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Abstract

Regional imbalance of doctors is a serious issue in many countries.
In an attempt to average the geographical distribution of doctors, the
Japanese government introduced “regional caps” recently, restricting
the total number of medical residents matched within each region.
Motivated by this policy change, Kamada and Kojima [17] proposed a
mechanism called the flexible deferred acceptance mechanism (FDA)
that makes every doctor weakly better off than the current system.
In this paper, we further study this problem and develop an alterna-
tive mechanism that we call the priority-list based deferred acceptance
mechanism (PLDA). Both mechanisms enable hospitals in the same
region to fill their capacities flexibly until the regional cap is filled.
FDA lets hospitals take turns to (tentatively) choose the best remain-
ing doctor, while PLDA lets each region directly decide which doctor
is (tentatively) matched with which hospital based on its priority list.
We show that PLDA performs better than FDA in terms of efficiency
and fairness through theoretical and computational analyses.

1 Introduction

The matching theory has been extensively developed for markets in which
the agents have maximum quotas, the maximum number of agents they can
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be matched with.1 However, more general distributional constraints may
be involved in many real-world markets. This paper considers many-to-one
matching problems with distributional constraints. Namely, each agent in
the “many” side (hospital, school, etc.) belongs to a region, and each region
has a limitation on the number of matches. We refer to the upper limit on
region as a regional cap whereas that on each agent as a maximum quota.

Regional caps are relevant in many matching markets around the world.
In particular, the Japanese government recently introduced regional caps
to each prefecture in the Japanese Residency Matching Program (JRMP).
More specifically, JRMP has started in 2004 in accordance with the reform
of the clinical training system in Japan. At the beginning, it employed the
standard deferred acceptance (DA) algorithm (Gale and Shapley [10]), where
only hospitals’ maximum quotas are considered. The mechanism resulted
in doctors’ excessive concentration in urban areas and the shortage of doc-
tors in rural areas. To avoid the imbalance of the geographical distribution,
the Japanese government has adopted regional caps to each prefecture since
2008. Regional caps are also utilized to regulate the geographical distribu-
tion in Chinese graduate admission, Ukrainian college admission, Scottish
probationary teacher matching, and so on.2

An alternative, more direct method to guarantee that a certain num-
ber of doctors are allocated to each rural hospital, is to impose a minimum
quota (Biró et al. [5], Monte and Tumennasan [20]). However, if agents
on one side of the market can find agents on the other side unacceptable,
no individually rational matching may satisfy minimum guotas. That is, to
guarantee that all minimum quotas are satisfied every minimum quota is al-
ways satisfied, all hospitals must be acceptable for all doctors and vice versa.
Clearly, this assumption is too restrictive. Fragiadakis et al. [9] develop a
method for handling individual minimum quotas by transforming them into
regional caps. Thus, if we obtain more fair and efficient mechanisms that
can handle regional caps, we can also obtain better mechanisms that can
handle individual minimum quotas using their new method.

There exist few mechanisms that can handle regional caps. First, a most
straightforward approach, which is currently used in JRMP is to reduce
maximum quotas so that the sum of maximum quotas in a region becomes
equal to the regional cap, and to apply the standard DA mechanism. We
call this mechanism Artificial Cap DA mechanism (ACDA). ACDA satisfies
the standard fairness, i.e., even if a doctor wishes to be matched with a hos-
pital, the hospital does not want to replace her with any belonging doctor.
However, this mechanism can cause a severe loss of efficiency since a hospi-
tal has to reject doctors when its maximum quota is reached, even though
the region where the hospital belongs can accept more doctors. To improve

1See Roth and Sotomayor [25] for a comprehensive survey of this literature.
2Kamada and Kojima [17] explain these applications in detail.
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efficiency, Kamada and Kojima [17] propose a mechanism called the Flexi-
ble Deferred Acceptance algorithm (FDA), which regards artificial caps as
targets capacities and allows doctors to be assigned to a hospital beyond its
target capacity if its region can still afford to accept her. They prove that,
FDA still satisfies the standard fairness while it enhances doctors’ welfare.

The contribution of this paper is to propose a new mechanism that can
improve both fairness and efficiency compared to FDA. More specifically,
we consider a fact that in the presence of regional caps, doctors who are
applying to different hospitals in the same region will compete with each
other. For example, suppose that three doctors d1, d2, and d3 are applying
for three distinct hospitals h1, h2, and h3, respectively. These three hospitals
belong to the same region. Also, the region can accept at most one doctor
(i.e., the regional cap is 1). Then, these hospitals (or the region) need to
agree on which doctor should be accepted. Let us assume each hospital
prefers d3 over d2, and d2 over d1. In FDA, a round-robin ordering among
hospitals is used as a tie-breaking rule. Assume the ordering is defined as
h1 → h2 → h3 → h1 . . .. Then, FDA assigns d1 to h1 by this tie-breaking
rule, and d2 and d3 are rejected. It is natural to assume that d3 (or d2)
has reasonably justifiable envy towards d1, since every hospital in the region
unanimously prefers d3 (or d2) over d1.

In this paper, we assume that there exists an organization or consortium
in which all hospitals in the region are involved, and it has reached a consen-
sus on the priority over matches, i.e., ‘which doctor is matched with which
hospital’. Moreover, the consensus in each region is explicitly expressed as a
priority ordering over pairs of a doctor and a hospital in the region, which we
call a priority list. We further assume that each region’s priority list should
be consistent with the individual priority orderings of hospitals in the re-
gion. For example, a priority list (d3, h1) ≻ (d3, h2) ≻ (d3, h3) ≻ (d2, h1) ≻
(d2, h2) ≻ (d2, h3) ≻ (d1, h1) ≻ (d1, h2) ≻ (d1, h3) is consistent with the
individual priority ordering of each hospital. Here, (d, h) ≻ (d′, h′) indicates
that a pair of d and h has a priority over that of d′ and h′. According to
this priority list, d3 should be given a priority to be assigned to h3.

In this paper, we introduce a new concept called regional fairness. This
concept is stronger than the standard fairness and requires a matching to
reflect a priority list for each region as well as a priority ordering for each hos-
pital. Moreover, we also propose a group strategy-proof mechanism called
Priority-List based Deferred Acceptance mechanism (PLDA) in order to ob-
tain a regionally fair matching. Then, we show that PLDA has an advantage
over FDA theoretically and computationally. More specifically, we prove
that PLDA always produces a regionally fair matching but FDA does not.
In particular, a matching produced by PLDA is the optimal for doctors
within the set of all regionally fair matchings.

When regional caps are imposed, a fair and nonwasteful matching does
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not exist in general.3 Nonwastefulness means that if doctor d, who is as-
signed to h in the current matching, wishes to move to hospital h′ but
rejected by h′, then, there must be a good reason, i.e., moving d from h to
h′ will cause the violation of some maximum quota or regional cap. Since
both PLDA and FDA are fair, they cannot be nonwasteful in general. We
show that there exists no dominance relationship between these two mecha-
nisms in terms on nonwastefulness. Thus, we evaluate nonwastefulness and
doctors’ welfare of these mechanisms via computer simulation. The com-
putational results illustrate that PLDA improves doctors’ welfare compared
to FDA. This is because PLDA can vary the number of doctors assigned
to each hospital more flexibly according to its popularity. As a result, it
produces a less wasteful matching compared to FDA.

The theory of matching has been extensively developed for markets in
which the agents (doctors/hospitals, students/schools, workers/firms) have
maximum quotas that cannot be exceeded.4 However, more general distri-
butional constraints may be charged in many real-world markets. This paper
considers two-sided many-to-one matching problems with a region structure,
where each agent in the ‘many’ side (hospital, school, etc.) belongs to a re-
gion, and each region has a limitation on the number of matches. We refer
to the upper limits on each agent and each region as maximum quotas and
regional caps, respectively.

Regional caps are relevant in many concrete matching markets. In par-
ticular, the Japanese government recently introduced regional caps to each
prefecture in the Japanese Residency Matching Program (JRMP). More
specifically, JRMP has started in 2003 in accordance with the reform of the
clinical training system in Japan. At the beginning, it employed the stan-
dard deferred acceptance (DA) algorithm (Gale and Shapley [10]), where
only hospitals’ maximum quotas are considered. The mechanism resulted
in doctors’ excessive concentration in urban areas and the shortage of doc-
tors in rural areas. To avoid the imbalance of the geographical distribution,
the Japanese government has adopted regional caps to each prefecture since
2008. Regional caps are utilized to regulate the geographical distribution in
Chinese graduate admission, Ukrainian college admission, Scottish proba-
tionary teacher matching, and so on (see Kamada and Kojima [17]).

An alternative, more direct method to guarantee that a certain number
of doctors are allocated to each rural hospital is to impose a minimum quota
(Biró et al. [5], Monte and Tumennasan [20]). However, to guarantee that
all minimum quotas are satisfied, all hospitals must be acceptable for all
doctors and vice versa; guaranteeing the existence of an individually rational
matching that satisfy all minimum quotas is impossible if agents on one side

3The standard definition of a stable matching is equivalent to a fair and nonwasteful
matching.

4See Roth and Sotomayor [25] for a comprehensive survey of many results in this
literature.
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of the market can find agents on the other side unacceptable. Clearly, this
assumption is too restrictive. Furthermore, Fragiadakis et al. [9] develop a
method for handling individual minimum quotas by transforming them into
regional caps. Thus, if a more fair and efficient mechanism that can handle
regional caps becomes available, we can also obtain a better mechanism
that can handle individual minimum quotas based on the newly developed
mechanism.

There exist few mechanisms that can handle regional caps. First, a most
straightforward approach, which is currently used in JRMP is to reduce
maximum quotas so that the sum of maximum quotas in a region becomes
equal to the regional cap, and to apply the standard DA mechanism. We
call this mechanism Artificial Cap DA mechanism (ACDA). ACDA satisfies
the standard fairness, i.e., even if a doctor wishes to be matched with a hos-
pital, the hospital does not want to replace her with any belonging doctor.
However, this mechanism can cause a severe loss of efficiency since a hospi-
tal has to reject doctors when its maximum quota is reached, even though
the region where the hospital belongs can accept more doctors. To improve
efficiency, Kamada and Kojima [17] propose a mechanism called the Flexi-
ble Deferred Acceptance algorithm (FDA), which regards artificial caps as
targets capacities and allows doctors to be assigned to a hospital beyond its
target capacity if its region can still afford to accept her. They prove that,
FDA still satisfies the standard fairness while it enhances doctors’ welfare.

The contribution of this paper is to propose a new mechanism that can
improve both fairness and efficiency compared to FDA. More specifically,
we consider a fact that in the presence of regional caps, doctors who are
applying to different hospitals in the same region will compete with each
other. For example, suppose that three doctors d1, d2, and d3 are applying
for three distinct hospitals h1, h2, and h3, respectively. These three hospitals
belong to the same region. Also, the region can accept at most one doctor
(i.e., the regional cap is 1). Then, these hospitals (or the region) need to
agree on which doctor should be accepted. Let us assume each hospital
prefers d3 over d2, and d2 over d1. In FDA, a round-robin ordering among
hospitals is used as a tie-breaking rule. Assume the ordering is defined as
h1 → h2 → h3 → h1 . . .. Then, FDA assigns d1 to h1 by this tie-breaking
rule, and d2 and d3 are rejected. It is natural to assume that d3 (or d2)
has reasonably justifiable envy towards d1, since every hospital in the region
unanimously prefers d3 (or d2) over d1.

In this paper, we assume that there exists an organization or consortium
in which all hospitals in the region are involved, and it has reached a consen-
sus on the priority over matches, i.e., ‘which doctor is matched with which
hospital’. Moreover, the consensus in each region is explicitly expressed as
an ordering over pairs of a doctor and a hospital in the region, which we
call a priority list. We further assume that each region’s priority list should
be consistent with the individual preference orderings of hospitals in the re-
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gion. For example, a priority list (d3, h1) ≻ (d3, h2) ≻ (d3, h3) ≻ (d2, h1) ≻
(d2, h2) ≻ (d2, h3) ≻ (d1, h1) ≻ (d1, h2) ≻ (d1, h3) is consistent with the
individual preference ordering of each hospital. Here, (d, h) ≻ (d′, h′) indi-
cates that a pair of d and h has a priority over that of d′ and h′. According
to this priority list, d3 should be given a priority to be assigned to h3.

In this paper, we introduce a new concept called regional fairness. This
concept is stronger than the standard fairness and requires a matching to
reflect a priority list for each region as well as a priority ordering for each hos-
pital. Moreover, we also propose a group strategy-proof mechanism called
Priority-List based Deferred Acceptance mechanism (PLDA) in order to ob-
tain a regionally fair matching. Then, we show that PLDA has an advantage
over FDA theoretically and experimentally. More specifically, we prove that
PLDA always produces a regionally fair matching but FDA does not. In
particular, a matching produced by PLDA is the optimal for doctors within
the set of all regionally fair matchings.

When regional caps are imposed, a fair and nonwasteful matching does
not exist in general.5 Nonwastefulness means that if doctor d, who is as-
signed to h in the current matching, wishes to move to hospital h′ but
rejected by h′, then, there must be a good reason, i.e., moving d from h to
h′ will cause the violation of some maximum quota or regional cap. Since
both PLDA and FDA are fair, they cannot be nonwasteful in general. We
show that there exists no dominance relationship between these two mecha-
nisms in terms on nonwastefulness. Thus, we evaluate nonwastefulness and
doctors’ welfare of these mechanisms via computer simulation. The exper-
imental results illustrate that PLDA improves doctors’ welfare compared
to FDA. This is because PLDA can vary the number of doctors assigned
to each hospital more flexibly according to its popularity. As a result, it
produces a less wasteful matching compared to FDA.

