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CURSED BELIEFS WITH COMMON-VALUE PUBLIC GOODS†

CALEB A. COX*

ABSTRACT. I show how improper conditioning of beliefs can lead to under-

contribution in public goods environments with interdependent values. I

consider a simple model of a binary, excludable public good. In equilibrium,

provision of the public good is good news about its value. Naïve players

who condition expectations only on their private information contribute too

little, despite the absence of free-riding incentives. In a laboratory experi-

ment, subjects indeed under-contribute relative to equilibrium. Using mod-

ified games with different belief conditioning effects, I verify that under-

contribution is due to improper belief conditioning. I find little evidence of

learning over multiple rounds of play.

Keywords: Public goods, experiments, cursed equilibrium, game theory

I INTRODUCTION

The under-provision of public goods is a central problem in economics. Re-

search on public goods has primarily focused on incentives to free-ride and

various mechanisms for overcoming these incentives. In this paper, I demon-

strate another force that may drive under-contribution and under-provision,

even in the absence of free-riding. In public goods environments with common

or interdependent values, individuals may fail to correctly condition their be-

liefs about the uncertain value of a public good. Many public goods in the

real world may have substantial common-value components, such as uncer-

tain quality. Real-world public goods such as pollution abatement, national
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defense, police protection, and flood control may be of uncertain value, and

information about the value may be decentralized. Individual contributors to

such public goods should condition their beliefs about value on not only their

private information, but also the information implicit in the strategic contri-

bution choices of others. Failure to do so may lead to incorrect expectations

about the value of the public good.

To isolate the belief conditioning effect of interest, I consider a simple case

of a binary, excludable public good (or club good), such as a toll road, private

park, or gated community. Consider, for example, the choice of whether to

contribute to a new recreation center of uncertain quality. If the use of the

center is not tied to contribution, there is an incentive to free-ride. Instead,

suppose that contribution takes the form of purchasing a membership, with

non-members excluded. In order for the center to be viable, some minimum

threshold of contributing members must be reached, otherwise contributions

are refunded. Each individual privately observes a signal correlated with the

quality or value of the center, and then all individuals simultaneously de-

cide whether to purchase memberships. Any given individual should consider

two possible cases: the minimum threshold of members is either reached or

it is not. If the threshold is not reached, her decision to contribute is incon-

sequential, as her money will be refunded. Thus, she should condition her

expectations on the event that the threshold is reached. However, this event

contains useful information about the quality of the center, since in equilib-

rium it implies that other contributors observed relatively favorable signals

of quality. Thus, an individual who correctly conditions her beliefs on this

event should expect the quality to be higher than she would conditional on

her private signal alone. Failure to properly condition beliefs would lead to

under-contribution and under-provision relative to equilibrium.

Beyond the public goods context, similar effects could arise with joint ven-

tures in which several potential partners have noisy information about the

profitability of the venture and must choose whether to participate. Naïve

beliefs that fail to account for the information content of others’ behavior in

these contexts may cause potential partners to under-value the joint venture,

thus leading to coordination failure. Thus, the results of this paper may yield
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insights into a number of applications within industrial organization as well

as public economics.

I develop a simple model of excludable public goods with interdependent

values and compare the predictions of Bayesian Nash equilibrium with naïve

strategies, formalized by the cursed equilibrium model of Eyster and Rabin

(2005). In their model, agents believe that with some probability, others ig-

nore their private information and choose an action according to the (equi-

librium) ex ante distribution of actions. Thus, each agent’s belief about the

distribution of actions chosen by others is correct, but agents do not fully ac-

count for the link between others’ actions and their private information. I

show that cursed beliefs lead to under-contribution relative to Bayesian Nash

equilibrium, including the possibility of zero contribution for some parameter

values.

Testing these predictions in the field would be problematic, since individ-

uals’ private information is unobservable. Therefore, I design a laboratory

experiment to test whether improper conditioning of beliefs leads to under-

contribution. The main treatment (the common-value threshold game) has

5 players in a group, with a threshold of 4 contributors required for provi-

sion. I vary the cost of contribution to determine whether contribution levels

conform to Bayesian Nash equilibrium or naïve strategies for high, low, and

intermediate costs. Rather than closely mimicking any particular real-world

application, the experiment is designed to create a stark separation between

the Bayesian Nash equilibrium and (fully) cursed equilibrium predictions to

examine the degree to which subjects (fail to) properly condition beliefs in

making contribution choices.

Improper belief conditioning has been previously observed in other con-

texts, most famously in the winner’s curse in common-value auctions. In

common-value auctions, bidders should update their belief about value down-

ward conditional on winning, while in my context, contributors should update

their belief about value upward conditional on provision. In order to compare

the results of the main treatment to the more well-known winner’s curse in

common-value auctions, I consider an “anti-threshold” game with the same

environment, except that the public good is provided to contributors if and
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only if no more than 2 players contribute. The anti-threshold game is analo-

gous to a simple common-value, two-unit auction with restricted bids and no

trade in the case of excess demand. This treatment allows for comparison of

behavioral responses to favorable and unfavorable belief conditioning effects,

as well as comparison of how subjects learn to account for these effects over

several rounds of play.

Sources of error other than improper conditioning of beliefs might drive

behavior away from equilibrium. To isolate the effect of belief conditioning,

I consider a treatment with uncertain private values. Each subject has an

uncertain private value for the excludable public good and observes a signal

correlated with this value. Unlike the common-value case, an individual sub-

ject’s value is uncorrelated with others players’ signals, and thus no subject

has information about the value of the public good to others. Play proceeds

just as in the main treatment. In this case, the symmetric Bayesian Nash

equilibrium strategy precisely corresponds to the naïve (or fully-cursed) strat-

egy from the common-value threshold game. Thus, if subjects are naïve, there

should be no difference in behavior between these treatments, while correct

conditioning of beliefs should lead to considerably higher contribution in the

common-value setting than the uncertain private-values setting.

The experimental results show substantial under-contribution and under-

provision in the main treatment. Despite sharp differences in the Bayesian

Nash equilibria of the games with favorable, unfavorable, and no belief con-

ditioning effects, actual behavior is quite similar between games, and in fact

indistinguishable between the main treatment and the uncertain private val-

ues treatment. Furthermore, very little learning is observed. Thus, the re-

sults suggest that subjects completely fail to condition their beliefs in the

proper direction, leading to under-contribution. While fully-cursed equilib-

rium succeeds in predicting this similarity between treatments, it does not

predict contribution levels very accurately.

The paper is organized as follows. Section II explores the related litera-

ture. Section III describes the model and theoretical predictions. Section IV

details the experimental procedures. Section V shows the results. Section VI
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concludes with a discussion of the key findings. Appendices A and B contain

proofs and experimental instructions, respectively.

II RELATED LITERATURE

Many previous experiments consider non-excludable, step-level public goods

and provision points, including Van de Kragt et al. (1983), Dawes et al. (1986),

Isaac et al. (1989), Marks and Croson (1999), and Croson and Marks (2000).

Provision point or threshold mechanisms have been generally successful in

such environments under complete information or private values. Several

experiments, such as Croson et al. (2006), Kocher et al. (2005), Swope (2002),

and Bchir and Willinger (2013) find that excludability tends to increase contri-

butions in a variety of linear and step-level public goods environments, while

Czap et al. (2010) find higher contributions to non-excludable projects. Gail-

mard and Palfrey (2005) compare alternative cost-sharing mechanisms for ex-

cludable public goods and find that a voluntary cost-sharing mechanism with

proportional rebates performs best.

To my knowledge, the only prior consideration of interdependent-value

public goods (excludable or non-excludable) is in the literature on leading by

example, beginning with Hermalin (1998), and expanded to charitable giving

by Vesterlund (2003), Potters et al. (2005), Andreoni (2006), and Potters et al.

(2007). Unlike my symmetric, simultaneous-move setting, this literature ex-

amines informed and uninformed players moving sequentially, which is likely

to make the information content of the leader’s action relatively transparent

compared to simultaneous-move games. Indeed, uninformed second-movers

do respond the the information contained in the contribution choices of in-

formed first-movers in this environment.

This paper contributes to the public goods literature by showing how naïve

beliefs can lead to under-contribution in public goods environments with com-

mon or interdependent values, even when free-riding incentives are absent.

This effect is conceptually related the winner’s curse in common-value auc-

tions (Thaler 1988, Kagel 1995, Kagel and Levin 2002). In these environ-

ments, the bidder with the highest value estimate tends to win the auction,
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but because her estimate was the highest, it tends to be higher than the true

value. In Bayesian Nash equilibrium, rational agents account for this ad-

verse selection effect and condition their value expectations on winning the

auction. However, in many experiments such as Kagel and Levin (1986) and

Levin et al. (1996), subjects fail to properly condition beliefs, leading to over-

bidding and low or negative profits. In my setting, similar naïvety causes

subjects to choose not to contribute, even when their signals are high enough

that contributing is optimal.

This paper is also closely related to the literature on strategic voting in

common-value environments. Seminal theoretical analysis of such environ-

ments by Fedderson and Pesendorfer (1996, 1997, 1998) examines the behav-

ior of strategic voters who condition their beliefs on being pivotal. Experi-

ments including Guarnaschelli et al. (2000), Ali et al. (2008), Battaglini et al.

(2008), Battaglini et al. (2010), and Esponda and Vespa (2013) find evidence

that laboratory subjects sometimes behave strategically, though their behav-

ior is not always explained well by symmetric Bayesian Nash equilibrium.

I am also concerned with comparing behavior and learning under favor-

able and unfavorable belief conditioning effects. Holt and Sherman (1994)

compared these effects in the context of a takeover game. They found evi-

dence of a “loser’s curse” as well as a winner’s curse, with subjects behaving

naïvely in both environments.

