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Abstract 

In this paper, we investigate the value-at-risk predictions of four major precious metals (gold, silver, platinum, 

and palladium) with long memory volatility models, namely FIGARCH, FIAPARCH and HYGARCH, under 

normal and student-t innovations’ distributions. For these analyses, we consider both long and short trading 

positions. Overall, our results reveal that long memory volatility models under student-t distribution perform well 

in forecasting a one-day-ahead VaR for both long and short positions. In addition, we find that FIAPARCH 

model with student-t distribution, which jointly captures long memory and asymmetry, as well as fat-tails, 

outperforms other models in VaR forecasting. Our results have potential implications for portfolio managers, 

producers, and policy makers.  

JEL classification: G17, C53, C58 

Keywords: Long memory, value-at-risk, volatility modeling, precious metals prices 

1. Introduction 

Recently, stock markets have experienced unanticipated declines in returns and excessive volatility. Investors 

have lower diversification benefits from equity investments as correlations between global equity markets rise, 

especially in times of high volatility. Hence, financial market participants gravitate towards alternative asset 

classes to attain higher returns, diversify their portfolios and hedge against increased uncertainty in the equity 

markets. Commodities, such as major energy products and precious metals, are used as diversification and 

hedging tools as they have lower correlations with stocks. For this reason, modeling and forecasting volatility of 

commodity prices are of great interest to researchers, investors, portfolio managers and policymakers.  

The empirical studies point out some stylized facts in the behavior of commodity prices, such as asymmetry, fat 

tails and long memory. Sophisticated volatility models that capture these characteristics, are found to produce 

more accurate volatility estimates and outperform other models in terms of forecasting performances. In order to 

analyze these features, fractionally integrated and/or asymmetric Generalized Autoregressive Conditional 

Heteroscedastic (GARCH)-class models are widely employed in the literature.  

Accurate volatility estimates are also crucial for risk management. Empirical studies on commodity market risks 

frequently consider value-at-risk (VaR) approach based on GARCH-type models. VaR is commonly used among 

researchers and practitioners to measure the possible maximum amount of loss for an asset portfolio over a given 

period of time within a fixed confidence level.  

A wealth of literature focuses on examining the volatility dynamics and/or the VaR predictions of oil and other 

energy prices (Giot and Laurent, 2003; Sadorsky, 2006; Cheong, 2009; Aloui and Mabrouk, 2010; Kang and 

Yoon, 2013), whereas related studies on precious metals are very limited. Many studies have shown that adding 

precious metals in an equity portfolio considerably improves the portfolio performance.1 Precious metals are also 

largely used in industries, such as electronics, jewelry and medicine. Hence, investigating precious metals from a 

risk management perspective is beneficial not only for portfolio managers but also for manufacturers.  

In this paper, we investigate the value-at-risk (VaR) estimations of four precious metals (gold, silver, platinum 

and palladium) traded in the London Bullion Market and the London Platinum & Palladium Market, with long 
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memory models, namely FIGARCH, FIAPARCH and HYGARCH. We use daily fixing spot prices from January, 

4 1993 to November, 29 2013 and apply normal and student-t distributions to assess the overall performance. We 

evaluate in-sample and out-of-sample performances of the models at the 1% and 5% tails in the case of both long 

and short trading positions. In this regard, this study addresses a number of research questions. First, we 

investigate the volatility persistence in precious metals. Second, we examine the existence of asymmetric 

responses of precious metals volatility to the positive and negative news. Third, we analyze whether the long 

memory volatility models provide good forecasting performances of VaR if we jointly capture long memory, 

asymmetry and fat-tails in the precious metals volatility.  

The remainder of the paper is as follows. Section 2 presents the literature review. Section 3 and 4 describes the 

methodology and preliminary data analysis. In section 5, we document the empirical results and discuss the 

findings. Section 6 concludes. 

2. Literature Review 

As pointed out by Arouri et al. (2012), empirical studies on precious metals can be divided into two lines of 

research. The first line focuses on the macroeconomic determinants of precious metals. In this respect, Ciner 

(2001) finds no stable long run relationship between the prices of gold and silver. This situation is attributed to 

the separate demand and supply forces and economic uses of the gold and silver markets. Therefore, these 

markets should be considered as separated markets. Christie-David et al. (2000) study on the responses of gold 

and silver future prices to monthly macroeconomic news releases using intraday data and report that both metals 

respond strongly to the release of capacity utilization. Gold responds strongly to the release of the CPI. The 

unemployment rate, gross domestic product and the PPI also have significant effects on gold. For silver, the 

authors document strong responses only to the release of the unemployment rate. In a related study, Batten et al. 

(2010) examine the macroeconomic determinants (business cycle, monetary environment and financial market 

sentiment) of four precious metals volatility. They indicate that gold volatility responds only to monetary 

variables. For platinum and palladium, both monetary and financial variables such as volatility on the S&P 500 

are important, implying that these two metals are more likely to act as a financial instrument than gold. They also 

find that silver volatility responds neither to monetary nor financial market variables. Overall, their results show 

that precious metals are too distinct to be considered as a single asset class or represented by a single index. 

The second line of research is devoted to the modeling and/or forecasting of precious metals volatility. Tully and 

Lucey (2007) employ asymmetric power GARCH (APARCH) model to both the cash and future prices of gold in 

two crisis period (1987 and 2001) and document that the model provides the most adequate description for the 

data. Baur (2012) investigates asymmetric volatility in the gold market conducting GJR-GARCH model and 

provide evidence of inverted asymmetric reaction to positive and negative shocks, i.e. positive shocks raise the 

volatility by more than negative shocks. Arouri et al. (2012) analyze long memory and structural breaks in returns 

and volatility of precious metal commodities (gold, silver, platinum and palladium) and report that conditional 

volatility of precious metals is better explained by long memory than by structural breaks. Furthermore, they 

assert that an ARFIMA-FIGARCH model, which captures dual long memory both in the returns and volatility, 

provides better out-of-sample forecast accuracy than other volatility models. In the multivariate context, 

Hammoudeh et al. (2010) use VARMA-GARCH model to analyze precious metals-exchange rate volatility 

transmission. They provide evidence of weak volatility transmissions among precious metals and volatility 

sensitivity of precious metals to the exchange rate volatility. Computing hedge ratios and optimal portfolio 

weights, they also stress the role of gold as a hedge against exchange rate risk. 

