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Università di Trieste, Piazzale Europa 1, 34127, Trieste, Italy

bFakultät für Mathematik, Mathematikcarrée, Universität Duisburg-Essen,
Campus Essen, Thea-Leymann-Straße 9, D-45127 Essen, Germany

Abstract

On basis of the meanwhile classical continuous multi-utility representation theorem
of Levin on locally compact and σ-compact Hausdorff-spaces the question of charac-
terizing all topological spaces (X, t) for which every closed and semi-closed preorder
respectively admits a continuous multi-utility representation will be discussed. In
this way we are able to provide the fundaments of a purely topological theory that
systematically combines topological and order theoretic aspects of the continuous
multi-utility representation problem.

Key words: Normal preorder, strongly normal preorder, paracompact space,
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1 Introduction

A well-known and in some sense best approach (cf. Evren and Ok [5]) of
representing a preorder - on a topological space (X, t) is to find a family F
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of increasing continuous real functions f on (X, t) such that

“x - y ⇔ f(x) ≤ f(y)” for all f ∈ F .

Such a representation is called a continuous multi-utility representation of -.

It has the advantage of fully characterizing the preorder -.
A total (complete) preorder on a topological space (X, t) is said to be contin-
uous if - satisfies one of the following equivalent conditions.

C1: For every point x ∈ X both sets d(x) := {y ∈ X | y - x} and
i(x) := {z ∈ X | x - z} are closed subsets of X.

C2: - is a closed subset of X ×X with respect to the product topology
t× t on X ×X that is induced by t.

Of course, the implication “C2 ⇒ C1” also holds if - is allowed to be
incomplete. In this case, however, the converse implication, in general, fails to
be true. This is well-known. Nevertheless, in Theorem 3.2 we shall discuss the
problem up to which degree condition C1 is weaker than condition C2.
In the arbitrary case, a preorder - on (X, t) therefore, is said to be semi-closed

if - satisfies condition C1. If - satisfies condition C2 then - is said to be
closed.
It is beyond any doubt that closed preorders are of particular importance in
mathematical economics (cf., for instance, the literature that has been quoted
by Evren and Ok [5], Bosi and Herden [1], Minguzzi [14,15] and many others).
Indeed, in some standard textbooks on microeconomics (such as Mas-Colell,
Whinston and Green [13, page 46]) the definitions of continuity of an (in-
complete) preference relation and of a closed preference relation coincide. In
addition closed preorders are of particular interest in the fundamental work of
Nachbin on topology and order (cf. [16, Chapter 1]). Because of this observa-
tion the most fundamental question in the theory of continuous multi-utility
representations of preorders is the question of precisely characterizing (de-
termining) all topological spaces (X, t) that have the property that all their
closed preorders respectively admit a continuous multi-utility representation.
In contrast to the importance of closed preorders Theorem 3.2 implies that
in mathematical economics the concept of an incomplete semi-closed preorder
hardly can be justified.
Although meanwhile many papers on the continuous multi-utility representa-
tion of (closed) preorders have been published (cf., for instance, the literature
that has been cited in the more recent papers by Bosi and Herden [1], Bosi
and Zuanon [2], Evren [4], Evren and Ok [5], Galaabaatar and Karni [6], Min-
guzzi [14,15] and Pivato [17]) since the pioneering work of Levin [11] (cf. also
Evren and Ok [5, Theorem 1]) with respect to the above mentioned fundamen-
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tal problem in the theory of continuous multi-utility representations no real
progress has been made. Levin’s fundamental theorem states that every closed

preorder on a locally and σ-compact Hausdorff space has a continuous multi-

utility representation. Indeed, in combination with its corollaries on separable
metric spaces, compact spaces and Euclidean spaces (cf., for instance, Evren
and Ok [5, Corollary 1, Corollary 2 and Corollary 3]) this theorem still belongs
to the most quoted theorems in Mathematical Utility Theory, in particular,
in the theory of appropriate utility representations of incomplete preference
relations.
All well-known continuous multi-utility representation theorems only present
as well as Levin’s theorem sufficient conditions for the existence of continu-
ous multi-utility representations. In opinion of the authors this is the great
lack of these theorems. This lack pertains to formal mathematics as well as to
applications in mathematical economics. Indeed, in order to completely char-
acterizing (determining) topological spaces (X, t) having the property that all
their semi-closed and closed preorders respectively admit a continuous multi-
utility representation necessary and sufficient conditions have to be presented.
In mathematical economics, on the other hand, necessary conditions allow
the selection of appropriate topologies. Indeed, necessary conditions imply at
least particular difficulties in representing a preorder by a family of continu-
ous increasing real functions. Actually, these conditions even often imply the
impossibility of a continuous multi-utility representation of a preorder.
The difficulties of presenting necessary conditions for the existence of a family
of continuous increasing real functions that represent a preorder is based upon
the fact that corresponding proofs must be constructive. Indeed, proving the
necessity of a given condition one, in general, is forced to verify that negat-
ing the validity of this condition allows the construction of preorders that
do not have a continuous multi-utility representation. Corresponding proofs,
therefore, need the intuitive idea of possible conditions that may be neces-
sary for representing a preorder by a family of continuous real functions as
well as the ability of constructing preorders that do not have a continuous
multi-utility representation if these conditions are not satisfied. Because of
these difficulties our approach of approximating the problem of completely
characterizing topological spaces (X, t) for which every closed, respectively
semi-closed preorder admits a continuous multi-utility representation, there-
fore, is conservative. This means that Levin’s original theorem stands in focus
of our approach. In a first attempt we, therefore, want to clarify up to which
degree the assumptions of locally and σ-compactness are also necessary for
ensuring the existence of continuous multi-utility representations for closed
preorders. Indeed, setting S := {x ∈ X | {x} ∈ t} and concentrating on
metrizable spaces in this way in the third section of this paper, among other
results, the following three results will be proved and widely generalized (cf.
Theorem 3.5, Theorem 3.7, Theorem 3.8 and corresponding corollaries).
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1. Let (X, t) be a metrizable space. Then the following assertions hold:

(i) (X \S, t|X\S) is compact. In this case every closed preorder - on (X, t) has
a continuous multi-utility representation.

(ii) (X \ S, t|X\S) is not compact. Then in order that every closed preorder

- on (X, t) has a continuous multi-utility representation it is necessary

that (X, t) is the direct sum of locally compact second countable metric

spaces.

2. Let (X, t) be a second countable space. Then in order that every closed

preorder - on (X, t) has a continuous multi-utility representation it is

necessary and sufficient that (X \ S, t|X\S) is a compact and (X, t)
a second countable metrizable space or that (X, t) is a second

countable locally compact metrizable space.

3. Let (X, t) be a connected metrizable space. Then in order that every

closed preorder - on (X, t) has a continuous multi-utility representation

it is necessary and sufficient that (X, t) is locally compact and second

countable.

