) (0.0243) (0.0266) (0.0257) 

- - - 0.4803 - 

(0.0165) 

- - - 0.2538 - 

(0.0442) 

- - - 0.2426 

(0.0851) 
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Table 2 (Continued) 

Parameter ~ M L  ~ML-quadrature ~MSM 

4points  9 points Random RE+AR(1)  RE+MA(1)  

effects error error 

(1) (2) (3) (4) (5) (6) 

MA(1)employ . . . .  - -  . . . .  0 . 2 0 0 3  

(0.0564) 

Correlation of - 0.4330 -0.2798 -0.2002 -0.1859 -0.2075 

permanent parts (0.0132) (0.0213) (0.0434) (0.0508) (0.0466) 

Correlation of -0.6947 -0.2651 -0.3339 -0.3491 -0.3861 -0.3944 

transitory parts (0.0228) (0.0775) (0.0654) (0.0636) (0.0566) (0.0609) 

~rw.g e 0.4301 0.4162 0.4109 0.4055 0.4049 0.4052 

(0.0031) (0.0027) (0.0025) (0.0030) (0.0030) (0.0031) 

Log-likelihood -8984 -6312 -6216 -6321 -6004 -6244 

function 

X2(16) - 362** 164"* 75** 78** 72** 

CPU minutes 2.09 12.94 40.09 42.68 47.38 47.38 

Note: Standard errors of the parameter estimates are in parentheses. Three stars (***) indicate 

that a parameter differs from the ML no-effects estimate at the 1% significance level. Two stars 

(**) indicate the 5% level,  and one star (*) indicates the 10% level. The Xz(16) statistic is for the 

null hypothesis  that the regressor coefficients equal the ML no-effects estimates. The 5% critical 

value is 26.30. The data set used is the NLS survey of young men. There are observations on 2219 

individuals, with a total of 11 886 person-year  observations. The MSS estimates were obtained 

using 10 draws for the G H K  simulator. Log-likelihood function values for the MSS estimators are 

simulated. 

A X 2 test for the null that all the regressor coefficients equal the column (1) 

values is also reported. 

Random effects estimates via approximate ML with 4 and 9 quadrature 

points are reported in columns (2) and (3). Clearly, there is very strong 

persistence in the wage equation errors, as 60 percent of the wage error 

variance is accounted for by random effects. Observe that the ML-quadrature 

estimates are quite far from the cross-section estimates. Particularly noticeable 

is the coefficient on EDUC in the wage equation, which is from 4.8 to 5.2 

standard errors below the cross-section estimate. The X 2 tests overwhelmingly 

reject the null that the random effects estimates equal the consistent cross- 

section estimates. 

Notice that 4- and 9-point quadratures produce very different estimates of 

the cross-correlation of random effects. With 4 points, this is estimated as 

0.4330, and with 9 points, it is estimated as -0.2798, both estimates being 

highly significant. The 4-point results are what Keane, Moffitt and Runkle 

reported. Since use of roughly 4 quadrature points is typical in the literature, 

these results demonstrate the need to use larger numbers of quadrature points 

in applied work. Increasing the number of points to 12 did not produce much 

change in results (the likelihood changed only from -6216 to -6206).  Use of 

12 points is very expensive for this model, as it required 88 cpu minutes. 

These random effects results overturn the Keane, Moffitt and Runkle finding 
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that permanent wage and employment error components are positively corre- 

lated. However, it should be noted that Keane, Moffitt and Runkle considered 

their preferred specification to be a semiparametric random effects model 

estimated using the technique of Heckman and Singer (1982), and this 

technique did choose the likelihood peak which has a negative cross-correlation 

of the random effects. Such a negative correlation, indicating that those with 

permanently high wage errors supply less labor, is not surprising since it can be 

explained by income effects. More surprising is the negative correlation 

between the transitory error components, implying that those with the 

temporarily high wages supply less labor. As was noted by Keane, Moffitt and 

Runkle, this appears difficult to reconcile with intertemporal substitution 

theories of the business cycle. 

The MSS estimates of the random effects model are reported in column (4). 