The recent empirical studies have centered upon how to improve forecasts of VaR with volatility models in 

commodity markets. The generalized autoregressive conditional heteroscedastic (GARCH)-class models have 

been widely used in the finance literature to produce reliable predictions of VaR. Broadly speaking, these studies 

have also shown that distributional assumptions are very vital. In the context of precious metals’ market, 
Hammoudeh et al. (2011) models the VaR using the calibrated RiskMetrics, alternative GARCH models and the 

semi-parametric filtered historical simulation approach. The results reveal that the GARCH model with student-t 



innovations yield fewer violations. Cheng and Hung (2011) investigate the VaR forecasting performance of 

skewed generalized-t (SGT) distribution in the petroleum and metal markets. Based on the unconditional and 

conditional coverage tests, their results suggest that GARCH (1, 1) model with SGT distribution produces the 

most reliable VaR predictions. Aloui and Mabrouk (2010) compute VaR and expected shortfalls (ESFs) for some 

major crude oil and gas commodities by combining long memory volatility models with three alternative 

innovation’s distributions. They find that fractionally integrated asymmetric power GARCH (FIAPARCH) model 

with skewed student-t distribution performs well in predicting a one-day-ahead VaR for both long and short 

trading positions. Chikili et al. (2014) analyze VaR predictions of four major commodities (crude oil, natural gas, 

gold, silver) with several GARCH-type models and posit that FIAPARCH model under student-t distribution is 

found to be the best suited for predicting VaR. The above empirical findings are consistent with the results of the 

studies in the related field, asserting that the models, which jointly capture some stylized facts in the commodity 

prices behavior, produce superior predictions of VaR.  

As indicated earlier, this paper focuses on VaR forecasting ability of the three competing long memory volatility 

models (FIGARCH, FIAPARCH and HYGARCH) with normal and student-t distributions in the context of 

precious metals. As the first step, we examine volatility estimates of the models, capturing the aforementioned 

stylized facts in the commodity prices’ behavior. In the sequel, we compare the models according to the in-

sample and out-of-sample performances in estimating market risk of precious metals for both long and short 

trading positions. 

3. Methodology 

3.1. Detection of Long Memory 

It is a well known fact that many financial time series are highly persistent, implying that an unforeseeable shock 

to the variable has long lasting impacts. In this case, autocorrelations of the absolute and squared returns of the 

time series exhibit very slow decay. 

To detect the long memory behavior in returns and volatility of precious metals, we apply three well known long 

memory tests, namely the Lo’s modified rescaled range (R/S) analysis (1991), the log-periodogram regression 

(GPH) of Geweke and Porter-Hudak (1983) and the Gaussian semi-parametric (GSP)  method of Robinson and 

Henry (1999). 

3.1.1. Lo’s R/S Statistic 

The Rescaled Range (R/S) statistic was originally proposed by Hurst (1951) and later modified by Lo (1991). Lo 

(1991) remarked that the original statistic is not robust to short range dependence. Thus, Lo (1991) modified the 

R/S statistic as follows, 
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variance with bandwidth q. 

3.1.2. GPH Test 

Geweke and Porter-Hudak (1983) proposed a semi-parametric approach to test for long memory, using the 

following regression, 

   2ln ln 4sin / 2j j jI w d w                              (2) 



 where Tjw j /2 , j=1,2,…n; ηj is the residual term and wj denotes Fourier frequencies. I(wj) represents the 

periodogram of a time series rt and defined as 
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3.1.3. GSP Test 

The Gaussian semi-parametric estimation proposed by Robinson and Henry (1999) is based on the Whittle 

approximation maximum likelihood estimation. GSP estimator can be written as; 

 ˆ arg minGSP dd R d                          (4) 
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where m is the bandwidth, which increases with the sample size T. I(λj) denotes the periodogram and λj=2πj/T. 

3.2. Long Memory Volatility Models 

3.2.1. The Fractionally Integrated GARCH (FIGARCH) Model 

Baillie et al. (1996) extended the standard GARCH model by incorporating a fractionally integrated process, I(d) 

and suggested that FIGARCH model can distinguish between short and long memory in the conditional variance 

process. The FIGARCH (p,d,q) model can be expressed as follows: 

      2 2 21 1
d

t t tL L L L                                           (5) 

where L denotes backshift or lag operator. ω, β, φ and d are the parameters of the model to be estimated and 

0≤d≤1. The FIGARCH (p,d,q) model nests the IGARCH (p,q) model for d=1 and GARCH (p,q) model for d=0. 

3.2.2. The Fractionally Integrated Asymmetric Power ARCH (FIAPARCH) Model 

Tse (1998) proposed the FIAPARCH model by introducing fractional integration to the asymmetric power 

GARCH model of Ding et al. (1993). The FIAPARCH (p,d,q) model can be written as follows: 

        1 1
1 1 1 1

d

t t tL L L L
                                               (6) 

where δ, γ, φ, d and β are the model parameters and 0≤d≤1. δ denotes a  Box-Cox transformation of the 

conditional standard deviation and it is estimated within the model rather than being imposed by the researcher. γ 

represents the asymmetry parameter, i.e. when γ>0, negative shocks have bigger impact on volatility than 

positive shocks and vice versa. The FIAPARCH model nests the FIGARCH model for γ=0 and δ=2. 

3.2.3. Hyperbolic GARCH (HYGARCH) Model 

Davidson (2004) extended the conditional variance of the FIGARCH model by incorporating weights to its 

difference operator. The HYGARCH model can be defined as follows: 

         1 12 21 1 1 1 1
d

t tL L L L      
                                                          (7) 

The main advantage of the HYGARCH model is to jointly capture long memory, volatility clustering and 

leptokurtic behavior of the time series. However, it does not take asymmetry into account. 



3.3 Value-at-Risk (VaR) Concept 

VaRs are computed on a 1-day 99% and 95% confidence level basis, implying that the losses are more than the 

reported VaR of a portfolio in only 1% and 5% of the cases.2 We also calculate VaRs for both long (buy) and 

short (sell) trading positions. In the case of long positions, investors incur the risk of a loss when the traded asset 

price declines; hence we model the left tail of returns distributions. In the case of short positions, the risk of a loss 

occurs when the asset price rises; accordingly we model the right tail of the distribution. 

The estimated VaRs for long and short trading positions under normal distribution are expressed as follows: 

ˆ ˆ
long t tVaR z                                    (8) 

1
ˆ ˆ

short t tVaR z     

where zα and z1-α denote the left and right quantile at α% of the normal distribution, respectively. ˆ
t

 and ˆ
t

represent the estimated daily conditional mean and standard deviation of precious metals returns generated from 

the long memory volatility models. 