1.1 Related Literature

This section discusses papers related to this study. In the one-to-one match-
ing setting where only maximum quotas are imposed, Mcvitie and Wilson
[19] show that a doctor or a hospital that is unmatched at one stable match-
ing is unmatched in every stable matching. This fact is called rural hospital
theorem. This theorem is extended in more general settings by Gale and
Sotomayor [11, 12], Roth [21, 23], Martinez et al. [18] and Hatfield and
Milgrom [16]. From these results, it seems inevitable that any addition of
distributional constraints causes loss of a stable matching.

There exist several works on imposing various distributional constraints
in one-to-many matching. Besides Kamada and Kojima [17], regional cap
is also studied by Biró et al. [5]. They show that, when regional caps are

5The standard definition of a stable matching is equivalent to a fair and nonwasteful
matching.
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present, finding a stable matching is computationally difficult. As for indi-
vidual minimum quotas, Biró et al. [5] show the nonexistence of a stable
matching. Fragiadakis et al. [9] develop two DA-based strategy-proof mech-
anisms that can handle individual minimum quotas, where one mechanism is
fair (but wasteful), while the other mechanism is nonwasteful (but not fair).
Monte and Tumennasan [20] show that a serial dictatorship mechanism yield
an efficient matching in the project assignment problem with quorums, i.e.,
individual minimum quotas. Furthermore, Westkamp [26] and Braun et al.
[6] analyze complex maximum quota constraints in the German university
admission systems.

More broadly, this paper is part of a rapidly growing literature on match-
ing market design, which takes into account various constraints in practical
markets. In particular, affirmative actions in school choice, where an ob-
tained matching should satisfy some distributional constraints on different
types of students, have recently attracted many researchers (see, for exam-
ple, Abdulkadiroğlu and Sönmez [3], Abdulkadiroğlu [1], Ergin and Sönmez
[8], Ehlers et al. [7] and Hafalir et al. [13]). The problem structure of
affirmative actions in school choice seems to have some similarities with
hospital-doctor matching with regional caps. Thus, developing a more fair
and efficient mechanism that can handle regional caps might contribute to-
ward developing better mechanisms for affirmative actions.

If agents do not submit their preferences truthfully, a matching mech-
anism may not bring an intended outcome. Many papers have discussed
agents’ incentive for truthful reporting. Hatfield and Milgrom [16] introduce
‘matching-with-contracts’ model, which is a general and abstract many-to-
one matching model, including Kelso-Crawford labor market models, as-
cending package auctions, etc. They propose a condition called law of ag-
gregate demand and prove that, when the workers are substitutes and the
condition is satisfied, in a worker-offering matching mechanism, reporting
her preference truthfully is a strategy for a worker (i.e., strategy-proof). In
the same setting, Hatfield and Kojima [14] show that no coalition of workers
can deviate profitably from the matching produced by the mechanism (i.e.,
group strategy-proof). As for the matching-with-contract model, Hatfield
and Kominers [15] prove that the group strategy-proofness is guaranteed
even in the framework of many-to-many matching, while Aygün and Sönmez
[4] point out that several results in the matching-with-contracts model are
invalid in the absence of an implicitly assumed condition called irrelevance
of rejected contracts. We establish group strategy-proofness of our mecha-
nism by reformulating our model and mechanism within the matching-with-
contract model of doctors and regions, where maximum quotas of hospitals
are represented as regions’ preferences.
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2 Model

Let us consider a residency matching problem with a finite set of doctors
and hospitals. A market is a tuple

(

D,H,R, qH , qR,≻D,≻H ,≻PL
R

)

. Let us
denote D = {d1, . . . , dn} as the set of doctors and H = {h1, . . . , hm} as the
set of hospitals. R = {r1, r2, . . .} is the set of regions each of which is simply
a nonempty subset of H, i.e., r ∈ 2H \ ∅ for any r ∈ R. Here, we assume
that every hospital is located in exactly one region. Thus R can be regarded
as a partition on H, i.e.,

∪

r∈R = H and r∩ r′ = ∅ for any distinct r, r′ ∈ R.
The region which hospital h belongs to is denoted by r (h).

Let us denote qH = {qh1
, qh2

, . . .} as the set of maximum quotas. Each
hospital h ∈ H is assumed to be matched with at most qh doctors. We
assume maximum quotas are nonnegative integer: qh > 0 for all h ∈ H. On
the other hand, qR = {qr1 , qr2 , . . .} denotes the set of regional caps, which
is the maximum number of doctors that hospitals in a region can admit.
Hence, when a region r is imposed on a regional cap of qr, the hospitals
in the region r can be matched with at most qr doctors in total. Without
loss of generality, we assume qr ≤

∑

h∈r qh holds for any r ∈ R, that is,
the regional caps should be smaller than or at most equal to the sum of
maximum quotas of hospitals in the region (if qr >

∑

h∈r qh, this regional
cap is nonbinding and we can replace it by

∑

h∈r qh).
Each doctor d has a strict preference relation ≻d over H. We say h ≻d h′

if d prefers h to h′ and h ⪰d h′ if h ≻d h′ or h = h′. The vector of all such
relations are denoted as ≻D= (≻d)d∈D. Let P denote the set of possible

preference relations over H, and P |D| denote the set of all preference vectors
for all doctors. Each hospital h has a strict preference relation ≻h over the
set of subsets of D, i.e., 2D. For any D′, D′′ ⊆ D, we write D′ ≻h D′′ if h
prefers D′ to D′′ and D′ ⪰h D′′ if D′ ≻h D′′ or D′ = D′′.

Doctor d is said to be acceptable to h if d ≻h ∅.6

≻d: h ≻ h′

means that hospital h is the most preferred, h′ is the second most preferred,
and only h and h′ are acceptable to d.

Moreover, we say that preference relation ≻h is responsive with maximum
quota qh (Roth [22]) if

1. For any D′ ⊆ D with |D′| ≤ qh, d ∈ D \D′ and d′ ∈ D, (D′∪d)\d′ ⪰h

D′ if and only if d ⪰h d′,

2. For any D′ ⊆ D with |D′| ≤ qh and d′ ∈ D, D′ ⪰h D′ \ d′ if and only
if d′ ⪰h ∅,

6We write d as singleton set {d} when there is no confusion. As well, h is acceptable to
d if h ≻d ∅. Since only rankings of acceptable partners matter for our analysis, we often
write only acceptable partners to denote preferences. For example,
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3. ∅ ≻h D′ for any D′ ⊆ D with |D′| > qh.

In short, preference relation ≻h is responsive with a maximum quota if and
only if the ranking of a doctor (or keeping a position vacant) does not depend
on her colleagues, and any set of doctors exceeding its maximum quota is
unacceptable. We assume that preferences of each hospital h are responsive
with maximum quota qh throughout this paper. Kamada and Kojima [17]
also gives this assumption to all hospitals’ preference relations.

From the assumption, for any hospital h, preference relation ≻h can be
characterized by a preference ordering over D ∪ {∅} and qh. Hence, given a
set of maximum quotas qH , we often denote preferences of each hospital h
by an ordering of doctors (including ∅). Also, when there is no confusion, we
sometimes express the ordering only with acceptable doctors. For example,
when qh is set to 2 and D = {d, d′, d′′},

≻h: d ≻ d′ ( ≻ ∅ ≻ d′′)

means that h has the following preference relation:

{d, d′} ≻h {d} ≻h {d′}
( ≻h ∅ ≻h {d, d′, d′′} ≻h {d, d′′} ≻h {d′, d′′} ≻ {d′′}).

For the ease of expression, we sometime use a function rankh (d), which
represents the rank of acceptable doctor d according to hospital h’s prefer-
ences over doctors. To be more precise, if d is ranked i-th from the top in
h’s preferences over doctors, then rankh(d) = i.

As discussed in Section 1, doctors who are applying to different hospitals
in the same region will compete with each other. We presume that there
exists an organization or consortium in which all hospitals in the region are
involved, and it has reached a consensus on the priorities over matches, i.e.,
“which doctor is matched with which hospital”.

To be more precise, on the basis of the consensus, we assume each region
r has a strict priority list ≻PL

r over pairs of a doctor and a hospital in
(D × r) ∪ {(∅, ∅)}. The vector of the priority lists is written as ≻PL

R =
(

≻PL
r

)

r∈R
. The priority list of each region should reflect the preferences of

the hospitals concerned. Thus, each region r’s priority list ≻PL
r satisfies the

followings.

1. For any d, d′ ∈ D and any h ∈ r, (d, h) ≻PL
r (d′, h) holds if and only if

d ≻h d′,

2. For any d ∈ D and any h ∈ r, (∅, ∅) ≻PL
r (d, h) holds if and only if

∅ ≻h d.

Similarly to agents’ preferences, we often write only pairs that has a priority
over (∅, ∅) in order to denote preferences.

9



One simple and natural way to construct a priority list is to use the
ranks of doctors for each hospital and a tie-breaking ordering over hospitals
within the region. Here, for each r ∈ R, we specify an order of hospitals in
region r. Let us assume r = {h1, h2, . . . , hk} and the tie-breaking ordering
is defined as h1 → h2 → . . . → hk. Given this tie-breaking ordering, we
define each binary relation in a priority list ≻PL

r as follows: for each r ∈ R,
any d, d′ ∈ D, and any hi, hj ∈ r, (d, hi) ≻PL

r (d′, hj) holds if one of the
following conditions holds:

• rankhi
(d) < rankhj

(d′), or

• rankhi
(d) = rankhj

(d′) and i < j.

In other words, for two pairs of (d, hi) and (d′, hj), region r gives a
higher ranking to (d, hi) over (d′, hj) if the ranking of d for h is strictly
higher than that of d′ for hj . If the rankings are the same, the region uses
the tie-breaking ordering among hospitals.

Let us present a simple example.

Example 1 (Priority list) Let us consider an example with two doctors
d1, d2, three hospitals h1, h2, h3, and two regions r1 = {h1, h2}, r2 = {h3}.
The preferences of hospitals are given by

≻h1
: d1,

≻h2
: d1 ≻ d2,

≻h3
: d1 ≻ d2.

For r1, the tie-breaking ordering is defined as h1 → h2. Thus, priority
lists are given as follows:

≻PL
r1

: (d1, h1) , (d1, h2) , (d2, h2) , (∅, ∅) , (d1, h2)
≻PL

r2
: (d1, h3) , (d2, h3) , (∅, ∅) .

Clearly, these priority lists are consistent with hospitals’ preferences.

It must be emphasized that the only restriction imposed on each priority
list is that it must respect hospitals’ preferences. A region can flexibly
construct its priority list according to any agreement made by hospitals in
the region. For instance, if the maximum quotas of hospitals are different,
e.g., h1’s capacity is twice as large as h2, then, it might be reasonable to
modify the priority list so that h1 can take twice as many doctors as h2.
Assume there are four doctors d1, d2, d3, d4 and d1 ≻h d2 ≻h d3 ≻h d4 ≻h ∅
for each hospital h. Then, a modified priority list is given as follows: ≻PL

r :
(d1, h1), (d2, h1), (d1, h2), (d3, h1), (d4, h1), (d2, h2), . . ..

Next, we shall define matching and mechanism. A matching is a mapping
µ : D ∪ H → 2D∪H that satisfies: (i) µ (d) ∈ H ∪ {∅} for all d ∈ D, (ii)
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µ (h) ⊆ D for all h ∈ H, and (iii) for any d ∈ D and any h ∈ H, we have
µ (d) = h if and only if d ∈ µ (h). Let µ (r) :=

∪

h∈r µ (h). We say that
matching µ is feasible if (i) |µ (h)| ≤ qh and |µ (r)| ≤ qr for any h ∈ H and
r ∈ R and (ii) µ(a) ≻a ∅ for any agent a ∈ D ∪ H.7 The set of feasible
matchings is denoted by M.

A mechanism χ : P |D| → M is a function that takes as an input any
possible preference profile of the doctors and gives a feasible matching as
an output. If the doctors submit preference profile ≻D∈ P |D|, then χ (≻D)
is the produced matching, and we write χd (≻D) for the hospital matched
with doctor d by χ under ≻D.

Let us discuss several properties that are important both in theory and
practice. These properties are commonly used in existing matching litera-
ture. Although each of them is intuitively appealing, it will turn out that
they cannot coexist with regional caps.

The first property is fairness that requires no agent has envy toward
another agent that is justified by a particular criterion. Before defining the
property, let us introduce a notion of justifiable envy.

Definition 1 Given a matching µ, doctor d has justifiable envy toward
doctor d′ where µ(d′) = h, if h ≻d µ (d) and d ≻h d′ hold.

Assume doctor d wanted to be matched with hospital h but was rejected.
Then, d certainly has envy towards doctor d′ who is matched to h. This
definition means such envy is justifiable only when d has a higher ranking
than d′ according to h’s preferences. If such envy is justifiable, once d
suggests that h should exchange d′ to d, h will agree with the suggestion.
Also, the obtained matching after putting this exchange into practice (with
other matches unchanged), the new matching is still feasible.

Definition 2 A feasible matching µ ∈ M is fair if there is no doctor who
has justifiable envy toward another doctor. A mechanism χ is fair if the
mechanism always produces a fair matching.

