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Abstract

We study US city size distribution using places data from the Census, without

size restrictions, for the period 1900-2010, and the recently constructed US City

Clustering Algorithm (CCA) data for 1991 and 2000.

We compare the lognormal, two distributions named after Ioannides and Sk-

ouras (2013) and the double Pareto lognormal with two newly introduced distribu-

tions. The empirical results are overwhelming: one of the new distributions greatly

outperforms any of the previously-used density functions for both types of data.

We also develop a theory compatible with the new distributions based on the

standard geometric Brownian motion for the population in the short term. We

propose some extensions of the theory in order to deal with the long term empirical

features.
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1 Introduction

The study of city size distribution has a long tradition in urban economics, a few exam-

ples being Black and Henderson (2003), Ioannides and Overman (2003), Soo (2005),

Anderson and Ge (2005), Bosker et al. (2008) and the more recent ones of Giesen et al.

(2010) and Ioannides and Skouras (2013).

Over the years, the Pareto distribution (Pareto, 1896) (for the upper tail, subindex

“ut”) has generated a huge amount of research and received widespread acceptance.

The normalized density function for this distribution reads

fut(x, xm, ζ) =
ζ

x

(xm

x

)ζ

, x > xm ,

where x > xm is the population of urban centers1, xm is the minimum threshold size

and ζ > 0 is the Pareto exponent. 2

In an influential paper on city size distribution, Eeckhout (2004) essentially pro-

poses the lognormal (abbreviated in this work as “lgn”) to describe it, using US Census

data for the year 2000 of all unincorporated and incorporated places in his analysis.

Lognormal distributions had previously been proposed by Parr and Suzuki (1973), but

one of the main points in Eeckhout (2004) is that one should take into account the

whole set of cities when studying their distribution. Later, Levy (2009) argued that

the upper tail of the city size distribution and, thus, most of the population (for the US

places), followed a Pareto distribution, not a lognormal one.

In this line of research, the important contribution of Ioannides and Skouras (2013)

has appeared; it aims to reconcile the two views by means of the proposal of two dis-

tributions (IS1 and IS2, hereafter) which have a lognormal body and, above an explicit

threshold, a Pareto power law (IS1) or a linear combination of Pareto and lognormal

(IS2) in the upper tail.

In parallel to the appearance of these works, a distribution has been proposed which

has a lognormal body and power laws in the tails, but without clearly delineating be-

tween the three behaviors, called the double Pareto lognormal (dPln); see, e.g., Reed

(2002, 2003), Reed and Jorgensen (2004). The fit of this distribution is remarkably

1In this work we will analyze different cross-sections of population data over time, and the same symbol

x will be used for the population on each period. A more precise notation would include, for example, a

subindex for denoting the variable t or each specific period, but for the sake of notational simplicity we will

generally omit it.
2The cumulative distribution function is

cdfut(x, xm, ζ) = 1−
(xm

x

)ζ
, x > xm

so that

1− cdfut(x, xm, ζ) =
(xm

x

)ζ

and

ln(1− cdfut(x, xm, ζ)) = ζ lnxm − ζ lnx

Thus, for a Pareto distribution, the quantity ln(1 − cdf) is linear in lnx with a negative slope of absolute

value ζ. The case of ζ = 1 corresponds to the well-known Zipf’s law (Zipf, 1949); see the surveys on this

subject by Cheshire (1999) and Gabaix and Ioannides (2004). This is the basis of the well-known Zipf plots.
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good for a number of countries (see Giesen et al. (2010), for eight countries, and the

recent contribution of González-Val et al. (2013b) for a more comprehensive data set).

In what follows of this Introduction, we will try to motivate the appropriateness of

our approach (see Section 3 for details). Nowadays, there is a certain consensus in the

study of city size distribution that a combination of Pareto and lognormal provides the

best fit, IS1 and IS2 having a component of Pareto only in the upper tail and dPln having

components of Pareto in the upper and lower tails. We build on this relevant strand of

the literature and go further in two ways. First, by proposing two new distributions

that systematically outperform the lognormal, dPln, IS1 and IS2. Second, by offering a

theoretical basis for the newly-introduced distributions based on the standard geometric

Brownian motion process for population and the associated forward Kolmogorov or

Fokker–Planck differential equation (Gabaix, 1999, 2009).

For the lower tail (subindex “lt”) of city size distributions, Reed (2001, 2002) ob-

serves that they indeed follow a power law, using the smallest 5,000 settlements for the

U.S. in 1998. He plots the natural logarithm of cumulative frequencies against that of

population and observes indeed a linear behavior.3 This fact seems to be overlooked in

the literature and, as we will see below, is one of the important points one should take

into account in order to obtain an excellent overall fit.

Against this background, we have decided to compare in detail the distributions4

IS1 and IS2 proposed by Ioannides and Skouras (2013) with the dPln and, in order to

reconcile both tendencies, we propose two new distributions which contain the essence

of these two views and take a step forward. They are:

• The “threshold double Pareto Singh–Maddala” (tdPSM), which is a distribution

with a Singh–Maddala one (Singh and Maddala, 1976) in the body and with both

tails following a power law, but with two thresholds which exactly delineate

the switch between the different behaviors. It is like the IS1 of Ioannides and

Skouras (2013) but with the lower tail modeled as a pure power law and the

body being Singh–Maddala instead of lognormal. As far as we know, the tdPSM

is a completely new distribution.

• The “double mixture Pareto Champernowne Pareto” (dm PChP), which is a dis-

tribution with a Champernowne distribution (Champernowne, 1952) body and

with a linear combination of Champernowne and Pareto in both tails, also with

3For the lower tail, we can define the Pareto density function

flt(x, xM , ρ) =
ρ

x

(

x

xM

)ρ

, 0 < x < xM ,

where xM is now the maximum size threshold and ρ > 1 is the Pareto exponent. The cumulative distribution

function is then

cdf lt(x, xM , ρ) =

(

x

xM

)ρ

, 0 < x < xM ,

and, therefore, ln(cdf lt(x, xM , ρ)) = ρ lnx − ρ lnxM . So, we have that, for a lower tail Pareto distri-

bution, the natural logarithm of cdf gives a straight line in lnx with a positive slope ρ. We will plot the

previous quantities in the left-hand panels of Figures 1 and 2 .
4Given its importance in the study of size distributions, not only for cities, we have also analyzed the

lognormal distribution.
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two population thresholds which exactly delineate the switch between the dif-

ferent behaviors. It is like the IS2 of Ioannides and Skouras (2013) but with the

lower tail modeled as a mixture of Champernowne and power law, and the log-

normal substituted by a Champernowne in general. This is, to the best of our

knowledge, also a new distribution.5

These distributions yield extremely good, strong and encouraging results, and they

are based on the following important improvements:

• The extremely important need to specifically model the lower tail as a power law

in order to get an overall good fit, as mentioned above.

• The mixtures in the tails become very important when considering some of our

data; this is due to the fact that the tails of these samples are slightly curved on a

log-log plot and so the Pareto needs to be combined with another distribution in

order to improve the fit notably.

• The use of the Singh–Maddala and Champernowne distributions instead of the

lognormal all lead to a very important improvement. This means that the stan-

dard theory (Eeckhout, 2004) generating the lognormal can be enhanced notably.

The article is organised as follows. Section 2 describes the databases used. Sec-

tion 3 motivates the need to search for new and better distributions. Section 4 shows

the definitions and main properties of the distributions studied. Section 5 shows the

detailed results. In Section 6, we develop a theory that accommodates the newly–

preferred distributions and, in Section 7, we offer a discussion. Finally, Section 8

concludes and A contains the proofs of the statements in Section 6.

2 The databases

In this article, we use data about US urban centers from three sources. The first is

the decennial data of the US Census Bureau of “incorporated places” without any size

restriction, in the period 1900-2000. These include governmental units classified under

state laws as cities, towns, boroughs or villages. Alaska, Hawaii and Puerto Rico have

not been considered due to data limitations. The data have been collected from the

original documents of the annual census published by the US Census Bureau.6 This

data was first introduced in González-Val (2010), see therein for details, and later used

in other works like González-Val et al. (2013a).

5These two distributions are the outcome of a research process in which we have tried different ones.

We started with the lognormal for the body as it is used in IS1 and IS2. But we realized that a much

better performance could be obtained with the Fisk (“Fi”) distribution (Fisk, 1961) for the body and (the

mixtures at) the Pareto tails. Both the Singh–Maddala and Champernowne distributions generalize that of

Fisk (and have one parameter more) so we tried them as well. For the sake of brevity, we present only the

best results obtained, corresponding to the new distributions mentioned. We have also worked with (with

obvious notation) tdPln, tdPFi, dm PlnP, dm PFiP, dm PSMP that, although all provide better results than the

lognormal, dPln, IS1 and IS2, perform worse than the ones finally presented here.
6http://www.census.gov/prod/www/decennial.html Last accessed: January 29th, 2014.
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The second source consists of all US urban places, unincorporated and incorpo-

rated, and without size restrictions, also provided by the US Census Bureau for the

years 2000 and 2010. The data for the year 2000 was first used in Eeckhout (2004)

and later in Levy (2009), Eeckhout (2009), Giesen et al. (2010), Ioannides and Sk-

ouras (2013) and Giesen and Suedekum (2013). The two samples were also used in

González-Val et al. (2013a).

The third comes from a different and recent approach to defining city centers, de-

scribed in detail in Rozenfeld et al. (2008, 2011). They use a so called “City Clustering

Algorithm” (CCA) to get “an automated and systematic way of building population

clusters based on the geographical location of people.” (op. cit.) We use their US clus-

ters data based on the radii of 2, 3, 4, 5 km. and for the years 1991 and 2000. This data

was used in Ioannides and Skouras (2013) and Giesen and Suedekum (2013).

[Table 1 near here]

The descriptive statistics of the data can be seen in Table 1. As Giesen and Suedekum

(2013) indicate, the CCA data comprises a higher percentage of the whole population

than the Census data.

3 Motivation of our approach

As a preliminary analysis, we take the sample of all US places in 2010, in order to

see whether the previous dPln, IS1 and IS2 provide a good fit. For the dPln, we use

the corresponding estimation results of Table 3 of González-Val et al. (2013b). For the

IS1 and IS2, we use some of the estimation results in Tables 2 and 3. In Figure 1,

we show, in the left-hand panel, the empirical and estimated (by maximum likelihood,

ML) ln(cdf) against lnx for the lower tail and in the right-hand panel, the analogous

quantities ln(1 − cdf) against lnx for the upper tail.7 In the center panel, we show

the usual empirical density functions (obtained through an adaptive Gaussian kernel)

compared to the estimated density functions, all three for the case of the dPln and the

IS1 and IS2.

[Figure 1 near here]

We see, in the left-hand panel of Figure 1, that all of the dPln, IS1 and IS2 (in

red) are not so linear as the empirical ln(cdf). In the middle panel, we observe that

the empirical and estimated densities differ clearly in the body and also in the tails.