In addition, in Theorem 3.2 necessary (and sufficient) conditions for topo-
logical spaces that have the property that every semi-closed preorder is closed
or admits a continuous multi-utility representation will be presented. Theorem
3.2 (cf. Remark 3.1) states, in particular, that for a first countable space (X, t)
the assertions (X, t) to have the property that every semi-closed preorder is
closed, (X, t) to have the property that every semi-closed preorder admits a
continuous multi-utility representation and (X, t) to contain at most one point
x ∈ X such that {x} is not an open subset of X are equivalent. In this paper
topological spaces (X, t) for which there exists at most one point x ∈ X such
that {x} is not an open subset of X are said to be almost discrete . In addition,
the negation of the existence of weakly inaccessible cardinal numbers allows
us to drop the assumption (X, t) to be first countable in order to nevertheless
prove a corresponding very general restrictive result (cf. assertion (ii) of The-
orem 3.2). Therefore, it seems that in mathematical economics the concept of
a semi-closed incomplete preorder only is of little use.
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2 Notation and preliminaries

As usual tnat denotes the natural topology on the real line. | M | is for
every set M the cardinality of M .
Let, henceforth, - be a preorder, i.e. a reflexive and transitive binary relation
on some fixed given set X. Then for every point x ∈ X besides the sets d(x)
and i(x) also the sets l(x) := {y ∈ X | y ≺ x} and r(x) := {z ∈ X | x ≺ z}
will be considered.
A subset D of X is said to be decreasing if d(x) ⊂ D for all x ∈ D. By duality
the concept of an increasing subset I of X is defined.
In addition, for every subset T of X we set d(T ) := {y ∈ X | ∃x ∈ T (y - x)}
and i(T ) := {z ∈ X | ∃x ∈ T (x - z)}, i.e. d(T ) is the smallest decreasing and
i(T ) the smallest increasing subset of X that contains T .
∆X = {(x, x) | x ∈ X} is the diagonal of X.
Let t be a topology on X. As usual we denote for every subset S of X by S its
topological closure. For every subset T of X we denote, furthermore, by D(T )
the smallest closed decreasing subset of X that contains T . Analogously, we
denote by I(T ) the smallest closed increasing subset of X that contains T .
In addition, the preorder - on (X, t) is said to be

(i) d-i-closed if for every closed subset A of X both sets d(A) and i(A) are
closed subsets of X. (The reader may recall that (X, t) is a Fréchet-space if
and only if {x} is a closed subset of X for every point x ∈ X. Therefore, in a
Fréchet-space (X, t) every d-i-closed preorder is semi-closed.).

(ii) D-I-closed if for any two closed subsets A and B of X such that not(y - x)
for all x ∈ A and all y ∈ B the sets D(A) and I(B) are disjoint. (Since the
relation not(y - x) for all x ∈ A and all y ∈ B means that d(A)∩ i(B) = ∅ it
follows that a d-i-closed preorder - on (X, t) also is D-I-closed. If (X, t) is a
regular space then also the converse holds (cf. Proposition 3.1)).

(iii) normal if for any two disjoint closed decreasing, respectively increasing
subsets A and B of X there exist disjoint open decreasing, respectively in-
creasing subsets U and V of X such that A ⊂ U and B ⊂ V .

(iv) strongly normal if for any two closed subsets A and B of X such that
not (y - x) for all x ∈ A and all y ∈ B there exist disjoint open decreasing,
respectively increasing subsets U and V of X such that A ⊂ U and B ⊂ V .

Finally, - is said to satisfy cmp (continuous multi-utility representation prop-

erty) if a family F of continuous real functions f on (X, t) can be chosen in
such a way that x - y if and only if f(x) ≤ f(y) for every f ∈ F .
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3 The results

Throughout this section (X, t) is an arbitrarily chosen topological space.
Considering the equivalence relation x ∼ y ⇔ {x} = {y} and instead of (X, t)
the quotient space (X|∼, t|∼) in the remainder of this paper we may assume
without loss of generality that (X, t) is a Fréchet space. This means, in partic-
ular, that the identity relation “ = ” is a closed preorder on (X, t). Indeed, the
reader will not have any difficulties in proving that a preorder - on (X, t) is
d-i-closed (D-I-closed, semi-closed, closed) if and only if the induced preorder
-|∼ that is defined on (X|∼, t|∼) is d-i-closed (D-I-closed, semi-closed, closed).
Now we want to prove the validity of the following results that at least ap-
proximate our aims that have been presented in the introduction. We start by
proving the following three lemmas.

Lemma 3.1 Let (X, t) be a normal space. Then every d-i-closed as well

as every D-I-closed preorder - on (X, t) is strongly normal.

Proof. Since d(C) ⊂ D(C) and i(C) ⊂ I(C) for every closed subset C of X it
suffices to verify that every D-I-closed preorder - on (X, t) is strongly normal.
Let, therefore, A and B be two closed subsets of X such that not (y - x) for
all x ∈ A and all y ∈ B. Then the assumption D(A) and I(B) to be disjoint
subsets of X implies with help of the normality of (X, t) that there exists
some open subset O of X such that the inclusions D(A) ⊂ O ⊂ O ⊂ X \ I(B)
hold. Since X \ I(B) is decreasing it, thus, follows that d(O) ⊂ X \ I(B). This
inclusion allows us to conclude that not (y - x) for all x ∈ O and all y ∈ i(B).
Hence our assumption - to be D-I-closed implies that D(O) ∩ I(B) = ∅.
Therefore, we set V := X \ D(O) in order to conclude that V is an open
decreasing subset of X that contains I(B). We proceed by considering the
inclusions V = X \ D(O) ⊂ X \ O ⊂ X \ O ⊂ X \ D(A). These inclusions
imply, in particular, that V ⊂ X \O ⊂ X \D(A). Since X \D(A) is increasing,
we, thus, may conclude that D(A) ∩ i(V ) = ∅, which means that not (y - x)
for all x ∈ D(A) and all y ∈ V . In the same way as above it, therefore,
follows that D(A) ∩ I(V ) = ∅. Hence, we set U := X \ I(V ). Then U is an
open decreasing subset of X that contains D(A). In addition, the inclusion
V ⊂ I(V ) implies that U ∩ V = ∅. Since A ⊂ D(A) and B ⊂ I(B) this
equality completes the proof of the lemma. ✷

The next lemma already has been proved in Herden [9, Theorem 2.2].

Lemma 3.2 Let (X,≼, t) be a preordered topological space. Then the fol-

lowing assertions are equivalent:

(i) - is strongly normal.
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(ii) For any two closed subsets A and B of X such that not (y - x) for all

x ∈ A and all y ∈ B there exists a continuous and increasing func-

tion fAB : (X,-, t) −→ ([0, 1],≤, tnat) such that fAB(A) = {0} and

fAB(B) = {1}.
(iii) For every closed subset C of X and every bounded, continuous and in-

creasing function fC : (C,-|C , t|C) −→ (R,≤, tnat) there exists a bounded

continuous and increasing function f : (X,-, t) −→ (R,≤, tnat) such that

f|C = fC.

Finally, the following lemma is at least implicitly well known. Moreover,
its proof is straightforward. Therefore, the proof is omitted for the sake of
brevity.

Lemma 3.3 Let (X,-, t) be a preordered topological space. Then the fol-

lowing assertions are equivalent:

(i) - satisfies cmp.

(ii) For any two points x ∈ X and y ∈ X such that not (y - x) there

exists a continuous and increasing real function fxy on (X, t) such that

fxy(x) < fxy(y).