The estimated VaRs for long and short trading positions under student-t distribution are computed as follows: 

,
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where ,vst and 1 ,vst  are the left and right quantiles at α% for the student-t distribution with v degrees of 

freedom. 

In order to assess the statistical accuracy of the estimated VaRs, we employ two backtesting measures, namely 

the unconditional coverage test of Kupiec (1995) and the dynamic quantile test of Engle and Manganelli (2004). 

As a backtesting procedure, we compute the empirical failure rates for both long and short trading positions. The 

failure rate is the number of times returns exceed the forecasted VaR and should be equal to the designated level 

of VaR, if the VaR model is correctly specified.  

Kupiec (1995) proposed a likelihood ratio statistic to test the null hypothesis that the failure rate is statistically 

equal to the expected one. The likelihood ratio statistic is as follows: 

     2log 1 2log 1
T N T NN N

UCLR f f                                               (10) 

where N is the number of violations in the sample size T, f denotes the failure rate computed as N/T and α is the 

pre-specified VaR level. Under the null hypothesis, LRUC is distributed as χ2
 (1). 

Engle and Manganelli (2004) introduced Dynamic Quantile (DQ) test to jointly examine whether the number of 

failures is equal to the expected one and the probability of violations is independent of all past information. The 

following sequence is defined as: 

( )t t tHit I r VaR                                   (11) 

where Hitt is an indicator function and θ=1-α denotes a given confidence level. The sequence takes the value (1-

θ) in the case that rt is less than the VaRt and (θ) otherwise. 
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 Portfolio managers usually focus on longer forecasting horizons. However, as evidenced by Christoffersen and Diebold 

(2000) and Giot and Laurent (2003), GARCH-type models are more powerful in  volatility forecasting  for short horizons. 



Using an artificial regression, we test the independence of Hitt and regress it on a constant and the lagged Hitt-m 

up to the lag m=5, as follows: 
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or 
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We test the null hypothesis, H0:β=0, indicating uncorrelated hits. Engle and Manganelli (2004) provided that 

under the null hypothesis, the DQ test statistic is: 
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The asymptotic distribution of the test statistic is chi-squared with seven degrees of freedom, χ2(7). 

4. Preliminary Data Analysis 

In this paper, we consider daily PM fixing spot prices of four precious metals (gold, silver, platinum and 

palladium) traded in the London Bullion Market and the London Platinum & Palladium Market. All the prices are 

in US$/Troy ounce. The fixings are the globally published and accepted benchmark prices for precious metals 

trading. The time span is from January 4, 1993 to November 29, 2013, which is a highly volatile period covering 

the late 1990s global recession due to the Asian financial crisis and the recent global financial crisis. The last 

1000 observations are used to conduct the out-of-sample analysis. For the forecasting procedure, we re-estimate 

the model parameters in every 50 observations based on a rolling sample of the out-of-sample observations.3 

The continuously compounded daily returns are calculated as: 

 1100ln /t t tR P P                                (14) 

where Rt is the return in percent and Pt and Pt-1 denotes the closing  price on day t and t-1, respectively.  

Descriptive statistics for the daily log returns of the precious metals are reported in Table 1. We find that the 

highest mean returns are for the palladium (0.042), lowest mean returns are for the gold (0.025) and the values of 

standard deviations range from 2.317 (palladium) to 1.059 (gold). Table 1 also demonstrates that all the precious 

metals’ returns exhibit excess kurtosis which implies fatter tails than a normal distribution. Jarque-Bera (JB) test 

confirms the non-normal distribution of the return series, rejecting the null hypothesis of normality. Additionally, 

from the Ljung-Box tests employed to the squared returns, we can reject the null hypothesis of no serial 

correlation, hence the squared returns do not display white noise property. Based on the ARCH tests, ARCH 

effects are present in the precious metals’ returns. For this reason, GARCH-class models are appropriate for 

modeling dynamic conditional volatility. 
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Table 1. Descriptive Statistics 

 
GOLD SILVER PLATINIUM PALLADIUM 

 
Mean 0.025 0.032 0.027 0.042 

Median 0.035 0.055 0.114 0.218 

Std. Dev. 1.059 2.045 1.476 2.317 

Skewness -0.185 -0.445 -0.277 0.023 

Kurtosis 9.635 12.169 12.588 8.902 

Jarque-Bera 9505.36a 18341.47a 18757.11a 6472.475a 

Q2 (20) 1460.78a 1260.66a 1281.19a 1034.96a 

ARCH (10) 42.106a 62.630a 58.218a 44.621a 

Notes: Q2(20) is the Ljung-Box Q-statistics of order 20 on the squared return series. ARCH (10) denotes ARCH Lagrange multiplier test 

of order 10. (a) represents statistical significance at the 1% level. 

Some preliminary tests are implemented to check for the existence of unit-roots and to test stationarity, before 

fitting the data. We apply two unit-root tests (Augmented Dickey Fuller, ADF; 1979 and Phillips-Perron, PP; 

1988) and a stationary test (Kwiatkowski–Phillips–Schmidt–Shin, KPSS; 1992) to the return series. These three 

tests differ in their null hypotheses. While the null hypothesis of ADF and PP tests imply the presence of a unit-

root, I (1) process, the KPSS test has the null hypothesis of stationarity, I (0) process. In table 2, we present the 

results of these three tests. ADF and PP tests clearly reject the null hypothesis of a unit-root for all the precious 

metals at a 1% significance level. The statistics of KPSS tests indicate that all the return series are insignificant 

for the rejection of the null hypothesis of stationarity. Hence, the return series are stationary and convenient for 

further tests and models. 

Table 2. Unit root and stationarity tests  

 
GOLD SILVER PLATINIUM PALLADIUM 

ADF -71.859a -78.535a -70.259a -61.674a 

PP -71.861a -78.535a -70.259a -61.574a 

KPSS 0.131 0.066 0.062 0.085 
Notes: MacKinnon's (1991) 1% critical value is −3.435 for the ADF and PP tests. The critical value for the KPSS test is 0.739 at the 1% 

significance level. (a) represents statistical significance at the 1% level. 