In the right-hand panel, corresponding to the upper tails, we see that the fit is also not

so good for the dPln (serious discrepancies starting at lnx > 11, i.e., x > 59, 874
inhabitants), and IS1 and IS2 perform better than the dPln in this respect.8 Advancing

some results of Table 8, we will see that both of two standard but demanding tests,

7The difference between the empirical and the estimated quantities are amplified because we take the

natural logarithms of cdf or (1 − cdf) for the lower and upper tails, respectively (González-Val et al.,

2013a).
8A linear OLS estimation has been calculated and shown in green, only for reference purposes, for the

lower and upper tails. If one wanted to obtain accurate numerical results by this method, techniques inspired

in Gabaix and Ibragimov (2011) might be appropriate for both tails. However, our formal estimations are

performed by the standard maximum likelihood (ML).
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given the high sample size, (Kolmogorov–Smirnov (KS) and Cramér-Von Mises (CM))

clearly reject the cited models.9 Formally, the dPln slightly outperforms the IS1 and

IS2, as the Akaike Information Criterium (AIC) and Bayesian Information Criterium

(BIC) values obtained for the latter two are greater (and therefore unfavored) than those

for the former, as Giesen and Suedekum (2013) indicate, see also Tables 10 and 11 for

this result. This is because IS1 and IS2 fail to take into account the empirical power

law behavior of the lower tail.

Therefore, it makes sense to look for one or a number of distributions that cannot

be rejected in the majority of cases and that offer a better fit to the data. We will see

that this can be achieved by introducing some simple but significant changes into IS1

and IS2, which act as our baseline distributions.

4 Description of the distributions used

In this section, we will introduce the distributions used in the paper. Firstly, we define

some basic functions which are employed by the distributions of Ioannides and Skouras

(2013) and our new ones.

We thus set

fln(x, µ, σ) =
1

xσ
√
2π

exp

(

− (lnx− µ)2

2σ2

)

(1)

fSM(x, µ, σ, α) =
α (e−µx)1/σ

xσ(1 + (e−µx)1/σ)1+α
(2)

fCh(x, µ, σ, β) =
sinβ

xβσ((e−µx)−1/σ + (e−µx)1/σ + 2 cosβ)
(3)

g(x, ζ) =
1

x1+ζ
(4)

h(x, ρ) = xρ−1 (5)

where µ, σ > 0 are, respectively, the mean and the standard deviation of lnx for the

lognormal density fln. For the fSM, fCh distributions, the corresponding µ, σ > 0
are also related to the mean and standard deviation of lnx (Singh and Maddala, 1976;

Champernowne, 1952).10 The function g(x, ζ) will model the Pareto part of the upper

tail of our distributions, ζ > 0 is the Pareto exponent, and h(x, ρ) corresponds to

the Pareto lower tail, ρ > 1 being the power law exponent. The functions g, h are

not normalized at this stage in accordance with the practice of Ioannides and Skouras

(2013).

9When performing the tests, we take the whole studied sample, and not subsamples, in order to achieve

the maximum power of the KS and CM tests (compare with Giesen and Suedekum (2013)).
10We have taken the Champernowne density (2.4) in Champernowne (1952) with λ = cosβ since this

particular specification covers all the cases estimated in this paper. Also, the fSM is directly related to the

Burr Type XII distribution (Burr, 1942). See also Kleiber and Kotz (2003).
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4.1 The first distribution of Ioannides and Skouras (IS1)

The first distribution studied in Ioannides and Skouras (2013) is a lognormal with a

Pareto upper tail, the transition between the two taking place at an exact threshold

τ > 0. The requirement is that the composite density function be continuous at x = τ
and normalized to unity.11 The resulting density function is

f1(x, µ, σ, τ, ζ) =

{

b1 fln(x, µ, σ) 0 < x ≤ τ
b1 a1 g(x, ζ) τ < x

(6)

where a1, b1 are constants (depending on the parameters of the distribution) given by

the following expressions:

a1 =
fln(τ, µ, σ)

g(τ, ζ)
(7)

b−1
1 =

1

2

(

1− erf

(

µ− ln τ√
2σ

))

+
fln(τ, µ, σ)

ζ τ ζ g(τ, ζ)
(8)

where erf denotes the error function associated with the normal distribution. This

distribution depends on four parameters (µ, σ, τ, ζ) to be estimated. It is easy to see12

that f1 → fln when τ → ∞, using the expressions of a1 and b1 given by (7) and (8),

respectively.

4.2 The second distribution of Ioannides and Skouras (IS2)

The second distribution studied in Ioannides and Skouras (2013) is a variant of IS1 in

which the upper tail is a linear combination of lognormal and Pareto distributions, the

parameter θ being the combining coefficient.13 The requirement of continuity of the

density function at the threshold point is analogous to that of IS1 as well as that of the

normalization. The following condition is also imposed:

a2

∫ ∞

τ

g(x, ζ) dx = c2

∫ ∞

τ

fln(x, µ, σ) dx

so that the parameter θ controls the proportion of the density in the combination in the

upper tail (Ioannides and Skouras, 2013). The resulting composite density is given by:

f2(x, µ, σ, τ, ζ, θ) =

{

b2 fln(x, µ, σ) 0 < x ≤ τ
b2 [(1− θ) c2 fln(x, µ, σ) + θ a2 g(x, ζ)] τ < x

(9)

11Composite lognormal-Pareto models have previously been introduced by Cooray and Ananda (2005),

Scollnik (2007), Malevergne et al. (2011) and Bee (2012).
12Details available from the authors upon request.
13The IS2 is referred to as CDGPR in Ioannides and Skouras (2013) because these authors were inspired

by a similar combination used in Combes et al. (2012).
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where the constants are now given as follows:

c−1
2 = 1− θ +

ζ τ ζ θ g(τ, ζ)

2fln(τ, µ, σ)

(

1 + erf

(

µ− ln τ√
2σ

))

(10)

a−1
2 =

2(1− θ)

ζ τ ζ
(

1 + erf
(

µ−ln τ√
2σ

)) +
θ g(τ, ζ)

fln(τ, µ, σ)
(11)

b−1
2 =

1

2

(

1− erf

(

µ− ln τ√
2σ

))

+
a2
ζ τ ζ

(12)

This distribution depends on five parameters (µ, σ, τ, ζ, θ) to be estimated. We also

have the obvious relation f2 = f1 when θ = 1.

4.3 The double Pareto lognormal distribution (dPln)

The probability density function of the double Pareto lognormal distribution is (Reed,

2002, 2003; Reed and Jorgensen, 2004):

f3(x, α, β, µ, σ) =
αβ

2x(α+ β)
exp

(

αµ+
α2σ2

2

)

x−α

(

1 + erf

(

lnx− µ− ασ2

√
2σ

))

− αβ

2x(α+ β)
exp

(

−βµ+
β2σ2

2

)

xβ

(

erf

(

lnx− µ+ βσ2

√
2σ

)

− 1

)

(13)

where α, β, µ, σ > 0 are the four distribution parameters to be estimated. The dPln

distribution has the property that it approximates different power laws at its two tails,

namely f3(x) ≈ x−α−1 when x → ∞ and f3(x) ≈ xβ−1 when x → 0, hence the

name double Pareto. The central part of the distribution is approximately lognormal,

although it is not possible to delineate the lognormal body part and the Pareto tails

exactly (Giesen et al., 2010).

The dPln distribution is the steady-state distribution of an evolutionary process of a

simple stochastic model of settlement formation and growth based on Gibrat’s law and

a Yule process. Mathematically, the dPln is the log version of the convolution of the

normal distribution and the (asymmetric) double Laplace distribution, see Reed (2002,

2003); Reed and Jorgensen (2004) and references therein for details.

For more recent work on an economic model which incorporates the stochastic

derivation of Reed (2002, 2003), see Giesen and Suedekum (2012, 2013). The key

in these latter models is the endogenous creation of cities and the resulting age het-

erogeneity in cities within the distribution. Giesen and Suedekum (2012, 2013) argue

that Eeckhout (2004)’s theoretical framework and the lognormal distribution represent

a particular scenario of their model, the case in which there is no city creation and all

cities have the same age.
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4.4 The threshold double Pareto Singh–Maddala (tdPSM)

We introduce here the first of our distributions. It is a variant of the IS1 in which we

model the lower tail as a Pareto power law and the body as Singh–Maddala instead

of lognormal. Thus, the tdPSM has a Singh–Maddala body and Pareto tails, the three

regions exactly delineated by two thresholds: ϵ > 0 separates the Pareto power law in

the lower tail from the Singh–Maddala body, and τ > ϵ separates the body from the

Pareto power law in the upper tail. We impose continuity of the density function on the

two threshold points and normalization of the former to unity. The resulting density

reads

f4(x, ρ, ϵ, µ, σ, α, τ, ζ) =







b4 e4 h(x, ρ) 0 < x < ϵ
b4 fSM(x, µ, σ, α) ϵ ≤ x ≤ τ

b4 a4 g(x, ζ) τ < x
(14)

where now

e4 =
fSM(ϵ, µ, σ, α)

h(ϵ, ρ)
(15)

a4 =
fSM(τ, µ, σ, α)

g(τ, ζ)
(16)

b−1
4 = e4

ϵρ

ρ
+ eµα/σ((eµ/σ + ϵ1/σ)−α − (eµ/σ + τ1/σ)−α) +

a4
ζ τ ζ

(17)

This distribution depends on seven parameters (ρ, ϵ, µ, σ, α, τ, ζ) to be estimated.

4.5 The double mixture Pareto Champernowne Pareto (dm PChP)

The second distribution we introduce is a variant of the IS2 in the sense that we now

consider linear combinations of the Champernowne and Pareto distributions in the two

tails, while maintaining a Champernowne body. The tails and the body are separated

by two exact thresholds ϵ and τ with similar meaning to those of the tdPSM. For the

lower tail, the combining coefficient will be denoted by ν, and θ for the upper tail as

before. We require, as usual, continuity of the density function at the threshold points

and overall normalization to one. The following conditions are also imposed:

a5

∫ ∞

τ

g(x, ζ) dx = c5

∫ ∞

τ

fCh(x, µ, σ, β) dx

e5

∫ ϵ

0

h(x, ρ) dx = d5

∫ ϵ

0

fCh(x, µ, σ, β) dx

so that the parameters θ, ν control the proportion of the density in the combination in

the upper (resp. lower) tail, analogously to the θ of the IS2. The resulting composite

density is given by:

f5(x, ρ, ϵ, ν, µ, σ, β, τ, ζ, θ)

=







b5 [(1− ν) d5 fCh(x, µ, σ, β) + ν e5 h(x, ρ)] 0 < x < ϵ
b5 fCh(x, µ, σ, β) ϵ ≤ x ≤ τ

b5 [(1− θ) c5 fCh(x, µ, σ, β) + θ a5 g(x, ζ)] τ < x
(18)
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where the constants are now given as follows:

d−1
5 = 1− ν +

νρ(β − arccot[cotβ + (e−µϵ)1/σ cscβ])h(ϵ, ρ)

ϵρβfCh(ϵ, µ, σ, β)
(19)

e−1
5 =

βϵρ(1− ν)

ρ(β − arccot[cotβ + (e−µϵ)1/σ cscβ])
+

ν h(ϵ, ρ)

fCh(ϵ, µ, σ, β)
(20)

c−1
5 = 1− θ +

θζτ ζ arccot[cotβ + (e−µτ)1/σ cscβ]g(τ, ζ)

βfCh(τ, µ, σ, β)
(21)

a−1
5 =

β(1− θ)

ζτ ζ arccot[cotβ + (e−µτ)1/σ cscβ]
+

θ g(τ, ζ)

fCh(τ, µ, σ, β)
(22)

b−1
5 = e5

ϵρ

ρ
+

1

β
arctan

(

sinβ

(e−µϵ)1/σ + cosβ

)

− 1

β
arctan

(

sinβ

(e−µτ)1/σ + cosβ

)

+
a5
ζ τ ζ

(23)

This distribution depends on nine parameters (ρ, ϵ, ν, µ, σ, β, τ, ζ, θ) to be estimated.