With help of these three lemmas we now are fully prepared for proving
the next theorem (cf. Theorem 4.3 and Theorem 4.5 in Bosi and Herden [1]).

Theorem 3.1 The following assertions are equivalent:

(i) Every d-i-closed preorder - on (X, t) satisfies cmp.

(ii) Every D-I-closed preorder - on (X, t) satisfies cmp.

(iii) (X, t) is a normal space.

Proof: (ii) ⇒ (i). With help of the corresponding definitions it follows that
every d-i-closed preorder - on (X, t) is D-I-closed (cf. the corresponding part
in the proof of Lemma 3.1). Hence, nothing has to be shown.

(i) ⇒ (iii): Let A and B be two disjoint closed subsets of X. Then we
consider the preorder - on (X, t) that is defined by setting

-:= ∆X ∪ A× A ∪ B × B.
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For every closed subset C of X we then may conclude that

d(C) = i(C) =







































A ∪ B ∪ C if A ∩ C ̸= ∅ and B ∩ C ̸= ∅

A ∪ C if A ∩ C ̸= ∅ and B ∩ C = ∅

B ∪ C if A ∩ C = ∅ and B ∩ C ̸= ∅

C if A ∩ C = ∅ and B ∩ C = ∅

.

Hence, - is a d-i-closed preorder on (X, t). Let, therefore, x ∈ A and
y ∈ B be arbitrarily chosen. Then the relation not(y - x) is satisfied. Lemma
3.3, thus, implies the existence of some continuous and increasing real function
fxy on (X, t) such that fxy(x) < fxy(y). Since x ∼ u for every u ∈ A and y ∼ v

for every v ∈ B it follows that (X, t) is a normal space.
(iii) ⇒ (ii): Let - be some D-I-closed preorder on (X, t). Then Lemma
3.1 implies that - is strongly normal. Hence, we may apply assertion (ii) of
Lemma 3.2 in order to conclude with help of assertion (ii) of Lemma 3.3 that
- satisfies cmp. ✷

We now come to the already announced

Proposition 3.1 Let (X, t) be a regular space. Then every D-I-closed

preorder - on (X, t) is d-i-closed.

Proof: Let A be a closed subset of X. Then we must show that d(A) as
well as i(A) are closed subsets of X. Of course, it suffices to verify that d(A) is
closed. A dual argument then also applies for i(A). Let, therefore, some point
x ∈ X \ d(A) be arbitrarily chosen. Then not(x - y) for all points y ∈ A.
Hence, D(A) ∩ I({x}) = ∅. The regularity of (X, t) now implies the existence
of disjoint open subsets U and V of X such that D(A) ⊂ U and x ∈ V . Since
d(A) ⊂ D(A) we are done. ✷

The following proposition completes Theorem 3.1.

Proposition 3.2 The following assertions are equivalent:

(i) Every normal preorder - on (X, t) is strongly normal.

(ii) Every normal preorder - on (X, t) is D-I-closed.

Proof:

(i) ⇒ (ii): Let A and B be two closed subsets of X such that not (y - x) for
all x ∈ A and all y ∈ B. Then assertion (i) allows us to apply assertion (ii)
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of Lemma 3.2. This means, in particular, that the sets D(A) and I(B) are
disjoint.
(ii) ⇒ (i): Let - be normal and let A and B be closed subsets of X such
that not (y - x) for all x ∈ A and all y ∈ B. Then assertion (ii) implies
that D(A) and I(B) are disjoint closed decreasing, respectively increasing
subsets of X. Since - is normal it, thus, follows that there exist disjoint open
decreasing, respectively increasing subsets U and V of X such that D(A) ⊂ U

and I(B) ⊂ V . The inclusions A ⊂ D(A) and B ⊂ I(B) now imply the
validity of assertion (i). ✷

In order to now discuss the problem of characterizing all Hausdorff spaces
(X, t) having the property that every semi-closed preorder - on (X, t) is
closed and the problem of characterizing all Hausdorff spaces (X, t) having
the property that every semi-closed preorder - on (X, t) satisfies cmp let, for
the moment, (X, t) be a fixed given Hausdorff space. Then the reader may
recall from the introduction that S := {x ∈ X | {x} ∈ t}. In addition, the
following notation will be used.

N1: By T we abbreviate the set of all points x ∈ X that have the property
that every neighborhood of x contains some point y ∈ X \ S.

N2: For every point x ∈ X we set

c(x) :=











0 if x ∈ S

min{| Z || Z ⊂ X \ {x}} and x ∈ Z} if x ∈ X \ S
.

For every point x ∈ X \ S it follows that c(x) ≥ ℵ0 and that c(x) is a
regular cardinal number. Let us abbreviate this observation by (∗).

N3: By ZFC+¬WI we abbreviate the extension of Zermelo-Fraenkel set
theory + Axiom of Choice that negates the existence of weakly inaccessible
cardinal numbers, i.e. the existence of uncountable regular cardinal numbers κ
having the property that for every cardinal number γ that is strictly smaller
than κ also its successor is strictly smaller than κ. It is well known that the
consistency of ZFC implies the consistency of ZFC + ¬WI.

With help of this notation we are fully prepared for stating the following
theorem.

Theorem 3.2 The following assertions hold in ZFC and ZFC + ¬WI

respectively:

(i) In ZFC it can be proved that in order that every semi-closed preorder -

on (X, t) is closed it is necessary and sufficient that c(x) ̸= c(y) for any two
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different points x ∈ X \ S and y ∈ X \ S.
(ii) In ZFC + ¬WI the following assertions are equivalent:

SC: Every semi-closed preorder - on (X, t) is closed.
SM: Every semi-closed preorder - on (X, t) satisfies cmp.

ST: (X, t) satisfies the following conditions:

ST1: c(x) ̸= c(y) for any two different points x ∈ X \ {x} and

y ∈ X \ {x}.
ST2: X = S.

ST3: t|X\S is the discrete topology on X \ S.

Proof: (i): Necessity: Let us assume, in contrast, that there exist at least
two different points x ∈ X \ S and y ∈ X \ S such that c(x) = c(y). Then we
choose subsets Z of X \{x} and Z ′ of X \{y} in such a way that | Z |= c(x) =
c(y) =| Z ′ | and x ∈ Z and y ∈ Z ′ . Since (X, t) is assumed to be a Hausdorff
space we may assume without loss of generality that Z ∩ Z ′ = ∅. Hence, we
may consider some bijective function φ : Z −→ Z ′ in order to choose the
(pre)order ≼ on X that is defined by setting

≼:= ∆X ∪ {(z, φ(z))) | z ∈ Z}.

Since for every z ∈ Z the singletons {z} and {φ(z)} are closed subsets of
X it follows that ≼ is a semi-closed (pre)order on (X, t). The assumption of
assertion (i), thus, implies that ≼ is a closed (pre)order on (X, t). Since (X, t)
is a Hausdorff space it, thus, follows that (x, y) ∈-. But since (x, y) ̸∈- this
conclusion is incompatible with the definition of ≼. This contradiction proves
the necessity part of assertion (i).