Descriptive graphs are given in Figures (1-4) to provide a visual representation. Figure 1 presents the time 

evolution of daily precious metals’ returns and exhibits volatility clustering behavior, i.e. large (small) changes 

tend to be followed by large (small) changes. Figure 2 displays the histograms of the daily returns against normal 

distribution and reveals that all the daily returns have fat tails and leptokurtosis. The autocorrelation functions of 

the raw and squared returns are plotted in Figure 3. From this figure, it is evident that most autocorrelations are 

insignificant and stay inside the 95% confidence intervals for the raw returns. However, the autocorrelations of 

the squared returns are positive and statistically significant up to many lags. They also display hyperbolic and 

slow decay, suggesting a persistent behavior in the squared returns of the precious metals. In figure 4, we present 

the quantile-quantile (QQ) plots against the normal distribution. QQ-plots confirm the results of the histograms, 

implying all precious metals’ return distributions display fat tails. Besides, the QQ-plots show that fat tails are 

nearly symmetric. 

 

 

 



 

Figure1. Plots of precious metals daily returns 

 

 

Figure 2. Density of precious metals daily returns versus normal distribution 



 

Figure 3. Autocorrelations of daily raw and squared precious metals returns 

 

Figure 4. QQ-plots for precious metals daily returns 

 

 

 

 



5. Empirical Results 

5.1. Long Memory Test Results 

We utilize three long memory tests to the raw and squared returns of the precious metals.4 The results of the tests 

are documented in Table 3. Panel A of Table 3 shows that Lo’s modified R/S statistics support the null 
hypothesis of short memory in the returns, whereas the statistics indicate that long memory behavior exists in the 

volatility proxy, which is squared returns. 

From Panel B and C of Table 3, we can clearly notice that both GPH and GSP tests do not reject the null 

hypothesis of no long-range dependence for the precious metals returns. For the squared return series, the results 

of the both tests provide evidence of long memory. Thereby, the results of long memory tests point out the 

suitability of GARCH-class models which capture long memory property in the volatility process. 

Table 3. Long memory tests results 

 
GOLD SILVER PLATINIUM PALLADIUM 

Panel A: Lo's R/S Test 

    Returns 1.758 1.245 1.290 1.627 

Squared Returns 6.055a 4.838a 3.420a 3.334a 

Panel B: GPH Test 

    Returns 
    m=T

0.5
 0.054 -0.039 -0.057 0.021 

m=T
0.6

 -0.061 -0.029 -0.002 0.086 

m=T
0.8

 -0.023 -0.010 0.021 0.047 

Squared Returns 
    m=T

0.5
 0.603a 0.435a 0.520a 0.281a 

m=T
0.6

 0.515a 0.313a 0.452a 0.359a 

m=T
0.8

 0.259a 0.246a 0.216a 0.263a 

Panel C: GSP Test 

    Returns 
    m=T/4 0.005 -0.019 0.006 0.022 

m=T/16 -0.020 -0.039 0.032 0.025 

m=T/64 0.070 -0.009 0.044 0.013 

Squared Returns 
    m=T/4 0.238a 0.202a 0.203a 0.302a 

m=T/16 0.381a 0.302a 0.349a 0.345a 

m=T/64 0.498a 0.371a 0.406a 0.352a 

Notes: The critical values of Lo’s modified R/S statistic is 2.098 at the 1% level, m represents the bandwidth for the GPH and GSP tests. 

(a) denotes statistical significance at the 1% level. 

5.2. Estimation Results of GARCH-class Models 

In tables 4-6, we present the estimation results of FIGARCH, FIAPARCH and HYGARCH models under normal 

and student-t distributed innovations for all precious metals returns.5 The Panel A of Table 4 shows that the 

estimates of the long memory parameter d are all positive and statistically significant at the 1% level, suggesting 

                                                           
4 It is well known that long memory tests are very sensitive to the selection of bandwith. Therefore, the GPH test was applied 
with different bandwidths: m=T

0.5
, m=T

0.6 and m=T
0.8. For the GSP test, it was estimated for diverse bandwidths: m=T/4, 

m=T/16, and m=T/64. 
5 We also estimated the three models with skewed student-t distribution to jointly capture skewness and heavy-tails. 
However, we found insignificant values for the skewness coefficient and in this case, it nests the symmetric student-t 
distribution. For the sake of brevity, we do not reproduce the results here, but they are available upon request. 



the rejection of d=0 (GARCH model) and d=1 (IGARCH model). This empirical result provides evidence of 

long memory in the volatility of precious metals returns. Under the student-t distribution, the tail parameters (v) 

are significantly different from zero, indicating the fat-tail phenomenon. 

Examining the log-likelihood values and the lowest values of three information criterions (AIC, SIC and H-Q) in 

Panel B of Table 4, we find that the FIGARCH models with student-t distribution outperform those with normal 

distribution. In addition, as residual diagnostic tests, we employ the Ljung-Box test up to 20
th order serial 

correlation in the squared residuals and the ARCH-LM test for the existence of ARCH effects in the residuals up 

to lags 10. Panel C documents the tests’ results and implies no serial correlations in the standardized squared 

residuals, except for one case. More importantly, ARCH (10) tests show no remaining ARCH effects in the 

residuals. 

Table 4. FIGARCH Model Estimation Results 

  Gold  Silver  Platinum  Palladium  

  Normal Std-t Normal Std-t Normal Std-t Normal Std-t 

Panel A. 
Estimation Results 
C(M) 

 
 

0.004 

 
 

0.005 

 
 

0.010 

 
 

0.016 

 
 

0.036b 

 
 

0.038b 

 
 

0.045 

 
 

0.020 
 (0.011) (0.009) (0.021) (0.020) (0.017) (0.016) (0.032) (0.027) 

C(V) 0.017 0.007b 0.061b 0.053b 0.042b 0.041a 0.166 0.231a 

 (0.011) (0.003) (0.027) (0.021) (0.020) (0.014) (0.090) (0.089) 

d 0.446a 0.587a 0.518a 0.504a 0.555a 0.495a 0.510a 0.496a 

 (0.051) (0.116) (0.098) (0.096) (0.109) (0.087) (0.101) (0.078) 

φ 0.282b 0.274a 0.254a 0.337a 0.274a 0.307a 0.269 0.223 

 (0.111) (0.049) (0.067) (0.061) (0.081) (0.060) (0.156) (0.132) 

β 0.604a 0.756a 0.694a 0.738a 0.659a 0.641a 0.539a 0.465a 

 (0.119) (0.083) (0.092) (0.072) (0.114) (0.074) (0.207) (0.169) 

υ  5.207a  5.648a  7.352a  6.187a 

 - (0.380) - (0.428) - (0.796) - (0.544) 

Panel B. 
Model Selection 
L 

 
 

-5214.61 

 
 

-5030.48 

 
 

-8035.35 

 
 

-7889.04 

 
 

-6369.62 

 
 

-6276.84 

 
 

-7392.76 

 
 