The second property is nonwastefulness that requires no doctor claims
an empty seat of a hospital.

Definition 3 Given a matching µ, doctor d claims an empty seat of
hospital h, whose region is r, if h ≻d µ (d), |µ (h)| < qh, |µ (r) ∪ {d}| ≤ qr.

This definition describes a situation where hospital h can afford to ac-
cept another doctor additionally (without rejecting any doctor) and doctor

7Condition (ii) is called individual rationality in general. Although this condition is
usually contained in the conditions of stability, we contain it in those of feasibility for the
ease of analysis.
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d wishes to move to h from her current matched hospital. However, the re-
gional cap qr may prevent d from moving to h, even if the maximum quota
qh is not filled yet. Therefore, d is said to claim an empty seat of h if the
new matching where only d moves to h is still feasible. Notice that the con-
dition |µ (r) ∪ {d}| ≤ qr can be divided into two cases: if d /∈ µ (r), it means
|µ (r)| < qr, and if d ∈ µ (r), it means |µ (r)| ≤ qr.

Now, we are ready to define nonwastefulness.

Definition 4 A feasible matching µ ∈ M is nonwasteful if no doctor
claims an empty seat of any hospital. A mechanism χ is nonwasteful if
the mechanism always produces a nonwasteful matching.

In existing matching literature, fairness and nonwastefulness are usually
merged into a single condition called no blocking pair condition, and a feasi-
ble matching is called stable if it is individually rational and has no blocking
pair [10]. In our model, any feasible matching is guaranteed to satisfy the
individual rationality condition under the assumption that all hospitals are
acceptable to all doctors.

Now we define a generalized notion of the standard stability to accom-
modate the regional caps. This notion is first introduced as ‘strong stability’
in Kamada and Kojima [17].

Definition 5 A feasible matching µ is stable if it is nonwasteful and fair.
A mechanism χ is stable if it always produces a stable matching.

Finally, let us introduce two notions of strategy-proofness and group
strategy-proofness. These properties consider an incentive for doctors to
misreport their preferences intentionally. Strategyproofness requires that
truthful report is a dominant strategy for any doctor under a mechanism.
Let ≻−d:= (≻d′)d′∈D\{d} for any d ∈ D.

Definition 6 A mechanism χ is strategy-proof if χd (≻D) ⪰d χd (≻
′
d,≻−d)

for all ≻D∈ P |D|, d ∈ D and ≻′
d∈ P.

Namely, a strategy-proof mechanism eliminates each doctor’s profitable
misreport.

Next, a group strategy-proof mechanism ensures even group manipula-
tion unsuccessful. Let ≻D′ := (≻d′)d′∈D′ and ≻−D′ := (≻d′)d′∈D\D′ for any

D′ ⊆ D.

Definition 7 A mechanism χ is group strategy-proof if there does not
exist a preference preference ≻D∈ P |D|, a group of doctors D′ ⊆ D and a
preference profile ≻′

D′ such that χd

(

≻′
D′ ,≻−D′

)

≻d χd (≻D) for all d ∈ D′.

That is, there is no coalition of doctors who can jointly misreport their
preference and make every member of the set strictly better off. It is clear
that a group strategy-proof mechanism is strategy-proof but not vice versa.
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3 Impossibility results and existing remedies

We first show that a stable matching does not always exist. We borrow an
example cited in [17].

Example 2 (Kamada and Kojima [17]) Let D = {d1, d2}, H = {h1, h2}
and R = {r}, where r = {h1, h2}. The maximum quotas and the regional
caps are given as qh1

= qh2
= qr = 1. Doctors’ and hospitals’ preferences

are given as follows:
≻h1

: d1 ≻ d2,
≻h2

: d2 ≻ d1,
≻d1 : h2 ≻ h1,
≻d2 : h1 ≻ h2.

Now we prove the nonexistence of a stable matching in this setting.
By way of contradiction, let µ be a fair and nonwasteful matching. Since
|µ (r)| = 0 contradicts nonwastefulness, |µ (r)| = 1 must hold. If µ (h1) =
{d2}, then d1 has justifiable envy toward d2 since µ (d2) = ∅ and d1 ≻h1

d2,
which is a contradiction. Similarly, µ (h2) = {d1} leads to a contradiction.

However, if µ (h1) = {d1}, then d1 claims an empty seat of h2 since
|µ (h2)| = 0 < qh2

and h2 ≻d1 h1. Similarly, µ (h2) = {d2} leads to a
contradiction.

Since fairness and nonwasteful are incompatible, let us introduce a weaker
notion of nonwastefulness.

Definition 8 Given a matching µ, doctor d strongly claims an empty

seat of hospital h, whose region is r, if h ≻d µ (d), |µ (h)| < qh, |µ (r)| < qr.

According to this definition, doctor d can strongly claim an empty seat only
when not only hospital h but also region r can accept another doctor.

Definition 9 A feasible matching µ ∈ M is weakly nonwasteful if no
doctor strongly claims an empty seat of any hospital. A mechanism χ is
weakly nonwasteful if the mechanism always produces a weakly nonwaste-
ful matching.

Now we briefly describe the flexible DA (FDA) mechanism [17], which
is fair and weakly non-wasteful.8 In FDA, for each region r, a round-robin
ordering among hospitals is defined.

Stage k ≥ 1

8FDA can utilize target capacities. For simplicity, we assume all target capacities are
zero. We discuss issues related to target capacities in Appendix A.
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Step 1 Each doctor offers to the most preferred hospital, from which she
has not been rejected before stage k. If a doctor has already offered
to all the acceptable hospitals, the doctor offers to ∅ and is tentatively
accepted by ∅. Reset µ as an empty matching.

Step 2 For each r, choose hospital h based on the round-robin ordering, and
iterate the following procedure until all doctors applying to hospitals
in r are either tentatively accepted or rejected:

1. Choose doctor d who is applying to h and is not tentatively ac-
cepted or rejected yet, and has the highest ranking according to
h’s preference relation over the set of singletons of doctors. If
there exists no such doctor, then go to the procedure for the next
hospital.

2. If d ≻h ∅, |µ(h)| < qh and |µ (r)| < qr, d is tentatively accepted
by h. Then go to the procedure for the next hospital.

3. Otherwise, d is rejected by h. Then go to the procedure for the
next hospital.

Step 3 If all the doctors are tentatively accepted in Step 2, then make µ
as a final matching and terminate the mechanism. Otherwise, go to
stage k + 1.

Kamada and Kojima [17] prove that FDA is fair, weakly nonwasteful
and group strategy-proof.9

We present a example which illustrates how FDA works.

Example 3 Let D = {d1, d2, d3, d4, d5, d6}, H = {h1, h2, h3}, R = {r1, r2},
where r1 = {h1, h2} and r2 = {h3}. The maximum quotas and regional caps
is given as qh1

= qh2
= qh3

= 2, qr1 = 3 and qr2 = 2. The preferences are
defined as follows:

≻d1 ,≻d2 : h1 ≻ h2 ≻ h3,
≻d3 ,≻d4 : h2 ≻ h1 ≻ h3,
≻d5 ,≻d6 : h3 ≻ h1 ≻ h2,

≻h1
: d1 ≻ d5 ≻ d6 ≻ d4 ≻ ∅ ≻ d2 ≻ d3,

≻h2
: d2 ≻ d3 ≻ d4 ≻ d1 ≻ ∅ ≻ d6 ≻ d5,

≻h3
: d1 ≻ d4 ≻ d5 ≻ d6 ≻ ∅ ≻ d2 ≻ d3.

The round-robin ordering of r1 is given as h1 → h2 → h1 → . . ..
In Stage 1 in FDA, each doctor applies to her most preferable hospital.

Thus, d1 and d2 apply to h1, d3 and d4 apply to h2, and d5 and d6 apply to

9They call a matching (and a mechanism) that is fair and weakly nonwasteful as weakly
stable.
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h3. In the following orderings, underlines indicates the doctors applying to
each hospital.

h1 : d1 ≻ d5 ≻ d6 ≻ d4 ≻ ∅ ≻ d2 ≻ d3,
h2 : d2 ≻ d3 ≻ d4 ≻ d1 ≻ ∅ ≻ d6 ≻ d5,
h3 : d1 ≻ d4 ≻ d5 ≻ d6 ≻ ∅ ≻ d2 ≻ d3.

As for r1, h1 is first chosen according to the round-robin ordering. Then
h1 tentatively accepts d1 according to ≻h1

. Next, h2 is chosen and h2 tenta-
tively accepts d3 according to ≻h2

. Then, h1 is chosen again and h1 rejects
d2 since ∅ ≻h d2. Next, h2 is chosen again, h1 tentatively accepts d4.

As for r2, h3 first tentatively accepts d5 according to ≻h3
. Then, h3

tentatively accepts d6.
In the following, surrounding squares represent the tentatively accepted

doctors:
h1 : d1 ≻ d5 ≻ d6 ≻ d4 ≻ ∅ ≻ d2 ≻ d3,

h2 : d2 ≻ d3 ≻ d4 ≻ d1 ≻ ∅ ≻ d6 ≻ d5,

h3 : d1 ≻ d4 ≻ d5 ≻ d6 ≻ ∅ ≻ d2 ≻ d3.

In Stage 2, d2, who was rejected in Stage 1, applies to her second prefer-
able hospital h2, while the others apply to the same hospitals as previous.
Thus, d1 applies to h1, d2, d3 and d4 applies to h2, and d3 and d4 apply to
h3:

h1 : d1 ≻ d5 ≻ d6 ≻ d4 ≻ ∅ ≻ d2 ≻ d3,
h2 : d2 ≻ d3 ≻ d4 ≻ d1 ≻ ∅ ≻ d6 ≻ d5,
h3 : d1 ≻ d4 ≻ d5 ≻ d6 ≻ ∅ ≻ d2 ≻ d3.

As for r1, h1 tentatively accepts d1, h2 tentatively accepts d2. Then, h1
is chosen, but there exists no remaining doctor. Thus, h2 is chosen and
h2 tentatively accepts d3. Then, h1 is chosen again, but there exists no
remaining doctor. Thus, h2 is chosen again, but the regional cap of r1 is
already filled. Hence, d4 is rejected. The tentative matches for r2 are the
same.

In the end, the tentatively accepted doctors are as follows:

h1 : d1 ≻ d5 ≻ d6 ≻ d4 ≻ ∅ ≻ d2 ≻ d3,

h2 : d2 ≻ d3 ≻ d4 ≻ d1 ≻ ∅ ≻ d6 ≻ d5,

h3 : d1 ≻ d4 ≻ d5 ≻ d6 ≻ ∅ ≻ d2 ≻ d3.

In Stage 3, d4, who was rejected in Stage 2, applies to her second prefer-
able hospital h1. Thus, d1 and d4 apply to h1, d2 and d3 applies to h2, and
d5 and d6 apply to h3:

h1 : d1 ≻ d5 ≻ d6 ≻ d4 ≻ ∅ ≻ d2 ≻ d3,
h2 : d2 ≻ d3 ≻ d4 ≻ d1 ≻ ∅ ≻ d6 ≻ d5,
h3 : d1 ≻ d4 ≻ d5 ≻ d6 ≻ ∅ ≻ d2 ≻ d3.
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As for r1, h1 tentatively accepts d1, h2 tentatively accepts d2, h1 tenta-
tively accepts d4. Then, h2 rejects d3 due to the regional cap. The tentative
matches for r2 are the same.

The tentatively accepted doctors in this stage are as follows:

h1 : d1 ≻ d5 ≻ d6 ≻ d4 ≻ ∅ ≻ d2 ≻ d3,

h2 : d2 ≻ d3 ≻ d4 ≻ d1 ≻ ∅ ≻ d6 ≻ d5,

h3 : d1 ≻ d4 ≻ d5 ≻ d6 ≻ ∅ ≻ d2 ≻ d3.

In Stage 4, d3 applies to h1 but is rejected due to the regional cap. In
Stage 5, d3 applies to h3 but is rejected due to the maximum quota. In Stage
6, d3 applies to ∅ and is tentatively accepted. Then all doctors have been
tentatively accepted and the mechanism terminates. Finally, the obtained
matching becomes:

(

h1 h2 h3
{d1, d4} {d2} {d5, d6}

)

.

The resulting matching is fair and weakly nonwasteful, but it is not
nonwasteful, e.g., d4 prefers h2 to h1. Furthermore, d3 cannot be assigned
to any hospital. Note that d3 is the second-ranked doctor for h2, while d4,
who is accepted to h1, is the fourth-ranked doctor for h1. Due to the round-
robin ordering for tie-breaking in r1, d4 is accepted while d3 is rejected. d3
might feel this result is unfair. In the next section, we introduce a new
fairness concept that eliminates such an unfair outcome.

4 New Properties

The previous section illustrates that fairness and nonwastefulness cannot
coexist when regional caps are imposed; a stable matching may not exist.
On the other hand, fairness and weak nonwastefulness can coexist and FDA
is guaranteed to find such a matching. In this section, we consider a stabil-
ity concept, which is stronger than fairness and weak nonwastefulness, but
certainly weaker than fairness and nonwastefulness. To be more precise, we
propose a stronger notion of fairness, which we call regional fairness. This
notion is based on the idea that any competition within a region should be
settled in a fair and transparent fashion, i.e., based on a predefined prior-
ity list. Furthermore, we propose another notion of nonwastefulness, which
we call regional nonwastefulness. This notion is based on the same idea of
regional fairness, which is weaker than nonwastefulness but stronger than
weak nonwastefulness.