Sufficiency: Let us assume, in contrast, that there exists some semi-closed
preorder - on (X, t) that is not closed. Then there exists some cardinal
number κ and a set {(xα, yα) | α < κ} of pairs (xα, yα) ∈- that is not
closed with respect to the product topology t × t on X × X. This means
that we may assume without loss of generality that there exists some pair
(x, y) ∈ X × (X \ {x}) such that (x, y) ∈ {(xα, yα) | α < κ} but (x, y) ̸∈-.
Of course, we may assume, in addition, that there exists no cardinal number
λ < κ such that (x, y) ∈ {(xα, yα) | α < λ}. It, thus, follows that
c(x) = c(y) = κ. Since x ̸= y this conclusion contradicts the assumption
that c(x) ̸= c(y) for any two different points x ∈ X \ S and y ∈ X \ S and,
therefore, finishes the proof of the sufficiency part of assertion (i).

(ii): We now assume the validity of ZFC + ¬WI. Since a preorder - on
(X, t) that admits a continuous multi-utility representation is closed the proof
of the validity of the implication “SM⇒ SC” does not need any additional re-
flection. We, thus, only have to prove that the implications
“SC ⇒ ST” and “ST ⇒ SM” hold. In order to show the validity of the
implication “SC ⇒ ST” let every semi-closed preorder - on (X, t) be closed.
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Because of assertion (i) it suffices to verify the validity of the conditions ST2

and ST3. The proof of these conditions is divided into two steps.

In the first step we arbitrarily choose some point x ∈ D in order to then
show that | U |≥ min{c(z) | z ∈ X and c(x) < c(z)} for every neighbor-
hood U of x. Because of observation (∗) the desired inequality follows for all
neighborhoods U of x if we are able to prove that every neighborhood U of x
contains at least one point y such that c(x) < c(y). Let us assume, in contrast,
that c(y) ≤ c(x) for every neighborhood U of x and every point y ∈ U \ {x}.
Then assertion (i) implies that c(y) < c(x) for every neighborhood U of x
and every point y ∈ U \ {x}. Hence, the regularity of c(x) implies with help
of assertion (i) that sup

c(y)<c(x)

c(y) = c(x). This equation allows us to conclude

that for every cardinal number γ that is strictly smaller than c(x) there exists
some cardinal number λ that is strictly greater than γ and strictly smaller
than c(x). The regularity of c(x), therefore, implies that c(x) is a weakly in-
accessible cardinal number which contradicts our assumption that there exist
no weakly inaccessible cardinal numbers and, thus, finishes the proof of the
first step.
In the second step we, finally, show that D is empty. Then both conditions
ST2 and ST3 have been proved.. Let us assume, in contrast, that D is not
empty. Then there exists some point x ∈ D such that c(x) = min

w∈T
c(w). In

addition, the proof of the first step implies the existence of some point y ∈ X

such that c(y) = min{c(v) | v ∈ X and c(x) < c(v)}. Now the first step allows
us to recursively construct a collection {Zα}α<c(y) of pairwise disjoint subsets
Zα of X \ {x} for which the equation | Zα |= c(x) and the inclusion x ∈ Zα

hold. Since the sets Zα are pairwise disjoint it follows that |
∪

α<c(y)

Zα |= c(y).

We, thus, set Z :=
∪

α<c(y)

Zα and consider, in addition, some subset Z ′ ofX\{y}

in such a way that | Z ′ |= c(y) and y ∈ Z ′. As in the proof of assertion (i)
we proceed by choosing some bijective map φ : Z −→ Z ′ in order to then
considering as in the proof of assertion (i) the semi-closed preorder

≼:= ∆X ∪ {(z, φ(z))) | z ∈ Z}

on (X, t). Now we may conclude as in the proof of assertion (i). This means that
the assumption - to be a closed preorder on (X, t) implies that (x, y) ∈- in
contrast to the definition of - which which finishes the proof of the implication
“SC ⇒ ST”.

In order to now finally prove the validity of the implication “ST ⇒ SM”
we first apply Lemma 3.3 and assertion (i) in order to conclude that it suf-
fices to verify that every closed preorder - on (X, t) is strongly normally
preordered. Let, therefore, - be some closed preorder on (X, t). Then we ar-
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bitrarily choose closed subsets A and B of X such that not(y - x) for any
two points x ∈ A and y ∈ B. We must show that there exist disjoint open
decreasing respectively, increasing subsets U and V of X such that A ⊂ U

and B ⊂ V . U and V will be constructed inductively.
n = 0: Indeed, the validity of the conditions ST2 and ST3 implies the

existence of disjoint open subsets O0 and P0 of X such that A ⊂ O0 and
B ⊂ P0. Unfortunately, it cannot be excluded that there exist points x ∈ O0

and y ∈ P0 such that y - x. By again applying the condition ST2 and ST3

in this case our assumption - to be closed allows us to apply a routine (trans-
finite) induction procedure in order to step by step eliminate these crucial
points in such a way that the finally resulting open subsets O′

0 of O0 and P ′
0

of P0 have the properties that A ⊂ O′
0 and B ⊂ P ′

0 and, furthermore, that
d(d(O′

0)) ∩ i(i(P
′
0)) = ∅.

0 ⇒ 1: Now we assume that already open subsets O′
0 and P ′

0 of X have
been constructed in such a way that A ⊂ O′

0, B ⊂ P ′
0 and d(d(O

′
0))∩i(i(P

′
0)) =

∅. Then the same argument that has been applied for n = 0 allows us to con-
struct open subsets O′

1 and P
′
1 of X such that d(O′

0) ⊂ O′
1 and i(P

′
0) ⊂ P ′

1 and
d(d(O′

1)) ∩ i(i(P
′
1)) = ∅.

0 < n⇒ n+1: In this situation we assume that open subsets O′
n and P ′

n

of X have been constructed in such a way that the inclusions d(O′
n−1) ⊂ O′

n

and i(P ′
n−1) ⊂ P ′

n and the equation d(d(O′
n))∩ i(i(P

′
n)) = ∅ are satisfied. Then

the same argument that has been applied for n = 0 allows us to construct
open subsets O′

n+1 and P ′
n+1 of X such that d(O′

n) ⊂ O′
n+1 and i(P ′

n) ⊂ P ′
n+1

and d(d(O′
n+1)) ∩ i(i(P

′
n+1)) = ∅.

Continuing in this way we, finally, set U :=
∞
∪

n=0

O′
n and P :=

∞
∪

n=0

P ′
n. The

inductive construction of the open subsets O′
n and P ′

n of X implies that U
and V are disjoint open decreasing respectively, increasing subsets of X such
that A ⊂ U and B ⊂ V .This conclusion finishes the proof of the implication
“ST ⇒ SM” and, thus, completes the proof of the theorem. ✷

Remark 3.1 The reader may notice that the proof of the implication
“ST ⇒ SM” does not make any use of ¬WI. This implication, therefore, also
holds in ZFC. In addition, the proof of the implication “ST ⇒ SM” allows us
to conclude that for a topological space (X, t) that satisfies the conditions ST2

and ST3 every closed preorder on (X, t) is strongly normal. In Proposition 3.5
a somewhat weaker result will be proved for Hausdorff-spaces (X, t) having
the property that (X \ S, tX\S) is compact.