5 Results

5.1 Estimation of the distributions

Maximum likelihood (ML) is a standard technique which allows the estimation of the

parameters of a distribution given a sample of data. For the case of the lognormal

density function, the corresponding ML estimators can be found easily in an exact

closed form (the µ and σ are then the mean and the standard deviation (SD) of the

natural logarithm of the data). However, for the other distributions f1, . . . , f5 used in

this article, one must resort to numerical optimization methods in order to find the ML

estimators.14 It is worth noting that the threshold population parameters ϵ and τ present

in the cited density functions are to be estimated endogenously by ML, letting the data

“decide” the optimum threshold values which maximize the log-likelihood.

Previous work on similar matters includes that of Bee (2012), which deals with a

distribution similar to the IS1 with ML. The log-likelihood function of the dPln is also

found in Reed and Jorgensen (2004). Of course, Ioannides and Skouras (2013) estimate

their IS1 and IS2 by ML. The other cases of our paper can be dealt with in a similar

fashion.15

When performing the estimations, not all density functions can always be treated

by our numerical procedure because it seems that, in the corresponding cases, the esti-

mators simply do not exist. This may happen when dealing with composite densities,

see, e.g., Bee (2012) for a theoretical discussion in a related sample situation. Specif-

ically, for the US places data, the dm PChP cannot be estimated so, for the sake of

brevity, we include only the results of the new distributions which can be estimated

14We have used MATLAB in order to perform the ML estimations, as Ioannides and Skouras (2013) did.
15More details are available from the authors upon request.
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for each type of data (US places and CCA clusters, separately) and for all periods and

which provide the best performance in each case.

We present the results of the estimation procedure for the US places data in Ta-

bles 2, 3, 4 and 5. For the sample of the US (2000, all places) we essentially replicate

the results of Ioannides and Skouras (2013) for the IS1 and IS2,16 Giesen et al. (2010)

and Giesen and Suedekum (2013) for the dPln. We have found that the log-likelihood

function is smooth near its maximum in all of the estimated cases, see also Bee (2012).

[Tables 2, 3, 4 and 5 near here]

We observe in these results that there are, for example, “sudden jumps” in the esti-

mates of τ for the IS1 and IS2 when passing to all places. Also, there are surprisingly

low estimates for the upper threshold τ of IS2 for the samples of US incorporated

places in the whole period 1900-2000. In turn, the tdPSM offers quite stable, or with

a soft trend, estimates. Its lower (ϵ) threshold vary between 99 and 178, and the upper

(τ ) threshold vary between 3,405 and 55,274. This is an observed first good feature of

the tdPSM.

Next, we show the estimation results for the US CCA samples in Tables 6 and 7. For

these data, we also replicate essentially the results of Ioannides and Skouras (2013) and

Giesen and Suedekum (2013). The estimation process is smoother than for the places

data, and the distribution dm PChP can be estimated for all of these samples. This

is a remarkable feature of the cluster data: the City Clustering Algorithm considers

an actual agglomeration of people within a prescribed radius as an urban center, irre-

spectively of legally-established borders, giving an economic and physical entity to the

clusters considered. This fact seems to be reflected in the data obtained, which allows

the estimation of more density functions and, in general, with narrower confidence in-

tervals. For the dm PChP, ϵ varies between 1,118 and 2,671 and τ between 14,253 and

20,381.

[Tables 6 and 7 near here]

We have used the graphical tools in Section 3 to introduce the need of continuing to

search for distributions with better fit. But, when performing a high precision exercise,

these graphical tools can be misleading in assessing the quality of fit, see González-Val

et al. (2013a). So, we resort to standard statistical tests and information criteria to see

when the hypothesized distributions offer a good fit and which model is selected from

amongst the ones studied. This is done in the following subsections.

5.2 Standard statistical tests

In this subsection, we provide independent tests to verify the goodness of fit in all of

the cases studied. As in González-Val et al. (2013b), we have chosen the Kolmogorov–

Smirnov (KS) test, which is also mentioned in Giesen et al. (2010), Giesen and Suedekum

(2012, 2013) and is standard in the literature. We also use the Cramér-von Mises (CM)

test, cited in Ioannides and Skouras (2013).

16We provide 95% confidence intervals while Ioannides and Skouras (2013) provide standard errors. Both

quantities are related and give essentially the same information. Also, there are slight differences in the

values of τ but within the confidence intervals.
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The KS and CM tests have similar power, quite low for small sample sizes but very

high for large sample sizes (Razali and Wah, 2011). Both tests are extremely precise

for large and very large sample sizes like the ones used in this paper, for which non

rejections only occur if the deviations (statistics) are extremely small. The significance

level chosen is always 5%. Non rejections are indicated in bold.

[Tables 8 and 9 near here]

In Table 8, we show the results for the samples of US places. We offer the p-

values of the tests together with the values of the statistics (in parentheses). A first

observation is that the lognormal model is very strongly rejected for all samples, and

the IS1 is also always rejected although with a lower value of the tests’ statistics than

for the lognormal. The dPln is also rejected in almost all cases (except two). The IS2,

in turn, is not rejected in 53.84% of the cases: the lognormal-Pareto mix in the upper

tail means an improvement. Moreover, a big jump in performance is obtained with the

tdPSM. Indeed, this distribution is not rejected in 100% of the cases. Thus, modeling

both tails as a pure Pareto and the body as the Singh–Maddala distribution leads to

a strikingly better improvement. Thus, the tdPSM reveals itself as an excellent and

robust specification for the US places size distribution.

We move on to the results of the tests for the US CCA clusters in Table 9. Again,

we show the p-values and the tests’ statistics in parentheses. Here, the lognormal is

again always strongly rejected as are the IS1 and IS2. The dPln is always rejected as

well (with lower values of the tests’ statistics). Again, a wide jump is obtained when

considering the dm PChP, which is not rejected in 100% of the cases. This means that

modeling the two tails as a Pareto-Champernowne mix and the body as Champernowne

leads to an excellent fit. These final results are robust to the different radii the clusters

are constructed with (2, 3, 4 and 5 km.), and to the years studied (1991 and 2000). In

this way, we obtain an excellent model for the US CCA clusters size distribution, the

dm PChP.

In the next subsection, we study the distributions with the information criteria.

5.3 Information criteria

To select a distribution from among those studied, we compute two information criteria

very well-suited to the maximum likelihood method which we have used to estimate the

parameters of the distributions, namely, the Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC) (see, e.g., Burnham and Anderson (2002, 2004);

Giesen et al. (2010) and references therein). In the first two of these references it is

demonstrated, theoretically and by means of simulations, that the AIC is preferable to

the BIC and, if there is a discrepancy between the two information criteria, we prefer

to follow the outcome of the former.

[Tables 10 and 11 near here]

In Table 10, we show the results for the US places samples and the distributions

presented. We obtain a similar result to those of the KS and CM tests: choosing an

ordering of ascending values of the AIC for each sample (the results with the BIC are

almost exactly the same), we deduce a robust ordering of the distributions (the lower
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the value of AIC, the better the distribution). For the US incorporated places and all

places samples in the period 1900-2010 we have

AICtdPSM < AICdPln < AICIS2 < AICIS1 < AICln

Therefore, the selected model is the tdPSM in 100% of the samples. This, together with

the outcomes of the KS and CM tests, yields a new and strong result: the US city size

distribution (incorporated places and all places) can be safely taken as the new tdPSM.

For the US CCA cluster samples, we refer to Table 11. We again have strong

regularities. The ordering of the distributions by ascending values of the AIC is (the

ordering by BIC is practically the same)

AICdm PChP < AICdPln < AICIS1 < AICIS2 < AICln

The difference between IS1 and IS2 is very small (they are tied in two of the eight

samples). It is striking that our new distribution dm PChP is systematically preferred to

others known up to now in the literature. In short, we have that the selected distribution

(amongst those studied here and others not shown for the sake of brevity) is the dm

PChP in 100% of the cases, with values of the AIC and BIC much lower than for the

other previously-known distributions. This, together with the results of the KS and

CM tests, yields a second strong and new result: the US city size distribution (CCA

clusters) can be safely taken as the new dm PChP.17

In both the US places and CCA clusters samples, we have another result. To achieve

an exceptional performance, it seems to be essential to model both tails as a Pareto

distribution, in a pure form, with a Singh–Maddala body (places), or as part of a mixture

with the Champernowne distribution, and a Champernowne body (clusters).18

As a complement to the KS, CM, AIC and BIC results, in Figure 2, we show an

informal graphical approximation of the fits obtained in two different cases. The first

row for the sample of all US places (2010) and the tdPSM, and the second for the

sample of US CCA clusters (2000, 2km.) and the dm PChP. We see that the lower tail

of the first sample fits nicely (the empirical ln(cdf) of that of clusters is not so linear),

for the upper tails the fit is quite remarkable in the two cases and, for the middle panel, it

is very hard to see discrepancies between the empirical and estimated density functions,

compare with Figure 1.

[Figure 2 near here]

[Table 12 near here]

We also show, in Table 12, the percentages of population and urban units in the tails

and the body of the selected distributions for each type of data (places and clusters).

As an approximation, we classify the urban units in the lower tail as those having

17Complementarily, we observe that the dPln is preferred to the IS1 and IS2 in all cases by the information

criteria used, because the former takes into account the Pareto behavior of the lower tail and the IS1, IS2 do

not.
18It is worth mentioning that both of the AIC and BIC information criteria penalize the number of pa-

rameters of the compared distributions. Thus, the fact that the selected distributions have a high number of

parameters means that the fit is really good. In the same way, the fact that the worst distribution (out of the

ones compared according to these criteria) has only two parameters means that the fit it provides, compared

with the others studied, is quite poor.
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a population less than the value of the ϵ threshold, those in the upper tail having a

population greater than the τ threshold, and the body is formed by urban units with

a population between ϵ and τ . The values of these thresholds for places are those

of Table 5 and for clusters those of Table 7. It can be observed that, although the

percentages of population in the lower tails are generally quite low, the percentages of

urban units in the lower tail are comparable to or even higher than those in the upper

tail. This fact explains the need to take into account the appropriate modeling of the

lower tail in order to obtain an excellent overall fit.