The concept of naïve behavior in common-value auctions, strategic vot-

ing, takeover games, and related environments is formalized by the cursed-

equilibrium model of Eyster and Rabin (2005). I will employ Eyster and Ra-

bin’s cursed equilibrium model as an alternative prediction to Bayesian Nash

equilibrium and discuss the extent to which this model can explain the exper-

imental data.

III THEORY

I first give the basic definitions and assumptions. The set of agents is N =

{1, ...,n}, where n ≥ 2. I will use i and j to denote typical agents in N. Each

agent observes a private signal xi, which is a realization of a random variable

X i. The private signals are iid with probability density function f : [x, x] →
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ℜ+, which is assumed to be continuous and strictly positive everywhere on

the interval [x, x], where 0 ≤ x < x <∞. Let F : [x, x] → [0,1] denote the corre-

sponding cumulative distribution function and X denote an arbitrary random

variable distributed according to F.

There is a binary excludable public good, and its uncertain value to agent

i is vi, given by:

vi =αxi +
1−α
n−1

∑

j 6=i
x j, (1)

where α ∈ [ 1
n

,1]. The case of α= 1
n

corresponds to pure common value, where

the value of the public good to all agents is the arithmetic mean of the private

signals. The case of α= 1 corresponds to pure private values.

The agents observe their private signals and then simultaneously choose

whether or not to contribute an exogenous amount w ∈ (x, x) toward provision

of the public good. Denote the contribution decision of agent i given the sig-

nal xi as ci(xi), where ci(xi)= 1 indicates contribution and ci(xi)= 0 indicates

non-contribution. The public good is provided if at least k ∈ {2, ...,n} agents

contribute, otherwise contributions are refunded and no public good is pro-

vided. Any agent who does not contribute is excluded and gets a utility of

zero. Contributors to the public good get a utility of vi−w if the public good is

provided, and zero otherwise. All agents are assumed to be risk neutral.

I consider symmetric Bayesian Nash equilibria (BNE), so that in equilib-

rium, ci ≡ c for each agent i. That is, all agents have identical contribution

decision functions. Lemma 1 shows that all such BNE involve “cutoff” strate-

gies.

Lemma 1. In any symmetric BNE, there exists x∗ ∈ ℜ such that each agent

i ∈ N strictly prefers to contribute to the public good if and only if xi > x∗.

All proofs are contained in Appendix A. Intuitively, Lemma 1 holds be-

cause in symmetric BNE, each agent’s expected utility of contributing is non-

decreasing in the private signal, and strictly increasing when others con-

tribute with positive probability.
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Lemma 2 establishes that, conditional on at least k−1 others contribut-

ing, agent i’s expectation of the mean signal of the other n−1 agents is non-

decreasing in the cutoff x∗.

Lemma 2. Let the function G i(x
∗) be given by:

G i(x
∗)= E

[

1
n−1

∑

j 6=i
X j

∣

∣

∣

∣

∣

∑

j 6=i
c∗(X j)≥ k−1

]

, (2)

where:

c∗(X j)=

{

1 : X j ≥ x∗

0 : X j < x∗.
(3)

Then G i(x
∗) is non-decreasing in x∗.

The result in Lemma 2 simply means that the expectation of the mean sig-

nal of the agents other than i conditional on at least k−1 others contributing

is higher than the unconditional expectation, and this conditional expectation

is non-decreasing in the cutoff. This result will be useful in proving the first

Proposition.

In symmetric BNE, conditional on observing a signal xi = x∗, agent i must

be indifferent between contributing and not contributing. Thus,
n−1
∑

l=k−1

(

n−1
l

)

(1−F(x∗))lF(x∗)n−1−l
(

αx∗+ (1−α)l
n−1 E[X |X ≥ x∗]+ (1−α)(n−1−l)

n−1 E[X |X < x∗]−w
)

= 0. (4)

Clearly, x∗ = x is a solution, so non-contribution by all agents is a sym-

metric BNE.1 Proposition 1 gives conditions for the existence of an interior

equilibrium.

Proposition 1. There exists a symmetric BNE cutoff x∗ ∈ (x, x) if and only if:

αx+ (1−α)E[X ]< w <

(

α+
(1−α)(k−1)

n−1

)

x+
(1−α)(n−k)

n−1
E[X ] (5)

Moreover, there is at most one such interior symmetric BNE cutoff.

The key to Proposition 1 is to consider agent i’s expected utility of con-

tributing, given a signal of x∗ and conditional on the public good being pro-

vided, treated as a function of the cutoff x∗. If w is within the given bounds,

1In some cases, this trivial equilibrium may be weakly dominated. If w < αx then agent i

prefers to contribute conditional on observing xi > w/α.
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this function crosses zero somewhere in the interval (x, x). Lemma 2 implies

that this function is also strictly increasing in the cutoff, guaranteeing unique-

ness of the interior equilibrium cutoff.

Corollary 1 gives comparative static predictions for changes in the cost of

contribution and the provision threshold.

Corollary 1. Any symmetric BNE cutoff x∗ ∈ (x, x) is increasing in w and

decreasing in k.

Intuitively, a higher cost of contribution makes agents less willing to con-

tribute. A higher provision threshold strengthens the favorable belief condi-

tioning effect, increasing willingness to contribute.2

Cursed Equilibrium

In (symmetric) χ-cursed equilibrium, agents fail to fully account for the con-

nection between the actions of other agents and their private information.

Each agent i ∈ N believes that with probability χ, any given other agent j

contributes with ex ante equilibrium probability regardless of j’s signal.

Denote the χ-cursed equilibrium cutoff by x∗χ. Proposition 2 establishes a

simple condition under which a symmetric interior χ-cursed equilibrium exits

and gives a simple explicit solution for the cutoff in fully-cursed equilibrium,

where χ= 1.

Proposition 2. There exists a symmetric χ-cursed equilibrium cutoff x∗χ ∈

(x, x) if and only if:

αx+ (1−α)E[X ]< w <

(

α+
(1−χ)(1−α)(k−1)

n−1

)

x+
(

χ(1−α)(k−1)
n−1 +

(1−α)(n−k)
n−1

)

E[X ] (6)

Moreover, there is at most one such interior symmetric χ-cursed equilibrium

cutoff. Finally, for χ = 1, if there exists an interior symmetric fully-cursed

equilibrium cutoff, denoted by x∗1 , then it is given by:

x∗1 =
w

α
−

1−α

α
E[X ] (7)

2This comparative static prediction is not experimentally tested here. However, it guides the

experimental design, as choosing k large relative to n increases the strength of the favorable

belief conditioning effect and thus separation between symmetric BNE cutoffs and cursed

cutoffs.
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The proof of Proposition 2 is similar to the proof of Proposition 1. Straight-

forward manipulation of the expression for the fully-cursed equilibrium cutoff

reveals the intuitive interpretation: given a signal equal to the cutoff, the cost

of contributing must equal the (naïve) expected benefit (neglecting favorable

conditioning).

Corollary 2 establishes that in symmetric cursed equilibrium, agents under-

contribute relative to symmetric BNE, and gives comparative statics predic-

tions for the cursed equilibrium cutoff.

Corollary 2. The interior symmetric χ-cursed equilibrium cutoff x∗χ is non-

decreasing in χ, increasing in w, and decreasing in k. In particular, x∗χ ∈

[x∗, x∗1 ].

Neglect of the favorable conditioning effect causes agent i’s expectation of

vi to be too low, which reduces willingness to contribute. The greater the

degree of cursedness (χ), the greater the severity of under-contribution.

Finally, Corollary 3 shows that, for some parameter values, under-contribution

in cursed equilibrium may be complete.

Corollary 3. If α< 1 and

(

α+
(1−χ)(1−α)(k−1)

n−1

)

x+
(

χ(1−α)(k−1)
n−1 +

(1−α)(n−k)
n−1

)

E[X ]

≤ w <

(

α+
(1−α)(k−1)

n−1

)

x+ (1−α)(n−k)
n−1 E[X ],

(8)

then there is a symmetric BNE such that each agent contributes with positive

probability, but in symmetric χ-cursed equilibrium contribution occurs with

probability zero.

Intuitively, symmetric BNE and fully-cursed equilibrium coincide in the

case of pure private values, where other agents’ information does not affect

agent i’s expected utility of contributing conditional on the public good being

provided. However, when values are interdependent, for some range of w

contribution breaks down completely in χ-cursed equilibrium because agents

ignore favorable conditioning in forming their expectations.
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Experimental Special Case

In the common-value threshold game (CVT) treatment, I consider a special

case of the threshold game with n = 5, k = 4, α= 1
5 , and private signals that are

uniformly distributed on [0,100], with w varying across rounds of play. Since

α= 1
n

, this special case is one of pure common value. The pure common value

case is used in the experiment because it puts the most weight on the private

signals of others and thus gives the greatest contrast between symmetric BNE

and fully-cursed equilibrium. Henceforth I will omit the word “symmetric,”

since symmetric equilibria are the focus of the paper.

Figure I shows the cutoff signals in BNE and fully-cursed equilibrium for

different values of w in the interval [0,100]. The fully-cursed equilibrium

cutoff lies (weakly) above the BNE cutoff for all values of w. That is, the fully-

cursed strategy contributes less often than the BNE strategy. Furthermore,

Figure I. Threshold game cutoff signals in BNE and fully-cursed equilibrium
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as in Corollary 3, whenever 60≤ w < 90, contribution breaks down completely

in fully-cursed equilibrium.

It is possible that risk aversion might lead to under-contribution relative

to the risk-neutral BNE prediction, and thus it is important to check the ro-

bustness of the equilibrium prediction. Allowing for risk aversion makes ana-

lytical study of the model much less tractable, but approximate solutions can

be found numerically. I use a constant relative risk aversion utility function

of the form u(y) =
y1−r

1−r
and a coefficient of relative risk aversion of r = 0.67.3

BNE cutoffs change very little with risk aversion, rising only by 1-2 percent-

age points compared to the risk-neutral prediction. Fully-cursed equilibrium

cutoffs rise slightly more. Thus, cutoffs exceeding the BNE prediction by mag-

nitudes shown in the fully-cursed equilibrium prediction could not be alterna-

tively explained by plausible risk aversion. Furthermore, the presence of risk

aversion does not affect the predicted treatment effects between CVT and the

related games of interest.