-7283.93 
AIC 2.506 2.418 3.840 3.771 3.285 3.238 4.277 4.215 

SIC 2.514 2.427 3.848 3.780 3.293 3.248 4.286 4.225 

H-Q 2.509 2.421 3.843 3.774 3.288 3.242 4.280 4.218 

Panel C. 
Diagnostic Tests 
 

        

Q
2
 (20) 17.941 27.690 27.407 30.677b 16.181 18.457 16.937 18.017 

 [0.459] [0.066] [0.071] [0.031] [0.579] [0.425] [0.527] [0.454] 

ARCH(10) 1.040 1.646 1.372 1.656 0.580 0.664 0.951 0.970 

  [0.406] [0.102] [0.186] [0.141] [0.831] [0.758] [0.484] [0.467] 

Notes: L denotes the log-likelihood. AIC, SIC and H-Q represents Akaike, Schwarz and Hannan-Quinn information criterions, 

respectively. Q2 (20) is the Ljung-Box test statistic for the remaining serial correlation for standardized squared residuals. ARCH (10) is 

the ARCH Lagrange Multiplier test at lag 10. (a) and (b) stand for 1% and 5% significance levels, respectively. Robust standard errors are 

in parentheses and the values in brackets are the p-values. 

Estimation results for the FIAPARCH model with normal and student-t error distributions are reported in the 

Panel A of Table 5. The fractional difference parameters, d are all positive and significant, consistent with 

FIGARCH model results. The asymmetric news impact coefficients, γ are all negative and statistically 

significant, except for FIAPARCH model with normally distributed innovations of palladium returns. The 



negative asymmetry coefficients imply that positive shocks have bigger impacts on conditional volatility than 

negative shocks of the same magnitude. This asymmetric effect can be attributed to the general perception of 

investors that upward price movements in precious metals (especially in gold and silver markets) are signals of 

uncertainty in equity markets and future unfavorable macroeconomic conditions. These bring higher volatility to 

the precious metals markets. The tail parameters (v) of the FIAPARCH model with student-t distribution indicate 

that the densities of the model’s standardized residuals have fat tails. 

Panel B of Table 5 demonstrates that FIAPARCH models with student-t distribution give superior results, with 

regards to the maximum log-likelihood and minimum information criterions. Besides, based on the results in the 

Panel C, Q
2
 (20) tests fail to reject the null hypothesis of no serial correlation in the standardized squared 

residuals, except for silver. For heteroscedasticity tests, ARCH (10) tests indicate no remaining ARCH effects. 

Table 5. FIAPARCH Model Estimation Results 

 
Gold 

 
Silver 

 
Platinum 

 
Palladium 

 
Normal Std-t Normal Std-t Normal Std-t Normal Std-t 

         Panel A. 
Estimation Results 
C(M) 0.012 0.009 0.031 0.034 0.052a 0.050a 0.057 0.035 

 
(0.010) (0.009) (0.022) (0.020) (0.017) (0.016) (0.031) (0.028) 

C(V) 0.011 0.008 0.038 0.052b 0.048a 0.054a 0.166 0.231a 

 

(0.012) (0.005) (0.030) (0.023) (0.017) (0.014) (0.090) (0.088) 

d 0.443a 0.656b 0.477a 0.488a 0.641a 0.632a 0.512a 0.522a 

 

(0.075) (0.321) (0.103) (0.131) (0.160) (0.102) (0.107) (0.085) 

φ 0.274a 0.233 0.256a 0.307a 0.229a 0.245a 0.270 0.235b 

 

(0.099) (0.139) (0.060) (0.058) (0.074) (0.057) (0.152) (0.115) 

β 0.607a 0.790a 0.674a 0.720a 0.723a 0.736a 0.545a 0.519a 

 

(0.119) (0.184) (0.099) (0.094) (0.121) (0.069) (0.213) (0.164) 

γ -0.185a -0.152b -0.189b -0.281a -0.167a -0.161a -0.042 -0.087b 

 

(0.055) (0.064) (0.081) (0.076) (0.053) (0.052) (0.044) (0.038) 

δ 2.031a 1.930a 2.046a 1.888a 1.772a 1.586a 1.985a 1.810a 

 

(0.165) (0.176) (0.162) (0.176) (0.1884) (0.156) (0.163) (0.145) 

υ - 5.215a - 5.727a - 7.636a - 6.327a 

  
(0.405) 

 
(0.455) 

 
(0.806) 

 
(0.564) 

Panel B. 
Model Selection 
L -5197.28 -5025.19 -8020.5 -7876.08 -6357.33 -6266.72 -7391.64 -7280.58 
 

AIC 2.499 2.416 3.834 3.765 3.280 3.234 4.277 4.214 

SIC 2.509 2.429 3.845 3.778 3.291 3.247 4.290 4.228 

H-Q 2.502 2.421 3.838 3.770 3.284 3.238 4.282 4.219 
 
Panel C. 
Diagnostic Tests 
Q

2
 (20) 16.800 27.548 30.114b 33.790b 15.753 19.647 16.876 17.160 

 
[0.536] [0.069] [0.036] [0.013] [0.609] [0.353] [0.531] [0.512] 

ARCH(10) 0.876 1.503 1.473 1.547 0.425 0.615 0.901 0.798 

 
[0.555] [0.131] [0.142] [0.116] [0.935] [0.802] [0.530] [0.630] 

Notes: L denotes the log-likelihood. AIC, SIC and H-Q represents Akaike, Schwarz and Hannan-Quinn information criterions, 

respectively. Q2 (20) is the Ljung-Box test statistic for the remaining serial correlation for standardized squared residuals. ARCH (10) is 

the ARCH Lagrange Multiplier test at lag 10. (a) and (b) stand for 1% and 5% significance levels, respectively. Robust standard errors are 

in parentheses and the values in brackets are the p-values. 



The Panel A of Table 6 documents the estimation results of HYGARCH models with normal and student-t 

innovations’ distributions. The results reveal that the hyperbolic parameters log (α) are not statistically different 

from zero, suggesting that the GARCH components are covariance stationary. The tail parameters (v) of student-t 

distribution are all significant at the 1% level, referring to the fat-tails. 

The Panel B of Table 6 provides evidence of HYGARCH models with student-t error distribution being a more 

suitable model than those with normal distribution. Furthermore, as can be seen from the Panel C, Q
2
 (20) test 

results show no serial correlation in the standardized squared residuals, excluding silver’s HYGARCH model 
with student-t distribution. With the HYGARCH models, we fail to reject the null hypothesis of no remaining 

ARCH effects. 