6 Theoretical underpinnings

In this section, we develop a theory yielding the distributions of this paper that show

the best performance, namely, the tdPSM for the US incorporated places and all places

in the period 1900-2010 and the dm PChP for the US CCA clusters. We build on

previous concepts used by many authors, for example Gabaix (1999, 2009) and Reed

(2002, 2003), amongst others.

Consider a continuous time model in which the population sizes of cities xt
19 are

subject to a geometric Brownian motion with drift as follows

dxt = a(t)xt dt+ b(t)xt dBt (24)

where a(t), b(t) are functions of time t and Bt is a standard Brownian motion. This

type of equation is sometimes considered as an implementation of Gibrat’s law, see

Gabaix (1999, 2009) and references therein. It is standard, see Payne (1967) for a

concise and complete exposition, that the probability density function of the variable

x (in our paper, population of urban nuclei of each temporal cross-section), depending

also on time, namely f(x, t),20 obeys the forward Kolmogorov equation, also known as

the Fokker–Planck equation, which is the partial differential equation:

∂f(x, t)

∂t
= − ∂

∂x
(a(t)xf(x, t)) +

∂2

∂x2

(

1

2
x2b(t)2f(x, t)

)

(25)

The equation (25) has several well-known solutions, like the (time-dependent) log-

normal, see, e.g., the recent work of Toda (2012) and references therein, or the upper

tail Pareto distribution (with a lower threshold), see Gabaix (1999, 2009).

Now, in order to accommodate the preferred models obtained in previous sections,

we should first investigate under which conditions the building blocks of such dis-

tributions, the (lower and upper tail) Pareto, the Singh–Maddala and Champernowne

distributions are themselves solutions of (25). We begin with the Pareto distributions.

Proposition 1 The (time-dependent) lower tail Pareto distribution A(t)h(x, ρ(t)) is a

19This time we are considering the evolution with time of the population variable, and we denote explicitly

the dependence on t.
20Strictly speaking, the f(x, t) of (25) is a probability density function conditional on the initial data. We

will simply take the solutions obtained from (25) evaluated at t = 0 as the initial conditions.
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solution of equation (25) if and only if

ρ′(t) = 0 ⇒ ρ(t) = ρ

A(t) = A0 exp

(
∫ t

0

1

2
ρ((1 + ρ)b(s)2 − 2a(s)) ds

)

where A0 is a constant. Likewise, the (time-dependent) upper tail Pareto distribution

C(t)g(x, ζ(t)) is a solution of equation (25) if and only if

ζ ′(t) = 0 ⇒ ζ(t) = ζ

C(t) = C0 exp

(
∫ t

0

1

2
ζ((ζ − 1)b(s)2 + 2a(s)) ds

)

where C0 is another constant.

Proof . See appendix.

The second part of this last result is related to a derivation of Gabaix (1999, 2009)

of the Pareto distribution as a stationary solution of (25). It is remarkable that the

Pareto exponents ρ and ζ must be constants in order for the Pareto distributions to be

solutions of equation (25). Note that these two Pareto distributions also satisfy (25) in

the case of having b(t) = 0.

Proposition 2 The (time-dependent) Singh–Maddala distribution D(t)fSM(x, µ(t), σ(t), α(t))
is a solution of equation (25) if

µ′(t) = a(t) ⇒ µ(t) =

∫ t

0

a(s) ds

σ′(t) = 0 ⇒ σ(t) = σ

α′(t) = 0 ⇒ α(t) = α

D′(t) = 0 ⇒ D(t) = D

b(t) = 0

Proof . See appendix.

Also, the result for the Champernowne distribution is similar:

Proposition 3 The (time-dependent) Champernowne distribution E(t)fCh(x, µ(t), σ(t), β(t))
is a solution of equation (25) if

µ′(t) = a(t) ⇒ µ(t) =

∫ t

0

a(s) ds

σ′(t) = 0 ⇒ σ(t) = σ

β′(t) = 0 ⇒ β(t) = β

E′(t) = 0 ⇒ E(t) = E

b(t) = 0
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Proof . See appendix.

The main novelty of these last two results is that a necessary condition for the

(time-dependent) Singh–Maddala and Champernowne density functions to be always

a solution of equation (25) is that b(t) = 0, namely, the diffusion term in (25) vanishes

as does the stochastic term in (24).21 We will comment on the economic meaning of

this requirement later.

Because of the importance of the models selected in previous sections, namely the

tdPSM and the dm PChP functions, it is worth studying the case of b(t) = 0 in more

detail. In this case, equation (25) reduces to

∂f(x, t)

∂t
= − ∂

∂x
(a(t)xf(x, t)) (26)

which can be written as

∂f(x, t)

∂t
+ a(t)x

∂f(x, t)

∂x
= −a(t)f(x, t) (27)

namely, a first-order linear partial differential equation in two variables, tractable with

standard methods. We have the following result:

Proposition 4 The general solution of equation (26) can be expressed as

f(x, t) =
1

x
j

(

lnx−
∫ t

0

a(s) ds

)

where j(·) is a positive and differentiable almost everywhere function.

Proof . See appendix.

This last result shows that the probability density functions which satisfy equation

(26) are inversely proportional to x, with a multiplying function which depends on x

and t only through the combination lnx−
∫ t

0
a(s) ds. Such a simple result is essential

in what follows, since our preferred models will fit into this framework.

Corresponding to the selected distribution for US incorporated places and all places,

the tdPSM, we have the following result:

Theorem 1 The time-dependent function associated with the tdPSM

f4t(x, t) =







b4(t) e4(t)h(x, ρ(t)) 0 < x < ϵ(t)
b4(t) fSM(x, µ(t), σ(t), α(t)) ϵ(t) ≤ x ≤ τ(t)

b4(t) a4(t) g(x, ζ(t)) τ(t) < x
(28)

21In the case of having b(t) = 0 in equation (25), one must hypothesize a distribution f(x, t) to ob-

tain solutions of this equation, which is what we will do in what follows. We thank José Olmo for this

clarification.
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is a solution of equation (26) if and only if the following conditions hold:

µ(t) =

∫ t

0

a(s) ds , σ(t) = const.

b4(t) = const. , α(t) = const.

e−µ(t)ϵ(t) = const. , e−µ(t)τ(t) = const.

ρ(t) = const. , e4(t)e
ρ(t)µ(t) = const.

ζ(t) = const. , a4(t)e
−ζ(t)µ(t) = const.

Proof . See appendix.

Likewise, corresponding to the selected model in the case of US CCA clusters, the

dm PChP, we have the following result:

Theorem 2 The time-dependent function associated with the dm PChP

f5t(x, t)

=







b5(t) [(1− ν(t)) d5(t) fCh(x, µ(t), σ(t), β(t)) + ν(t) e5(t)h(x, ρ(t))] 0 < x < ϵ(t)
b5(t) fCh(x, µ(t), σ(t), β(t)) ϵ(t) ≤ x ≤ τ(t)

b5(t) [(1− θ(t)) c5(t) fCh(x, µ(t), σ(t), β(t)) + θ(t) a5(t) g(x, ζ(t))] τ(t) < x

(29)

is a solution of equation (26) if and only if the following conditions hold:

µ(t) =

∫ t

0

a(s) ds , σ(t) = const.

b5(t) = const. , β(t) = const.

e−µ(t)ϵ(t) = const. , e−µ(t)τ(t) = const.

(1− ν(t))d5(t) = const. , (1− θ(t))c5(t) = const.

ρ(t) = const. , ν(t)e5(t)e
ρ(t)µ(t) = const.

ζ(t) = const. , θ(t)a5(t)e
−ζ(t)µ(t) = const.

Proof . See appendix.

Thus, our preferred models are able to satisfy equation (26) provided that the rela-

tion µ(t) =
∫ t

0
a(s) ds holds and some other quantities remain constant. The parameter

σ(t), b4(t) and b5(t) are constants. These results could be anticipated from our pre-

liminary study of the Singh–Maddala and Champernowne distributions as solutions of

(25). It is also predicted that the Pareto exponents ρ(t), ζ(t) remain constant (the in-

dividual Pareto distributions yielded the same results). There are other constants that

arise from having a mixture of the distributions. The most remarkable are those relat-

ing the threshold parameters e−µ(t)ϵ(t) = const. and e−µ(t)τ(t) = const. It is worth
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noting that this theory does not predict the precise value of the Pareto exponents ρ, ζ,

only that they remain constant. To predict the value of ζ, other approaches (also using

a version of equation (25)) exist (Gabaix, 1999, 2009), so our theory can be regarded

as complementary to the cited references.

As an informal test of how well our theory works, we have computed the values of

the presumed constants for the empirical results corresponding to the samples of US

incorporated and all places in the period 1900-2010 and that of US CCA clusters, using

the estimated parameters by ML and expressions (15), (16) and (17) of the constants

(constants in the sense of Section 4) e4, a4, b4 in the first case and (19), (20), (21), (22)

and (23), of d5, e5, c5, a5, b5 in the second case. The results are shown in Tables 13

and 14.

For the US incorporated and all places, we see that σ increases, although quite

slowly, so one of the basic assumptions of our theory, the absence of diffusion, is not ex-

actly satisfied. Diffusion exists, although very small in the short term (say, one decade).

The quantity b4 remains in the interval (1.04, 1.13). The parameter α is in the inter-

val (0.28, 1). The lower tail Pareto exponent ρ decreases slowly with time from 2.32

in 1900 to 1.31 in 2010. Likewise, the upper tail Pareto exponent ζ increases slowly

from 1.02 in 1900 to 1.45 in 2010. Both variations are due to the effective existence of

diffusion in practice. The quantity e−µϵ varies more, in the interval (0.14, 0.71). The

analogous relation for the upper tail threshold τ leads to a strong variation of the pre-

sumed “constant”. It should be highlighted that the number of places in these samples

increases greatly with time, see Table 1.

In turn, for the US CCA clusters, the variations are, in general, smaller in all cases

but we have to take into account that only a nine-year period is studied with these data.

For these data the number of observations is the same for each pair of samples of 1991

and 2000.

In short, the results suggest that when the short term is considered (say, one decade),

the theory works well and, if the number of observations is constant, slightly better. In

the long term, and if the number of observations varies over time, the theory shows its

limitations.

[Tables 13 and 14 near here]

7 Discussion

We have seen that two new density functions perform better than some previously

known ones including the lognormal used by Eeckhout (2004) and others, the IS1 and

IS2 of Ioannides and Skouras (2013), and the dPln of Reed (2002, 2003); Giesen et al.

(2010) and others, when fitting US city data. More precisely, the tdPSM is the pre-

ferred model for US incorporated and all places data and the dm PChP is the preferred

density function for the US CCA clusters of Rozenfeld et al. (2008, 2011). We have

also developed a theory compatible with the cited preferred distributions and, when

compared to the empirical results, it follows that, in the short term (one decade) and

if the number of observations (urban centers) is almost constant, the theory is quite

reasonable. However, in the long term (say, one century) and with a varying number of
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observations, the theory shows its limitations.