Anti-Threshold Game with Unfavorable Belief Conditioning

To compare the favorable conditioning effects in the threshold game to simi-

lar unfavorable conditioning effects, I consider an “anti-threshold” (AT) treat-

ment. The environment in the anti-threshold game is the same as in the

common-value threshold game, except that the public good is provided if and

only if no more than m agents contribute. If more then m contribute, the pub-

lic good is not provided and contributions are refunded. The general case of

the anti-threshold game is of less interest than the threshold game, so much

of the theoretical analysis of the anti-threshold game is omitted. However, the

equation characterizing the BNE cutoff is:

m−1
∑

l=0

(

n−1
l

)

(1−F(x∗))lF(x∗)n−1−l
(

αx∗+ (1−α)l
n−1 E[X |X ≥ x∗]+ (1−α)(n−1−l)

n−1 E[X |X < x∗]−w
)

= 0 (9)

Notice that x∗ = 0 (all agents contributing for all signals) is always a BNE.

Under parameter conditions similar to those in the previous section, interior

BNE exist as well. The key difference from the threshold game is that in

3This level of risk aversion has been found to be typical of laboratory subjects by Holt and

Laury (2002).
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the anti-threshold game, the public good being provided is bad news about its

value, while in the threshold game it is good news.

In the AT treatment, I consider the special case of n = 5, m = 2, α = 1
5 ,

and private signals uniformly distributed on [0,100], with w varying across

rounds of play. Figure II shows the cutoff signals for the anti-threshold game

in BNE and fully-cursed equilibrium for varying w. Notice that cutoffs in

fully-cursed equilibrium are exactly the same as those from CVT. However, in

AT, fully-cursed agents over-contribute relative to BNE.

There is a simple symmetry between the AT and CVT. Fixing δ ∈ [−50,50],

the absolute difference between the BNE and fully-cursed equilibrium cutoffs

in CVT with w = 50+δ is equal to the absolute difference between BNE and

fully-cursed equilibrium cutoffs in the anti-threshold game with w = 50−δ.

Figure II. Anti-threshold game cutoff signals in BNE and fully-cursed equilibrium
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Thus, the belief conditioning effects in CVT and AT are in this sense compa-

rable in magnitude, but opposite in direction.

Private-Value Threshold Game with No Belief Conditioning Effect

In the private-value threshold game (PVT) treatment I consider a game sim-

ilar to that in CVT, except that each agent’s value for the public good is the

mean of five agent-specific iid random draws. One of the five is observed by

the agent, while the other four are not observed by anyone. Thus, the ex ante

marginal distribution of each agent’s value is the same as in CVT, but there is

no conditioning effect. In fact, the symmetric fully-cursed equilibrium in CVT

is identical to the symmetric Bayesian Nash equilibrium in PVT. Thus, by

comparing contributions between PVT and CVT, the effect of favorable belief

conditioning CVT can be observed.

IV EXPERIMENTAL PROCEDURES

To avoid negative payoffs, the cost of contributing is implicit, so that each par-

ticipant is faced with a choice between a certain payoff of w and an uncertain

payoff of v.4 The conversion rate is $0.20 for each experimental currency unit

(or “token”), so that the maximum possible earnings are $20 per person. Par-

ticipants also received a $5 show-up fee. Subjects gave consent to access aca-

demic records including Grade Point Average, ACT/SAT scores, and academic

major. This information is used to test whether behavior in the experiment is

correlated with cognitive or quantitative ability.

There are two treatment variables. The first, varied between subjects, is

the game: common-value threshold (CVT), anti-threshold (AT), and private-

value threshold (PVT). Only one of the three games appeared in any given

session. The second treatment variable, varied within subject, is the cost of

contributing: 35, 45, 55, and 65 experimental currency units, with each value

repeated five times in randomized order. Each session had twenty rounds, one

4Framing in terms of explicit rather than implicit costs might affect behavior and learning

(Lind and Plott, 1991). However, in the treatment of primary interest (CVT), the experience

from which subjects are expected to learn not to under-contribute is the failure to realize

profitable public goods, which is inherently implicit.
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of which was selected randomly for payment. Each session included twenty

participants who were randomly assigned to groups of five at the start of each

round (stranger matching).

In each round, each participant observed the cost of contributing and her

own private signal. Contribution choices were then made simultaneously. At

the end of each round, all participants observed the signals and choices of the

other four group members (ordered from highest to lowest), the value of the

public good and whether it was provided, and their own earnings in tokens

for the round.5

The experiment was programmed and conducted using z-Tree software

(Fischbacher, 2007). All sessions were run in the experimental economics

laboratory at The Ohio State University. Seven sessions were run (3 CVT,

2 AT, and 2 PVT), each with 20 subjects.6 Participants earned approximately

$15.50 on average, and each session lasted about 45 minutes.

V RESULTS

To organize the results, I first summarize the key hypotheses to be tested. The

main hypotheses come from the predictions of cursed equilibrium compared

to Bayesian Nash equilibrium.

Hypothesis 1 (Contribution within Games). Under full or partial cursedness,

subjects will choose to allocate tokens to the group project too little in CVT and

too much in AT, relative to BNE.

Hypothesis 2 (Contribution between Games). Under full cursedness, sub-

jects will choose to allocate tokens to the group project with the same fre-

quency in CVT, PVT, and AT.

5The signals and choices of other group members were displayed in decreasing order by signal

to make it easier to notice any correlation between signals and choices.
6Due to a recruitment system error, two subjects were mistakenly allowed to participate a

second time. The choices made by each of these subjects in their second session of participa-

tion have been excluded from the analysis.
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Hypothesis 1 comes from the neglect of belief conditioning in CVT and AT

under full or partial cursedness. Hypothesis 2 comes from the fact that the

fully-cursed equilibrium cutoffs in CVT, PVT, and AT are identical.7

Secondary hypotheses of interest are concerned with learning over multi-

ple rounds of play and individual heterogeneity. I will investigate whether

subjects learn to play closer to BNE and whether learning effects differ be-

tween games. I will also examine whether individuals with greater cognitive

or quantitative ability play strategies closer to BNE.

Hypothesis 3 (Learning to Play BNE). If subjects learn to recognize favor-

able and unfavorable belief conditioning effects, their allocation decisions should

move toward BNE after several rounds of play in both CVT and AT.

Hypothesis 4 (Individual Heterogeneity and Cognitive/Quantitative Ability).

Greater cognitive and quantitative ability will be positively correlated with

proper belief conditioning.

Aggregate Results

Aggregate rates of allocation to the private account are summarized in Figure

III. It is evident that aggregate under-contribution occurs in CVT, though not

to the degree predicted by fully-cursed equilibrium for the higher cost levels

where the difference is greatest. It is also clear that subjects choose the group

project too frequently in AT relative to BNE, though the frequencies are not

close to the fully-cursed equilibrium predictions either.

Notice that contribution rates in CVT and PVT are virtually the same for

all cost levels.8 I find no statistical difference between CVT and PVT for any

cost level using Wilcoxon-Mann-Whitney tests with subject-level average con-

tribution as the unit of observation. Contribution rates in AT are somewhat

lower, though the difference is much less stark than predicted under BNE.

Overall, the similarity of contribution rates across games is consistent with

full or nearly-full cursedness. However, the contribution rates within each

7There is no distinction between cursed equilibrium and BNE in PVT, due to the absence of

belief conditioning effects.
8Even where the difference is greatest (the higher cost levels) it is in the opposite direction

predicted by BNE, with slightly less contribution in CVT than in PVT.
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Figure III. Aggregate rates of non-contribution (choosing the private account)

game are not particularly close to the fully-cursed predictions. Moreover, it is

clear that cursedness does not explain the data completely, because contribu-

tion levels in PVT differ substantially from the (identical) predictions of BNE

and cursed equilibrium. This result highlights to importance of studying be-

lief conditioning by comparing the CVT and PVT treatments rather than only

comparing the data to theoretical benchmarks within one treatment. Later, I

will explore possible explanations for the contribution levels in PVT.

In addition to contribution decisions, efficiency in CVT is of interest. Figure

IV shows the average per person net gains in CVT for each cost of contribu-

tion. The first-best efficiency benchmark shows the net gain if provision occurs

if and only if provision is efficient. The second-best benchmark shows the net

gain if a benevolent social planner were to enforce a symmetric contribution

cutoff to maximize the expected total surplus. While efficiency under BNE is

somewhat lower than second-best, it is quite close. However, the efficiency in

the data falls well below even the BNE benchmark, particularly for cost levels

45 and 55. Overall, there is a loss of approximately 65% of the average net

gains from the public good that could have been realized in BNE.

While the rates of choosing the private account may provide a rough esti-

mate of the average cutoff subjects use, a more appealing method is maximum
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Figure IV. Efficiency in CVT

likelihood, similar to the method of El-Gamal and Grether (1995). Under the

assumption that all subjects use the same cutoff (but may make errors), I es-

timate the cutoff for each game and cost level by checking all possible cutoffs

and finding the one that explains the most data, or equivalently, minimizes

the number of errors. I assume that with probability 1− ǫ, an agent makes a

contribution choice consistent with the hypothesized cutoff, and with probabil-

ity ǫ (the error rate), she makes the opposite choice. The maximum likelihood

cutoff is the cutoff that minimizes the observed error rate.

