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Abstract

This paper explores the effects of distance as well as subnational and national borders on
international and intranational knowledge spillovers through patent citations across the 39 most
patent-cited countries and 319 metropolitan statistical areas (MSAs) within the U.S. In contrast to
previous findings that knowledge localization fades over time, border and distance effects increase
over time for the same-age citations. This increasing effect of borders and distance is associated with
strengthened knowledge agglomeration over time. Nevertheless, both border and distance effects
decrease with the age of patents. Aggregate border effects are often overestimated due to various
aggregation bias. Moreover, industrial specialization and business travels effectively attenuate the
effect of subnational borders in knowledge flows.
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1 Introduction

The degree of localization of knowledge spillovers remains contentious. Recently, Thompson and Fox-Kean

(2005a) claimed that only national boundaries restrict knowledge flows and that there is no strong

evidence to support significant subnational barriers to knowledge diffusion. In contrast, Henderson,

Henderson, Jaffe, and Trajtenberg (2005) (among others) asserted that knowledge spillovers are lo-

calized internationally and intranationally at the state, the consolidated metropolitan statistical area

(CMSA), and even the standard metropolitan statistical area (SMSA) levels.1 These conflicting ideas

raise the question of the extent to which knowledge spillovers are localized and further challenge our

understanding of the causes of knowledge localization. Are knowledge spillovers restricted more by

physical distance or national (and subnational) boundaries? If knowledge spillovers are localized,

does knowledge localization truly fade over time, as suggested by the existing literature?2 The an-

swers to these questions have significant implications for public policy on knowledge dissemination

and industrial agglomeration.

To better understand patterns in the localization of knowledge spillovers and their potential

sources, this paper tackles three questions. First, how localized is the diffusion of intranational and

international knowledge? To address this question, I decompose the frictions affecting knowledge

spillovers to national and subnational borders and the effects of average distance and internal dis-

tance. Second, if national and subnational borders significantly impede knowledge diffusion, what are

the potential sources of border effects in knowledge spillovers? Alternatively speaking, are there any

factors which contribute to reducing the effect of borders in knowledge diffusion? Third, how does the

pattern of border and distance effects in knowledge diffusion change over time and with age? In this

paper, “age” refers to the age of knowledge flows, measured by the time interval between the citing

and cited patents.3

This definition of “age” highlights two different ways of representing patterns of knowledge flows

over time. One approach is to investigate existing knowledge spillovers cross-sectionally and year by

year to obtain the temporal trends. Another approach is to track the lifetime of knowledge (embodied

in patents) to observe how spillovers change as knowledge gradually ages, which are shown here in the

age profiles. The existing literature has not highlighted the difference between the temporal trends

and the age profiles,4 although they may generate completely different patterns of knowledge flows.

For instance, one might think that a patent is more likely to receive citations across regions as it

ages because of the time required to establish its reputation. In other words, it takes time for the

knowledge embodied in this patent to be diffused to other regions. If this hypothesis were true,

one would expect new knowledge spillovers to be more localized than old ones. The localization of

1For example, Peri (2005) found that pooled citations as proxy for knowledge spillovers are strongly localized at
the state/province level within one country. Jaffe, Trajtenberg, and Henderson (1993) reported significant localization
of knowledge spillovers at the SMSA level. Thompson (2006) and Alcáer and Gittelman (2006) found that inventor
citations and examiner citations are both localized within the U.S.

2Jaffe, Trajtenberg, and Henderson (1993) find that knowledge localization fades over time, but only very slowly.
3Citation lag = the grant year of the citing patent - the grant year of the cited patent. For example, if patent A cites

patent B which is 20 years old (i.e., B was granted 20 years ago), this is a relatively “old” knowledge flow, and the age of
this knowledge flow is 20; if patent A cites patent B which was granted 2 years ago, this is a relatively “new” knowledge
flow, and its age is 2.

4For example, the finding of that “localization fades over time” in Jaffe, Trajtenberg, and Henderson (1993) actually
means that localization fades over a patent’s lifetime.
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knowledge would then fade over patents’ lifetimes. However, if the proportion of new citations to total

citations increases over time, a pattern that has been observed (Hall, Jaffe, and Trajtenberg, 2001), it

is possible for all knowledge spillovers to become increasingly localized over time. Other mechanisms

could also generate this pattern. For these reasons, it is necessary to distinguish temporal trends and

age profiles of knowledge spillovers.