The basic assumption of our theory in the previous section is that the stochastic term

in (24) and the diffusion term in (25) should be zero, or at least negligible. Otherwise,

we cannot assure that the Singh–Maddala/Champernowne (part of the) distribution is

an exact solution of the standard Fokker–Planck equation. The economic meaning of

this outcome is clear: the population and hierarchical structure of cities must be very

stable over time, at least in the short term, as the empirical evidence clearly shows

(Black and Henderson, 1999; Kim, 2000; Beeson et al., 2001; Sharma, 2003). Fur-

thermore, this stability or persistence is corroborated even when the cities suffer strong

temporal shocks, like the US Civil War (Sanso-Navarro et al., 2013), the WWII atomic

bombing in Japan (Davis and Weinstein, 2002), the WWII bombing in Germany (Brak-

man et al., 2004; Bosker et al., 2008), the US bombing in Vietnam (Miguel and Roland,

2011) and urban terrorism (Glaeser and Shapiro, 2002). This is the interpretation as-

sociated with the theoretical condition that the diffusion term needs to be zero in the

Fokker–Planck equation to guarantee that the tdPSM and the dm PChP are exact solu-

tions of that equation.

In the long term, we show that things are different, and another (perhaps more

general) theory should be adopted, for which we provide some ideas below. In the

extreme long term situation, we have the contribution of Batty (2006), which defends

that the changes in the internal hierarchy of cities can be very important, although the

aggregate distribution appears to be quite stable. This is not incompatible with the short

term persistence literature, because Batty’s temporal horizon is very large (world data

from 430 BC.).

As mentioned, in the long term, the population evolves, so our theory does not

work so well (this is observed for US places which is our long term database; for US

CCA clusters, we only have two years). Since the hypothesized model of the city size

distribution (for US places) can be taken robustly in the whole period 1900-2010 as

the tdPSM, we conjecture that the evolution equations (25) and (26) are the ones that

should be reformulated. We can consider three main variations:

• The term −k(t)f(x, t) (or other terms) should be added to the right-hand side of

(26) in order to model the entry of new urban centers into the sample (Gabaix,

1999, 2009). The specification of k(t) (or of the alternative terms) seems to be

delicate. Previous work on the distribution of entrant cities (González-Val, 2010;

Giesen and Suedekum, 2013) may help in this task.

• The equation to be used is (25) with b(t) ̸= 0. Then, we cannot assure that the

distribution tdPSM is an exact solution of this equation. We would enter into the

realm of approximate solutions, see, e.g., Grasman and van Herwaarden (1999).

Additionally, this could be combined with the extension cited in the first item of

this list, namely to add a term like −k(t)f(x, t) (or alternative terms) to the right

of (25).

• The equation to be used is a variation of (25), possibly a non-linear Fokker–

Planck equation, see, e.g., Frank (1991). This approach seems to be more diffi-

cult as one would have to find a nonlinear Fokker–Planck equation that allowed

18



a composite of two Pareto and Singh–Maddala distributions as a solution and,

moreover, that yielded a better agreement with empirical results than the theory

presented here. If the cited equation does exist, it would be a theoretical treasure.

We leave these topics for future research.

8 Conclusions

Elsewhere, since the work of Eeckhout (2004), the risks of considering only the largest

cities, that is, only the upper tail, have been demonstrated. One of the main lessons

of this work is that, when possible, one should use city data without minimum size

restrictions.22 In turn, if the availability of data allows it, the analysis of city size

distribution should be done in the long term. With both considerations as premises,

this article uses US Census data for the period 1900-2010, incorporated places from

1900 to 2000, in decades, and all places for 2000 and 2010. We also use the US City

Clustering Algorithm (CCA) clusters data of Rozenfeld et al. (2008, 2011) for the years

1991 and 2000 and radii of the clusters of 2, 3, 4 and 5 km.

This work has minutely examined six density functions. As well as the lognormal,

IS1, IS2 and dPln, known in the field of urban economics, we have explicitly introduced

into Section 4 two new density functions, which we call tdPSM and dm PChP. The

essential point of the new functions is the modeling of both tails as a Pareto distribution

with or without mixing with the Singh–Maddala or Champernowne distributions.

These two new distributions are associated with two “philosophical” principles:

i) For the US, it seems to be necessary to pay attention to the lower tail of the

distribution, despite it represents a small percentage of the population, in order

to obtain an excellent overall fit. In a nutshell, small nuclei do matter.

ii) The body of the distribution is better described by a Singh–Maddala or Cham-

pernowne distribution than by a lognormal. This constitutes a relevant difference

to the evidence accumulated so far.

After estimating the parameters of all of the distributions by maximum likelihood

(ML), we have tested the fit provided by each distribution using the Kolmogorov–

Smirnov (KS) and Cramér-von Mises (CM) tests. Afterwards, we have computed the

AIC and BIC information criteria.

The results are extremely robust and regular. The two new density functions notably

improve on the performance of the lognormal, IS1, IS2 and dPln. The tdPSM is a new

distribution that is not rejected in 100% of the cases by either the KS or the CM, and

22In this work, we have not shown the results corresponding to the data of the so-called Metropolitan and

Micropolitan areas (MMA), see, e.g., Ioannides and Skouras (2013) for their definition, because, in them,

a not small minimum threshold size (about 13,000 inhabitants) is imposed. We simply mention that the

KS and CM tests for a truncated version of all of the distributions used in this paper yield rejection, even

though the sample sizes of MMA data are much lower than for US places or CCA clusters (less than 1,000

observations). This means that the modeling of the MMA size distribution is much more demanding than for

the US places or CCA clusters, possibly due to the cut-off imposed on the data.
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is the model selected (of the six distributions studied) by both the AIC and BIC for the

whole period 1900-2010 of samples of US incorporated and all places. Likewise, the

dm PChP is a new distribution that is not rejected in 100% of the cases of CCA clusters

by either the KS or the CM tests, and is the model selected for all these samples by

both the AIC and BIC.

In short, we find empirically that the US city size distribution for places can be

safely taken as a Singh–Maddala body with pure Pareto tails, the three regions sepa-

rated by two exact thresholds. For US CCA clusters, an analogous situation occurs but

where the body is Champernowne and, in the tails, it is advantageous to mix the Pareto

distributions with the Champernowne one. Moreover, we have given theoretical sup-

port to these distributions through a theory which works reasonably well in the short

term and when the number of cities is constant. We have provided some ideas for the

search for a theory that would also be satisfactory for the long term and for varying

number of urban nuclei.

A Proofs of Section 6

Proof of Proposition 1. Inserting f(x, t) = A(t)h(x, ρ(t)) into (25) written in the

following way

∂f(x, t)

∂t
+

∂

∂x
(a(t)xf(x, t))− ∂2

∂x2

(

1

2
x2b(t)2f(x, t)

)

= 0

yields

(

a(t)ρ(t) +
A′(t)

A(t)
− 1

2
b(t)2ρ(t)(ρ(t) + 1) + ln(x)ρ′(t)

)

A(t)h(x, ρ(t)) = 0

Thus, the long expression in the left-hand parentheses has to be zero. The only depen-

dence on x appears in one term with lnx. In order for the equation to be consistent, it

should happen that ρ′(t) = 0 ⇒ ρ(t) = ρ. Imposing this condition, it follows that

a(t)ρ+
A′(t)

A(t)
− 1

2
b(t)2ρ(ρ+ 1) = 0

which is a simple differential equation for A(t). Integrating, the thesis follows. The

analysis for f(x, t) = C(t)g(x, ζ(t)) is analogous and is omitted.

Proof of Proposition 2. It is similar to the proof of Proposition 1, but the expres-

sions that appear are very long so, for the sake of brevity, we will omit them. We

have performed the calculations with the program MATHEMATICA. A notebook file is

avalaible from the authors upon request.

Proof of Proposition 3. Again, the procedure is analogous to that of Propositions 1

and 2. The expressions which appear are very long and, for the sake of brevity, we

will omit them. A MATHEMATICA notebook with the calculations is available from

the authors upon request.
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Proof of Proposition 4. It is an application of standard results, see Theorem 2.5.1

and Example 2.5.1 of Myint-U and Debnath (2007). According to this reference, the

equation
∂f(x, t)

∂t
+ a(t)x

∂f(x, t)

∂x
= −a(t)f(x, t)

has the associated characteristic equations (op. cit.)

dt

1
=

dx

a(t)x
=

df

−a(t)f
(30)

Equating the first and second members of (30) we have

dt =
dx

a(t)x
⇔ a(t)dt =

dx

x

and integrating we have that C1 = lnx −
∫ t

0
a(s) ds is the first associated family of

characteristic curves of the system, where C1 is a constant.23 Equating the second and

third members of (30), we have

dx

a(t)x
=

df

−a(t)f
⇔ dx

x
= −df

f

and therefore the second family of characteristic curves is C3 = eC2 = xf , where C2 is

a constant and C3 is its exponential. As x > 0, it follows that f > 0 as well, something

that is necessary for a probability density function. Thus, the general solution of the

equation is expressed as an arbitrary function m of the expressions of C1, C3 equated

to zero:

m

(

lnx−
∫ t

0

a(s) ds, xf

)

= 0

and therefore, solving for f (op. cit.),

f(x, t) =
1

x
j

(

lnx−
∫ t

0

a(s) ds

)

where j is a positive and differentiable almost everywhere function.

Proof of Theorem 1. The result is achieved by writing the function f4t as follows:

f4t(x, t) = b4(t)(1−H(x− ϵ(t)))e4(t)h(x, ρ(t)) +

b4(t)H(x− ϵ(t))(1−H(x− τ(t)))fSM(x, µ(t), σ(t), α(t)) +

b4(t)H(x− τ(t)) a4(t) g(x, ζ(t))

where H(y) is the Heaviside step function. We then apply Proposition 4 directly. First,

we deal with the arguments of the Heaviside functions. We have

x− ϵ(t) = eln x−µ(t)eµ(t) − ϵ(t) = eµ(t)(eln x−µ(t) − e−µ(t)ϵ(t))

23The equation (24) with b(t) = 0 becomes the deterministic equation dxt = a(t)xt dt, which integrates

easily to ln(xt)−
∫ t

0
a(s) ds = ln(x0). This result and the previous one are related, identifying in a natural

way xt with x and C1 with ln(x0).
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Thus,

H(x− ϵ(t)) = H(eln x−µ(t) − e−µ(t)ϵ(t))

because eµ(t) > 0 and the Heaviside function depends only on the sign of its argument.

Then, we see that this function is of the form j
(

lnx−
∫ t

0
a(s) ds

)

24 if we choose

µ(t) =
∫ t

0
a(s) ds, and it follows that e−µ(t)ϵ(t) = const. An analogous reasoning for

the Heaviside function with τ(t) yields e−µ(t)τ(t) = const. We move on to the fSM
term. From definition (2), we see immediately that b4(t)fSM(x, µ(t), σ(t), α(t)) is of

the form 1
xj

(

lnx−
∫ t

0
a(s) ds

)

when we choose (consistently) µ(t) =
∫ t

0
a(s) ds,

and as a consequence we have necessarily that σ(t) = const., α(t) = const. and

b4(t) = const. Now, we analyze the lower tail term. Leaving aside the b4 factor which,

as we have seen, must be constant, we have

e4(t)h(x, ρ(t)) = e4(t)
1

x
xρ(t) = e4(t)

1

x
eρ(t)(ln x−µ(t))eρ(t)µ(t)

Thus, in order to have again a function of the form 1
xj

(

lnx−
∫ t

0
a(s) ds

)

, it is neces-

sary that µ(t) =
∫ t

0
a(s) ds, ρ(t) = const. and e4(t)e

ρ(t)µ(t) = const. The reasoning

for the upper tail part is analogous, yielding ζ(t) = const. and a4(t)e
−ζ(t)µ(t) =

const.