Figure V shows maximum-likelihood cutoffs with 95% bootstrap confidence

intervals. Once again, the estimated cutoffs suggest under-contribution in

CVT and over-contribution in AT relative to BNE. It is also clear that esti-

mated cutoffs are very similar between CVT and PVT. I find no signficant

differences between the CVT and PVT cutoffs for any cost level using boot-

strap hypothesis tests.9 This similarity further suggests that subjects treat

9These tests are not meant to be interpreted as independent of the previous tests comparing

contribution rates, but together to they give a clearer description of the similarity between

the CVT and PVT data.
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Figure V. Maximum Likelihood Cutoffs

Figure VI. Empirical Best Responses

the CVT and PVT games as equivalent, despite the substantial differences

between their BNE.

While behavior does not appear to be consistent with BNE, it is also of

interest how closely behavior approximates an empirical best response. Fig-

ure VI compares maximum likelihood cutoffs with empirical best response
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cutoffs. Empirical best response cutoffs can be easily computed from equa-

tion 1 using the empirical probability of contribution to the group project,

average signal conditional on contribution, and average signal conditional on

non-contribution. Maximum likelihood cutoffs are generally not very close to

empirical best response cutoffs where the cutoffs are interior, with the excep-

tion of CVT with w = 65.10 Thus, neither BNE, nor fully-cursed equilibrium,

nor empirical best response appears to explain the aggregate data well.

Assuming some partially-cursed equilibrium holds across all rounds and

all cost levels, the cursedness parameter χ can be estimated by maximum

likelihood for CVT and AT.11 For CVT, the maximum likelihood estimate of

the cursedness parameter is 0.60, with a 95% bootstrap confidence interval of

[0.58, 0.76]. In fact, the 0.6-cursed equilibrium cutoffs are quite close to the

previous (unrestricted) maximum likelihood cutoffs estimates for CVT.

For AT, the maximum likelihood estimate of the cursedness parameter is

0.91, higher than in CVT, but with a wide 95% bootstrap confidence interval of

[0.51, 1.00]. Furthermore, the 0.91-cursed equilibrium cutoffs are not particu-

larly close to the unrestricted maximum likelihood cutoff estimates, since for

cost levels 45 and 55 the unrestricted estimates do not fall between the BNE

and fully-cursed equilibrium cutoffs. The data in AT are somewhat noiser

than in the other games, perhaps due to the less intuitive nature of the game.

The following main results summarize the key findings from the aggregate

data.

Result 1 (Contribution within Games). Relative to BNE, subjects allocate

tokens to the group project too infrequently in CVT and too frequently in AT.

Subjects also over-contribute in PVT with cost levels of 55 and 65, which is

not predicted by cursedness.

10Empirical best response cutoffs may be either higher or lower than BNE cutoffs, depending

on behavior. Using a cutoff above the BNE cutoff tends to drive the empirical best response

cutoff downward in CVT, since the favorable conditioning effect is strengthened. However,

the opposite type of “mistake” (contributing when the signal is too low) has the opposite effect

on the empirical best response cutoff.
11This estimation follows the same approach of selecting cutoffs to minimize errors as pre-

viously discussed. However, I add the restriction that cutoffs for each of the four cost levels

within a game (CVT or AT) must be consistent with some partially-cursed equilibrium cutoff.
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Result 2 (Contribution between Games). Contribution choices in CVT and

PVT are indistinguishable. Contribution choices in AT differ from those in

the other games, but this difference is much smaller than predicted in BNE.

Repeated Trials and Learning

Before interpreting the aggregate results, I examine behavior and learning

over multiple rounds of play graphically and using logistic regression analy-

sis. Recall that each of the four cost levels was encountered five times in each

session, with the order randomized for each session.

Figure VII. Contribution Rates Over Repeated Trials
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Figure VII shows contribution rates over repeated trials of each of the four

cost levels and for each of CVT, PVT, and AT. The BNE and fully-cursed bench-

marks represent the expected contribution rates under each equilibrium con-

cept, given the signals realized in the experiment. Few clear trends are ap-

parent. Contributions do appear to decline in PVT with w = 65, which is

somewhat reassuring given that no contribution should occur in that case.

Only in CVT and PVT with w = 35 (where everyone should always contribute)

does behavior seem to approach BNE. Overall, only in these few simple cases,

where subjects should always or never contribute, do the data seem to suggest

learning patterns.

Figure VIII. Equilibrium Match Over Repeated Trials
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w=65 w=55 w=45 w=35

Variable OR p-value OR p-value OR p-value OR p-value

signal 1.026 0.002*** 1.033 0.000*** 1.028 0.013** 1.008 0.407
period 0.960 0.124 0.988 0.712 0.950 0.135 1.036 0.418
CVT 0.408 0.300 0.397 0.238 0.546 0.310 0.763 0.732
AT 0.709 0.717 0.667 0.588 0.405 0.148 0.180 0.019**

signal*CVT 1.007 0.528 1.001 0.941 1.000 0.978 1.004 0.781
signal*AT 0.981 0.096* 1.002 0.857 0.998 0.891 1.016 0.260

period*CVT 1.021 0.564 1.046 0.285 1.047 0.253 1.009 0.854
period*AT 1.094 0.102 0.975 0.581 1.043 0.330 1.001 0.984

Linear Combn OR p-value OR p-value OR p-value OR p-value

signal*(1+CVT) 1.033 0.000*** 1.033 0.000*** 1.027 0.003*** 1.012 0.299
signal*(1+AT) 1.007 0.389 1.034 0.000*** 1.026 0.000*** 1.024 0.016**

period*(1+CVT) 0.980 0.413 1.033 0.197 0.995 0.797 1.046 0.106
period*(1+AT) 1.050 0.310 0.963 0.237 0.991 0.738 1.037 0.171

AT-CVT 1.737 0.580 1.679 0.434 0.741 0.537 0.236 0.073*
signal*(AT-CVT) 0.974 0.018** 1.001 0.896 0.999 0.878 1.011 0.463
period*(AT-CVT) 1.071 0.202 0.932 0.084* 0.996 0.915 0.992 0.824

Table I. Logistic regression results. The dependent variable is an indicator

for contribution. Robust standard errors are clustered by individual subject.

Each regression has 690 observations with 138 subject-level clusters. ***, **,

and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Figure VIII shows the proportion of choices consistent with several equi-

librium concepts over repeated trials. The particular partially-cursed equilib-

rium used here is for the maximum likelihood values of χ for CVT and AT (0.6

and 0.91 respectively).12 Again, there is little evidence of significant learn-

ing or convergence toward BNE, except in the simpler cases where subjects

should always or never contribute. The clearest differences in consistency of

contribution choices with the equilibrium concepts are in the cases of great-

est contrast between BNE and cursed cutoffs (CVT with w = 65 and AT with

w = 35). However, less differentiation is apparent for cost levels where there

is less contrast between cutoffs under each equilibrium concept.13

12Likelihood ratio tests confirm that the MLE partially-cursed equilibria fit the data signifi-

cantly better than BNE with p-value< 0.001 for both CVT and AT.
13Relatively few observations in these cases fall in the range where the equilibrium concepts

make different predictions.
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Table I shows logistic regression results, where the dependent variable is

an indicator for contribution to the group project.14 The omitted category for

the game indicators is PVT. The second panel of Table I shows linear combi-

nations of estimated effects, including the effect of signal and period in CVT

and AT, as well as differences between these treatments and effects. First,

it is clear that subjects do respond to signals when they should. Except in

CVT and PVT with w = 35 and AT with w = 65 (where either contribution or

non-contribution is always optimal), the signal effect is strongly significant.

Notice also that the effect of period of play is not significant for any game or

cost level. The one possible exception is the case of CVT with w = 35, where

the p-value approaches the 10% level. Finally, notice that the CVT indicator

and its interactions with signal and period are insignificant for all cost levels,

consistent with the previous finding from the aggregate results that behavior

in CVT and PVT is indistinguishable, despite stark differences in their BNE

strategies.

Overall, behavior over multiple periods of play shows little evidence of

learning, and confirms the strong similarity between strategies in CVT and

PVT. Result 3 summarizes the findings on repeated trials and learning.

Result 3 (Learning to play BNE). Subjects do not appear to learn to play

strategies closer to BNE, except possibly in some simpler cases where belief

conditioning effects are absent and equilibrium cutoffs are 0 or 100. Behavior

in CVT and PVT remains very similar, even after several periods of play.

Individual Heterogeneity

Individual subjects in CVT and AT may differ in their ability to properly con-

dition beliefs. I test whether cognitive and quantitative ability is correlated

with proper belief conditioning in CVT and AT (Hypothesis 4). The logistic re-

gression results in Tables II and III include as explanatory variables individ-

ual subjects’ college Grade Point Average (GPA) and an indicator for majoring

14I report the logistic regression results in terms of odds ratios the simplify the interpreta-

tion of interactions as multiplicative effects (Buis, 2010). However, computation of marginal

interaction effects using the method of Ai and Norton (2003) does not lead to substantively

different results.
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w=65 w=55 w=45 w=35

Variable OR p-value OR p-value OR p-value OR p-value

signal 1.034 0.001*** 1.032 0.000*** 1.025 0.000*** 1.005 0.744
period 0.974 0.397 1.014 0.733 0.985 0.562 1.004 0.885
GPA 0.405 0.151 0.867 0.740 1.462 0.223 3.125 0.072*

quant 0.478 0.111 0.656 0.335 1.070 0.824 1.318 0.634

Table II. Logistic regression results for CVT including GPA and quantita-

tive major indicator. The dependent variable is an indicator for contribution.

Robust standard errors are clustered by individual subject. Each regression

has 200 observations with 40 subject-level clusters. ***, **, and * indicate

significance at the 1%, 5%, and 10% levels, respectively.

w=65 w=55 w=45 w=35

Variable OR p-value OR p-value OR p-value OR p-value

signal 1.007 0.360 1.035 0.000*** 1.026 0.000*** 1.025 0.016**
period 1.047 0.339 0.962 0.235 0.991 0.748 1.038 0.171
GPA 0.939 0.895 0.624 0.142 0.946 0.892 1.971 0.182

quant 0.420 0.058* 0.658 0.245 0.813 0.606 1.233 0.679

Table III. Logistic regression results for AT including GPA and quantitative

major indicator. The dependent variable is an indicator for contribution.