Assertion (i) of Theorem 3.2 implies that a Hausdorff space (X, t) that
contains at most one point x such that {x} ∈ t and has the property that
every semi-closed preorder - on (X, t) already is closed must be rigid. This
means that the only one homeomorphism φ : (X, t) −→ (X, t) is the identity
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map on X.
Assertion (ii) of Theorem 3.2 implies that the assertion that there exists

no connected Hausdorff space (X, t) for which every semi-closed preorder -

on (X, t) already is closed is consistent with ZFC.
Let κ be an infinite regular cardinal number. Then a topological space

(X, t) is said to be κ-countable if every point x ∈ X either is contained in S
or has a basis of neighborhoods the cardinality of which is κ. If κ = ℵ0 then
(X, t) is first countable. Now the reader may still recall from the introduction
that a topological space (X, t) is said to be almost discrete if | X \ S |≤ 1.
Let (X, t) be a κ-countable Hausdorff space. Then assertion (i) of Theorem
3.2 immediately implies that in ZFC the validity of the equivalence of the
following assertions holds, which underlines, in particular, that semi-closed
preorders seem to be of very little value in mathematical economics. For the
sake of brevity we may omit the trivial details of the corresponding proof.

(i) Every semi-closed preorder - on (X, t) is closed.

(ii) Every semi-closed preorder - on (X, t) satisfies cmp.

(iii) t is almost discrete.

Finally, we want to complete our considerations on semi-closed, closed,
d-i-closed and D-I-closed preorders by proving the validity of the following
proposition.

Proposition 3.3 Let (X, t) contain at least one point that has a count-

able and infinite basis of neighborhoods. Then the following assertions hold:

(i) In order that every closed preorder - on (X, t) is d-i-closed it is

necessary that (X, t) is sequentially compact.

(ii) In order that every closed preorder - on (X, t) is D-I-closed it is

necessary that (X, t) is sequentially compact.

Proof: We shall prove both assertions of the proposition in one step.
Therefore, we assume, in contrast, that there exists some countable infinite
subset C of X that does not have a limit point in order to then use our
assumption on (X, t) in order to choose a sequence (xn)n∈N of points xn ∈ X

that converges to some point x ∈ X. Let D := {xn | n ∈ N}. Of course, we
may assume that x ̸∈ D. We, thus, proceed by dividing C into two disjoint
infinite subsets A and B and D into two disjoint infinite subsets H and K the
union of which is C and D respectively. Now we consider bijective functions
φ : H −→ A and ψ : B −→ K. With help of these functions we may define a
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(pre)order - on (X, t) by setting

-:= ∆X ∪ {(h, φ(h)) | h ∈ H} ∪ {(b, ψ(b)) | b ∈ B}.

Since both sets A and B are closed subsets of X it follows that -, actually,
is a closed (pre)order on (X, t). But since x neither is contained in d(A) nor
in i(B) we may conclude that - is not d-i-closed. In addition, the relation
x ∈ d(A) ∩ i(B) implies that - is not D-I-closed. These contradictions prove
the proposition. ✷

The following theorem is well known in general topology (cf., for instance,
Grotemeyer [7, Satz 93]).

Theorem 3.3 Let (X, t) be paracompact. Then the following assertions

are equivalent:

(i) (X, t) is compact..

(ii) (X, t) is sequentially compact.

As an application of Theorem 3.3 we want to apply Proposition 3.3 in
order to prove the following proposition.

Proposition 3.4 Let (X, t) be a paracompact space that contains at least

one point that has a countable and infinite basis of neighborhoods. Then the

following assertions are equivalent:

(i) Every closed preorder - on (X, t) is d-i-closed..
(ii) Every closed preorder - on (X, t) is D-I-closed..

(iii) (X, t) is a compact Hausdorff space.

Proof: (i) ⇒ (ii): The validity of this implication is trivial (cf. the cor-
responding remark in the proof of Lemma 3.1).

(ii) ⇒ (iii): Since a paracompact space is normal our assumption (X, t)
to be a Fréchet space implies that (X, t) is a Hausdorff space. Hence, the va-
lidity of the implication “(ii) ⇒ (iii)” is a consequence of Proposition 3.3 and
Theorem 3.3.

(iii) ⇒ (i): The validity of this implication is well known. The reader may
consult, for instance, in Nachbin [16] the proof of Proposition 4 in
Chapter 3. ✷

In the remainder of this paper we now solely concentrate on the problem
of characterizing all topological spaces (X, t) that have the property that all
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their closed preorders - satisfy cmp. In order to at least approach this problem
the following theorem seems to be of interest (cf. Proposition 3.4).

Theorem 3.4 The following assertions are equivalent:

(i) Every closed preorder - on (X, t) satisfies cmp..

(ii) Every closed preorder - on (X, t) is normal.

Proof: (i) ⇒ (ii): Let - a closed preorder on (X, t) and let A and B be
two disjoint closed decreasing, respectively increasing subsets of X. Then we
construct by transfinite induction a closed preorder -e on (X, t) that extends
- and has the additional properties that both sets A × A and B × B are
contained in -e and that not(y -e x) for all x ∈ A and all y ∈ B. Because of
assertion (ii) it then follows that -e satisfies cmp. This means that there exists
a continuous and increasing function fAB : (X,-, t) −→ (R,≤, tnat) such that
fAB(x) < fAB(y) for all x ∈ A and all y ∈ B. Since fAB |A as well as fAB |B are
constant functions, therefore, the validity of assertion (ii) follows.
α is a limit ordinal. The reader may recall that a limit ordinal is an ordinal
number that has no (direct) predecessor. This means, in particular, that “0”
may be considered being a limit ordinal. Therefore, we set

-α=















- if α = 0
∪

β<α

-β if α > 0
.

α is not a limit ordinal. In this case there exists a limit ordinal γ and a natural
number n ≥ 1 such that α = γ+n. Then we distinguish between the following
three cases.
Case 1: γ = 0 and n = 1. In this case we set -α:=- ∪A× A ∪ B × B.
Case 2: γ ≥ 0 and n ≥ 3 is an odd natural number. Now we set

-α:=-γ+n−1 ∪{(p, q) ∈ X ×X | there exists some net ((pi, qi)) of pairs

(pi, qi) ∈ X ×X such that (p, q) = lim
i∈I

(pi, qi)}.