Proof of Theorem 2. The result is obtained in a similar way as in the proof of

Theorem 1.
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Table 1: Descriptive statistics of the US data samples used

US

Sample Obs. % of US pop. Mean SD Min. Max.

Inc. Places 1900 10,596 46.99 3,376 42,324 7 3,437,202

Inc. Places 1910 14,135 54.90 3,561 49,351 4 4,766,883

Inc. Places 1920 15,481 58.62 4,015 56,782 3 5,620,048

Inc. Places 1930 16,475 62.69 4,642 67,854 1 6,930,446

Inc. Places 1940 16,729 63.75 4,976 71,299 1 7,454,995

Inc. Places 1950 17,113 63.48 5,613 76,064 1 7,891,957

Inc. Places 1960 18,051 64.51 6,409 74,738 1 7,781,984

Inc. Places 1970 18,488 64.51 7,094 75,320 3 7,894,862

Inc. Places 1980 18,923 61.78 7,396 69,170 2 7,071,639

Inc. Places 1990 19,120 61.33 7,978 71,874 2 7,322,564

Inc. Places 2000 19,296 61.49 8,968 78,015 1 8,008,278

All places 2000 25,359 73.98 8,232 68,390 1 8,008,278

All places 2010 28,664 72.73 7,872 61,632 1 8,175,133

CCA 1991 (2000m) 30,201 97.46 8,180 104,954 1 12,511,237

CCA 1991 (3000m) 23,499 97.46 10,513 147,360 1 15,191,634

CCA 1991 (4000m) 19,912 97.46 12,407 180,751 2 17,064,816

CCA 1991 (5000m) 17,569 97.46 14,062 212,084 2 19,439,862

CCA 2000 (2000m) 30,201 96.08 8,977 108,342 1 12,734,150

CCA 2000 (3000m) 23,499 96.08 11,537 154,157 1 15,594,627

CCA 2000 (4000m) 19,912 96.08 13,615 190,528 1 17,567,010

CCA 2000 (5000m) 17,569 96.08 15,431 223,825 1 19,952,762

Table 2: Estimators and 95% confidence intervals of the parameters of the IS1 for the US (places)

samples. The estimators for the lognormal are the mean and the standard deviation of the logarithm

of population data

US

Sample lgn IS1

µ σ µ σ τ ζ
Inc. Places 1900 6.65 1.26 6.31±0.03 0.89±0.03 1,131±196 0.91±0.03

Inc. Places 1910 6.65 1.29 6.26±0.03 0.88±0.02 1,025±148 0.87±0.02

Inc. Places 1920 6.67 1.32 6.29±0.03 0.90±0.02 1,074±157 0.86±0.02

Inc. Places 1930 6.69 1.40 6.30±0.03 0.98±0.02 1,184±203 0.81±0.02

Inc. Places 1940 6.78 1.43 6.38±0.03 1.01±0.02 1,324±215 0.79±0.02

Inc. Places 1950 6.84 1.50 6.51±0.03 1.15±0.02 1,896±321 0.79±0.02

Inc. Places 1960 6.92 1.61 6.61±0.04 1.28±0.03 2,566±445 0.76±0.02

Inc. Places 1970 7.00 1.67 6.74±0.04 1.38±0.03 3,599±680 0.76±0.03

Inc. Places 1980 7.11 1.66 6.86±0.04 1.40±0.03 4,343±832 0.77±0.03

Inc. Places 1990 7.10 1.74 6.90±0.04 1.53±0.03 6,153±1,381 0.78±0.03

Inc. Places 2000 7.18 1.78 7.01±0.04 1.59±0.03 8,063±1,989 0.79±0.04

All places 2000 7.28 1.75 7.26±0.02 1.73±0.02 60,326±35,844 1.25±0.11

All places 2010 7.13 1.83 7.12±0.02 1.82±0.02 93,350±66,640 1.31±0.15
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Table 3: Estimators and 95% confidence intervals of the parameters of the IS2 for the US (places)

samples

US

Sample IS2

µ σ τ ζ θ
Inc. Places 1900 6.90±0.11 1.05±0.03 395±2 0.81±0.03 0.66±0.05

Inc. Places 1910 7.06±0.11 1.10±0.03 364±2 0.80±0.03 0.67±0.04

Inc. Places 1920 7.01±0.10 1.08±0.03 361±1 0.77±0.03 0.67±0.03

Inc. Places 1930 7.34±0.12 1.25±0.03 384±2 0.78±0.03 0.71±0.03

Inc. Places 1940 7.51±0.11 1.31±0.03 405±2 0.79±0.03 0.67±0.03

Inc. Places 1950 7.44±0.09 1.38±0.02 408±2 0.75±0.03 0.58±0.03

Inc. Places 1960 7.59±0.08 1.50±0.02 399±2 0.74±0.03 0.50±0.03

Inc. Places 1970 7.66±0.08 1.59±0.02 437±2 0.75±0.04 0.44±0.03

Inc. Places 1980 7.76±0.07 1.59±0.02 487±3 0.77±0.04 0.42±0.03

Inc. Places 1990 7.72±0.07 1.69±0.02 481±3 0.78±0.05 0.37±0.04

Inc. Places 2000 7.82±0.07 1.74±0.02 518±4 0.80±0.06 0.34±0.04

All places 2000 7.25±0.02 1.72±0.02 16,111±10,888 0.82±0.16 0.25±0.17

All places 2010 7.11±0.02 1.81±0.02 16,397±11,108 0.80±0.16 0.20±0.15

Table 4: Estimators and 95% confidence intervals of the parameters of the dPln for the US (places)

samples

US

Sample dPln

α β µ σ
Inc. Places 1900 0.92±0.03 2.64±0.27 5.95±0.04 0.58±0.04

Inc. Places 1910 0.89±0.03 2.96±0.35 5.86±0.04 0.61±0.04

Inc. Places 1920 0.87±0.03 2.78±0.27 5.88±0.04 0.60±0.04

Inc. Places 1930 0.80±0.02 2.21±0.14 5.89±0.04 0.57±0.04

Inc. Places 1940 0.79±0.02 2.20±0.15 5.96±0.04 0.61±0.04

Inc. Places 1950 0.80±0.03 2.15±0.17 6.06±0.05 0.78±0.04

Inc. Places 1960 0.80±0.03 2.24±0.26 6.11±0.06 0.96±0.05

Inc. Places 1970 0.83±0.03 2.62±0.22 6.18±0.05 1.13±0.04

Inc. Places 1980 0.86±0.02 3.65±0.02 6.23±0.02 1.19±0.01

Inc. Places 1990 0.87±0.02 3.59±0.01 6.23±0.01 1.31±0.003

Inc. Places 2000 0.87±0.02 3.55±0.01 6.32±0.02 1.36±0.003

All places 2000 1.23±0.03 3.16±0.003 6.78±0.01 1.52±0.002

All places 2010 1.17±0.03 2.97±0.004 6.61±0.01 1.59±0.008
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Table 5: Estimators and 95% confidence intervals of the parameters of the tdPSM for the US

(places) samples

US

Sample tdPSM

ρ ϵ µ σ α τ ζ
Inc. Places 1900 2.32±0.14 172±1 5.64±0.09 0.42±0.06 0.32±0.07 3,405±97 1.02±0.05

Inc. Places 1910 2.48±0.15 147±1 5.62±0.06 0.44±0.04 0.34±0.05 8,190±308 1.09±0.06

Inc. Places 1920 2.36±0.12 167±1 5.60±0.08 0.45±0.05 0.33±0.06 4,310±127 0.98±0.04

Inc. Places 1930 2.06±0.09 178±1 5.52±0.06 0.45±0.05 0.31±0.05 8,465±222 1.00±0.05

Inc. Places 1940 2.01±0.09 177±1 5.53±0.06 0.44±0.05 0.28±0.05 10,359±229 1.06±0.05

Inc. Places 1950 1.89±0.09 150±1 5.62±0.08 0.54±0.06 0.34±0.05 11,741±382 1.06±0.05

Inc. Places 1960 1.72±0.07 148±1 5.55±0.09 0.61±0.07 0.32±0.06 13,917±405 1.07±0.05

Inc. Places 1970 1.60±0.07 141±1 5.71±0.10 0.69±0.07 0.38±0.06 25,937±682 1.18±0.07

Inc. Places 1980 1.69±0.08 129±1 5.84±0.10 0.69±0.06 0.38±0.05 34,196±571 1.30±0.08

Inc. Places 1990 1.51±0.06 140±1 5.91±0.14 0.85±0.08 0.48±0.08 41,945±1,003 1.31±0.08

Inc. Places 2000 1.60±0.08 99±1 5.88±0.11 0.79±0.06 0.40±0.05 47,386±851 1.35±0.08

All places 2000 1.46±0.06 127±1 6.80±0.24 1.14±0.08 0.82±0.14 36,081±746 1.33±0.07

All places 2010 1.31±0.04 133±1 6.84±0.28 1.31±0.11 1.00±0.18 55,274±1,063 1.45±0.09
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Table 6: Estimators and 95% confidence intervals of the parameters of the IS1, IS2 and dPln for

the US CCA clusters samples. The estimators for the lognormal are the mean and the standard

deviation of the logarithm of population data

US

Sample lgn IS1

µ σ µ σ τ ζ
CCA 1991 (2000m) 8.33 0.85 8.29±0.01 0.77±0.01 29,944±1,223 1.02±0.08