Robust standard errors are clustered by individual subject. Each regression

has 200 observations with 40 subject-level clusters. ***, **, and * indicate

significance at the 1%, 5%, and 10% levels, respectively.

in a quantitative field. The majors I classify as quantitative are mathematics,

statistics, engineering, natural and physical sciences, computer science, eco-

nomics, finance, and accounting. The results in Table II show some evidence

of a positive correlation between GPA and contribution at cost level 35, but no

other such correlations are apparent. Table III shows similar logistic regres-

sion results for AT. Quantitative majors contribute less in AT for cost level 65,

but otherwise the results are again quite negative.15 Similar to the results on

learning over multiple rounds of play, the only apparent correlations here are

in treatments where the equilibrium strategy is simply to always contribute

or never contribute.

15The general negativity of these results is robust to alternative specifications including addi-

tional controls and interactions, as well as substituting ACT/SAT percentile in place of GPA.

While GPA is not available for all subjects, reducing the sample size somewhat, it is available

for more subjects than ACT/SAT scores.
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I next specify several candidate strategies to which individual choices are

compared. The candidate strategies include BNE and fully-cursed equilib-

rium, as well as several other possible heuristics: contributing iff w < 50

(“Prior”), contributing iff the signal exceeds w (“Signal Bias”), always con-

tributing, and never contributing.

I use a Bayesian approach to estimate the proportion of subjects in each

candidate strategy. I assume that each individual is playing one of the candi-

date strategies, but may make errors. In any individual game I assume that

with probability 1− ǫi, player i follows her chosen strategy, and with prob-

ability ǫi she deviates. First, an individual subject’s choices over all twenty

rounds are compared to the predictions of each candidate strategy. The error

rate ǫi for player i is estimated as her smallest observed frequency of devia-

tions over all candidate strategies.16 So for example, if player i’s choices were

consistent with the fully-cursed strategy 95% of the time and less frequently

consistent with any other strategy, her estimated error rate would be 0.05.

Next, I set a uniform prior over all candidate strategies and update for each

observation according to Bayes’ rule to arrive at a posterior over the candidate

strategies for each individual subject. For each candidate strategy, the poste-

rior probability is averaged across subjects to estimate the overall proportion

of subjects playing that strategy.17

Table IV shows the estimated proportion of subjects playing each candidate

strategy in CVT and AT. In both games, the fully-cursed strategy is modal,

consistent with the aggregate results showing neglect of belief conditioning.

The BNE strategy is second most prevalent in CVT with a proportion of nearly

one quarter, though the vast majority appear to play some boundedly-rational

16There are very few subjects who are always consistent with a single candidate strategy, but

21.7% of subjects in CVT are at least 95% consistent. Among these subjects, just over half

closely match the fully-cursed strategy, while about one quarter closely match BNE. Only

7.5% of subjects in AT are at least 95% consistent.
17The results are reasonably robust to alternative error structures and non-uniform priors.

The MLE partially-cursed strategy is not included as a candidate strategy since it is a free

parameter estimated from the data rather than being specified a priori. However, if it is

included, it becomes modal in CVT and second most prevalent after the fully-cursed strategy

in AT, and the prevalence of BNE falls substantially.
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CVT AT

Strategy Proportion Std. Error Proportion Std. Error

Fully-Cursed 0.312 0.047 0.359 0.054
BNE 0.233 0.046 0.130 0.035
Prior 0.219 0.043 0.154 0.035

Signal Bias 0.120 0.034 0.187 0.044
Always 0.108 0.036 0.097 0.036
Never 0.008 0.003 0.073 0.036

Table IV. Estimated strategy proportions in CVT and AT

strategy. The BNE strategy is less prevalent in AT than CVT, which might

suggest that AT is a more difficult game.

To check for correlations between consistency with the BNE strategy from

the type estimation and cognitive/quantitative ability, I have run a number of

regressions similar to those in Tables II and III. However, the results have

been similarly negative, suggesting that some subjects’ behavior may sim-

ply appear to closely match BNE by chance rather than strategic sophistica-

tion.18 Furthermore, estimating strategy proportions in the PVT data using

the CVT strategies also yields an estimate of approximately one quarter of

subjects playing the BNE for the CVT game. However, the BNE strategy from

CVT does not have any particular justification or heuristic intuition in the

PVT game. Recall that the actual BNE strategy in PVT is identical to the

fully-cursed equilibrium strategy from CVT. Thus, there is no reason to ex-

pect subjects in PVT to play the BNE strategy from CVT, except perhaps by

chance. The similarity of estimated proportions in CVT and PVT playing the

BNE strategy from CVT further suggests that strategic sophistication does

not drive consistency with the BNE strategy in CVT. Therefore, it appears

that very few if any subjects are able to properly condition beliefs in this set-

ting.

Result 4 (Individual Heterogeneity and Cognitive/Quantitative Ability). There

is little evidence that behavior in CVT or AT is correlated with cognitive or

quantitative ability, except possibly in some simpler cases where conditioning

18This finding is similar to Georganas et al. (2012), who found very little correlation between

measures of cognitive ability and playing more sophisticated strategies in undercutting and

guessing games.
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effects are absent and the equilibrium cutoffs are 0 or 100. Estimated propor-

tions of strategic types show that fully-cursed behavior is modal, and that the

great majority of subjects play some boundedly-rational or heuristic strategy.

Over-Contribution in PVT

As shown in the previous results, there is a puzzling tendency for subjects to

over-contribute in PVT (and AT) with w = 65. Even with a signal of 100, the

expected value of the group project is no greater than 60 tokens, and thus sub-

jects should never contribute in PVT when the cost is 65 tokens. Interestingly,

subjects do not frequently make similar mistakes in PVT with w = 35, where

contribution is always optimal for any signal. Thus, there is an asymmetry in

behavior between cases in which subjects should always or never contribute.

This finding is not driven by a small subset of subjects. Rather, a majority

of subjects contributed at least once in this case. This behavior is clearly

not driven by cursedness, because in PVT full or partial cursedness yields the

same prediction as BNE. Rationalizing this behavior through risk preferences

would require many subjects to be implausibly risk-loving, with coefficients

of relative risk aversion less than −5. This behavior might represent some

form of altruism, as subjects may simply view contributing as a pro-social

act. However, such motivations would be misguided, since the group project

is a bad bet for other players as well. Furthermore, this explanation is less

appealing in AT, in which allocating tokens to the group project may prevent

it from being provided.

Another possibility is that subjects are simply bad at calculating expected

values. To investigate this possibility, a surprise bonus question was added

at the end of the second session of PVT and the second session of AT. In this

question, subjects were asked to calculate the expected value of the group

project given a signal of 100. Answers within plus or minus 5 of the correct

answer (60) were rewarded with a $1 bonus payment on top of any earnings

from the main part of the experiment. If subjects can correctly perform this

calculation, they should see that contributing at a cost of 65 is never optimal.

Of the forty subjects in these two sessions, 45% got the answer exactly

right (which was also the modal response), and 65% answered within plus
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Variable OR p-value

signal 1.058 0.001***
period 0.923 0.086*

AT 1.756 0.838
signal*AT 0.950 0.008***
period*AT 1.129 0.097*

correct 0.575 0.423
GPA 0.902 0.837

quant 0.596 0.443
correct*AT 2.648 0.359
GPA*AT 1.227 0.777

quant*AT 0.934 0.946

Linear Combn OR p-value

correct*(1+AT) 1.524 0.602
GPA*(1+AT) 1.106 0.845

quant*(1+AT) 0.557 0.441
Table V. Logistic regression results for bonus question, with contribution

indicator at cost level 65 as the dependent variable. Robust standard errors

are clustered at the individual subject level. There are 200 observations and

40 subject-level clusters. ***, **, and * indicate significance at the 1%, 5%,

and 10% levels, respectively.

or minus 5. Table V shows logistic regression results for contribution at cost

level w = 65 in these two sessions, using an indicator (“correct”) for an exactly

correct answer as an explanatory variable. Answering the bonus question

correctly does not appear to be correlated with over-contributing in either PVT

or AT.19 Similarly, over-contribution does not appear to be correlated with

GPA or quantitative major. Thus, errors in expected value calculation do not

appear to be an important reason for the observed over-contribution.

Another possible explanation is that incentives are weak in PVT with w =

65, since the probability of provision of the group project is small in this case.

To investigate this explanation, I ran two additional sessions of a modified

19These negative results are robust to alternative specifications, including using an indicator

for an answer with plus or minus 5, or using the actual reported expected value, as well as

dropping GPA and quant.
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Figure IX. Contribution in PVT v. PVTk1

version of PVT with k = 1, which I call PVTk1.20 This treatment reduces

PVT from a game to an individual choice problem, since with a threshold of 1

contributor, no player’s choice can affect any other player’s payoff.21 Changing

k does not alter the optimal strategies in this case: the predicted cutoffs are

the same as the BNE cutoffs in the PVT game and the fully-cursed cutoffs

in the CVT game. However, turning the PVT game into an individual choice

problem steepens incentives, since every player is always pivotal in this case.

Figure IX compares contribution in PVT and PVTk1 for contribution costs

of 55 and 65. Contribution is significantly lower in PVTk1 than in PVT for

w = 65, though over-contribution is not eliminated.22 There is no apparent

difference for w = 55 or lower costs of contribution (not shown).