To answer the three questions stated above, I use a gravity model to estimate the magnitude of

and the changes in the border and distance effects of knowledge flows. Following a common approach

in the literature of knowledge spillovers, I use patent citations to trace knowledge flows. Patent

citations are a good proxy for knowledge flows because patents embody new ideas (or knowledge) and

award to inventors the right to exclude others from the unauthorized use of the disclosed invention.

The applicant of a patent has the legal duty to disclose any knowledge of the “prior art”, and hence,

citations to previous patents are included in the patent documents. Intuitively, if patent B cites patent

A, patent A then represents a piece of previously existing knowledge upon which patent B builds.

When patents generate citations, they leave a paper trail of knowledge flows (Jaffe, Trajtenberg, and

Henderson, 1993). Therefore, when patents invented in region i cite patents invented in region j, it

is viewed as equivalent to the fact that knowledge flows from region j to i.5 Here, patent citations,

rather than the patent stock itself, provide interesting information tracking the direction and intensity

of knowledge spillovers (Peri, 2005).6

Using different specifications of gravity equations, I estimate the effects of distance and borders

on knowledge spillovers at the aggregate level and by different criteria (age, technology category, and

time), controlling for technology compatibility between regions and the pre-existing distribution of

technological activities by 3-digit patent class. Based on those estimates, I analyze the changing

patterns (age profiles and temporal trends) of border and distance effects for knowledge spillovers. I

also try to decompose the data along different dimensions to examine the potential sources of border

effects.

The main data used in this paper are from the NBER Patent Citations Database, which contains

more than 3 million patents and more than 16 million cross-patent citations. Border and distance

effects are examined at both the intranational and international levels through patent citations across

319 metropolitan statistical areas (MSAs) within the U.S. and the 38 most cited countries.7 These

regions include more than 93 percent of patents and citations in the NBER database between 1980

and 1997. I employ the data at the MSA level because a study of the geography of innovation has

shown that the majority of innovations are located in major cities, indicating that innovation is mainly

an urban activity (Audretsch and Feldman, 2004). This observation raises doubts about the validity

of large effect of state borders in the previous literature.8 The finer data set at the metropolitan level

5It should be noted that this paper only addresses the “pure” knowledge flows embodied in patent citations and all
knowledge flows studied in this paper refer to those associated with patents and citations since the general concept of
“knowledge” contains extensive content and is difficult to quantify.

6Measuring knowledge flows in a consistent, systematic way is a difficult task. Peri (2005) provided a concise summary,
including some alternative approaches using trade flows or foreign direct investments as proxies for knowledge flows.

7These 319 MSAs include 270 typical MSAs, defined by the U.S. Census Bureau in 1990, and 49 phantom MSAs, one
for each state (except New Jersey), containing all locations in non-metropolitan areas.

8For example, Peri (2005) estimated that knowledge flows will be diminished to 20 percent when crossing state or
province borders within one country. In other words, Peri (2005) reported that around 80 percent of initial knowledge
spillovers will be lost when crossing state/province borders.
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allows for fuller exploration of the sources of subnational border effects and the nature of frictions

affecting knowledge flows. In addition, I apply subnational level data regarding industrial composition

and business travels to tackle relevant factors in affecting the effect of subnational borders.

I find large subnational border effects at the metropolitan level: overall, approximately 84% of

subnational border effects are associated with the metropolitan borders. On average, the national

border effect is larger than the MSA border effect, and the MSA border effect is significantly larger

than the state border effect. This estimate of the national border effect is consistent with the previous

literature, though the estimate of the MSA border effect contrasts with the large effects of state

borders (blocking approximately 80 percent of initial knowledge flows) previously reported (Peri,

2005). Furthermore, ignoring MSA borders tends to exaggerate the effect of distance. Combining

distance and border effects, the finding suggests the importance of subnational borders at MSA level.

Contrary to previous findings that knowledge localization fades over time, I find that border and

distance effects in fact increase over time even for the same-age knowledge flows, and this phenomenon

is associated with strengthened knowledge agglomeration over time. The agglomeration analysis of

patent citations using EG index (Ellison and Glaeser, 1997) further confirms this result. The increase

in border and distance effects over time is robust to different specifications and decompositions, such

as by different age cohorts, industries of cited patents, or citing regions. This decomposition exer-

cise alleviates the concern that the increasing distance effect over time is driven by changes in the

composition of the sample. The increasing distance effect is also potentially related to the increasing

“home bias” in knowledge flows where a reduction in the share of foreign citations at aggregate level

is observed. Nevertheless, both distance and border effects decline with the age of knowledge and this

age profile is consistent with the previous literature.