CCA 1991 (3000m) 8.32 0.89 8.26±0.01 0.75±0.01 25,709±990 0.88±0.06

CCA 1991 (4000m) 8.32 0.92 8.24±0.01 0.75±0.01 23,207±886 0.85±0.06

CCA 1991 (5000m) 8.33 0.95 8.23±0.01 0.75±0.01 21,891±856 0.85±0.06

CCA 2000 (2000m) 8.44 0.87 8.40±0.01 0.80±0.01 37,224±1,667 1.03±0.09

CCA 2000 (3000m) 8.43 0.91 8.37±0.01 0.79±0.01 30,635±1,262 0.92±0.07

CCA 2000 (4000m) 8.42 0.94 8.34±0.01 0.78±0.01 27,571±1,125 0.87±0.06

CCA 2000 (5000m) 8.42 0.97 8.33±0.01 0.79±0.01 26,679±1,125 0.85±0.06

US

Sample IS2

µ σ τ ζ θ
CCA 1991 (2000m) 8.29±0.01 0.77±0.01 28,121±1,481 0.98±0.11 0.93±0.07

CCA 1991 (3000m) 8.26±0.01 0.75±0.01 27,191±1,229 0.93±0.09 1.06±0.05

CCA 1991 (4000m) 8.24±0.11 0.75±0.01 23,880±1,107 0.86±0.08 1.02±0.05

CCA 1991 (5000m) 8.23±0.01 0.76±0.01 21,202±1,039 0.83±0.08 0.97±0.06

CCA 2000 (2000m) 8.40±0.01 0.80±0.01 34,321±1,978 0.98±0.12 0.92±0.08

CCA 2000 (3000m) 8.37±0.01 0.79±0.01 30,906±1,550 0.92±0.10 1.01±0.06

CCA 2000 (4000m) 8.34±0.01 0.78±0.01 27,433±1,371 0.87±0.09 1.00±0.06

CCA 2000 (5000m) 8.33±0.01 0.79±0.01 26,608±1,362 0.85±0.08 1.00±0.06

US

Sample dPln

α β µ σ
CCA 1991 (2000m) 1.95±0.04 1.85±0.03 8.36±0.01 0.14±0.02

CCA 1991 (3000m) 1.76±0.04 1.86±0.04 8.29±0.01 0.11±0.02

CCA 1991 (4000m) 1.64±0.03 1.88±0.04 8.25±0.01 0.10±0.02

CCA 1991 (5000m) 1.54±0.03 1.87±0.05 8.22±0.01 0.10±0.03

CCA 2000 (2000m) 1.86±0.04 1.82±0.03 8.45±0.01 0.18±0.02

CCA 2000 (3000m) 1.66±0.03 1.83±0.04 8.37±0.01 0.16±0.02

CCA 2000 (4000m) 1.55±0.03 1.84±0.05 8.32±0.02 0.15±0.03

CCA 2000 (5000m) 1.46±0.03 1.83±0.05 8.29±0.02 0.14±0.03

4



Table 7: Estimators and 95% confidence intervals of the parameters of the dm PChP for the US CCA clusters samples

US

Sample dm PChP

ρ ϵ ν µ σ β τ ζ θ
CCA 1991 (2000m) 0.59±0.07 2,091±136 0.22±0.04 8.35±0.01 0.37±0.02 1.29±0.22 17,171±898 0.96±0.11 0.78±0.10

CCA 1991 (3000m) 0.63±0.09 2,134±161 0.19±0.05 8.31±0.01 0.37±0.02 1.31±0.24 16,903±853 0.87±0.08 0.90±0.08

CCA 1991 (4000m) 0.63±0.11 1,963±173 0.18±0.06 8.29±0.01 0.39±0.03 1.45±0.24 16,495±864 0.83±0.08 0.92±0.08

CCA 1991 (5000m) 0.57±0.12 2,671±314 0.09±0.03 8.27±0.01 0.42±0.03 1.62±0.21 15,773±852 0.83±0.08 0.92±0.09

CCA 2000 (2000m) 0.54±0.07 1,371±114 0.36±0.07 8.44±0.01 0.39±0.02 1.13±0.24 20,381±1,231 0.95±0.12 0.69±0.11

CCA 2000 (3000m) 0.56±0.09 1,323±134 0.32±0.08 8.40±0.01 0.40±0.02 1.21±0.25 19,912±1,122 0.87±0.09 0.84±0.10

CCA 2000 (4000m) 0.57±0.11 1,118±140 0.33±0.09 8.38±0.01 0.42±0.02 1.36±0.24 20,083±1,173 0.84±0.09 0.89±0.10

CCA 2000 (5000m) 0.58±0.12 1,279±166 0.26±0.09 8.35±0.01 0.42±0.03 1.26±0.30 14,253±797 0.71±0.08 0.71±0.08
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Table 8: Results of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests for the US

places samples and the density functions used. Non rejections are in bold

US

Sample lgn IS1

KS CM KS CM

Inc. Places 1900 0 (0.07) 0 (17.22) 0.04 (0.01) 0.02 (0.62)

Inc. Places 1910 0 (0.07) 0 (21.81) 0 (0.02) 0.003 (1.10)

Inc. Places 1920 0 (0.07) 0 (25.87) 0.002 (0.02) 0.003 (1.09)

Inc. Places 1930 0 (0.07) 0 (27.59) 0.001 (0.02) 0 (1.34)

Inc. Places 1940 0 (0.07) 0 (25.59) 0 (0.021) 0 (1.86)

Inc. Places 1950 0 (0.06) 0 (17.55) 0 (0.020) 0 (1.91)

Inc. Places 1960 0 (0.05) 0 (14.26) 0 (0.026) 0 (2.82)

Inc. Places 1970 0 (0.05) 0 (12.88) 0 (0.026) 0 (2.85)

Inc. Places 1980 0 (0.04) 0 (11.36) 0 (0.027) 0 (3.24)

Inc. Places 1990 0 (0.04) 0 (9.10) 0 (0.027) 0 (3.24)

Inc. Places 2000 0 (0.04) 0 (9.35) 0 (0.030) 0 (3.72)

All places 2000 0 (0.02) 0 (2.69) 0 (0.02) 0 (2.31)

All places 2010 0 (0.02) 0 (1.41) 0 (0.03) 0 (4.53)

US

Sample IS2 dPln

KS CM KS CM

Inc. Places 1900 0.28 (0.01) 0.29 (0.19) 0.03 (0.01) 0.07 (0.42)

Inc. Places 1910 0.07 (0.01) 0.19 (0.25) 0.001 (0.02) 0.02 (0.66)

Inc. Places 1920 0.045 (0.012) 0.10 (0.35) 0.02 (0.013) 0.09 (0.37)

Inc. Places 1930 0.03 (0.012) 0.04 (0.52) 0 (0.017) 0 (1.19)

Inc. Places 1940 0.04 (0.011) 0.05 (0.45) 0 (0.021) 0 (1.60)

Inc. Places 1950 0.068 (0.010) 0.06 (0.44) 0 (0.021) 0 (1.64)

Inc. Places 1960 0.049 (0.011) 0.054 (0.45) 0 (0.024) 0 (2.02)

Inc. Places 1970 0.029 (0.011) 0.037 (0.51) 0 (0.021) 0 (1.75)

Inc. Places 1980 0.10 (0.009) 0.071 (0.40) 0 (0.021) 0 (1.99)

Inc. Places 1990 0.11 (0.009) 0.070 (0.40) 0 (0.021) 0 (2.03)

Inc. Places 2000 0.02 (0.012) 0.080 (0.38) 0 (0.020) 0 (2.28)

All places 2000 0 (0.02) 0 (2.25) 0.005 (0.01) 0.005 (1.00)

All places 2010 0 (0.02) 0 (3.93) 0 (0.02) 0 (1.83)

US

Sample tdPSM

KS CM

Inc. Places 1900 0.99 (0.005) 0.97 (0.03)

Inc. Places 1910 0.62 (0.007) 0.84 (0.06)

Inc. Places 1920 0.50 (0.007) 0.65 (0.09)

Inc. Places 1930 0.96 (0.004) 0.97 (0.03)

Inc. Places 1940 0.90 (0.005) 0.96 (0.03)

Inc. Places 1950 0.87 (0.005) 0.78 (0.06)

Inc. Places 1960 0.93 (0.004) 0.85 (0.05)

Inc. Places 1970 0.94 (0.004) 0.96 (0.03)

Inc. Places 1980 0.54 (0.006) 0.48 (0.12)

Inc. Places 1990 0.71 (0.006) 0.75 (0.07)

Inc. Places 2000 0.88 (0.005) 0.90 (0.05)

All places 2000 0.65 (0.005) 0.47 (0.13)

All places 2010 0.17 (0.007) 0.29 (0.19)
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Table 9: Results of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests for the US

CCA clusters samples and the density functions used. Non rejections are in bold

US

Sample lgn IS1 IS2

KS CM KS CM KS CM

CCA 1991 (2000m) 0 (0.09) 0 (92.70) 0 (0.09) 0 (66.53) 0 (0.09) 0 (65.57)

CCA 1991 (3000m) 0 (0.10) 0 (86.75) 0 (0.08) 0 (43.14) 0 (0.08) 0 (45.35)

CCA 1991 (4000m) 0 (0.11) 0 (78.08) 0 (0.08) 0 (35.06) 0 (0.08) 0 (33.26)

CCA 1991 (5000m) 0 (0.11) 0 (74.02) 0 (0.08) 0 (28.57) 0 (0.07) 0 (27.85)

CCA 2000 (2000m) 0 (0.09) 0 (73.26) 0 (0.08) 0 (49.12) 0 (0.08) 0 (49.37)

CCA 2000 (3000m) 0 (0.09) 0 (71.00) 0 (0.07) 0 (33.92) 0 (0.07) 0 (33.44)

CCA 2000 (4000m) 0 (0.09) 0 (62.27) 0 (0.07) 0 (23.98) 0 (0.07) 0 (24.97)

CCA 2000 (5000m) 0 (0.10) 0 (58.44) 0 (0.07) 0 (20.50) 0 (0.07) 0 (20.27)

US

Sample dPln dm PChP

KS CM KS CM

CCA 1991 (2000m) 0 (0.02) 0 (1.84) 0.86 (0.004) 0.82 (0.06)

CCA 1991 (3000m) 0 (0.02) 0 (2.42) 0.64 (0.005) 0.74 (0.07)

CCA 1991 (4000m) 0 (0.03) 0 (2.46) 0.86 (0.005) 0.69 (0.08)

CCA 1991 (5000m) 0 (0.03) 0 (2.21) 0.61 (0.006) 0.60 (0.10)

CCA 2000 (2000m) 0 (0.02) 0.003 (1.09) 0.58 (0.005) 0.73 (0.07)

CCA 2000 (3000m) 0 (0.02) 0 (1.18) 0.55 (0.006) 0.43 (0.14)

CCA 2000 (4000m) 0 (0.04) 0 (1.79) 0.36 (0.007) 0.28 (0.19)