First, we define regional fairness.

Definition 10 Given a matching µ, doctor d has regionally justifiable

envy toward doctor d′ ̸= d where µ(d′) = h′, if, for some h such that
r(h) = r(h′) = r, h ≻d µ(d), |µ(h)| < qh, and (d, h) ≻PL

r (d′, h′) hold.
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An intuitive explanation of this definition is as follows. Since d prefers h to
her current assigned hospital µ(d), d must be rejected from h. Also, since
h’s maximum quota is not filled, d must be rejected due to the regional
cap of r. Then, the competition within r must be settled by r’s priority
list, i.e., for any doctor d′, who is accepted to hospital h′ within r, (d′, h′)
must be ranked higher than (d, h) in ≻PL

r . Otherwise, d can have regionally
justifiable envy towards d′.

Let us consider the situation in Example 3. In the matching produced
by FDA, d3 is unmatched while d4 is assigned to h1. Here, d3 has regionally
justifiable envy toward d4 as long as the priority list of r1 is defined by the
rank-based method since rankh2

(d3) = 2 < rankh1
(d4) = 4.

Then, regional fairness is defined as follows.

Definition 11 A feasible matching µ ∈ M is regionally fair if there is no
doctor who has justifiable envy or regionally justifiable envy toward another
doctor. A mechanism χ is regionally fair if the mechanism always produces
a regionally fair matching.

By definition, if a matching is regionally fair, it is also fair, but not vice
versa.

Next we define regional nonwastefulness.

Definition 12 Given a matching µ, doctor d, who is assigned to h in µ,
regionally claims an empty seat of hospital h′ if r(h′) = r(h) = r,
h′ ≻d h, |µ(h′)| < qh′, |µ(r)| = qr, and (d, h′) ≻PL

r (d, h) hold.

An intuitive explanation of this definition is as follows. Since d prefers
h′ to her currently assigned hospital h, d must be rejected by h′. Also, since
the maximum quota of h′ is not filled, d must be rejected due to the regional
cap of r. However, d is accepted to another hospital h, which is in the same
region r. Thus, if (d, h′) is ranked higher than (d, h) in ≻PL

r , d can request
to reassign her to h′. A regional claim for an empty seat can be interpreted
as regionally justifiable envy toward oneself.

Let us consider the situation in Example 3. In the matching produced
by FDA, d4 is assigned to h1. Thus, d4 regionally claims an empty seat
of h2, if the priority list of r1 is defined by the rank-based method since
rankh2

(d4) = 3 < rankh1
(d4) = 4.

Now we are ready to introduce regional nonwastefulness.

Definition 13 A feasible matching µ ∈ M is regionally nonwasteful

if no doctor weakly or regionally claims an empty seat of any hospital. A
mechanism χ is regionally nonwasteful if the mechanism always produces
a regionally nonwasteful matching.

By definition, a regionally nonwasteful matching (and mechanism) is also
weakly nonwasteful, but not vice versa. Also, any nonwasteful matching
(and mechanism) is also regionally nonwasteful, but not vice versa.
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5 Priority List-Based Deferred Acceptance Mech-

anism

In this section, we present a new mechanism called the priority list-based de-
ferred acceptance mechanism (PLDA). This mechanism produces a match-
ing that is regionally fair and regionally nonwasteful for any given input
(preferences).

PLDA is quite similar to the standard DA but there exists one funda-
mental difference; in PLDA, each region (instead of each hospital) makes an
decision on which doctor (who are applying hospitals in the region) should
be accepted based on its priority list.

Similar to the standard DA, PLDA repeats some stages where doctors
offers to hospitals and some doctors are tentatively accepted and the other
are rejected. More specifically, each stage proceeds as follows. First, each
doctor offers to the most preferred hospital that has not rejected herself
before. Then, each region r picks up (d, h), which is a pair of an offering
doctor and the hospital offered by the doctor in the region, according to r’s
priority list. If the match of (d, h) violates a constraint for some quota/cap,
then d is rejected by h, and otherwise, d is tentatively accepted by h. The
mechanism terminates when no doctor is rejected in a stage and outputs the
tentatively accepted pairs at the final matching.

The description of PLDA is as follows:

Stage k ≥ 1

Step 1 Each doctor offers to the most preferred hospital, from which she
has not been rejected before stage k. If a doctor has offered to all the
acceptable hospitals, the doctor offers to ∅ and is tentatively accepted
by ∅. Reset µ as an empty matching.

Step 2 For each r, for each i from 1 to |D| · |r|, iterate the following proce-
dure:

1. Choose (d, h), which is i-th ranked pair in r’s priority list ≻PL
r .

2. If d does not offer to h or (d, h) = (∅, ∅), then go to the procedure
for i+ 1.

3. If (d, h) ≻PL
r (∅, ∅), |µ(h)| < qh and |µ (r)| < qr, d is tentatively

accepted by h. Then go to the procedure for i+ 1.

4. Otherwise, d is rejected by h. Then go to the procedure for i+1.

Step 3 If all the doctors are tentatively accepted in Step 2, then make µ
as a final matching and terminate the mechanism. Otherwise, go to
stage k + 1.
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We present a example which illustrates how PLDA works.

Example 4 We apply PLDA to the case in Example 3.
Region r1’s priority list, ≻PL

r1
, is generated from the tie-breaking ordering

h1 → h2 and the rank-based method. Region r2’s priority list is identical to
h3’s priority list. Thus, the priority lists are given as follows:

≻PL
r1

: (d1, h1), (d2, h2), (d5, h1), (d3, h2), (d6, h1), (d4, h2),
(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),

≻PL
r2

: (d1, h3), (d4, h3), (d5, h3), (d6, h3), (∅, ∅), (d2, h3), (d3, h3).

In Stage 1, each doctor applies to her most preferable hospital, i.e., d1
and d2 apply to h1, d3 and d4 apply to h2, and d5 and d6 apply to h3. In the
following orderings, underlines indicates the pairs (d, h) such that d applies
to h.

≻PL
r1

: (d1, h1), (d2, h2), (d5, h1), (d3, h2), (d6, h1), (d4, h2),

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),

≻PL
r2

: (d1, h3), (d4, h3), (d5, h3), (d6, h3), (∅, ∅), (d2, h3), (d3, h3).

For simplicity, we focus only on the underlined pairs. As for region r1 =
{h1, h2}, according to ≻PL

r1
, (d1, h1) is first chosen and tentatively accepted.

Then, (d3, h2) is chosen and tentatively accepted. Next, (d4, h2) is chosen
and tentatively accepted. Then, (d2, h1) is chosen but (∅, ∅) ≻PL

r (d2, h1)
holds. Hence, d2 is rejected by h1.

As for region r2 = {h3}, (d5, h3) is chosen according to ≻PL
r2

and the pair
is tentatively accepted. Then, (d6, h3) is chosen and tentatively accepted.

In the following, surrounding squares represent the tentatively accepted
pairs:

≻PL
r1

: (d1, h1) , (d2, h2), (d5, h1), (d3, h2) , (d6, h1), (d4, h2) ,

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),

≻PL
r2

: (d1, h3), (d4, h3), (d5, h3) , (d6, h3) , (∅, ∅), (d2, h3), (d3, h3).

In Stage 2, d2, who was rejected in Stage 1, applies to her second prefer-
able hospital h2, while the others apply to the same hospitals as previous.
Thus, d1 applies to h1, d2, d3 and d4 apply to h2, and d5 and d6 apply to h3:

≻PL
r1

: (d1, h1), (d2, h2), (d5, h1), (d3, h2), (d6, h1), (d4, h2),

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),
≻PL

r2
: (d1, h3), (d4, h3), (d5, h3), (d6, h3), (∅, ∅), (d2, h3), (d3, h3).

As for region r1, (d1, h1), (d2, h2), (d3, h2) are tentatively accepted, while
(d4, h2) cannot be matched since the regional cap is already filled. The ten-
tative acceptance for region r2 are the same.
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In the end, the tentatively accepted pairs are as follows:

≻PL
r1

: (d1, h1) , (d2, h2) , (d5, h1), (d3, h2) , (d6, h1), (d4, h2),

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),

≻PL
r2

: (d1, h3), (d4, h3), (d5, h3) , (d6, h3) , (∅, ∅), (d2, h3), (d3, h3).

In Stage 3, d4, who was rejected in Stage 2, applies to her second prefer-
able hospital h1. Thus, d1 and d4 apply to h1, d2 and d3 apply to h2, and
d5 and d6 apply to h3:

≻PL
r1

: (d1, h1), (d2, h2), (d5, h1), (d3, h2), (d6, h1), (d4, h2),

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),

≻PL
r2

: (d1, h3), (d4, h3), (d5, h3), (d6, h3), (∅, ∅), (d2, h3), (d3, h3).

Then, as for r1, (d1, h1), (d2, h2), (d3, h2) are tentatively accepted, while
(d4, h1) cannot be matched since the regional cap is already filled. The ten-
tative acceptance for region r2 are the same.

The tentatively accepted pairs in Stage 3 are as follows:

≻PL
r1

: (d1, h1) , (d2, h2) , (d5, h1), (d3, h2) , (d6, h1), (d4, h2),

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),

≻PL
r2

: (d1, h3), (d4, h3), (d5, h3) , (d6, h3) , (∅, ∅), (d2, h3), (d3, h3).

In Stage 4, the rejected doctor in stage 3, i.e., d4, applies to her third
preferable hospital h3:

≻PL
r1

: (d1, h1), (d2, h2), (d5, h1), (d3, h2), (d6, h1), (d4, h2),

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),
≻PL

r2
: (d1, h3), (d4, h3), (d5, h3), (d6, h3), (∅, ∅), (d2, h3), (d3, h3).

Then, the tentative acceptance for region r1 are the same. As for region
r2, (d4, h3) and (d5, h3) are tentatively accepted, while (d6, h3) cannot be
matched since the regional cap, as well as h3’s maximum quota, is already
filled.

The tentatively accepted pairs in Stage 4 are as follows (the underlined
pair is rejected):

≻PL
r1

: (d1, h1) , (d2, h2) , (d5, h1), (d3, h2) , (d6, h1), (d4, h2),

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),

≻PL
r2

: (d1, h3), (d4, h3) , (d5, h3) , (d6, h3), (∅, ∅), (d2, h3), (d3, h3).

In Stage 5, the rejected doctor in stage 4, i.e., d6, applies to her second
preferable hospital h1:

≻PL
r1

: (d1, h1), (d2, h2), (d5, h1), (d3, h2), (d6, h1), (d4, h2),

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),
≻PL

r2
: (d1, h3), (d4, h3), (d5, h3), (d6, h3), (∅, ∅), (d2, h3), (d3, h3).
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As for region r1, (d1, h1), (d2, h2), (d3, h2) are tentatively accepted, while
(d6, h1) cannot be matched since the regional cap is already filled. The ten-
tative acceptance for region r2 are the same.

The tentatively accepted pairs in Stage 4 are as follows:

≻PL
r1

: (d1, h1) , (d2, h2) , (d5, h1), (d3, h2) , (d6, h1), (d4, h2),

(d4, h1), (d1, h2), (∅, ∅), (d2, h1), (d6, h2), (d3, h1), (d5, h2),

≻PL
r2

: (d1, h3), (d4, h3) , (d5, h3) , (d6, h3), (∅, ∅), (d2, h3), (d3, h3).

In Stage 6, the rejected doctor in stage 4, i.e., d6, applies to her second
preferable hospital h2. However, (d6, h2) is rejected due to the regional cap.

In Stage 7, d6, applies to ∅ and is tentatively accepted. The tentative
acceptance for region r1 and r2 are the same. Then all doctors have been
tentatively accepted and the mechanism terminates. Finally, the obtained
matching becomes:

(

h1 h2 h3
{d1} {d2, d3} {d4, d5}

)

.

Note that this result is not stable; d2 claims an empty seat of h1 (Defini-
tion 3). However, d2 cannot regionally claim an empty seat of h1 (Definition
12), since (d2, h2) ≻PL

r1
(d2, h1). This result is regionally nonwasteful and

regionally fair.
The following is the main result of this section.

Theorem 1 PLDA terminates in finite stages. The mechanism is region-
ally fair, regionally nonwasteful and group strategy-proof.

The fact that PLDA is regionally fair and regionally nonwasteful is in-
tuitively natural, since in PLDA, each region makes its decision on which
doctor should be accepted based on its priority list. Assume doctor d is
rejected by hospital h, which belongs to region r. Then, either h or r is full.
Also, if r is full, while h is not full, all pairs accepted in hospitals in r should
have higher rankings than (d, h) according to r’s priority list.

The fact that PLDA is group strategy-proof relies on the fact that the
choice of each region satisfies substitutability, i.e., if doctor d is rejected from
hospital h in a certain stage, then d cannot be accepted even if dmanipulates
her preference and applies to h in a different stage.

The formal proof of Theorem 1 is described in Appendix C. In the proof,
we reformulate our model within the matching-with-contract model pre-
sented in Hatfield and Milgrom [16]. In the reformulation, we regard each
region (not each hospital) as an ‘agent’. In this way, each region is sup-
posed to have a preference over the set of contracts such that the region
obeys its own priority list and dislikes any violation of the concerning hospi-
tals’ quotas. Thus, the maximum quotas are incorporated into the regions’
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preferences, while regional caps are interpreted as a new ‘maximum quota’.
Then, we re-define PLDA in that model and prove that it satisfies group
strategy-proofness by the coincidence with the generalized Gale-Shapley al-
gorithm.10

In addition to the above theorem, we can also characterize PLDA match-
ing from the viewpoint of the optimality. The result is presented in Section
6.1.