Case 3: γ ≥ 0 and n ≥ 2 is an even natural number. In this situation we
set

-α:= -γ+n−1 ∪{(a, v) ∈ A×X | there exists some a′ ∈ A such that

(a′, v) ∈-γ+n−1} ∪{(w, b) ∈ X × B | there exists some b′ ∈ B

such that (w, b′) ∈-γ+n−1}.
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Let κ be the first ordinal number such that the induction process stops.
Then we set -e=-κ. The inductive construction of -e=-κ implies for all or-
dinal numbers 1 ≤ α ≤ κ that both sets A × A and B × B are contained in
-α. Since A and B are closed subsets of X it follows, furthermore, that for
all ordinal numbers 0 ≤ β < α ≤ κ the inclusion -α \ -β⊂ A ×X ∪X × B

holds. In addition, the transitivity of - allows us to conclude with help of our
assumption A to be decreasing and B to be increasing that -α is transitive
for all limit ordinals α and all non-limit ordinals α = γ + n for which n ≥ 2 is
an even natural number. Moreover, the construction of -e=-κ implies for all
ordinal numbers 1 ≤ α ≤ κ such that α = γ+n for some odd natural number
n that -α is a closed subset of X × X. Summarizing these considerations it
follows that -e=-κ is a closed preorder on (X, t) that extends - in such a
way that A× A as well as B ×B is contained in -e=-κ and not(y -e x) for
all x ∈ A and all y ∈ B. Our corresponding considerations at the beginning of
the proof of the implication “(i) ⇒ (ii)”, thus, imply the validity of assertion
(ii).
(ii) ⇒ (i): Let - be a closed preorder on (X, t) and let two points x ∈ X

and y ∈ X such that not(y - x) be arbitrarily chosen. Since - is closed
it follows, in particular, that - is semi-closed. Hence the sets d(x) and i(y)
are disjoint closed decreasing, respectively increasing subsets of X. The nor-
mality of - implies with help of the well known Separation Theorem of
Nachbin [16, Theorem 1] that there exists a continuous and increasing function
fxy : (X,-, t) −→ ([0, 1],≤, tnat) such that fxy(x) = 0 and fxy(y) = 1. Lemma
3.3, therefore, implies the validity of assertion (i). ✷

Theorem 3.4 provides a first step towards the complete solution of the
problem of characterizing all topological spaces (X, t) for which every closed
preorder - on (X, t) satisfies cmp. It proves that this problem is equivalent
to the problem of characterizing all topological spaces that have the property
that every closed preorder - on (X, t) is normal.
We now come to the main results of this paper. Indeed, the following Theorem
3.5 may be interpreted as being the converse of Levin’s theorem. Since a lo-
cally and σ-compact Hausdorff-space is paracompact the intimate connection
of Theorem 3.5 to Levin’s theorem is obvious. Its only lack, therefore, is the
additional assumption (X, t) to be first countable. But at present the authors
do not see any possibility of how to really avoid this assumption in a satisfac-
tory way.
In order to prove Theorem 3.5 we still must verify the validity of the following
proposition.
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Proposition 3.5 Let (X, t) be a Hausdorff-space and let (X \ S, t|X\S)
be compact. Then every closed preorder - on (X, t) is normal.

Proof: Let - be some closed preorder on (X, t). In order to prove that
(X,-, t) is a normally preordered space, let A and B be two disjoint closed
decreasing respectively, increasing subsets of X. We must show that there
exists disjoint open decreasing respectively, increasing subsets U and V of
X such that A ⊂ U and B ⊂ V . In order to prove the existence of U and
V respectively we distinguish between the case that at least one of the sets
A and B is a subset of S and the case that neither A nor B is a subset of
S. Because of the properties of S the first case does not need any reflection.
Therefore we now may concentrate on the situation that neither A∩(X\S) nor
B ∩ (X \ S) is empty. Since - is a closed preorder on (X, t) and since
(X \ S, t|X\S) is a compact Hausdorff space we may use, in particular, a
straightforward modification of the proof of Theorem 4 in Chapter 3 on com-
pact ordered spaces in Nachbin [16] in order to conclude that disjoint open
subsets O0 and P0 of X that contain A and B respectively can be chosen in
such a way that O0 ∩ (X \ S) is decreasing and P0 ∩ (X \ S) is increasing
with respect to -|X\S. Now we proceed by completely following the spirit of
the implication “ST ⇒ SM” of the proof of Theorem 3.2 (cf., in particular
the argument that has been used in case that n = 0 in the proof of Theorem
3.2). Using the assumption - to be a closed preorder on (X, t) we, thus, verify
with help of our general assumptions on (X, t) that we may assume without
loss of generality that d(d(O0)) ∩ i(i(P0)) = ∅. Hence, d(O0) and i(P0) are
disjoint closed subsets of X such that not(y - x) for all points x ∈ d(O0)
and all points y ∈ i(P0). Now one easily verifies that this conclusion allows
us to continue the proof of Proposition 3.5 by using d(O0) and i(P0) respec-
tively instead of A and B respectively. This means that we now construct open
subsets O1 and P1 of X that contain d(O0) and i(P0) respectively such that
d(d(O1))∩i(i(P1)) = ∅. Continuing inductively in this way we, thus, obtain for
every n ∈ N open subsets On and Pn of X such that A ⊂ On ⊂ d(On) ⊂ On+1,
B ⊂ Pn ⊂ i(Pn) ⊂ Pn+1 and d(d(On+1)) ∩ i(i(Pn+1)) = ∅. As in the proof
of the implication “ST ⇒ SM” of the proof of Theorem 3.2 we, finally, may

conclude that U :=
∞
∪

n=0

On and V :=
∞
∪

n=0

Pn are disjoint open decreasing respec-

tively, increasing open subsets of X that contain A and B respectively. This
conclusion completes the proof of the proposition. ✷

In order to successfully continue we still need the following immediate
corollary that is an immediate consequence of Proposition 3.5 and the proof
of the implication “(ii) ⇒ (i)” of Theorem 3.4.
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Corollary 3.1 Let (X, t) be a Hausdorff-space and let (X \ S, t|X\S) be

compact. Then every closed preorder - on (X, t) satisfies cmp.

Theorem 3.5 Let (X, t) be a first countable paracompact space. Then

(X \ S, t|X\S) is compact and every closed preorder - on (X, t) satisfies cmp

or (X \S, t|X\S) is not compact and the assumption that every closed preorder

- on (X, t) satisfies cmp implies that (X, t) is the direct sum of locally and

σ-compact Hausdorff spaces.

Proof: Since a paracompact space is normal our assumption on (X, t)
to be a Fréchet space implies that (X, t) is a Hausdorff space (cf. the above
proof of Proposition 3.4). The proof of Theorem 3.5, therefore, is based upon
Theorem 3.3 and the following theorem that is well known in general topology
(cf., for instance, Grotemeyer [7, Satz 97]).

Theorem 3.6 Let (X, t) be a locally compact topological space. Then the

following assertions are equivalent:

(i) (X, t) is paracompact..

(ii) (X, t) is the direct sum of locally and σ-compact topological spaces.

Because of Corollary 3.1 we may continue by arbitrarily choosing some
in the remainder of the proof fixed given first countable paracompact space
(X, t) that satisfies the additional conditions that (X \S, t|X\S) is not compact
and that every closed preorder - on (X, t) satisfies cmp. Hence Theorem 3.6
implies that it suffices to prove that (X, t) is locally compact. Let us assume
in contrast that (X, t) is not locally compact. Then there exists some point
z ∈ X \S that does not have a compact neighbourhood. Since (X \S, t|X\S) is
not compact we now apply Theorem 3.3 in order to conclude that there exists
some sequence (xn)n∈N of points xn ∈ X \ S that does not have a limit point.
This means that we may choose in particular some closed neighborhood C(z)
of z and some open neighborhood O(z) of z such that the following conditions
hold.

LP1: O(z) ⊂ C(z).

LP2: xn ∈ C(z) \O(z) for every n ∈ N.