Table 6. HYGARCH Model Estimation Results 

 
Gold 

 
Silver 

 
Platinum 

 
Palladium 

 
Normal Std-t Normal Std-t Normal Std-t Normal Std-t 

Panel A. 
Estimation Results 
C(M) 0.003 0.004 0.010 0.016 0.036b 0.038b 0.044 0.020 

 
(0.010) (0.009) (0.021) (0.020) (0.017) (0.016) (0.031) (0.027) 

C(V) -0.001 0.007 0.029 0.032 0.041 0.049b 0.106 0.246b 

 
(0.011) (0.005) (0.033) (0.027) (0.024) (0.019) (0.092) (0.101) 

d 0.326a 0.482a 0.453a 0.448a 0.552a 0.527a 0.467a 0.508a 

 
(0.080) (0.113) (0.103) (0.100) (0.131) (0.100) (0.109) (0.085) 

φ 0.281b 0.315a 0.278a 0.366a 0.276a 0.294a 0.262 0.225 

 

(0.146) (0.052) (0.073) (0.069) (0.081) (0.063) (0.181) (0.129) 

β 0.516a 0.712a 0.668a 0.721a 0.657a 0.655a 0.499b 0.477a 

 

(0.158) (0.090) (0.100) (0.074) (0.123) (0.073) (0.231) (0.170) 

log( α) 0.121 0.058 0.036 0.031 0.002 -0.017 0.044 -0.012 

 

(0.085) (0.039) (0.039) (0.035) (0.035) (0.028)  (0.057) (0.040) 

υ - 4.802a - 5.515a - 7.432a - 6.225a 

  
(0.380) 

 
(0.446) 

 
(0.812) 

 
(0.563) 

Panel B. 
Model Selection 
L -55208.05 -5027.35  -8034.21 -7888.51 -6369.62 -6276.66 -7391.98 -7283.89 

AIC 2.503 2.417 3.840 3.771 3.286 3.239 4.277 4.215 

SIC 2.512 2.428 3.849 3.782 3.296 3.250 4.288 4.228 

H-Q 2.506 2.421 3.843 3.775 3.289 3.243 4.281 4.220 
 
Panel C. 
Diagnostic Tests 
Q

2
 (20) 17.541 25.416 26.925 30.199b 16.148 18.555 17.781 17.820 

 
[0.486] [0.113] [0.080] [0.035] [0.582] [0.419] [0.470] [0.467] 

ARCH(10) 0.993 1.493 1.342 1.596 0.816 0.697 1.003 0.955 

 
[0.446] [0.134] [0.201] [0.101] [0.830] [0.759] [0.437] [0.483] 

Notes: L denotes the log-likelihood. AIC, SIC and H-Q represents Akaike, Schwarz and Hannan-Quinn information criterions, 

respectively. Q2 (20) is the Ljung-Box test statistic for the remaining serial correlation for standardized squared residuals. ARCH (10) is 

the ARCH Lagrange Multiplier test at lag 10. (a) and (b) stand for 1% and 5% significance levels, respectively. Robust standard errors are 

in parentheses and the values in brackets are the p-values. 

Summarizing all, when we compare FIGARCH, FIAPARCH and HYGARCH models under the two innovations’ 
distributions, we notice that the FIAPARCH models with student-t error distribution perform better, in 

accordance with the highest values of log-likelihood and the lowest values of information criterions. The model 



captures long memory behavior and asymmetry in the volatility of precious metals returns as well as fat-tails in 

the density of the standardized residuals. 

5.3. Estimation Results of VaR Computations 

In Tables 7(a)-(c) and 8(a)-(c), we present the empirical results for the in-sample and out-of-sample VaR 

computations, respectively, for the precious metals with a VaR level α; 1% and 5% for long trading positions and 
99% and 95% for short trading positions.6 In these tables we report the results of empirical failure rates, Kupiec 

and Dynamic Quantile tests. The failure rate indicates the percentage of positive (negative) returns larger 

(smaller) than the VaR prediction for short (long) trading position. The failure rate is equal to the pre-specified 

VaR level if the VaR model is correctly specified. Moreover, for an adequate model, Kupiec’ LR and Dynamic 
Quantile tests would not reject their null hypothesis, implying that the failure rate is equal to the pre-specified 

VaR level and the exceptions are not serially correlated.  

Tables 7(a)-(c) show that, overall, long memory volatility models with student-t innovations’ distribution perform 

better than those with normal distribution for the in-sample VaR analyses. Out of 16 cases, the null hypothesis of 

Kupiec’s LR test is rejected in 9, 12 and 10 cases for FIGARCH, FIAPARCH and HYGARCH models with 
normally distributed innovations, respectively. Under student-t distribution, the Kupiec’s LR test is rejected in 1 
case for FIGARCH model and none of the cases for FIAPARCH and HYGARCH models. Hence, we can draw a 

conclusion that the number of violations implied by normal distribution is greater than those under student-t 

distribution. In Tables 7(a)-(c), Dynamic Quantile test results reveal that, out of 16 cases, VaR violations are not 

independently distributed in 5 cases for the FIGARCH model and 4 cases for both the FIAPARCH and 

HYGARCH models with normally distributed innovations. Assuming student-t distribution, all the long memory 

volatility models pass the test at all confidence levels, except for 2 cases in each. 

As suggested by Tang and Shieh (2006), the main contribution of VaR computation is its forecasting 

performance, providing insights for investors and financial institutions about the maximum amount of loss that 

they will incur. Diamandis et al. (2011) also consider the out-of-sample VaR analysis as the “true” test. In this 
regard, we present the one-day-ahead forecasting results of the long memory volatility models in Tables 8(a)-(c). 

To conduct the analysis, the last 1000 observations are used and we employed an iterative procedure by re-

estimating every 50 observations in the out-of-sample period. Tables 8(a)-(c) indicate that long-memory models 

with normally distributed innovations have a poor forecasting performance, compared to those with student-t 

distribution. Out of 16 cases in each, Kupiec test results indicate that all of the models under normal distribution 

have 4 rejections. The models with student-t distribution perform better and yield fewer rejections; 2 rejections 

for both FIGARCH and HYGARCH models and 1 rejection for FIAPARCH model.  

Based on the Dynamic-Quantile test results, the majority of the VaR violations are independently distributed. 