20The first session of PVTk1 had only 15 subjects due to absences, while the second session

had 20 subjects.
21Subjects were still matched into groups of five and given feedback on other group members

choices, to keep framing and potential imitation learning effects constant.
22A Wilcoxon-Mann-Whitney test using the subject-level average contribution as the unit

observation shows this difference to be significant with p-value=0.0228.
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Overall, the results in this subsection suggest that over-contribution in

PVT with w = 65 are partially driven by weak incentives due to the low proba-

bility of provision. Mistakes in expected value calculation do not appear to be

a significant factor. Even in the individual choice problem of PVTk1, subjects

still choose the group project too often for w = 65. It is possible that some sub-

jects simply enjoy gambling in small amounts, or use idiosyncratic heuristics

leading to over-contribution in this case.

VI DISCUSSION

In this paper, I have demonstrated that a severe neglect of belief condition-

ing can lead to under-contribution and thus under-provision of common-value

excludable public goods. In the CVT game, a favorable conditioning effect

arises in Bayesian Nash equilibrium because the expected value of the public

good conditional on sufficiently many others contributing is higher than this

expectation conditional on the private signal alone. However, experimental

subjects fail to account for this effect, consistent with the cursed equilibrium

model of Eyster and Rabin (2005). Furthermore, behavior in this game is

indistinguishable from behavior in the closely-related PVT game, in which

conditioning effects are absent. There is also a surprising similarity in behav-

ior between the CVT game (with a favorable conditioning effect) and the AT

game (with an unfavorable conditioning effect). The fully-cursed equilibria

of CVT, PVT, and AT are identical, while there are sharp differences in their

Bayesian Nash equilibria. Thus, the similarity in behavior between games is

consistent with cursedness. Furthermore, there is little evidence of learning

across multiple rounds of play with feedback in any of the three games, and

neither cognitive nor quantitative ability appears to mitigate the failure to

properly condition beliefs.

However, the level of contribution in PVT with the highest contribution cost

is unexplained by cursed equilibrium or BNE. The decrease in contribution

in PVTk1 (the individual-choice version of PVT) suggests that flat incentives

partially drive contribution in this case, since the probability of provision is

low. Such flatness of incentives is also present in CVT with the highest con-

tribution cost, and may have also driven some contributions in this case. If
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so, the degree of cursedness in CVT may actually be underestimated, since

higher degrees of cursedness lead to less contribution.

While contribution for the highest cost level is significantly lower in PVTk1

than in PVT, it is not eliminated. One possible conjecture to explain this

behavior is that some subjects may simply enjoy gambling in small amounts.

This conjecture is also consistent with the asymmetry in behavior for cost

levels 35 and 65, with over-contribution at cost level 65 but no substantial

under-contribution at cost level 35.

This paper contributes to the the literature on public goods by identifying a

novel source of under-contribution distinct from free-riding. While this exper-

iment is designed to provide a clear separation between equilibrium and naïve

contribution choices and not to closely parallel any particular real-world set-

ting, the behavioral phenomenon found here may also be important in more

realistic environments. In a number of applications within public economics

and industrial organization, such as the provision of gated communities and

the formation of joint ventures, naïve contribution choices may cause a failure

to coordinate on efficiency-enhancing outcomes. Future research might exam-

ine the design of optimal mechanisms for information aggregation in such

environments. In the simple case that I consider, the incentives of individual

agents are aligned under pure common value, so that agents would truth-

fully reveal their signals if they could. However, this is not necessarily true

in closely related cases in which some form a free-riding is possible. Private

value components, unequal contributions, or lack of excludability all lead to

the possibility of free-riding in some form, which may give individual players

an incentive to misrepresent their private information.

This paper also contributes to the literature on cursedness in related con-

texts such as common-value auctions and voting games by examining cursed

equilibrium in a novel game and showing a potentially important consequence

of this type of bounded rationality. Importantly, my experimental design

demonstrates the failure to properly condition beliefs by the comparison of

the CVT and PVT treatments. While comparing behavior to theoretical bench-

marks within a treatment is also useful, the treatment comparison controls

for other potential sources of decision error while varying only the presence of
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belief conditioning effects. The treatment comparison suggests that subjects

not only fail to fully condition beliefs, but actually fail to condition at all.

I have focused on the case of excludable public goods (such as gated com-

munities and private parks) to isolate under-contribution due to the neglect

of belief conditioning in the absence of free-riding incentives. Future research

might explore the idea of pure public goods with interdependent values.23 Ex-

amples include pollution abatement and flood control, for which values are

likely to be strongly correlated, but uncertain. This study provides a first step

toward a promising line of inquiry on coordination and information aggrega-

tion in environments with common-value public goods.
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APPENDIX A: PROOFS

Proof of Lemma 1. In symmetric BNE, agents contribute with equal probabil-

ity p =Pr(c(X )= 1). Given a signal xi, agent i’s expected payoff of contributing

is given by:

Ui(xi)=
n−1
∑

l=k−1

(

n−1
l

)

pl(1− p)n−1−l
(

αxi +
(1−α)l

n−1 E[X |c(X )= 1]+ (1−α)(n−1−l)
n−1 E[X |c(X )= 0]−w

)

(10)

Differentiating with respect to the xi, it is straightforward to verify that

agent i’s expected payoff is non-decreasing in xi, and is strictly increasing

whenever p > 0.

Suppose in symmetric BNE, {xi ∈ [x, x] | Ui(xi) > 0} = ;. Then simply let

x∗
i
= x+1. Next, suppose in symmetric BNE, {xi ∈ [x, x] | Ui(xi) > 0} = [x, x].

Then let x∗
i
= x−1. Now suppose in symmetric BNE, {xi ∈ [x, x] | Ui(xi)> 0} is a

non-empty, proper subset of [x, x]. Take xi ∈ {xi ∈ [x, x] |Ui(xi)> 0}. Then since

the expected payoff of contributing is non-decreasing in the signal, whenever

x′
i
> xi, it must be that Ui(x

′
i
) ≥ Ui(xi) > 0. Since {xi ∈ [x, x] | Ui(xi) > 0} is

bounded below by x, it has an infimum. Let x∗
i
= inf {xi ∈ [x, x] | Ui(xi)> 0}. By

continuity, Ui(x
∗
i
)= 0. By symmetry x∗

i
= x∗ for each agent i ∈ N.

Given a signal x′′
i
≤ x∗, it must be that Ui(x

′′
i
) ≤ 0, by definition of x∗ and

continuity of Ui. �

Proof of Lemma 2. Take r 6= i. Then:

E

[

Xr

∣

∣

∣

∣

∣

∑

j 6=i
c∗(X j)≥ k−1

]

=Pr

(

∑

j 6=i
c∗(X j)− c∗(Xr)< k−1

∣

∣

∣

∣

∣

∑

j 6=i
c∗(X j)≥ k−1

)

E[Xr|Xr ≥ x∗]

+Pr

(

∑

j 6=i
c∗(X j)− c∗(Xr)≥ k−1

∣

∣

∣

∣

∣

∑

j 6=i
c∗(X j)≥ k−1

)

E[Xr]

(11)

Intuitively, it is possible to partition the event where at least k−1 signals

other than xi exceed x∗ into two cases. In the first, exactly k−1 signals other

than xi exceed x∗, one of which is xr. In the second case, at least k−1 signals
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other than xi and xr exceed x∗, in which case the expectation of Xr is simply

the prior expectation.

As x∗ increases, E[Xr|Xr ≥ x∗] weakly increases by first-order stochastic

dominance. In particular, E[Xr|Xr ≥ x∗] ≥ E[Xr]. Since the expression in

equation 11 is a convex combination of these two expectations, it suffices to

show that the first probability in equation 11 is also non-decreasing in x∗.

Pr

(

∑

j 6=i
c∗(X j)− c∗(Xr)< k−1

∣

∣

∣

∣

∣

∑

j 6=i
c∗(X j)≥ k−1

)

=
(n−2

k−2)(1−F(x∗))k−1F(x∗)n−k

n−1
∑

l=k−1
(n−1

l )(1−F(x∗))lF(x∗)n−1−l

=
(n−2

k−2)
n−1
∑

l=k−1
(n−1

l )
(

1−F(x∗)
F(x∗)

)l−k+1

(12)

It is straightforward to verify that 1−F(x∗)
F(x∗) is non-increasing in x∗, which

implies that the probability in equation 12 is non-decreasing in x∗. Thus the

expectation in equation 11 is non-decreasing in x∗, which implies the result.

�

Proof of Proposition 1. Let w belong to the given interval. First, this interval

is non-empty since:

(

α+
(1−α)(k−1)

n−1

)

x+ (1−α)(n−k)
n−1 E[X ]−αx− (1−α)E[X ]

=α(x− x)+ (1−α)(k−1)
n−1 (x−E[X ])> 0

(13)

Note also that the given interval is contained in [x, x] since the lower bound

is a convex combination of x and E[X ] while the upper bound is a convex

combination of x and E[X ].

Restricting to x∗ < x, equation 4 can be rewritten as H(x∗)= 0 where:
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H(x∗)=

n−1
∑

l=k−1
(n−1

l )(1−F(x∗))lF(x∗)n−1−l
(

αx∗+ (1−α)l
n−1 E[X |X≥x∗]+ (1−α)(n−1−l)

n−1 E[X |X<x∗]−w
)

n−1
∑

l=k−1
(n−1

l )(1−F(x∗))lF(x∗)n−1−l

=αx∗−w+

n−1
∑

l=k−1
(n−1

l )(1−F(x∗))lF(x∗)n−1−l
(

(1−α)l
n−1 E[X |X≥x∗]+ (1−α)(n−1−l)

n−1 E[X |X<x∗]
)

n−1
∑

l=k−1
(n−1

l )(1−F(x∗))lF(x∗)n−1−l

=αx∗−w+ (1−α)G i(x
∗)

(14)

Intuitively, H(x∗) is the expected utility of contributing given a signal of

x∗ conditional on the public good being provided, where each other agents’

strategy is contribution whenever their signal is at least x∗.