6 Analysis

6.1 The doctor-optimality of the PLDA matching

This section characterizes the matching produced by PLDA in terms of
the optimality for doctors. First, let us formally define notions of doctor-
optimality and doctor-maximality. Recall that M denotes the set of feasible
matchings.

Definition 14 Let M′ be any subset of M. The matching µ is doctor-

optimal in M′ if µ ⪰D µ′ for any µ′ ∈ M′. The matching µ is doctor-

maximal in M′ if there is no matching µ′ ∈ M′ such that µ′ ⪰D µ and
µ′ (d) ≻d µ (d) for some d ∈ D.

Here, µ ⪰D µ′ is defined as µ (d) ⪰d µ′ (d), ∀d ∈ D. It is clear that if a
matching is doctor-optimal, it is doctor-maximal, but not vice versa. Also,
a doctor-maximal matching always exists but may not be unique. On the
other hand, a doctor-optimal matching does not always exists, but if such a
matching exists, it is guaranteed to be unique. In the terminology of lattice
theory, the doctor-optimal (or a doctor-maximal) matching corresponds to
the maximum (or a maximal) element in a partially ordered set (M′,⪰D).

The following theorem holds.

Theorem 2 The matching produced by PLDA is the doctor-optimal in the
set of all regionally fair matchings.

Thus, if we assume a matching should be regionally fair, then, the matching
obtained by PLDA is the best, i.e., it optimizes doctors’ welfare. Note that
to guarantee the optimality, we do not require regional nonwastefulness,
though the matching produced by PLDA is regionally nonwasteful. The
matching produced by PLDA is the doctor-optimal not only in the set of all
regionally fair and regionally nonwasteful matchings, but also in the set of
all regionally fair matchings.

The detailed proof of the above theorem is presented in Appendix C.

10To be more precise, Hatfield and Milgrom [16] prove only that the generalized Gale-
Shapley algorithm satisfies strategy-proofness. Group strategy-proofness is guaranteed by
Hatfield and Kojima [14].

22



Figure 1: Relation between Properties

6.2 Comparison with FDA

In this subsection, we compare PLDA and FDA. FDA is weakly nonwasteful.
Furthermore, it satisfies a stronger property than weak nonwastefulness,
which we call hospital-equitably nonwastefulness. 11

Definition 15 Given a matching µ, doctor d, who is assigned to h, hospital-
equitably claims an empty seat of hospital h′ if r(h′) = r(h) = r,
h′ ≻d h, |µ(h′)| < qh′, |µ(r)| = qr, and |µ(h)| − |µ(h′)| ≥ 2 hold.

A feasible matching µ ∈ M is hospital-equitably nonwasteful if no
doctor weakly or hospital-equitably claims an empty seat of any hospital. A
mechanism χ is hospital-equitably nonwasteful if the mechanism always
produces a hospital-equitably nonwasteful matching.

This definition means that doctor d, who is assigned to hospital h, can claim
an empty seat of another hospital h′ in the same region, if moving d from h
to h′ strictly improves the imbalance of the number of assigned doctors.

Figure 1 summarizes the relation between properties discussed so far. If
two properties are connected by a thick line, the property placed above is
stronger/stricter than the other. As discussed before, fairness and nonwaste-
fulness is incompatible. PLDA satisfies regional fairness, which is stronger
than fairness. Also, it satisfies regionally nonwastefulness, which is stronger
than weak nonwastefulness but weaker than nonwastefulness. PLDA can ob-
tain the doctor-optimal matching in the set of regionally fair and regionally

11In the main text of Kamada and Kojima [17], a matching (and a mechanism) that is
fair and hospital-equitably nonwasteful is called stable.
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nonwasteful matchings. On the other hand, FDA satisfies fairness, as well
as hospital-equitable wastefulness, which is stronger than weak nonwasteful-
ness but weaker than nonwastefulness. FDA is not guaranteed to obtain the
doctor-optimal matching that satisfies both fairness and hospital-equitable
nonwastefulness. For regional nonwastefulness and hospital-equitable non-
wastefulness, there is no inclusive relation, i.e., a matching can be regionally
nonwasteful but not hospital-equitably nonwasteful, and vice versa. Thus,
in terms of nonwastefulness/efficiency, there is no theoretical dominance re-
lation between PLDA and FDA.

Let us examine when these mechanisms waste some seats. The only
possibility that doctor d, who is assigned to hospital h, can claim an empty
seat is that she hopes to move to another hospital h′, where h and h′ belong
to the same region r. Such a situation can happen when d first applies to
h′ and has rejected (due to the competition within r). Then, d applies to h
and this time, d wins the competition within r and has accepted. In such
a case, the preferences of hospitals h and h′ are somewhat inconsistent, i.e.,
d’s ranking in h′ is relatively low, while her ranking in h is relatively high.
The situation can be even worse. Let us assume two doctors d1 and d2 are
trying to obtain a single seat in hospitals within region r. Also assume the
preferences of hospitals in r are inconsistent, Then, there is a chance that
these two doctors keep on competing with each other to obtain one seat
in r, and finally d1 obtains a seat in her lowest-ranked hospital in r, while
d2 is rejected from r. On the other hand, if hospitals in r unanimously
give a higher ranking to d1, d1 can obtain a seat in her highest-ranked
hospital. Thus, the obtained matching weakly dominates the previous result.
From these facts, we can expect that when the preferences (over doctors)
of hospitals within the same region becomes more consistent, then these
mechanisms lose less seats and doctors’ welfare can increase. We will confirm
this conjecture in Section 6.3.

In an extreme case where all hospitals use the same preference ordering,
PLDA (when the priority list is created by the rank-based method) becomes
identical to a serial-dictatorship mechanism, in which doctors are chosen in a
predefined order, and each doctor is assigned to her most preferred hospital
as long as the assignment does not violate the maximum quota or regional
cap. A serial dictatorship mechanism is guaranteed to be strategy-proof
and Pareto efficient, e.g., see [2]. Thus, in such an extreme case, PLDA is
nonwasteful.

On the other hand, even if the preferences of hospitals are identical,
FDA can lose some seats since FDA tries to equitably assign doctors among
hospitals within a region. Let us assume there exist nine hospitals h1, . . . , h9
within region r. Also, let us assume qr = 90 (and each individual maximum
quota is large enough). There are 100 doctors d1, . . . , d100. All hospitals are
willing to accept any doctor and unanimously give a higher ranking to d1
over d2, d2 over d3, and so on. Also, all doctors are willing to be matched
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with any hospital and unanimously prefer h1 over h2, h2 over h3, and so on.
In FDA, all doctors first apply to h1. Then, h1 tentatively accepts doctors
from d1 to d90, and doctors from d91 to d100 are rejected. Then, in the next
stage, doctors from d91 to d100 apply to h2. Since FDA tries to equitably
assign doctors among hospitals within a region, all doctors applying to h2
are tentatively accepted. Then, doctors from d81 to d90 are rejected from h1
and will apply to h2. Eventually, doctors from d1 to d50 apply to h1, while
doctors from d51 to d100 apply to h2. Then, doctors from d46 to d50, as well
as doctors from d96 to d100, are rejected. The final assignment would be,
d1, . . . , d10 to h1, d11, . . . , d20 to h2, . . ., d81, . . . , d90 to h9, and d91, . . . , d100
are rejected. In this case, doctors from d11 to d90 claim empty seats.

In PLDA, when the priority list is created by the rank-based method,
d1, . . . , d90 are assigned to h1 and d91, . . . , d100 are rejected. Thus, no doctor
claims an empty seat.

From this observation, we conjecture that PLDA would produce a less
wasteful matching compared to FDA, since it can vary the number of doctors
assigned to each hospital more flexibly according to its popularity. We will
confirm this conjecture in Section 6.3.

6.3 Comparative Experiments

In this section, we use computer simulation to compare the doctors’ welfare
and efficiency of FDA/PLDA. We consider a market with |D| = 512 doctors
and |H| = 64 hospitals, i.e., D = {d1, · · · , d512} andH = {h1, · · · , h64}. The
number of regions |R| is set to 8 and each region has the same number of
hospitals, i.e., R = {r1, . . . , r8}, r1 = {h1, · · · , h8}, r2 = {h9, · · · , h16}, · · · ,
r8 = {h57, · · · , h64}. The maximum quota qh is set to 24 for each hospital

h. We set the regional cap qr to |D|
|R| = 64 for each region r, i.e., the sum

of regional caps (64 × 8 = 512) is equal to the number of doctors. Thus,
in this parameter setting, regional caps are more restrictive compared to
individual maximum quotas. The choice of these parameters is not critical;
by changing these parameters, the qualitative properties of obtained results
do not change.

We generate preferences of doctors as follows. For simplicity, we assume
that all hospitals are acceptable to each doctor. We first construct the car-
dinal utility values of each doctor. To introduce some correlation within
doctors’ preferences so that popular/unpopular hospitals can exist, the car-
dinal utility values of each doctor are constructed using a linear combination
of a common value vector and a private vector. To be more precise, we draw
one common vector uH = (uh)h∈H uniformly at random from set [0, 1]|H|.
Then, for each doctor, we draw a private vector ud from the same set uni-
formly. Then, the utility value vector over hospitals for doctor d is given as
αuH + (1− α)ud, where α ∈ [0, 1]. Here, α is a parameter that controls the
correlation of doctors’ preferences. When α = 0, doctors’ preferences are in-
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dependent, while when α = 1, all doctors have the same preferences. Then,
we convert these cardinal utility values into an ordinal preference relation
for each doctor.12

Similarly, we generate hospitals’ preferences by constructing cardinal
utility values of each hospital. We also assume all doctors are acceptable
for each hospital. We draw one common vector uD = (ud)d∈D uniformly at

random from set [0, 1]|D|. For each hospital, we draw a private vector uh
from the same set uniformly. Then, the utility value vector over the doctors
for hospital h is constructed as βuD + (1− β)uh, where β ∈ [0, 1]. Here, β
is a parameter that controls the correlation of hospitals’ preferences.

We assume the tie-breaking rule for generating a rank-based priority list,
as well as the round-robin ordering among hospitals, is defined as h1 → h2 →
. . . → h64. We create 100 problem instances for each parameter setting.

We compare the doctors’ welfare and efficiency of FDA/PLDA by using
the following metrics: (i) the Cumulative Distribution Function (CDF) of
the rank of the hospital each doctor is assigned, (ii) the ratio of doctors who
prefer the outcome obtained by each mechanism, and (iii) the number of
doctors who claim empty seats.

6.3.1 CDF of Rank

In this section, We first measure doctors’ welfare by plotting CDFs of the
average ratio of doctors matched with their k-th or higher ranked hospital
under the two mechanisms. For example, in Figure 3, under PLDA with
β = 0.5, about 30% of doctors are matched with their first choice, about
45% of doctors are matched with their first or second choice, about 55% of
doctors are matched with their first or second or third choice, and so on.
Thus, if the rank distribution of one mechanism first-order stochastically
dominates another, then a strong argument can be made for the use of the
stochastically dominant mechanism.

Figures 2 to 4 analyze how different correlations α affect the rank distri-
butions (for these simulation, we fix β = 0.5 for all hospitals’ preferences).
We can see that PLDA first-order stochastically dominates FDA regardless
of the choice of α, which represents the correlation in the doctors’ prefer-
ences (while they are almost equivalent for α = 0). However, the magnitude
of the dominance becomes large as α increases. As α increases, the com-
petition among doctors becomes more severe. Thus, the welfare of doctors
decreases. However, PLDA can vary the number of doctors assigned to each
hospital more flexibly according to its popularity. As a result, it obtains bet-
ter welfare of doctors compared to FDA. These results imply that doctors
will prefer PLDA to FDA in the first-order stochastic dominance sense.

12With a tiny probability, a doctor has the same cardinal utility value for two different
hospitals. Then, the doctor breaks the tie by preferring one with the smaller index.
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Figure 2: α = 0
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Figure 3: α = 0.5
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Figure 4: α = 1.0

Next, Figures 5, 6, and 7 show the rank functions under α = 0.5 when
β is set to 0, 0.5, and 1.0, respectively. Here, in contrast to α, by increasing
β (which represents the correlation in the hospitals’ preferences), doctors’
welfare increases slightly. We can confirm our conjecture in Section 6.2, i.e.,
when the preferences (over doctors) of hospitals within the same region be-
comes more consistent, then the doctors’ welfare can increase. Again, we can
see that PLDA first-order stochastically dominates FDA. This dominance
holds regardless of the choice of β.

6.3.2 Doctors’ Preference over Mechanisms

A more rough-grained, but more intuitive way to evaluate the superiority
among two mechanisms would be directly asking each doctor which result
she prefers. In this subsection, we investigate doctors’ preferences over the
obtained matchings of two mechanisms. In Figures 8, 9, and 10, the vertical
axis presents the share of doctors for β = 0, 0.5, and 1.0, respectively. The
domains at the top (or the bottom) indicate the share of doctors who are
better off under FDA (or PLDA). The middle region indicates that doctors
are indifferent between FDA and PLDA. The horizontal axis indicates α.
We can see that for any combination of α and β, more doctors prefer the
outcome of PLDA. Also, when α and β are high, the ratio of doctors who
prefer the outcome of PLDA increases. In an extreme case where α = 1.0
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Figure 5: β = 0
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Figure 6: β = 0.5
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Figure 7: β = 1.0

and β = 1.0, a situation almost identical to the case described in Section 6.3
occurs. Thus, PLDA significantly outperforms FDA.