Let C be the closed subset of X that consists of all points xn where n runs
through N. Then we proceed by choosing for every n ∈ N some sequence
(xnk)k∈N of points xnk ∈ X such that lim

k→∞
xnk = xn for all n ∈ N. Con-

dition LP2 allows us to assume, in addition, that there exists some point
q ∈ C(z) \ (O(z) ∪ C) that is different from all points xn and xnk respec-
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tively. Since there exists no closed neighborhood C ′(z) of z for which every
sequence (zn)n∈N of points zn ∈ C ′(z) has a limit point we now may construct
inductively families {Cn(z)}n∈N and {On(z)}n∈N of closed neighborhoods of z
and open neighbourhoods of z respectively in such a way that the following
conditions are satisfied.

L1: C0(z) ⊂ O(z).

L2: On+1(z) ⊂ Cn+1(z) ⊂ On(z) for all n ∈ N.

L3: For every n ∈ N there exists some sequence (ynk)k∈N of points
ynk ∈ Cn(z) \On(z) that has no limit point.

L4:
∩

n∈N

On(z) = {z }.

Now we define a binary relation - on (X, t) by setting

-:= ∆X ∪ {(xnk, ynk) | (n, k) ∈ N× N} ∪ {(q, xn) | n ∈ N}.

Since there do not exist any three points u ∈ X, v ∈ X and w ∈ X

such that u ≺ v and v ≺ w the definition of - allows us conclude that -

is a (pre)order on X. Since, in addition, none of the sequences (xn)n∈N and
(ynk)k∈N has a limit point and since (q, xn) ∈- for all n ∈ N it follows that - is
a closed subset of X×X. Hence, - is a closed preorder on (X, t). Furthermore,
the definition of - implies that not(q - z). In order to, therefore, finish the
theorem it suffices to show that there exists no continuous and increasing
function fzq : (X,-, t) −→ (R,≤, tnat) such that fzq(z) < fzq(q). Let us
assume, in contrast, that there exists some continuous and increasing function
fzq : (X,-, t) −→ (R,≤, tnat) such that fzq(z) < fzq(q). Then we arbitrarily
choose some fixed real number η such that fzq(z) < η < fzq(q). The strict
relation xnk ≺ ynk for all n ∈ N and k ∈ N implies that fzq(xnk) ≤ fzq(ynk)
for all n ∈ N and all k ∈ N. But since for all k ∈ N the sequences (ynk)n∈N
uniformly converge to z there exists some N ∈ N such that fzq(yNk) < η for
all k ∈ N. Therefore, the equation lim

k→∞
xNk = xN allows us to conclude with

help of the definition of - that fzq(xN) = lim
k→∞

fzq(xNk) ≤ lim
k→∞

fzq(yNk) ≤

η < fzq(q). Conversely, the inequality q ≺ xN implies that fzq(q) ≤ fzq(xN).
Hence, fzq cannot be increasing. This contradiction completes the proof of the
second case and, therefore, of the theorem. ✷

A thorough analysis of the proof of Theorem 3.5 allows us to state the
following most general theorem that can be proved with help of the methods
that have been developed in this paper.
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Theorem 3.7 Let (X, t) be a Hausdorff space. Then (X \ S, t|X\S) is

compact and every closed preorder - on (X, t) satisfies cmp or (X \ S, t|X\S)
is not compact and the assumptions that (X, t) is first countable and that every

closed preorder - on (X, t) satisfies cmp imply that (X, t) is locally sequentially
compact.

Example 3.1 Of course, there exist complete second countable met-
ric spaces (X, td) that are not locally compact but have the property that
(X \ S, td|X\S) is compact. Indeed, let N∗ := N \ {0} and X := {0} ∪ N∗ × N∗

endowed with the metric d : X ×X −→ R≥0 that is defined by setting

d(x, y) = d(y, x) =























































0 if x = y

1
n

if x = 0 and y = (n, k) for some pair

(n, k) ∈ N∗ × N∗

1
n
+ 1

m
if x = (n, k) ∈ N∗ × N∗ and

y = (m, t) ∈ (N∗ × N∗) \ {(n, k)}

for all pairs (x, y) ∈ X ×X. Then (X, td) has the desired properties.

In order to complete Example 3.1 we mention that
(X, d) :=

(

{ 1
n
| n ∈ N∗}, | · |

)

is a metric space that is not complete but,
nevertheless, has the property that all its closed preorders satisfy cmp.
In addition, we still mention that the rationals Q endowed with its natural
metric d :=| · | neither have the property that (Q \ S, td|Q\S) is compact nor
the property that (Q, td) is locally compact. Therefore, (Q, td) is a second
countable metric space for which not every closed preorder that is definable
on (Q, td) satisfies cmp.

Since metrizable spaces are paracompact the first result that has been
mentioned in the introduction is an immediate consequence of Theorem 3.5.
In addition, with respect to Levin’s theorem the following first corollary of
Theorem 3.5 is of particular interest.

Corollary 3.2 Let (X, t) be a first countable Lindelöf space. Then the

following assertions are equivalent:

(i) Every closed preorder - on (X, t) satisfies cmp.

(ii) (X \ S, t|X\S) is a compact Hausdorff-space and S is a countable set

or (X, t) is a locally and σ-compact Hausdorff space.
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Proof: (i) ⇒ (ii). Assertion (i) implies with help of Theorem 3.4 that
(X, t) is a normal space. Since every regular Lindelöf space is paracompact
Proposition 3.4 and Theorem 3.5, therefore, imply with help of the Lindelöf
property of (X, t) that (X \ S, t|X\S) is a a compact Hausdorff-space and S

is a countable set or that (X, t) is the direct sum of countable many locally
and σ-compact Hausdorff spaces, which means that (X, t) is a locally and
σ-compact Hausdorff space.

(ii)⇒ (i). This implication is a consequence of Proposition 3.4 and Levin’s
theorem respectively. ✷

Since second countable spaces are Lindelöf and since second countable
paracompact Hausdorff spaces are metrizable and since, in addition, compact
metrizable spaces are second countable the second result that has been men-
tioned in the introduction is an immediate consequence of Corollary 3.2. If
(X, t) is connected then S is empty. Hence, the third result that has been
mentioned in the introduction follows from the following corollary of Theorem
3.5.

Corollary 3.3 Let (X, t) be a first countable connected paracompact space.

Then the following assertions are equivalent:

(i) Every closed preorder - on (X, t) satisfies cmp..

(ii) (X, t) is a locally and σ-compact Hausdorff space.

It is well known that a Hausdorff topological vector space (X,+, t) is
finite-dimensional if and only if it is locally compact. Hence, the following
result that generalizes Example 1 in Evren and Ok [5] also is a corollary of
Theorem 3.5.

Corollary 3.4 Let (X, || · ||) be a normed linear space. Then the follow-

ing assertions are equivalent:

(i) Every closed preorder - on (X, || · ||) satisfies cmp..

(ii) X is finite-dimensional.

Banach spaces (X, || · ||) that are not finite dimensional, therefore, are
complete metric spaces that have the property that not every closed preorder
that is definable on (X, || · ||) satisfies cmp. The Banach space of all contin-
uous real functions on some compact non-degenerate real interval, thus, is a
complete second countable metric space that has the property that not all
closed preorders that are definable on this space satisfy cmp (a further exam-
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ple of this type is Example 1 in Evren and Ok [5]).