Notice that H(x∗) is strictly increasing in x∗ because the final term is non-

decreasing in x∗ by 2. Thus, H(x∗) can cross zero at most once, guaranteeing

that there is at most one interior equilibrium cutoff.

Consider the behavior of H(x∗) as x∗ → x. The key term of interest is the

probability that exactly k− 1 agents other than i contributed given that at

least k−1 contributed.

lim
x∗→x

Pr

(

∑

j 6=i
c(X j)= k−1

∣

∣

∣

∣

∣

∑

j 6=i
c(X j)≥ k−1

)

= lim
x∗→x

(n−1
k−1)(1−F(x∗))k−1F(x∗)n−k

n−1
∑

l=k−1
(n−1

l )(1−F(x∗))lF(x∗)n−1−l

= lim
x∗→x

1

1+
n−1
∑

l=k

(k−1)!(n−k)!
l!(n−1−l)!

(

1−F(x∗)
F(x∗)

)l−k+1
= 1

(15)

Since lim
x∗→x

1−F(x∗)
F(x∗) = 0. Therefore, taking the limit of H(x∗) as x∗ → x yields

the following:

lim
x∗→x

H(x∗)=αx−w+
(1−α)(k−1)

n−1
x+

(1−α)(n−k)

n−1
E[X ] (16)
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Which is positive if and only if w <

(

α+
(1−α)(k−1)

n−1

)

x+ (1−α)(n−k)
n−1 E[X ]. Now

consider x∗ = x.

H(x)=αx−w+ (1−α)E[X ] (17)

The right-hand side is negative if and only if w > αx+ (1−α)E[X ]. Thus,

since H(x∗) is clearly continuous, there exists x∗ ∈ (x, x) such that H(x∗) = 0,

thus satisfying equation 4.

Now suppose w is not within the specified bounds. Since H(x∗) is strictly in-

creasing in x∗, it is either positive everywhere or negative everywhere. Thus,

no symmetric BNE cutoff exists.

�

Proof of Corollary 1. H(x∗) in equation 14 is clearly decreasing in w. There-

fore, when w increases, H becomes negative at the previous value of x∗. Since

H is increasing in x∗, the value of x∗ at which this function is zero must be

higher. Similarly, G i(x
∗) in equation 2 is clearly increasing in k, which implies

that H(x∗) is also increasing in k. Therefore, when k increases, the value of

x∗ at which H(x∗)= 0 must decrease.

�

Proof of Proposition 2. As in Lemma 1, in symmetric χ-cursed equilibrium,

the expected utility of contributing is non-decreasing in the signal. Thus by

the same argument as in Lemma 1, attention can be restricted to cutoff equi-

libria. The equilibrium condition in equation 4 becomes:

n−1
∑

l=k−1

(

n−1
l

)

(1−F(x∗χ))lF(x∗χ)n−1−l
[

αx∗χ+
(1−α)l

n−1

(

χE[X ]+ (1−χ)E[X |X ≥ x∗χ]
)

+
(1−α)(n−1−l)

n−1

(

χE[X ]+ (1−χ)E[X |X < x∗χ]
)

−w
]

= 0

(18)

As in the proof of Proposition 1, define a function Hχ(x∗χ) as follows:
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Hχ(x∗χ)=

n−1
∑

l=k−1
(n−1

l )(1−F(x∗χ))l F(x∗χ)n−1−l
[

αx∗χ+
(1−α)l

n−1

(

χE[X ]+(1−χ)E[X |X≥x∗χ]
)

+
(1−α)(n−1−l)

n−1

(

χE[X ]+(1−χ)E[X |X<x∗χ]
)

−w
]

n−1
∑

l=k−1
(n−1

l )(1−F(x∗χ))l F(x∗χ)n−1−l

=αx∗χ−w+ (1−α)χE[X ]+ (1−α)(1−χ)G i(x
∗
χ)

(19)

As in Proposition 1, a zero of this function in (x, x) corresponds to an inte-

rior symmetric equilibrium cutoff. As in Proposition 1, it can be shown that

limx∗χ→x Hχ(x∗χ) > 0 and Hχ(x) < 0 given the bounds on w. Thus, by continuity,

an interior zero exists. By Lemma 2, Hχ(x∗χ) is strictly increasing in x∗χ, and

so it has at most one zero. Furthermore, as in Proposition 1, if w lies outside

the given interval, Hχ(x∗χ) has no interior zero.

For χ= 1 (fully-cursed equilibrium), equation 18 becomes:

(

αx∗1 + (1−α)E[X ]−w
)

n−1
∑

l=k−1

(

n−1

l

)

(1−F(x∗1 ))lF(x∗1 )n−1−l
= 0 (20)

If x∗1 < x, then solving for the cutoff yields equation 7.

�

Proof of Corollary 2. From equation 19 it is clear that Hχ is non-increasing in

χ, since by Lemma 2, G i(x
∗
χ) ≥G i(x) = E[X ]. Thus, as χ increases, the zero of

Hχ (weakly) increases. The proof of the comparative statics with respect to w

and k is the same as the proof of1

�

Proof of Corollary 3. The bounds on w in Propositions 1 and 2 imply the re-

sult, as long as:

(

α+
(1−α)(k−1)

n−1

)

x+ (1−α)(n−k)
n−1 E[X ]−

(

α+
(1−χ)(1−α)(k−1)

n−1

)

x−
(

χ(1−α)(k−1)
n−1 +

(1−α)(n−k)
n−1

)

E[X ]

=
χ(1−α)(k−1)

n−1 (x−E[X ])> 0

(21)

Which holds if α< 1. �
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APPENDIX B: EXPERIMENTAL INSTRUCTIONS

Experiment Overview

This is an experiment in the economics of decision-making. In this experiment

you will make a series of choices, each of which may earn you money. The

amount of money you earn will depend on the decisions you make and on the

decisions of others. If you listen carefully and make good decisions, you could

earn a considerable amount of money that will be paid to you in cash at the

end of the experiment.

Ground Rules

Please make all decisions independently; do not communicate with others (in

the room or outside the room) in any way during the experiment. This means

no talking, no cell phone usage, no texting, no internet chatting, etc. Please do

not attempt to use any software other than the experiment software provided.

Failure to comply with these rules will lead to dismissal from the experiment.

Instructions (CVT)

During the experiment, participants earn tokens. All participants will be paid

based on the number of tokens they earn. Each token is worth 20 cents, or $1

for every 5 tokens.

The experiment consists of twenty rounds. At the start of the first round,

you will be randomly and anonymously matched into groups of five. At the

start of each later round, you will be randomly and anonymously re-matched

into new groups of five, so that your group changes every round and you never

learn the identities of the other group members in any round.

In each round, you will choose how to allocate some number of tokens,

which we will call T. Everyone in your group in any given round will allocate

the same number of tokens, so that T is the same for everyone in your group

and is known to everyone in your group. However, T may change from round

to round.
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The T tokens may be allocated to a private account or to a group project.

If you choose to allocate T tokens to a private account, then you get T tokens

for the round. The details of the group project are as follows.

In each round, a random number will be selected by the computer from a

uniform distribution between 0 and 100. We will call this random number

your signal. Each other member of your group will also get a signal randomly

selected by the computer from the same distribution. We will call the signals

of the five group members S1, S2, S3, S4, and S5. All signals are drawn

independently. During each round, you will not observe the signals of the

other members. Similarly, other members of the group will not observe any

signal other than their own.

If you choose to allocate T tokens to the group project, and if at least three

other members of your group also choose to allocate T tokens to the group

project, then you get a number of tokens equal to the average of the signals of

all five members of your group for the round. We will call the average of the

signals of the five members of your group the value of the group project, or V ,

which is given by:

V =
S1+S2+S3+S4+S5

5
So, for example, if your signal is 50 and the other members of your group

get signals of 25, 40, 62, and 86, then the average of all five signals is:

V =
50+25+40+62+86

5
= 52.6

Thus, in this case, if you chose to allocate T tokens to the group project and

at least three other members of your group also chose to allocate T tokens to

the group project, then you would get 52.6 tokens for that round.

If you choose to allocate T tokens to the group project, but less than three

other members of your group also choose to allocate T tokens to the group

project, then you get T tokens for that round. In other words, if less than

four of the five members of your group (including yourself) choose to allocate

T tokens to the group project, then all tokens are automatically reallocated to

private accounts and everyone in your group gets T tokens.
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After all members of your group have made their choice, you will learn the

value of the group project (V ) and your earnings in tokens for the round. You

will also learn the signals observed by the other members of your group (listed

from highest to lowest) and how they allocated T tokens (to the group project

or private account).

The following summarizes your choice in each round. If you choose to al-

locate T tokens to a private account, then you get T tokens. If you choose to

allocate T tokens to the group project, and if at least three other members

of your group also choose to allocate T tokens to the group project, then you

get V tokens, where V is the average of the signals of the five members of

your group. If you choose to allocate T tokens to the group project, but less

than three other members of your group also choose to allocate T tokens to

the group project, then you get T tokens.

Remember that you will be randomly and anonymously re-matched into

new groups of five at the start of each round. Also remember that T is the

same for every member of your group. However, signals are randomly and

independently drawn for each member of your group.

Of the twenty rounds, one will be randomly selected for payment. All

participants will be paid their earnings in dollars for the randomly selected

round, plus a $5.00 show-up payment. You will not find out which round you

will be paid for until the end of the experiment, so you should treat each round

as something for which you might get paid. You will not be paid for the rounds

that are not randomly selected for payment.

Are there any questions before we begin the experiment?

Instructions (AT)

During the experiment, participants earn tokens. All participants will be paid

based on the number of tokens they earn. Each token is worth 20 cents, or $1

for every 5 tokens.

The experiment consists of twenty rounds. At the start of the first round,

you will be randomly and anonymously matched into groups of five. At the

start of each later round, you will be randomly and anonymously re-matched
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into new groups of five, so that your group changes every round and you never

learn the identities of the other group members in any round.