However, FIGARCH and FIAPARCH models under normal distribution have 3 rejections, followed by 

HYGARCH model with 1 rejection. Under student-t distribution, both FIGARCH and HYGARCH models have 

1 rejection and FIAPARCH model has no rejection. Hence, FIAPARCH model with student-t distribution 

perform correctly in 100% of the cases for both long and short trading positions. In a nutshell, our VaR 

forecasting analyses clearly demonstrate that long memory volatility models under normal distribution have a 

very poor performance to model large positive and negative returns, compared to those with student-t 

distribution. Within the context of VaR, our results provide evidence of relevance and usefulness of realistic 

assumptions, such as long memory, asymmetry and fat tails. These assumptions give rise to a deeper 

understanding of investors, portfolio and risk managers about the uncertainty associated with the maximum 

amount of loss that they will incur. 

 

                                                           
6 To conserve space, we only document the results for 1% and 5% levels. However, the results for the other VaR levels are 
examined and found consistent with those for 1% and 5%. 



 

 

Table 7(a). In sample VaR calculated by FIGARCH model 

 
  Failure rate   Kupiec Test    D.Q. Test 

 Distribution Normal Student-t Normal Student-t Normal Student-t 

α=1% 
      Panel A: Short Position 
      Gold 0.984 0.988 0.000a 0.505 0.000a 0.023b 

Silver 0.984 0.988 0.002a 0.352 0.362 0.687 

Platinum 0.985 0.989 0.006a 0.305 0.187 0.724 

Palladium 0.983 0.989 0.000a 0.566 0.037b 0.805 

Panel B: Long Position 
      Gold 0.014 0.009 0.007a 0.563 0.445 0.838 

Silver 0.013 0.010 0.025b 0.630 0.017b 0.074 

Platinum 0.011 0.008 0.259 0.116 0.200 0.565 

Palladium 0.014 0.009 0.020b 0.653 0.258 0.644 

α=5% 
      Panel C: Short Position 
      Gold 0.948 0.943 0.736 0.062 0.591 0.029b 

Silver 0.955 0.951 0.091 0.703 0.340 0.672 

Platinum 0.957 0.953 0.094 0.333 0.476 0.622 

Palladium 0.952 0.949 0.433 0.812 0.163 0.234 

Panel D: Long Position 
      Gold 0.047 0.054 0.462 0.188 0.345 0.336 

Silver 0.043 0.047 0.056 0.459 0.340 0.533 

Platinum 0.046 0.049 0.037b 0.882 0.005a 0.051 

Palladium 0.039 0.042 0.004a 0.046b 0.022b 0.205 
Notes: D.Q. Test represents Dynamic Quantile test of Engle and Manganelli (2004). For Kupiec’s LR Test and D.Q. Test, the associated p-values are documented. (a) and (b) stand for 1% and 5% 

significance levels, respectively. 

 



Table 7(b). In sample VaR calculated by FIAPARCH model 

 
  Failure rate    Kupiec Test    D.Q. Test 

 Distribution Normal Student-t Normal Student-t Normal Student-t 

α=1% 
       

Panel A: Short Position 
      Gold 0.984 0.990 0.001a 0.919 0.000a 0.000a 

Silver 0.984 0.988 0.002a 0.220 0.057 0.355 

Platinum 0.985 0.988 0.009a 0.411 0.178 0.703 

Palladium 0.984 0.988 0.001a 0.460 0.101 0.756 

Panel B: Long Position 
      Gold 0.014 0.009 0.003a 0.563 0.170 0.066 

Silver 0.013 0.010 0.017b 0.527 0.001a 0.022b 

Platinum 0.013 0.009 0.020b 0.896 0.004a 0.091 

Palladium 0.014 0.010 0.008a 0.810 0.230 0.759 

α=5% 
      Panel C: Short Position 
      Gold 0.951 0.945 0.555 0.166 0.663 0.350 

Silver 0.957 0.951 0.033b 0.600 0.344 0.860 

Platinum 0.957 0.953 0.028b 0.263 0.189 0.626 

Palladium 0.953 0.949 0.388 0.873 0.134 0.324 

Panel D: Long Position 
      Gold 0.048 0.056 0.655 0.062 0.069 0.075 

Silver 0.042 0.047 0.018b 0.376 0.141 0.355 

Platinum 0.048 0.051 0.656 0.660 0.012a 0.062 

Palladium 0.041 0.046 0.012b 0.345 0.062 0.107 
Notes: D.Q. Test represents Dynamic Quantile test of Engle and Manganelli (2004). For Kupiec’s LR Test and D.Q. Test, the associated p-values are documented. (a) and (b) stand for 1% and 5% 

significance levels, respectively 

 

 

 



Table 7(c). In sample VaR calculated by HYGARCH model 

 
   Failure rate   Kupiec Test    D.Q. Test 

 Distribution Normal Student-t Normal Student-t Normal Student-t 

α=1% 
      Panel A: Short Position 
      Gold 0.985 0.990 0.003a 0.563 0.000a 0.000a 

Silver 0.985 0.988 0.005a 0.434 0.077 0.336 

Platinum 0.985 0.988 0.006a 0.505 0.145 0.719 

Palladium 0.983 0.988 0.000a 0.460 0.079 0.756 

Panel B: Long Position 
      Gold 0.013 0.007 0.047b 0.162 0.614 0.489 

Silver 0.013 0.009 0.036b 0.892 0.002a 0.724 

Platinum 0.011 0.009 0.259 0.532 0.186 0.037b 

Palladium 0.014 0.009 0.020b 0.784 0.258 0.695 

α=5% 
      Panel C: Short Position 
      Gold 0.952 0.946 0.462 0.268 0.475 0.159 

Silver 0.956 0.951 0.066 0.551 0.472 0.678 

Platinum 0.957 0.953 0.023b 0.371 0.167 0.649 

Palladium 0.953 0.949 0.306 0.812 0.088 0.234 

Panel D: Long Position 
      Gold 0.045 0.050 0.213 0.790 0.044b 0.201 

Silver 0.042 0.047 0.015b 0.376 0.115 0.519 

Platinum 0.046 0.049 0.263 0.941 0.143 0.057 

Palladium 0.039 0.043 0.002a 0.067 0.015b 0.270 
Notes: D.Q. Test represents Dynamic Quantile test of Engle and Manganelli (2004). For Kupiec’s LR Test and D.Q. Test, the associated p-values are documented. (a) and (b) stand for 1% and 5% 

significance levels, respectively. 