The above results show that the average ratio of doctors who prefer
the result of PLDA is larger. However, the average share of votes does
not directly reflect the share of winning candidates in an election when
the small-constituency system is applied. Thus, instead of calculating the
average ratio over different problem instances, we first compare the ratio for
each problem instance, and count the number of problem instances where
more doctors prefer the result of PLDA (or FDA). We can assume for each
problem instance, each doctor votes for her preferred mechanism and the
mechanism who obtain more votes wins. The following results show the
winning ratio of each mechanism.

Figures 11 to 13 analyze the share of problem instances where one mech-
anism is preferred by more doctors than the other. The domain at the top
(or the bottom) indicates the share of instances where FDA (or PLDA)
wins. The middle (thin) region indicates where FDA and PLDA receive the
same number of votes. The horizontal axis indicates α. These results show
that PLDA is a clear winner if doctors decide which mechanism to use by
majority voting.
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6.3.3 Number of claiming doctors

Next, let us examine why doctors’ welfare of PLDA is superior to that of
FDA. Both mechanisms are fair, thus they cannot be nonwasteful (though
they are weakly nonwasteful). Our conjecture is that although both mech-
anisms inevitably waste some seats, the number of wasted seats in PLDA
would be smaller than that of FDA. As a result, the obtained result of PLDA
is more efficient and doctors prefer the result of PLDA. To confirm this con-
jecture, we compare the number of doctors who claim empty seats of some
hospitals. Figures 14, 15, and 16 indicate the ratio of such doctors under
each mechanism for each β = 0, 0.5, and 1.0, respectively. The horizontal
axis indicates α. We can see that for any combination of α and β, the ratio
of doctors who claim empty seats is smaller in PLDA. Also, the difference
between two mechanisms becomes large when α and β become large. As α
becomes large, the competition among doctors, in particular, among doctors
who are applying different hospitals in the same region, become more severe.
As a result, more seats are tend to be wasted. However, PLDA can vary
the number of doctors assigned to each hospital more flexibly according to
its popularity. As a result, it wastes less seats than FDA. Furthermore, we
can see that by increasing β, the ratio of claiming doctors becomes small.
As described before, when the preferences (over doctors) of hospitals within
the same region becomes more consistent, then less seats are wasted.

In an extreme case where β = 1, i.e., all hospitals use the same preference
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ordering, PLDA is nonwasteful. Thus, the number of claiming students is
zero.

7 Conclusion

This paper proposed PLDA mechanism that can handle regional caps. We
introduced regional fairness, which is a refinement of standard fairness con-
sidering the competition among doctors who are applying to different hospi-
tals in the same region. We show PLDA is group strategy-proof and always
gives the doctor-optimal regionally fair matching. Comparing PLDA with
FDA, we proved that PLDA has properties that FDA cannot satisfy and
then confirmed via simulation that PLDA has an advantage over FDA in
terms of doctors’ welfare and efficiency.

We believe PLDA can be applied/extended in different problem settings.
First, by slightly modifying PLDA, we can construct a mechanism that can
handle individual minimum quotas, based on the method for transforming
individual minimum quotas to regional caps in [9]. Furthermore, we hope
to extend PLDA so that it can handle regional minimum quotas (as well as
regional caps).
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Figure 14: β = 0
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Figure 15: β = 0.5
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[5] Biró, P., T. Fleiner, R. W. Irving, and D. F. Manlove (2010) “The Col-
lege Admissions problem with lower and common quotas,” Theoretical
Computer Science, 411, pp. 3136-3153.
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Appendix A Target Capacities

FDA can utilize the target capacity of each hospital, i.e., if the target capac-
ity of hospital h is q̄h, then h can accept up to q̄h doctors without competing
with other hospitals in the same region, as long as enough doctors are ap-
plying to h. So far, for simplicity, we assume each target capacity is zero
in FDA. Setting all target capacities to zero is equivalent to set each q̄h
to qr/|r| (assuming qr is a multiple of |r|), since by using a round-robin
ordering, each hospital can accept at least qr/|r| doctors.

As shown in Section 6.3, PLDA outperforms FDA in terms of nonwaste-
fulness/efficiency, since it can vary the number of doctors assigned to each
hospital more flexibly, while FDA tries to assign doctors among hospitals
more equitably. However, a hospital might hope that it can accept a certain
number of doctors as long as enough doctors are applying to it.

In this section, we describe how to introduce target capacities in PLDA.
We first define target capacity. The set of target capacities is denoted by
q̄H = {q̄h1

, q̄h2
, . . .}. We assume q̄h ≤ qh for any h ∈ H and

∑

h∈r q̄h ≤ qr for
any r ∈ R. The sum of artificial caps must be exactly equal to qr. On the
other hand, target capacities are soft constraints and a hospital can assign
more doctors beyond its target capacity. Thus, the sum of target capacities
can be less than qr. A market with target capacities is represented by a
tuple (D,H,R, qH , q̄H , qR,≻D,≻H ,≻PL

R ).
To apply PLDA to target capacities, we transform the original mar-

ket with target capacities into another market without target capacities
(D, H̃, R̃, q̃H , q̃

R̃
, ≻̃D, ≻̃H̃

, ≻̃PL

R̃
). In the transformed market, the set of doc-

tors is unchanged. Hospital h in the original market with maximum quota
qh and target capacity q̄h is transformed into two hospitals: reserved hos-
pital h∗, which has a maximum quota of q̃h∗ = q̄h, and standard hospital,
which, with slight abuse of notation, we label h, and that has a maximum
quota of q̃h = qh − q̄h. Each of these hospitals uses the original preference
ordering of hospital h, i.e., ≻̃h∗ = ≻̃h =≻h. Thus, the set of hospitals is
H̃ = H ∪H∗ = {h1, . . . , hm, h∗

1
, . . . , h∗m}.

For each doctor d ∈ D, a preference over H∪H∗ is created by taking the
original preference relation ≻d and inserting hospital h∗ immediately before
hospital h. That is, preference ≻d: hj ≻d hk ≻d . . . is transformed into
≻̃d : h∗j ≻̃d hj ≻̃d h∗k ≻̃d hk ≻̃d . . ..

Also, the set of regions R̃ is basically the same as the original market,
but each region r̃ includes both reserved hospitals and standard hospitals
created from hospitals within r in the original market. The regional cap of
r̃ is equal to that of r. Also, region r̃’s priority list over D × r̃ is created
as follows. First, we take the original priority list ≻PL

r and divide its copy
for the reserved hospitals into three parts: The first part is the list before
(∅, ∅), the second one is only (∅, ∅), and the third one is the list after (∅, ∅).
Then, we insert the first part before the original priority list and the third
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part after (∅, ∅) in the original priority list (the second part is not used).
That is, priority list

≻PL
r : (d1, h1), . . . , (dk, hl),

(∅, ∅), (ds, ht), . . . , (dx, hy)

becomes

≻̃PL
r̃ : (di, h

∗
j ), . . . , (dk, h

∗
l ), (di, hj), . . . , (dk, hl),

(∅, ∅), (ds, h
∗
t ), . . . , (dx, h

∗
y), (ds, ht) . . . , (dx, hy).

For instance, assume the setting in Example 1, where q̄h1
= 1 and q̄h2

=
1. Then, we can define the priority list as follows:

≻̃PL
r̃1

: (d1, h
∗
1
) , (d1, h

∗
2
) , (d2, h

∗
2
) ,

(d1, h1) , (d1, h2) , (d2, h2) ,
(∅, ∅) , (d2, h

∗
1
) , (d2, h1) .

Actually, some part of this priority list is never used. For example, since
h∗
1
always accept d1 if she applies to h∗

1
, d1 never applies to h1. Also, the

ordering among pairs for different reserved hospitals does not matter. For
example, the fact (d1, h

∗
1
) appears before (d1, h

∗
2
) does not matter. This

is because regional conflict never occurs among reserved hospitals, i.e., the
regional cap is not binding for them.

Given a corresponding market (D, H̃, R̃, q̃H , q̃
R̃
, ≻̃D, ≻̃H̃

, ≻̃PL

R̃
), we can

apply PLDA to this market. Let us denote µ̃ be the obtained matching in
the corresponding market. Then, we can obtain a matching µ in the original
market by µ(h) := µ̃(h) ∪ µ̃(h∗) for each h ∈ H. µ is clearly feasible.

The notions of regional fairness and regional nonwastefulness are modi-
fied as follows.

Definition 16 Given a matching µ, doctor d has regionally justifiable

envy toward doctor d′ ̸= d, who is assigned to h′ under target capacities,
if, for some h such that r(h) = r(h′) = r, h ≻d µ(d), |µ(h)| < qh, |µ(h

′)| >
q̄h′, and (d, h) ≻PL

r (d′, h′).

Compared to the original definition of regional justifiable envy, this condition
is more restricted. Doctor d is allowed to have justifiable envy towards
another doctor d′ who is assigned to h′, only when the number of doctors
assigned to h′ exceeds its target capacity qh′ . This is because h′ is guaranteed
to assign up to qh′ doctors without any competition in the region.

Definition 17 A feasible matching µ ∈ M is regionally fair under tar-

get capacities if there is no doctor who has justifiable envy or regionally
justifiable envy under target capacities toward another doctor.

On the other hand, the notion of regional nonwasteful under target ca-
pacities is not a simple restriction of the original one.
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Definition 18 Given a matching µ, doctor d, who is assigned to h, region-
ally claims an empty seat of hospital h′ under target capacities if h′ ≻d h,
|µ(h′)| < qh′ , and either one of the following conditions hold:

(i) |µ(h′)| < q̄h′,

(ii) |µ(h′)| ≥ q̄h′, r(h) = r(h′) = r, |µ(r)| = qr, |µ(h)| > q̄h, and
(d, h′) ≻PL

r (d, h).

Note that d can claim an empty seat of h′ if the target capacity of h′ is not
filled (regardless of d’s position in the priority list). On the other hand, if
the target capacity of h′ is filled, to claim an empty seat, d must be allocated
in a hospital that accepts more doctors than its target capacity, i.e., at least
one doctor is allocated in standard hospital h in the transformed market.

Definition 19 A feasible matching µ ∈ M is regionally nonwasteful

under target capacities if no doctor strongly claims an empty seat of
any hospital or regionally claims an empty seat of any hospital under target
capacities.

The following theorem holds.

Theorem 3 A matching obtained by PLDA is regionally fair and regionally
nonwasteful under target capacities.

Proof. Let us assume µ is derived from µ̃ in the transformed market. It
is straightforward that no doctor has justifiable envy or strongly claim an
empty seat in µ; otherwise, some doctor also has the same justifiable envy
or strong claim in µ̃.

Suppose doctor d has regionally justifiable envy under target capacities
toward d′, who is assigned to h′ ∈ r. Also, there must be another hospital
h ∈ r such that h ≻d µ(d), |µ(h)| < qh, |µ(h

′)| > q̄h′ , and (d, h) ≻PL
r (d′, h′)

hold. If d′ is assigned to standard hospital h′ in the extended market, d must
have regionally justifiable envy toward d′ even in µ̃. Thus, let us assume
d′ is assigned to reserved hospital h′∗. There exists at least one doctor d′′

who is assigned to standard hospital h′ in the transformed market, since
|µ(h′)| > q̄h′ . Then, d must have regionally justifiable envy toward d′′, since
d′′ was rejected by h′∗ and hence (d, h) ≻̃PL

r̃ (d′, h′) ≻̃PL
r̃ (d′′, h′).

Next, suppose doctor d, who is assigned to h, regionally claims an empty
seat of h′ ∈ r, under target capacities. First, let us assume |µ(h′)| < q̄h′ .
Then, |µ̃(h′∗)| < q̃h′∗ holds. Also, |µ̃(r̃)| < q̃r̃ must hold since h′∗ ∈ r̃. Then,
d must strongly claim an empty seat of h′∗ even in µ̃.

Next, let us assume |µ(h′)| ≥ q̄h′ . Then, from the definition of regionally
claims an empty seat under target capacities, r(h) = r, |µ(r)| = qr, |µ(h)| >
q̄h, and (d, h′) ≻PL

r (d, h) hold. These condition implies that there exists at
least one doctor d′ who is assigned to standard hospital h in µ̃.
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If d is assigned to standard hospital h, d must regionally claim an empty
seat of h′ even in µ̃, since (d, h′)≻̃PL

r̃ (d, h) holds. If d is assigned to reserved
hospital h∗, then d≻̃h∗ d′ holds since d′ applies to h∗ but is rejected in
some stage. Hence, (d, h)≻̃PL

r̃ (d′, h). By transitivity, (d, h′)≻̃PL
r̃ (d, h) and

(d, h)≻̃PL
r̃ (d′, h) imply (d, h′)≻̃PL

r̃ (d′, h). Then, d must have regionally
justifiable envy toward d′ even in µ̃.

This theorem shows that PLDA can handle target capacities and still
satisfies regional fairness and regional nonwastefulness extended for target
capacities.

Appendix B Generalized Priority List

This section proposes a class of mechanisms called generalized PLDA, which
included both PLDA and FDA as extreme cases.