In the remainder of this section we want to discuss the problem if the
necessary condition the validity of which has been proved in Theorem 3.5 also
is sufficient in order to guarantee that every closed preorder - on (X, t) sat-
isfies cmp. In order to be more precise, let (X, t) be the direct sum of locally
and σ-compact Hausdorff spaces. Then we want to discuss the question if
these assumptions imply that every closed preorder - on (X, t) satisfies cmp?
Therefore, we somewhat modify Theorem 3.5 by requiring, in addition, (X, t)
to be locally connected. Then the following corollary of Theorem 3.5 holds.

Corollary 3.5 Let (X, t) be a first countable paracompact and locally

connected space. Then (X \ S, t|X\S) is compact and every closed preorder -

on (X, t) satisfies cmp or (X \ S, t|X\S) is not compact and the assumption

that every closed preorder - on (X, t) satisfies cmp implies that (X, t) is the

direct sum of locally and σ-compact Hausdorff spaces.

On basis of this corollary we are ready for proving the following proposi-
tion that provides a first answer of the question that has been posed above.

Proposition 3.6 Let (X, t) be the direct sum of connected locally and

σ-compact Hausdorff spaces. Then every closed preorder - on (X, t) admits a

continuous multi-utility representation.

Proof: Let x ∈ X be arbitrarily chosen. Then we denote, for the moment,
by P (x) the component of X that contains x. With help of this notation we
are able to prove the following lemma that is essential for the proof of the
proposition.

Lemma 3.4 Let - be a closed preorder on (X, t) the indifference classes

[q] of which are contained in P (q). Then for any three points x ∈ X, y ∈ X

and z ∈ X for which the equation P (x) = P (z) and the inequalities x ≺ y ≺ z

hold the equations P (x) = P (y) = P (z) are satisfied.

Proof: Let us assume, in contrast, that y ̸∈ P (x) = P (z). Then we may
conclude with help of the assumptions of Lemma 3.4 that A := d(y)∩P (x) =
d(y) ∩ P (z) and B := i(y) ∩ P (x) = i(y) ∩ P (z) are disjoint closed decreasing
respectively, increasing subsets of X. Therefore, we set P := P (x) ∪ [y] =
P (z) ∪ [y] in order to consider the closed preorder -|P on (P, t|P ). Levin’s
theorem now implies that -|P has a continuous multi-utility representation.
Hence, considering the pairs (x, y) ∈≺|P and (y, z) ∈≺|P we obtain two ap-
propriate increasing functions the sum of which guarantees the existence of
some continuous and increasing function f : (P,-|P , t|P ) −→ (R,≤, tnat) such
that f(u) < f(y) < f(v) for all points u ∈ P (x) = P (z) and v ∈ P (x) = P (z)
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such that u ≺ y ≺ v. We proceed by setting C := {u ∈ P (x) = P (z) | f(u) ≤
f(y)}. Then it follows that C and B are disjoint non-empty closed subsets
of P (x) = P (z) the union of which is P (x) = P (z). Since P (x) = P (z)
is an open subset of X this last conclusion contradicts the connectedness of
P (x) = P (z). ✷

Let - be some fixed given closed preorder on (X, t). In order to now prove
Proposition 3.6 we must show that - satisfies cmp. Therefore, we choose in a
first step in every indifference class of - some fixed point q in order to then
denote the collection of these points by F . Now we replace - by

-′:= - \{(r, s) ∈ X ×X | there exists some q ∈ F such that [r] = [s] = [q]

and r ̸∈ P (q) or s ̸∈ P (q)}.

The definition of -′ implies that -′ is a closed preorder on (X, t). Furthermore,
Lemma 3.3 allows us to conclude that - satisfies cmp if and only if -′ satisfies
cmp. Hence, it suffices to verify that -′ satisfies cmp. Let, therefore, x ∈ X

and y ∈ X such that not(y - x) be arbitrarily chosen. Then either the equal-
ity P (x) = P (y) or the inequality P (x) ̸= P (y) is possible. Since the case that
P (x) = P (y) is somewhat more complicated than the case that P (x) ̸= P (y)
and since, in addition, both cases can be settled by analogous arguments, in
the remainder of the proof of Proposition 3.6, we merely concentrate on the
equation P (x) = P (y). We, thus, set P := P (x) = P (y) in order to then
conclude that Levin’s theorem guarantees the existence of some continuous
increasing function f : (P,-′

|P , t|P ) −→ (R,≤, tnat) such that f(x) < f(y). In
order to now finish the proof of the proposition it suffices to show because of
Lemma 3.3 that f can be lifted to some continuous and increasing function
h : (X,-′, t) −→ (R,≤, tnat). Let, therefore, some point z ∈ X \ P be arbi-
trarily chosen. Then we have to distinguish between the following three cases.

Case 1: z ≺′ x. In this case we set h(v) := f(x) for all v ∈ P (z).

Case 2: x ≺′ z. Now we set h(v) := f(y) for all v ∈ P (z).

Case 3: There exists neither a point u ∈ P (z) such that u ≺′ x nor a
point w ∈ P (z) such that x ≺′ w. In this situation we set h(v) := f(x) for all
v ∈ P (z).

Setting h|P = f in this way a lifting of f has been defined. In addition,
Lemma 3.4 allows us to conclude that h : (X,-′, t) −→ (R,≤, tnat) is contin-
uous and increasing and satisfies the inequality h(x) < h(y). This conclusion
finishes the proof of Proposition 3.6. ✷

23



With help of Proposition 3.6 the proof of Theorem 3.5 implies the fol-
lowing theorem which, in addition, at least partly answers the above question
and, therefore, provides a good opportunity of finishing this section.

Theorem 3.8 Let (X, t) be a first countable paracompact and locally con-

nected space. Then the following assertions are equivalent:

(i) Every closed preorder - on (X, t) satisfies cmp.

(ii) (X\S, t|X\S) is compact or (X, t) is the direct sum of connected locally

and σ-compact Hausdorff spaces.

4 Conclusion

Although the problem of characterizing all topological spaces for which
every closed preorder admits a continuous multi-utility representation could
not completely be solved by the authors the corresponding results of this paper
are very restrictive. Indeed, they imply, for example, that spaces like L∞(µ),
the space of essentially bounded measurable functions relative to a σ-finite
measure µ, always allow the definition of closed preorders that do not have
a continuous multi-utility representation. On the other hand topological vec-
tor spaces such as L∞(µ) meanwhile often are used as infinite-dimensional
commodity spaces in economic theory, so it is desirable to have continuous
multi-representation theorems that apply to them. This means that one has
to replace the particular linearly ordered abelian group (R,+,≤) by an arbi-
trary linearly ordered abelian group (A,+,≤). Such a more general approach
meanwhile has been started by Pivato [17].
In addition, in Herden and Mehta [10] it has been underlined by many ex-
amples that the real line often is not the appropriate codomain of a utility
function and that, consequently, it is worthwhile to develop a theory of con-
tinuous non-real valued utility functions. These considerations also underline
that particular value of an approach as presented by Pivato [17].
Nevertheless, the problem of characterizing all topological spaces for which
every closed preorder allows a continuous multi-utility representation is still
pressing. In this sense Theorem 3.4, Theorem 3.5, Theorem 3.7 and Theo-
rem 3.8 provide first results that at least prepare a complete solution of this
problem.
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