CCA 2000 (5000m) 0 (0.05) 0 (2.22) 0.46 (0.007) 0.51 (0.12)
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Table 10: Maximum log-likelihoods, AIC and BIC for the distributions used and the US places

data. The lowest values of AIC and BIC for each sample are in bold

US

Sample lgn IS1

log-likelihood AIC BIC log-likelihood AIC BIC

Inc. Places 1900 -87,943 175,891 175,905 -87,290 174,588 174,617

Inc. Places 1910 -117,640 235,284 235,299 -116,769 233,546 233,576

Inc. Places 1920 -129,580 259,164 259,179 -128,576 257,160 257,191

Inc. Places 1930 -139,194 278,392 278,407 -138,254 276,516 276,547

Inc. Places 1940 -143,097 286,198 286,213 -142,289 284,586 284,617

Inc. Places 1950 -148,254 296,512 296,528 -147,679 295,366 295,397

Inc. Places 1960 -159,142 318,288 318,304 -158,758 317,524 317,555

Inc. Places 1970 -165,171 330,346 330,362 -164,907 329,822 329,853

Inc. Places 1980 -171,088 342,180 342,196 -170,864 341,736 341,767

Inc. Places 1990 -173,472 346,948 346,964 -173,333 346,674 346,705

Inc. Places 2000 -177,127 354,258 354,274 -177,031 354,070 354,101

All places 2000 -234,773 469,550 469,566 -234,756 469,519 469,552

All places 2010 -262,440 524,884 524,901 -262,433 524,874 524,907

US

Sample IS2 dPln

log-likelihood AIC BIC log-likelihood AIC BIC

Inc. Places 1900 -87,273 174,555 174,592 -87,254 174,516 174,545

Inc. Places 1910 -116,732 233,474 233,512 -116,727 233,462 233,492

Inc. Places 1920 -128,539 257,088 257,126 -128,521 257,050 257,081

Inc. Places 1930 -138,164 276,338 276,377 -138,129 276,266 276,297

Inc. Places 1940 -142,174 284,358 284,397 -142,179 284,366 284,397

Inc. Places 1950 -147,574 295,158 295,197 -147,593 295,194 295,225

Inc. Places 1960 -158,605 317,220 317,259 -158,679 317,366 317,397

Inc. Places 1970 -164,741 329,492 329,531 -164,831 329,670 329,701

Inc. Places 1980 -170,682 341,374 341,413 -170,777 341,562 341,593

Inc. Places 1990 -173,152 346,314 346,353 -173,243 346,494 346,525

Inc. Places 2000 -176,827 353,664 353,703 -176,931 353,870 353,901

All places 2000 -234,750 469,510 469,551 -234,710 469,428 469,461

All places 2010 -262,427 524,864 524,905 -262,375 524,758 524,791

US

Sample tdPSM

log-likelihood AIC BIC

Inc. Places 1900 -87,232 174,478 174,529

Inc. Places 1910 -116,690 233,393 233,446

Inc. Places 1920 -128,485 256,983 257,037

Inc. Places 1930 -138,060 276,134 276,188

Inc. Places 1940 -142,074 284,162 284,216

Inc. Places 1950 -147,486 294,986 295,040

Inc. Places 1960 -158,530 317,073 317,128

Inc. Places 1970 -164,680 329,375 329,430

Inc. Places 1980 -170,625 341,265 341,320

Inc. Places 1990 -173,106 346,226 346,281

Inc. Places 2000 -176,775 353,563 353,618

All places 2000 -234,633 469,280 469,337

All places 2010 -262,252 524,518 524,576
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Table 11: Maximum log-likelihoods, AIC and BIC for the distributions used and the US CCA

clusters data. The lowest values of AIC and BIC for each sample are in bold

US

Sample lgn IS1

log-likelihood AIC BIC log-likelihood AIC BIC

CCA 1991 (2000m) -289,460 578,923 578,940 -288,236 576,481 576,514

CCA 1991 (3000m) -226,140 452,284 452,300 -224,434 448,876 448,908

CCA 1991 (4000m) -192,249 384,502 384,518 -190,431 380,871 380,902

CCA 1991 (5000m) -170,343 340,690 340,706 -168,608 337,224 337,255

CCA 2000 (2000m) -293,311 586,627 586,643 -292,300 584,608 584,641

CCA 2000 (3000m) -229,171 458,347 458,363 -227,733 455,474 455,507

CCA 2000 (4000m) -194,701 389,406 389,422 -193,134 386,277 386,309

CCA 2000 (5000m) -172,389 344,783 344,798 -170,864 341,735 341,766

US

Sample IS2 dPln

log-likelihood AIC BIC log-likelihood AIC BIC

CCA 1991 (2000m) -288,236 576,482 576,523 -284,288 568,584 568,617

CCA 1991 (3000m) -224,433 448,876 448,916 -221,851 443,710 443,742

CCA 1991 (4000m) -190,431 380,872 380,912 -188,584 377,177 377,209

CCA 1991 (5000m) -168,608 337,225 337,264 -167,096 334,201 334,232

CCA 2000 (2000m) -292,299 584,608 584,650 -288,879 577,765 577,798

CCA 2000 (3000m) -227,733 455,476 455,516 -225,494 450,996 451,028

CCA 2000 (4000m) -193,134 386,279 386,318 -191,552 383,112 383,143

CCA 2000 (5000m) -170,864 341,737 341,776 -169,586 339,179 339,211

US

Sample dm PChP

log-likelihood AIC BIC

CCA 1991 (2000m) -283,584 567,186 567,261

CCA 1991 (3000m) -221,218 442,454 442,526

CCA 1991 (4000m) -188,065 376,148 376,219

CCA 1991 (5000m) -166,669 333,356 333,426

CCA 2000 (2000m) -288,309 576,635 576,710

CCA 2000 (3000m) -225,020 450,057 450,130

CCA 2000 (4000m) -191,176 382,370 382,441

CCA 2000 (5000m) -169,277 338,572 338,642
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Table 12: Percentages of population and urban units (places, clusters) in the tails and the body of

the tdPSM for places and the dm PChP for clusters. For the definition of tails and body we use, in

each case, the corresponding thresholds ϵ and τ of Table 5 for places and Table 7 for clusters

Population Units

Lower tail Body Upper tail Lower tail Body Upper tail

Inc. Places 1900 0.3% 20.8% 78.9% 7.4% 81% 11.6%

Inc. Places 1910 0.2% 29.5% 70.3% 5.7% 89% 5.3%

Inc. Places 1920 0.2% 19.6% 80.2% 7.5% 82.2% 10.3%

Inc. Places 1930 0.3% 23.5% 76.2% 9.9% 83.7% 6.4%

Inc. Places 1940 0.2% 25.6% 74.2% 9.2% 84.8% 6%

Inc. Places 1950 0.1% 25.4% 74.5% 7.7% 86.1% 6.2%

Inc. Places 1960 0.1% 26% 73.9% 8.5% 84.9% 6.6%

Inc. Places 1970 0.1% 33.8% 66.1% 8.2% 87.5% 4.3%

Inc. Places 1980 0.1% 39.5% 60.4% 6.2% 90.2% 3.6%

Inc. Places 1990 0.1% 41.2% 58.7% 8.6% 88.2% 3.2%

Inc. Places 2000 0% 41.4% 58.6% 5.2% 91.5% 3.3%

All places 2000 0.1% 42.9% 57% 7.1% 89% 3.9%

All places 2010 0.1% 50.9% 49% 9.9% 87.7% 2.4%

CCA 1991 (2000m) 2% 53.2% 44.8% 12.3% 84.5% 3.2%

CCA 1991 (3000m) 1.8% 39.3% 58.9% 13.9% 82.2% 3.9%

CCA 1991 (4000m) 1.3% 32.7% 66% 12.3% 83.2% 4.5%

CCA 1991 (5000m) 3.1% 26.2% 70.7% 24.6% 70% 5.4%

CCA 2000 (2000m) 0.4% 56.7% 42.9% 4.7% 92.2% 3.1%

CCA 2000 (3000m) 0.3% 42.2% 57.5% 4.8% 91.3% 3.9%

CCA 2000 (4000m) 0.2% 35.1% 64.7% 3.7% 92% 4.3%

CCA 2000 (5000m) 0.3% 27.7% 72% 5% 87.6% 7.4%
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Table 13: Values of the quantities obtained in Theorem 1 for the US incorporated and all places

samples corresponding to the tdPSM

US

Sample

σ b4 α e−µϵ e−µτ ρ e4e
ρµ ζ a4e

−ζµ

Inc. Places 1900 0.42 1.05 0.32 0.61 12.06 2.32 0.52 1.02 1.44

Inc. Places 1910 0.44 1.04 0.34 0.53 29.68 2.48 0.66 1.09 2.21

Inc. Places 1920 0.45 1.06 0.33 0.62 15.93 2.36 0.53 0.98 1.45

Inc. Places 1930 0.45 1.05 0.31 0.71 33.74 2.05 0.39 1 2.06

Inc. Places 1940 0.44 1.05 0.28 0.7 41.14 2.01 0.35 1.06 3.14

Inc. Places 1950 0.55 1.06 0.34 0.54 42.6 1.89 0.43 1.06 3.22

Inc. Places 1960 0.61 1.09 0.32 0.57 54.01 1.71 0.35 1.07 4.55

Inc. Places 1970 0.69 1.08 0.38 0.47 86.13 1.6 0.42 1.19 9.44

Inc. Places 1980 0.69 1.07 0.38 0.37 99.13 1.69 0.52 1.3 17.04

Inc. Places 1990 0.85 1.09 0.48 0.38 113.39 1.51 0.52 1.31 19.32

Inc. Places 2000 0.79 1.08 0.4 0.28 132.98 1.6 0.61 1.35 30.08

All Places 2000 1.14 1.10 0.82 0.14 40.27 1.46 1.67 1.33 6.48

All Places 2010 1.31 1.13 1 0.14 59.42 1.31 1.45 1.45 11.8
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Table 14: Values of the quantities obtained in Theorem 2 for the US CCA clusters samples and the dm PChP

US

Sample

σ b5 β e−µϵ e−µτ (1− ν)d5 (1− θ)c5 ρ νe5e
ρµ ζ θa5e

−ζµ

CCA 1991 (2000m) 0.37 0.96 1.29 0.5 4.07 0.94 0.44 0.59 0.03 0.96 0.1

CCA 2000 (2000m) 0.39 0.97 1.13 0.3 4.39 0.89 0.55 0.54 0.02 0.95 0.08

CCA 1991 (3000m) 0.37 0.96 1.31 0.53 4.16 0.94 0.25 0.63 0.03 0.87 0.11

CCA 2000 (3000m) 0.4 0.97 1.21 0.3 4.47 0.9 0.36 0.56 0.02 0.87 0.11

CCA 1991 (4000m) 0.39 0.96 1.45 0.5 4.16 0.95 0.2 0.63 0.02 0.83 0.12

CCA 2000 (4000m) 0.42 0.97 1.36 0.26 4.63 0.89 0.26 0.57 0.02 0.84 0.12

CCA 1991 (5000m) 0.42 0.95 1.62 0.68 4.03 0.98 0.2 0.57 0.02 0.83 0.14

CCA 2000 (5000m) 0.42 0.96 1.26 0.3 3.35 0.92 0.55 0.58 0.02 0.79 0.11
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Figure 1: Left-hand column: Empirical and estimated dPln, IS1 and IS2 ln(cdf) for the lower tail (linear OLS fit in green, empirical in

blue, estimated in red). Center column: Empirical (Gaussian adaptive kernel density) and estimated dPln, IS1 and IS2 density functions

(empirical in blue, estimated in red). Right-hand column: Empirical and estimated dPln, IS1 and IS2 ln(1− cdf) for the upper tail (linear

OLS fit in green, empirical in blue, estimated in red).
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Figure 2: Left-hand column: Empirical and estimated tdPSM and dm PChP ln(cdf) for the lower tail. Center column: Empirical (Gaussian

adaptive kernel density) and estimated tdPSM and dm PChP density functions. Right-hand column: Empirical and estimated tdPSM and

dm PChP ln(1− cdf) for the upper tail. First row: US all places (2010). Second row: US CCA clusters (2000, 2km.). Empirical in blue,

estimated in red in all cases.
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