These were obtained using the GHK simulator with 10 draws to simulate the 

transition probabilities. The regressor coefficient estimates are all quite close to 

the 9-point ML-quadrature estimates. Larger standard errors for the MSS 

estimates account for the smaller (but still highly significant) X 2 test for the null 

of equality with the no-effects estimates (75 vs. 164). Column (5) contains MSS 

estimates of a model that allows for random effects plus AR(1) error 

components. When the AR(1) components are included, the AR(1) parameter 

in the wage equation is a substantial 0.4803 (with standard error 0.0165) and 

the fraction of the wage error variance explained by the individual effects drops 

to 45 percent. In the employment equation, the AR(1) parameter is also highly 

significant (0.2538 with standard error 0.0442). Clearly, the equicorrelation 

assumption is overwhelmingly rejected by the data. The first four lagged 

autocorrelations of the wage equation error implied by the MSS estimates in 

column (5) are 0.72, 0.58, 0.52, 0 .48-as  compared to the autocorrelation of 

0.60 at all lags implied by the random effects model. The first four lagged 

autocorrelations of the employment equation error are 0.48, 0.35, 0.32, and 

0.31 as compared to the 0.3275 at all lags implied by the random effects model. 

Note, also, that the computational cost of the MSM estimator that allows for 

this more complex error pattern (47.38 cpu minutes on an IBM 3083) is only 

slightly greater than the cost of ML-quadrature estimation of the random 

effects model (40.49 cpu minutes). 

In the model with a moving-average error component (column (6)), the 

MA(1) parameter in the wage equation is 0.2426 (with standard error 0.0851) 

and that in the employment equation is 0.2003 (with standard error 0.0564). 

Based on the simulated log-likelihood values, this model does not seem to fit as 

well as the model with AR(1) error components. 

Although the equicorrelation assumption is rejected by the data, the 

parameter estimates obtained via MSS change only slightly when AR(1) and 

MA(1) error components are included in the model. Thus, the divergence of 

random effects estimates from the consistent no-effects estimates does not 

appear to result from the false imposition of the equicorrelation assumption in 

this case. In particular, the most likely explanation for the substantial drop in 

the education coefficient in going from the model with no effects to the models 
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with random effects is that the individual effect in the wage equation is 

correlated with the education variable. That is, the individual effect is actually 

a fixed effect. 

I now turn to the issue of the cyclicality of the real wage. All three MSS 

models give estimates of the cross-correlations of the random effects in the 

range from -0.19 to -0.21, and estimates of the cross-correlations of the time 

varying error components in the range from -0.35 to -0.39. Since negative 

correlations imply that high-wage workers are most likely to leave work in a 

recession, these results imply a degree of procyclical bias in aggregate wage 

measures which is considerably stronger than that found by Keane, Moffitt and 

Runkle, who report a positive correlation of the permanent components and a 

-0.33 correlation for the transitory components (column (4)). Since Keane, 

Moffitt and Runkle's main conclusion was that aggregate wage measures are 

procyclically biased, this can be viewed as a strengthening of that result. 

The estimated unemployment rate coefficients are -0.0039 for the no-effects 

model, -0.0055 for the random effects model estimated by 9-point quadrature, 

-0.0057 for the random effects model estimated by MSS, -0.0095 for the 

random effects plus AR(1) error model, and -0.0066 for the random effects 

plus MA(1) error model. These estimates imply that a one-percentage-point 

increase in the unemployment rate corresponds to a fall in the real wage of 

between 0.4 percent and 1 percent. Thus, Keane, Moffitt and Runkle's finding 

that movements in the real wage are weakly procyclical appears to be robust to 

relaxation for the equicorrelation assumption. 

8. Conclusion 

The application of simulation estimation techniques to panel data LDV models 

is clearly more difficult than the application of these methods to cross-section 

problems. Yet the recent development of highly accurate GHK simulators for 

transition and choice probabilities has made simulation estimation in the panel 

data LDV context feasible. Three classical methods, an MSM estimator based 

on using the GHK method to simulate transition probabilities, an MSS 

estimator based on using the GHK method to simulate the score and an SML 

estimator based on using GHK to simulate choice probabilities, have been 

successfully applied in the literature. As the empirical examples in Section 7 

show, these methods allow one to estimate panel data LDV models with 

complex error structures involving random effects and ARMA errors in times 

similar to those necessary for estimation of simple random effects models by 

quadrature. A Bayesian method based on Gibbs sampling has also been 

successfully applied. An important avenue for future research is to further 

explore the performance of methods based on conditional simulation of the 

latent variables of the LDV model, such as the simulated EM and Gibbs 

sampling approaches, in the panel data setting, and to compare the per- 

formance of these methods to that of MSM, MSS and SML. 
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