In PLDA, for each region r, one priority list is defined. In general-
ized PLDA, for each region, a round-robin ordering among multiple pri-
ority lists are defined. Let us assume for region r, there exist k prior-
ity lists PL1, . . . , PLk. Each PLj contains pairs in D × r. We assume
each pair (d, h) ∈ D × r is contained in exactly one priority list. Then,
these multiple priority lists are connected by a round-robin ordering, e.g.,
PL1 → PL2 → . . . → PLk → PL1 → . . ..

By using this round-robin ordering among priority lists, the choice of
each region in generalized PLDA is described as follows. First, one priority
list PLj is chosen according to the round-robin ordering. Then, (d, h), which
is placed in the top of PLj and is not tentatively accepted or rejected yet,
is chosen. If d is acceptable to h and accepting (d, h) does not violate the
maximum quota or regional cap, then tentatively accept (d, h). Otherwise,
reject (d, h). Then, move to the next priority list according to the round-
robin ordering.

We can consider PLDA is a special case of generalized PLDA, in which
only one priority list is used for each region. Furthermore, FDA is one in-
stance of generalized PLDA. To be more precise, assume r contains hospitals
h1, . . . , hk. Then, there exists k priority lists PL1, . . . , PLk for r. Each PLj

contains pairs related to hospital hj , and the order in PLj is identical to
the preference ordering of hj .

Let us show one example of generalized PLDA, which is a hybrid-type
mechanism of FDA and PLDA. Assume r is divided into two sub-regions r1
and r2. Also, the hospitals in r hope that within each sub-region, obtained
matching µ should be fair and efficient as much as possible, while |µ(r1)| and
|µ(r2)| (i.e., the number of doctors assigned to each sub-region) are equitable
as much as possible. Then, r can create two priority lists PLr1 and PLr2 ,
each of which contains pairs related to hospitals within the sub-region, and
apply round-robin ordering PLr1 → PLr2 → PLr1 → . . . to achieve these
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goals.
In general, the generalized PLDA is not always fair. However, the mech-

anism can satisfy fairness if all pairs related with each hospital h are included
in only one priority list, and the priority list respects the preference order-
ing of h. We can satisfy this condition in the hybrid mechanism described
above (as well as PLDA and FDA, which are represented as special cases of
generalized PLDA).

Appendix C The properties of PLDA

We prove several properties of PLDA by reformulating our model within
a matching-with-contract model in Hatfield and Milgrom [16]. In the re-
formulated model, we regard regions instead of hospitals as agents, i.e., we
consider a matching between doctors and regions. To be more precise, there
is a set of contracts X = D ×H, where a contract is a pair of a doctor and
a hospital. We sometimes call a subset X ′ of X an allocation. For the ease
of expression, xD and xH respectively denote the doctor and the hospital
concerned with x ∈ X. Also, let us define X ′

d := {x | x ∈ X ′, xD = d},
X ′

h := {x | x ∈ X ′, xH = h}, and X ′
r :=

∪

h∈r Xh, for any X ′ ⊆ X
In the model, each doctor can sign at most one contract associated with

herself. For each doctor d, her preference ≻d over ({d}×H)∪{∅} is defined
according to her preference in the original, that is, (d, h) ≻d (d, h′) (or
(d, h) ≻d ∅) in this model if and only if h ≻d h′ (or h ≻d ∅) in the original
model. According to the preference, each doctor d’s choice function Chd is
given as follows: for any X ′ ⊆ X,

Chd
(

X ′
)

:=

{

∅ if {x ∈ X ′
d | x ≻d ∅} = ∅,

max≻d
{x ∈ X ′

d | x ≻d ∅} otherwise.

On the other hand, we assume that each region r has ≻PL
r as a preference

over contracts in r. Hence, given a set of contracts X ′, the chosen set by
r, Chr(X

′), is a set of qr (or less) most preferable contracts according to
≻PL

r under the maximum quotas of the hospitals in r. More specifically,
Chr satisfies the following condition: for any X ′ ⊆ X, (d, h) ∈ Chr (X

′) if
and only if















h ∈ r,
d ≻h ∅,
∣

∣

{

(d′, h) | (d′, h) ∈ X ′, (d′, h) ≻PL
r (d, h)

}
∣

∣ < qh,
∑

h′∈r min{
∣

∣

{

(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d, h)

}∣

∣ , qh′} < qr.

Intuitively, Chr(X
′) chooses a contract one by one in the order of ≻PL

r , as
long as d is acceptable to h and accepting contract (d, h) does not violate
the maximum quota of h (the condition in the middle) and the regional cap
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of r (the condition in the bottom). The rejection function Rer is defined by
Rer(X

′) := X ′ − Chr(X
′) for any r ∈ R and any X ′ ⊆ X.

In addition, we define choice functions and rejection functions for R and
D as follows:

ChR (X ′) :=
∪

r∈R

Chr (X
′) ,

ReR (X ′) := X ′ − ChR (X ′) ,
ChD (X ′) :=

∪

d∈D

Chd (X
′) ,

ReD (X ′) := X ′ − ChD (X ′) .

Definition 20 (Hatfield and Milgrom [16]) Choice function Chr satis-
fies the substitutes condition if Rer(X

′) ⊆ Rer(X
′′) whenever X ′ ⊆ X ′′ ⊆

X.

In other words, contracts are substitutes if any rejected contract is never
chosen even when other contracts are added to alternatives.

Definition 21 (Hatfield and Milgrom [16]) Choice function Chr satis-
fies the law of aggregate demand if |Chr(X

′)| ≤ |Chr(X
′′)| whenever

X ′ ⊆ X ′′ ⊆ X.

In addition to the above two condition, we introduce a notion of the
irrelevance of rejected contracts. Aygün and Sönmez [4] point out that the
condition is implicitly assumed in Hatfield and Milgrom [16] but plays an
important role in their results.

Definition 22 (Aygün and Sönmez [4]) Choice function Chr satisfies
the irrelevance of rejected contracts if, for any Y ⊆ X and any z ∈
X \ Y , Chr(Y ) = Chr(Y ∪ {z}) whenever z /∈ Chr(Y ∪ {z}).

Proposition 1 For each region r, the choice function Chr defined above
satisfies the substitutes condition, the law of aggregate demand and the ir-
relevance of rejected contracts.

The proof is presented in Appendix D.1.
A set of contracts X ′ ⊆ X is said to feasible if |X ′

d| ≤ 1 for any d ∈ D,
|X ′

h| ≤ qh for any h ∈ H and
∑

h∈r |X
′
h| ≤ qr for any r ∈ R. Then, we define

a notion of stability according to Hatfield and Milgrom [16].

Definition 23 (Hatfield and Milgrom [16]) A set of contract X ′ ⊆ X
is HM-stable if and only if (i) X ′ = ChD (X ′) = ChR (X ′), (ii) there is no
(d, h) /∈ X ′ such that (d, h) ∈ ChD (X ′ ∪ (d, h)) and (d, h) ∈ ChR (X ′ ∪ (d, h)).

Note that condition (i) says not only that any contract x ∈ X ′ is accept-
able both for xD and for xH but also that X ′ does not violate any maximum
quota or any regional cap.
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Given a feasible allocation X ′ ⊆ X, we say that matching µ corresponds
to X ′ if µ(d) is h whenever (d, h) ∈ X ′ and ∅ whenever there is no contract
associated with d in X ′.

Although Hatfield and Milgrom [16] consider the matching between the
doctors and the hospitals, we apply their model to the matching between the
doctors and the regions. Therefore HM-stability is not directly meaningful
in our application. Thus, we translate HM-stability to desirable properties
as follows.

Proposition 2 X ′ is HM-stable if and only if a matching µ that corresponds
to X ′ is regionally fair and regionally nonwasteful.

The proof is presented in Appendix D.2.
We say that allocation X ′ ⊆ X is a doctor-optimal HM-stable al-

location in the reformulated model if X ′ is a HM-stable allocation that is
preferred to any other HM-stable allocation by each doctor. When every re-
gion’s choice function satisfies the substitutes condition, the law of aggregate
demand and the irrelevance of rejected contracts, the doctor-offering gener-
alized Gale-Shapley algorithm (Hatfield and Milgrom, 2005) finds a doctor-
optimal HM-stable allocation in a matching-with-contract model. We will
prove that, in the original model, PLDA produces a matching that corre-
sponds to the allocation.

Proposition 3 There exists the doctor-optimal HM-stable allocation X ′ in
the reformulated model. Moreover, in the original model, PLDA terminates
in a finite stages and finally produces a matching that corresponds to X ′.

Proof. As shown before, each region r’s choice function Chr in the reformu-
lated model satisfies the substitutes condition, the law of aggregate demand
and the irrelevance of rejected contracts. Therefore, by Hatfield and Mil-
grom [16], the doctor-offering generalized Gale-Shapley algorithm (DGGS)
produces the doctor-optimal HM-stable allocation in a finite stages. More-
over, each stage of PLDA corresponds to a stage of the DGGS. Indeed, if d
applies for h at a stage in PLDA, then (d, h) is offered at the same stage in the
DGGS. Also, the set of doctors tentatively accepted/rejected by hospitals
at each stage in PLDA corresponds to the set of contracts chosen/rejected
at the same stage of the DGGS.

By the results of Hatfield and Kojima [14], PLDA is group strategy-proof
as it produces a matching that corresponds the doctor-optimal HM-stable
allocation. Finally we summarize the properties of PLDA we found in this
section.

Conclusion 1 PLDA is group strategy-proof and produces the doctor-optimal
regionally fair and regionally nonwasteful matching.
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From this conclusion, we obtain Theorem 1.
Furthermore, by the above conclusion and the following lemma, we can

prove that the doctor-optimal regionally fair and regionally nonwasteful
matching is the doctor-optimal even in a broader set, i.e., the set of re-
gionally fair matchings.

Lemma 1 Any doctor-maximal regionally fair matching is regionally non-
wasteful.

The proof is in Appendix D.3.
Finally, we prove Theorem 2. Assume µ∗ is the matching obtained by

PLDA. By Propostion 3, µ∗ is the doctor-optimal regionally fair and re-
gionally nonwasteful matching. By way of contradition, let us assume there
exists amother matching µ′, where µ′ is regionally fair and µ∗ ⪰D µ′ does
not hold. However, by Lemma 1, µ′ is also regionally nonwasteful. This con-
tradicts the fact that µ∗ is the doctor-optimal regionally fair and regionally
nonwasteful matching.

Appendix D Proofs of propositions and lemmas

Appendix D.1 Proof of Proposition 1

First, we show that Chr satisfies the irrelevance of rejected contracts, i.e,
for any X ′ ⊆ X and any (d, h) ∈ X \X ′, (d, h) /∈ Chr(X

′ ∪{(d, h)}) implies
Chr(X

′) = Chr(X
′ ∪ {(d, h)}). Since, if h /∈ r or ∅ ≻h d, then adding (d, h)

does not affect Chr at all, without loss of generality, we assume h ∈ r and
d ≻h ∅.

By way of contradiction, suppose that Chr(X
′) ̸= Chr(X

′ ∪{(d, h)}). If
there exists a contract (d̂, ĥ) ∈ Chr(X

′ ∪ {(d, h)}) \ Chr(X
′), (d̂, ĥ) is not

included in Chr(X
′). Thus,

|{(d′, ĥ) | (d′, ĥ) ∈ X ′, (d′, ĥ) ≻PL
r (d̂, ĥ)}| ≥ q

ĥ
, or (1)

∑

h′∈r

min{|{(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d̂, ĥ)}|, qh′} ≥ qr. (2)

hold.
Let us consider the case where Eq. 1 holds. Then,

q
ĥ

≤ |{(d′, ĥ) | (d′, ĥ) ∈ X ′, (d′, ĥ) ≻PL
r (d̂, ĥ)}|

≤ |{(d′, ĥ) | (d′, ĥ) ∈ X ′ ∪ {(d, h)}, (d′, ĥ) ≻PL
r (d̂, ĥ)}|

This inevitably contradicts that (d̂, ĥ) ∈ Chr(X
′ ∪ {(d, h)}). Similarly, for

the case where Eq. 2 holds,

qr ≤
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d̂, ĥ)}|, qh′}

≤
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′ ∪ {(d, h)}, (d′, h′) ≻PL
r (d̂, ĥ)}|, qh′}
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leads to a contradiction.
Let us turn to suppose that there is a contract (d̂, ĥ) ∈ Chr(X

′) \
Chr(X

′ ∪ {(d, h)}). In this case, (d̂, ĥ) is not included in Chr(X
′ ∪ {(d, h)})

and thus

|{(d′, ĥ) | (d′, ĥ) ∈ X ′ ∪ {(d, h)}, (d′, ĥ) ≻PL
r (d̂, ĥ)}| ≥ q

ĥ
, or

∑

h′∈r

min{|{(d′, h′) | (d′, h′) ∈ X ′ ∪ {(d, h)}, (d′, h′) ≻PL
r (d̂, ĥ)}|, qh′} ≥ qr.

holds. The contract (d, h) must be ranked higher than (d̂, ĥ) on ≻PL
r , i.e.,

(d, h) ≻PL
r (d̂, ĥ), otherwise, the set of contracts ranked higher than (d̂, ĥ)

in Chr(X
′) on ≻PL

r is equivalent to that set in Chr(X
′ ∪{(d, h)}), violating

the assumption that (d̂, ĥ) ̸∈ Chr(X
′ ∪ {(d, h)}).