 

 

 



Table 8(a). Out-of-sample VaR calculated by FIGARCH model 

 
   Failure rate    Kupiec Test    D.Q. Test 

 Distribution Normal Student-t Normal Student-t Normal Student-t 

α=1% 
      Panel A: Short Position 
      Gold 0.985 0.995 0.138 0.048b 0.816 0.523 

Silver 0.986 0.990 0.230 1.000 0.503 0.997 

Platinum 0.991 0.992 0.746 0.510 0.997 0.990 

Palladium 0.986 0.993 0.230 0.313 0.506 0.002a 

Panel B: Long Position 
      Gold 0.024 0.014 0.000a 0.230 0.026b 0.896 

Silver 0.021 0.015 0.002a 0.138 0.000a 0.213 

Platinum 0.015 0.014 0.136 0.230 0.816 0.896 

Palladium 0.024 0.013 0.000a 0.362 0.084 0.950 

α=5% 
      Panel C: Short Position 
      Gold 0.954 0.949 0.556 0.884 0.649 0.898 

Silver 0.957 0.955 0.298 0.460 0.265 0.454 

Platinum 0.969 0.967 0.003a 0.008a 0.028b 0.074 

Palladium 0.952 0.951 0.770 0.884 0.392 0.397 

Panel D: Long Position 
      Gold 0.056 0.062 0.392 0.092 0.639 0.400 

Silver 0.048 0.050 0.770 1.000 0.116 0.149 

Platinum 0.051 0.056 0.884 0.730 0.896 0.725 

Palladium 0.050 0.056 1.000 0.392 0.567 0.640 
Notes: D.Q. Test represents Dynamic Quantile test of Engle and Manganelli (2004). For Kupiec’s LR Test and D.Q. Test, the associated p-values are documented. (a) and (b) stand for 1% and 5% 

significance levels, respectively. 

 

 

 



Table 8(b). Out-of-sample VaR calculated by FIAPARCH model 

 
Failure rate Kupiec Test D.Q. Test 

 Distribution Normal Student-t Normal Student-t Normal Student-t 

α=1% 
      Panel A: Short Position 
      Gold 0.986 0.989 0.230 0.754 0.896 0.993 

Silver 0.987 0.992 0.362 0.510 0.950 0.990 

Platinum 0.991 0.992 0.746 0.732 0.997 0.995 

Palladium 0.986 0.993 0.230 0.313 0.002a 0.506 

Panel B: Long Position 
      Gold 0.023 0.016 0.000a 0.079 0.028b 0.474 

Silver 0.020 0.016 0.005a 0.079 0.000a 0.093 

Platinum 0.018 0.015 0.062 0.138 0.380 0.497 

Palladium 0.024 0.013 0.000a 0.362 0.084 0.465 

α=5% 
      Panel C: Short Position 
      Gold 0.954 0.945 0.556 0.474 0.462 0.722 

Silver 0.958 0.951 0.233 0.884 0.523 0.755 

Platinum 0.968 0.966 0.005a 0.130 0.072 0.164 

Palladium 0.953 0.951 0.660 0.884 0.499 0.484 

Panel D: Long Position 
      Gold 0.055 0.073 0.474 0.001a 0.666 0.071 

Silver 0.047 0.053 0.660 0.666 0.096 0.082 

Platinum 0.053 0.059 0.666 0.203 0.688 0.621 

Palladium 0.051 0.055 0.884 0.474 0.601 0.621 
Notes: D.Q. Test represents Dynamic Quantile test of Engle and Manganelli (2004). For Kupiec’s LR Test and D.Q. Test, the associated p-values are documented. (a) and (b) stand for 1% and 5% 

significance levels, respectively. 

 

 

 



Table 8(c). Out-of-sample VaR calculated by HYGARCH model 

 
   Failure rate    Kupiec Test    D.Q. Test 

 Distribution Normal Student-t Normal Student-t Normal Student-t 

α=1% 
      Panel A: Short Position 
      Gold 0.989 0.996 0.754 0.030b 0.993 0.166 

Silver 0.988 0.992 0.537 0.510 0.980 0.990 

Platinum 0.991 0.992 0.746 0.510 0.997 0.990 

Palladium 0.986 0.993 0.230 0.313 0.506 0.002a 

Panel B: Long Position 
      Gold 0.020 0.011 0.005a 0.754 0.226 0.993 

Silver 0.018 0.015 0.022b 0.138 0.251 0.213 

Platinum 0.015 0.014 0.138 0.230 0.816 0.896 

Palladium 0.024 0.013 0.000a 0.362 0.084 0.950 

α=5% 
      Panel C: Short Position 
      Gold 0.959 0.953 0.178 0.660 0.330 0.425 

Silver 0.959 0.955 0.178 0.460 0.189 0.454 

Platinum 0.968 0.966 0.005a 0.013b 0.047 0.164 

Palladium 0.952 0.951 0.770 0.884 0.392 0.397 

Panel D: Long Position 
      Gold 0.050 0.054 1.000 0.566 0.814 0.562 

Silver 0.046 0.049 0.556 0.884 0.046b 0.134 

Platinum 0.051 0.056 0.884 0.392 0.896 0.725 

Palladium 0.050 0.058 1.000 0.257 0.567 0.581 
Notes: D.Q. Test represents Dynamic Quantile test of Engle and Manganelli (2004). For Kupiec’s LR Test and D.Q. Test, the associated p-values are documented. (a) and (b) stand for 1% and 5% 

significance levels, respectively. 

 

 



6. Conclusion 

This paper analyzes the value-at-risk (VaR) predictions of major precious metals with long memory volatility 

models under normal and student-t distributions. Our main results are threefold. First, carrying out the three 

widely employed long memory tests, we document long-range dependence in the volatility process of precious 

metals. Second, according to the model selection criterions, the FIAPARCH model with student-t distribution is 

found to be the best suited for estimating the conditional variance of the precious metals. The estimation results 

of the FIAPARCH model also show that positive shocks have bigger impacts on conditional volatility of precious 

metals than negative shocks of the same magnitude. Finally, in overall, long memory volatility models perform 

well in both in-sample and out-of-sample VaR analyses for long and short trading positions. However, the 

FIAPARCH model under student-t distribution outperforms other models in predicting a one-day-ahead VaR of 

the precious metals, in regard to Kupiec’s LR and Dynamic Quantile tests. In general terms, our results point out 

the usefulness of the sophisticated volatility models which consider some stylized facts, such as long memory, 

asymmetry and fat-tails, to quantify and predict market risk of precious metals in the context of VaR. 

For a further research, the use of intra-day data might be beneficial to produce more reliable measures of the 

market risk for traders. In addition, other types of innovations’ distributions, such as α-stable distributions, can be 

considered. Moreover, longer forecasting time horizons might be employed to provide more information about 

market risk of precious metals for portfolio managers.  
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