In each round, you will choose how to allocate some number of tokens,

which we will call T. Everyone in your group in any given round will allocate

the same number of tokens, so that T is the same for everyone in your group

and is known to everyone in your group. However, T may change from round

to round.

The T tokens may be allocated to a private account or to a group project.

If you choose to allocate T tokens to a private account, then you get T tokens

for the round. The details of the group project are as follows.

In each round, a random number will be selected by the computer from a

uniform distribution between 0 and 100. We will call this random number

your signal. Each other member of your group will also get a signal randomly

selected by the computer from the same distribution. We will call the signals

of the five group members S1, S2, S3, S4, and S5. All signals are drawn

independently. During each round, you will not observe the signals of the

other members. Similarly, other members of the group will not observe any

signal other than their own.

If you choose to allocate T tokens to the group project, and if no more than

one other member of your group also chooses to allocate T tokens to the group

project, then you get a number of tokens equal to the average of the signals of

all five members of your group for the round. We will call the average of the

signals of the five members of your group the value of the group project, or V ,

which is given by:

V =
S1+S2+S3+S4+S5

5
So, for example, if your signal is 50 and the other members of your group

get signals of 25, 40, 62, and 86, then the average of all five signals is:

V =
50+25+40+62+86

5
= 52.6

Thus, in this case, if you chose to allocate T tokens to the group project

and if no more than one other member of your group also chose to allocate T

tokens to the group project, then you would get 52.6 tokens for that round.



46 CALEB A. COX

If you choose to allocate T tokens to the group project, but more than one

other member of your group also chooses to allocate T tokens to the group

project, then you get T tokens for that round. In other words, if more than

two of the five members of your group (including yourself) choose to allocate

T tokens to the group project, then all tokens are automatically reallocated to

private accounts and everyone in your group gets T tokens.

After all members of your group have made their choice, you will learn the

value of the group project (V ) and your earnings in tokens for the round. You

will also learn the signals observed by the other members of your group (listed

from highest to lowest) and how they allocated T tokens (to the group project

or private account).

The following summarizes your choice in each round. If you choose to al-

locate T tokens to a private account, then you get T tokens. If you choose to

allocate T tokens to the group project, and if no more than one other member

of your group also chooses to allocate T tokens to the group project, then you

get V tokens, where V is the average of the signals of the five members of

your group. If you choose to allocate T tokens to the group project, but more

than one other member of your group also chooses to allocate T tokens to the

group project, then you get T tokens.

Remember that you will be randomly and anonymously re-matched into

new groups of five at the start of each round. Also remember that T is the

same for every member of your group. However, signals are randomly and

independently drawn for each member of your group.

Of the twenty rounds, one will be randomly selected for payment. All

participants will be paid their earnings in dollars for the randomly selected

round, plus a $5.00 show-up payment. You will not find out which round you

will be paid for until the end of the experiment, so you should treat each round

as something for which you might get paid. You will not be paid for the rounds

that are not randomly selected for payment.

Are there any questions before we begin the experiment?
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Instructions (PVT)

During the experiment, participants earn tokens. All participants will be paid

based on the number of tokens they earn. Each token is worth 20 cents, or $1

for every 5 tokens.

The experiment consists of twenty rounds. At the start of the first round,

you will be randomly and anonymously matched into groups of five. At the

start of each later round, you will be randomly and anonymously re-matched

into new groups of five, so that your group changes every round and you never

learn the identities of the other group members in any round.

In each round, you will choose how to allocate some number of tokens,

which we will call T. Everyone in your group in any given round will allocate

the same number of tokens, so that T is the same for everyone in your group

and is known to everyone in your group. However, T may change from round

to round.

The T tokens may be allocated to a private account or to a group project.

If you choose to allocate T tokens to a private account, then you get T tokens

for the round. The details of the group project are as follows.

In each round, a random number will be selected by the computer from a

uniform distribution between 0 and 100. We will call this random number

your signal and label it S. Each other member of your group will also get

a signal randomly selected by the computer from the same distribution. All

signals are drawn independently. During each round, you will not observe the

signals of the other members. Similarly, other members of the group will not

observe any signal other than their own.

Furthermore, in each round, four unobserved random number will be se-

lected for you by the computer from a uniform distribution between 0 and 100.

We will label these four random numbers R1, R2, R3, and R4. For each other

member of your group, there will also be four unobserved numbers randomly

selected by the computer from the same distribution. All of these random

numbers are drawn independently of each other and independently of your

signal and the signals of others in your group. You will not observe any of

these random numbers, and neither will any other member of your group.



48 CALEB A. COX

If you choose to allocate T tokens to the group project, and if at least three

other members of your group also choose to allocate T tokens to the group

project, then you get a number of tokens equal to the average of your signal

and the four unobserved random numbers selected for you by the computer

for the round. We will call this average your value for the group project, or V ,

which is given by:

V =
S+R1+R2+R3+R4

5
So, for example, if your signal is 50 and the four unobserved random num-

bers are 25, 40, 62, and 86, then the average is:

V =
50+25+40+62+86

5
= 52.6

Thus, in this case, if you chose to allocate T tokens to the group project and

at least three other members of your group also chose to allocate T tokens to

the group project, then you would get 52.6 tokens for that round.

If you choose to allocate T tokens to the group project, but less than three

other members of your group also choose to allocate T tokens to the group

project, then you get T tokens for that round. In other words, if less than

four of the five members of your group (including yourself) choose to allocate

T tokens to the group project, then all tokens are automatically reallocated to

private accounts and everyone in your group gets T tokens.

After all members of your group have made their choice, you will learn your

value for the group project (V ) and your earnings in tokens for the round. You

will also learn the signals observed by the other members of your group (listed

from highest to lowest) and how they allocated T tokens (to the group project

or private account).

The following summarizes your choice in each round. If you choose to al-

locate T tokens to a private account, then you get T tokens. If you choose to

allocate T tokens to the group project, and if at least three other members

of your group also choose to allocate T tokens to the group project, then you

get V tokens, where V is the average of your signal, R1, R2, R3, and R4. If

you choose to allocate T tokens to the group project, but less than three other
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members of your group also choose to allocate T tokens to the group project,

then you get T tokens.

Remember that you will be randomly and anonymously re-matched into

new groups of five at the start of each round. Also remember that T is the

same for every member of your group. However, signals and unobserved ran-

dom numbers are randomly and independently drawn for each member of

your group.

Of the twenty rounds, one will be randomly selected for payment. All

participants will be paid their earnings in dollars for the randomly selected

round, plus a $5.00 show-up payment. You will not find out which round you

will be paid for until the end of the experiment, so you should treat each round

as something for which you might get paid. You will not be paid for the rounds

that are not randomly selected for payment.

Are there any questions before we begin the experiment?

Instructions (PVTk1)

During the experiment, participants earn tokens. All participants will be paid

based on the number of tokens they earn. Each token is worth 20 cents, or $1

for every 5 tokens.

The experiment consists of twenty rounds. At the start of the first round,

you will be randomly and anonymously matched into groups of five. At the

start of each later round, you will be randomly and anonymously re-matched

into new groups of five, so that your group changes every round and you never

learn the identities of the other group members in any round.

In each round, you will choose how to allocate some number of tokens,

which we will call T. Everyone in your group in any given round will allocate

the same number of tokens, so that T is the same for everyone in your group

and is known to everyone in your group. However, T may change from round

to round.

The T tokens may be allocated to a private account or to a group project.

If you choose to allocate T tokens to a private account, then you get T tokens

for the round. The details of the group project are as follows.
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In each round, a random number will be selected by the computer from a

uniform distribution between 0 and 100. We will call this random number

your signal and label it S. Each other member of your group will also get

a signal randomly selected by the computer from the same distribution. All

signals are drawn independently. During each round, you will not observe the

signals of the other members. Similarly, other members of the group will not

observe any signal other than their own.

Furthermore, in each round, four unobserved random numbers will be se-

lected for you by the computer from a uniform distribution between 0 and 100.

We will label these four random numbers R1, R2, R3, and R4. For each other

member of your group, there will also be four unobserved numbers randomly

selected by the computer from the same distribution. All of these random

numbers are drawn independently of each other and independently of your

signal and the signals of others in your group. You will not observe any of

these random numbers, and neither will any other member of your group.

If you choose to allocate T tokens to the group project, then you get a num-

ber of tokens equal to the average of your signal and the four unobserved

random numbers selected for you by the computer for the round. We will call

this average your value for the group project, or V , which is given by:

V =
S+R1+R2+R3+R4

5
So, for example, if your signal is 50 and the four unobserved random num-

bers are 25, 40, 62, and 86, then the average is:

V =
50+25+40+62+86

5
= 52.6

Thus, in this case, if you chose to allocate T tokens to the group project,

then you would get 52.6 tokens for that round.

After all members of your group have made their choice, you will learn your

value for the group project (V ) and your earnings in tokens for the round. You

will also learn the signals observed by the other members of your group (listed

from highest to lowest) and how they allocated T tokens (to the group project

or private account).
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The following summarizes your choice in each round. If you choose to al-

locate T tokens to a private account, then you get T tokens. If you choose to

allocate T tokens to the group project, then you get V tokens, where V is the

average of your signal, R1, R2, R3, and R4.

Remember that you will be randomly and anonymously re-matched into

new groups of five at the start of each round. Also remember that T is the

same for every member of your group. However, signals and unobserved ran-

dom numbers are randomly and independently drawn for each member of

your group.

Of the twenty rounds, one will be randomly selected for payment. All

participants will be paid their earnings in dollars for the randomly selected

round, plus a $5.00 show-up payment. You will not find out which round you

will be paid for until the end of the experiment, so you should treat each round

as something for which you might get paid. You will not be paid for the rounds

that are not randomly selected for payment.

Are there any questions before we begin the experiment?