Therefore, we have

q
ĥ

> |{(d′, ĥ) | (d′, ĥ) ∈ X ′, (d′, ĥ) ≻PL
r (d̂, ĥ)}|

≥ |{(d′, ĥ) | (d′, ĥ) ∈ X ′, (d′, ĥ) ≻PL
r (d, h)}|

= |{(d′, ĥ) | (d′, ĥ) ∈ X ′ ∪ {(d, h)}, (d′, ĥ) ≻PL
r (d, h)}|

and

qr >
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d̂, ĥ)}|, qh′}

≥
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d, h)}|, qh′}

=
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′ ∪ {(d, h)}, (d′, h′) ≻PL
r (d, h)}|, qh′}.

Thus, (d, h) ∈ Chr(X
′ ∪ {(d, h)}) holds, which leads to a contradiction.

Next, we show that Chr satisfies substitute condition. It is sufficient
to show that Rer(X

′) ⊆ Rer(X
′ ∪ {x}) holds for any X ′ ⊆ X and any

x ∈ X \ X ′. Suppose that Rer(X
′) ⊆ Rer(X

′ ∪ {x}) does not hold, i.e.,
Rer(X

′) \ Rer(X
′ ∪ {x}) is non-empty. Then, let us choose any (d, h) ∈

Rer (X
′) \ Rer (X

′ ∪ {x}). (d, h) is in Rer(X
′) and then (d, h) ∈ X ′, while

x is not in X ′ from x ∈ X \X ′. Clearly, (d, h) is a different contract from
x. As a result, (d, h) ∈ Chr (X

′ ∪ {x}) implies the followings.

h ∈ r,
d ≻h ∅,
∣

∣

{

(d′, h) | (d′, h) ∈ X ′ ∪ {x}, (d′, h) ≻PL
r (d, h)

}
∣

∣ < qh, and
∑

h′∈r min{
∣

∣

{

(d′, h′) | (d′, h′) ∈ X ′ ∪ {x}, (d′, h′) ≻PL
r (d, h)

}∣

∣ , qh} < qr.

It is straightforward that, even if reducing x from X ′ ∪ {x}, the followings
also hold.

h ∈ r,
d ≻h ∅,
∣

∣

{

(d′, h) | (d′, h) ∈ X ′, (d′, h) ≻PL
r (d, h)

}
∣

∣ < qh, and
∑

h′∈r min{
∣

∣

{

(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d, h)

}
∣

∣ , qh} < qr.
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Therefore, we have (d, h) ∈ Chr (X
′). This contradicts that (d, h) ∈ Rer (X

′).
Finally, we show that Chr satisfies the law of aggregated demand. It is

sufficient to show that |Chr(X
′)| ≤ |Chr(X

′ ∪ {x})| holds for any X ′ ⊆ X
and any x ∈ X \X ′.

By way of contradiction, suppose that |Chr(X
′)| > |Chr(X

′ ∪ {(d, h)})|
holds for some set of contracts X ′ ⊆ X and some contract (d, h) ∈ X \
X ′. If (d, h) /∈ Chr(X

′ ∪ {(d, h)}), then Chr(X
′) = Chr(X

′ ∪ {(d, h)})
holds from the irrelevance of rejected contracts. This implies |Chr(X

′)| =
|Chr(X

′ ∪ {(d, h)})| and hence leads to a contradiction. Thus, we have
(d, h) ∈ Chr(X

′ ∪ {(d, h)}). Then there must be two distinct contracts
(d1, h1), (d2, h2) ∈ X ′ such that (d1, h1), (d2, h2) ∈ Chr(X

′) \ Chr(X
′ ∪

{(d, h)}) (= Chr(X
′) ∩ Rer(X

′ ∪ {(d, h)})). Clearly, both h1 and h2 be-
long to r and d1 and d2 are acceptable to h1 and h2, respectively. With
loss of generality, let us assume that (d1, h1) ≻

PL
r (d2, h2). Since (d1, h1) ∈

Chr(X
′) ∩Rer(X

′ ∪ {(d, h)}), either of the following two holds:

(i)
∑

h′∈r min{
∣

∣

{

(d′, h′) | (d′, h′) ∈ X ′ ∪ {(d, h)}, (d′, h′) ≻PL
r (d1, h1)

}∣

∣ , qh′} ≥ qr, (3)

or

(ii)h1 = h and
∣

∣

{

(d′, h) | (d′, h) ∈ X ′ ∪ {(d, h)}, (d′, h) ≻PL
r (d1, h1)

}
∣

∣ ≥ qh. (4)

Consider the case where Equation (3) holds. Since (d1, h1) ≻
PL
r (d2, h2),

qr ≤
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′ ∪ {(d, h)}, (d′, h′) ≻PL
r (d1, h1)}|, qh′}

≤ 1 +
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d1, h1)}|, qh′}

< 1 +
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d2, h2)}|, qh′}.

Thus, we have

qr ≤
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d2, h2)}|, qh′}.

This implies (d2, h2) /∈ Chr(X
′), which is a contradiction. On the other

hand, consider the case where Equation (4) holds. Then

qh ≤ |{(d′, h) | (d′, h) ∈ X ′ ∪ {(d, h)}, (d′, h) ≻PL
r (d1, h1)}|

≤ 1 + |{(d′, h) | (d′, h) ∈ X ′, (d′, h) ≻PL
r (d1, h1)}|

< 1 + |{(d′, h) | (d′, h) ∈ X ′, (d′, h) ≻PL
r (d2, h2)}|.

Thus, we have

qh ≤ |{(d′, h) | (d′, h) ∈ X ′, (d′, h) ≻PL
r (d2, h2)}|. (5)

If h2 = h, then Equation (5) implies (d2, h2) /∈ Chr(X
′), which is a contra-

diction. If h2 ̸= h, the following equation holds for any h′ ̸= h:

|{(d′, h′) | (d′, h′) ∈ X ′ ∪ {(d, h)}, (d′, h′) ≻PL
r (d2, h2)}

= |{(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d2, h2)}.

(6)
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By Equations (5) and (6), we have

∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′, (d′, h′) ≻PL
r (d2, h2)}|, qh′}

=
∑

h′∈r min{|{(d′, h′) | (d′, h′) ∈ X ′ ∪ {(d, h)}, (d′, h′) ≻PL
r (d2, h2)}|, qh′}.

(7)

Equations (6) (for h2) and (7) contradicts (d2, h2) ∈ Chr(X
′) ∩ Rer(X

′ ∪
{(d, h)}).

Appendix D.2 The proof of Proposition 2

(⇒) We prove that, if X ′ is HM-stable, µ is regionally fair and regionally
nonwasteful.

Since X ′ = ChD (X ′) = ChR (X ′), X ′ is feasible, and for any contract
(d, h) ∈ X ′, d and h are acceptable to each other. Hence, µ is also a feasible
matching.

Suppose that some doctor d has justifiable envy toward doctor d′ under
µ. Let h := µ(d) and h′ := µ(d′). Then, there are (d, h) , (d′, h′) ∈ X ′

satisfying h′ ≻d h and d ≻h′ d′. Hence we have (d, h′) ∈ Chd (X
′ ∪ {(d, h′)})

and (d, h′) ≻PL
r (d′, h′) where r ∋ h′. These contradict the HM-stability.

Also, if some doctor d has regionally justifiable envy toward doctor d′, then
there exist region r, hospitals ĥ, h′ ∈ r, and contracts (d, h) , (d̂, ĥ) ∈ X ′ such
that h′ ≻d h, |µ(h′)| < qh′ and (d, h′) ≻PL

r (d̂, ĥ). Then, we have (d, h′) ∈
Chr (X

′ ∪ {(d, h′)}) and (d, h′) ∈ Chd (X
′ ∪ {(d, h′)}). These contradict the

HM-stability of X ′. Hence, µ is regionally fair.
Furthermore, suppose that some doctor d, who is assigned to h under µ,

strongly claims an empty seat of h′ ∈ r. Then, h′ ≻d h, |µ(h′)| < qh′ , and
|µ(r)| < qr hold. Then, we have (d, h′) ∈ Chr (X

′ ∪ {(d, h′)}) and (d, h′) ∈
Chd (X

′ ∪ {(d, h′)}). These contradict the HM-stability of X ′. Also, let us
suppose that some doctor d, who is assigned to h ∈ r under µ, regionally
claims an empty seat of h′ ∈ r. Then, h′ ≻d h, |µ(h′)| < qh′ , |µ(r)| = qr,
and (d, h′) ≻PL

r (d, h) hold. Then, we have (d, h′) ∈ Chr (X
′ ∪ {(d, h′)})

and (d, h′) ∈ Chd (X
′ ∪ {(d, h′)}). These contradict the HM-stability of X ′.

Hence µ is regionally nonwasteful.
(⇐) We prove that X ′ is HM-stable if µ is regionally fair and regionally

nonwasteful.
First, it is clear that X ′ = ChD(X

′) = ChR(X
′) holds since µ is feasible,

i.e., under µ, all the quotas are satisfied, each student is matched with an
acceptable hospital or nothing, and vice versa.

Second, assume that there exists (d, h) /∈ X ′, where h ∈ r such that
(d, h) ∈ Chd (X

′ ∪ {(d, h)}) and (d, h) ∈ Chr (X
′ ∪ {(d, h)}) hold. Hence,

h ≻d h′ must hold for any (d, h′) ∈ X ′ or X ′
d = ∅. In both cases, if there

exists (d′, h) ∈ X ′ such that d ≻h d′, then fairness is violated. Thus, we
can concentrate on the case where d′ ≻h d holds for any (d′, h) ∈ X ′. Since
(d, h) ∈ Chr (X

′ ∪ {(d, h)}), |X ′
h| < qh must hold. If |X ′

r| < qr, then d
can strongly claim an empty seat of h. Thus, let us assume |X ′

r| = qr.

44



Since (d, h) ∈ Chr (X
′ ∪ {(d, h)}), there exists at least one contract (d̂, ĥ) ∈

Rer(X
′ ∪ {(d, h)}, which satisfies that (d, h) ≻PL

r (d̂, ĥ). If d̂ ̸= d, (regional)
fairness is violated. If d̂ = d, regional nonwastefulness is violated. Thus,
such (d, h) cannot exist. Therefore, X ′ is HM-stable.

Appendix D.3 The proof of Lemma 1

The proof is derived from the following two lemmas.

Lemma 2 A doctor-maximal regionally fair matching is weakly nonwaste-
ful.

Proof. Let µ be a doctor-maximal regionally fair matching. By way of
contradiction, suppose that doctor d, who is assigned to hospital h that
belongs to region r, strongly claims an empty seat of hospital h′ that belongs
to region r′, i.e., h′ ≻d h, |µ (h′)| < qh′ and |µ (r′)| < qr′ . We are going to
show that there exists another regionally fair matching µ∗ such that µ∗ ⪰D µ
and µ∗(d) ≻d µ(d). This contradicts the fact that µ is doctor-maximal.

Now, we show how to derive such µ∗. Without loss of generality, we
assume (d, h′) is the most preferable pair in ≻PL

r′ that satisfies the above.
Then, consider another matching µ1, which is identical to µ except that
d is moved from h to h′. If µ1 is regionally fair, then let µ∗ := µ1 and
we are done. Note that there is a chance that µ1 is not regionally fair.
However, since µ is regionally fair and we choose (d, h′) such that (d, h′) is
the most preferable pair in ≻PL

r′ , no doctor has justifiable envy or regionally
justifiable envy towards doctors assigned to r′. Also, since the assignments
of doctors except r and r′ are the same, no doctor has justifiable envy or
regionally justifiable envy towards these doctors. The only possibility is that
another doctor d′, who is currently assigned to h′′, prefers h to h′′. Then,
h must be full in µ (otherwise, d′ should have regionally justifiable envy in
µ), but h is not full in µ1. Thus, d′ can have regionally justifiable envy
toward some doctor in r. Without loss of generality, we assume (d′, h) is
the most preferable pair in ≻PL

r that satisfies the above. Then, consider
another matching µ2, which is identical to µ1 except that d′ is moved from
h′′ to h. If µ2 is regionally fair, then let µ∗ := µ2 and we are done. If it is
not, we can further repeat this procedure. In this procedure, doctors are re-
assigned to a better hospital. Thus, since the number of possible matchings
is finite, this procedure terminates in a finite number of iterations, that is,
µk is regionally fair for some k. Then let µ∗ := µk.

By the definition of µ∗, µ∗ is regionally fair and satisfies µ∗ ⪰D µ and
µ∗(d) ≻d µ(d). This is a contradiction to the maximality of µ.

Lemma 3 In a doctor-maximal regionally fair matching, no doctor region-
ally claims an empty seat.
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Proof. Let µ be a doctor-maximal regionally fair matching.
By way of contradiction, suppose that doctor d, who is assigned to h,

regionally claims an empty seat of a hospital h′, where h and h′ are in the
same region r. Then, h′ ≻d h, |µ (h′)| < qh′ , and (d, h′) ≻PL

r (d, h) hold.
Without loss of generality, we assume (d, h′) is the most preferable pair in
≻PL

r that satisfies the above. Then, consider another matching µ′, which is
identical to µ′ except that d is moved from h to h′.

Under µ′, since the assignments of doctors except d are the same, no
doctor has justifiable envy or regionally justifiable envy toward a doctor
except d; otherwise, the doctor must have the same justifiable envy under
µ. Also, since we choose d such that (d, h′) is the most preferable pair in
≻PL

r , no doctor has justifiable envy or regionally justifiable envy toward d.
Thus, µ′ is regionally fair and satisfies µ′ ⪰D µ and µ′(d) ≻d µ(d). This is
a contradiction to the maximality of µ.
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