I then examine the sources of border effects and find that aggregation bias is a potential ex-

planation. Decomposing data along different dimensions (geography, age, or technological category)

contributes to a substantial reduction of aggregate border effects. Moreover, industrial specialization

at MSA level and business travels across MSAs significantly facilitate knowledge flows and effectively

attenuate the effect of subnational borders.

By analyzing the effect of borders and distance in knowledge flows, this paper contributes to the

emerging literature that explores the nature of knowledge diffusion using patent citation data. Most

prior studies of knowledge flows focus on the geographic or institutional determinants of knowledge

localization without explicit distance measures and do not differentiate the contributions of distance

and borders (for example, Thompson and Fox-Kean, 2005a; Henderson, Jaffe, and Trajtenberg, 2005;

Thompson, 2006; Griffith, Lee, and Reenen, 2011, among others). Therefore, knowledge localization

effects in those studies are, in fact, combined effects of geographic distance and borders. Several recent

studies have investigated distance explicitly together with borders in knowledge flows (for example,

Peri, 2005; Alcáer and Gittelman, 2006; Singh and Marx, 2013), but they either used dummy variables

for distance intervals or omitted internal distance, i.e., the distance from one region to itself was set to

zero. Rich distance data have not been investigated by the previous studies on knowledge flows. My

findings imply that the omitted internal distance is important for examining home bias in knowledge

flows. The novel findings of this paper reveal contrasting patterns of age profiles and temporal trends

for border and distance effects in knowledge spillovers, which have not been previously reported.
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This paper also contributes to studies of the subnational localization of knowledge spillovers.

Much of the literature is based on matching methodology, and it can be difficult to reconcile previous

quantitative and even qualitative findings (e.g., Thompson and Fox-Kean, 2005; Henderson, Jaffe and

Trajtenberg, 1993, 2005) due to the different criteria used for control groups.9 For example, selecting

different control groups can yield completely opposite results on whether knowledge spillovers are

localized within a country. Hence, this paper uses a gravity framework to avoid selecting control groups

and to estimate border and distance effects directly. Closely related work in empirical methodology

includes Peri (2005), who used the gravity-like equation with the subnational patent citation data at

the state (or province) level to study knowledge flows. Those findings suggest a strong knowledge

localization effect at the state level due to large effects of state borders.10 In contrast, my finding

suggests a large subnational border effect at the MSA level.

Finally, the present paper contributes to a large literature on gravity application and border ef-

fects. The large border effect remains a key puzzle in international economics: Obstfeld and Rogoff

(2000) refer to “McCallum’s (McCallum, 1995) home bias in trade” puzzle as one of the six leading

puzzles in modern international macroeconomics. Since their study, many scholars have examined

potential biases in estimates of border effects through theoretical and structural models or empir-

ical strategies (Anderson and van Wincoop, 2003). This paper builds on the gravity framework of

Anderson and van Wincoop (2003) and presents compelling empirical evidence for the potential reso-

lution of the border puzzle in the context of knowledge flows. Part of the proposed resolution might

be extensible and could be linked to border effects in trade flows. For example, when I decompose

data from the state to the MSA level, the state border effect is substantially reduced; if I further use

disaggregated data at the technological category level, some state border effects are no longer signif-

icant. This pattern is consistent with the finding in Hillberry and Hummels (2008): the state-level

home bias in trade flows is largely driven by geographic aggregation. This paper also yields insights

into the discussion of endogenous border effects in international trade (e.g., Chen, 2004).

The remainder of the paper is organized as follows. Section 2 summarizes the basic framework of

analysis and describes the econometric specifications and data. Section 3 presents results, and Section

4 concludes.

2 Empirical Specification and Data

2.1 Baseline Gravity Equation

I employ a gravity framework of knowledge flows to disentangle the effects of physical distance and

different types of borders on knowledge diffusion, avoiding the confounded “knowledge localization

effect”. Let cij denote the number of citations region j receives from region i, i.e., the number of

citations by patents in region i of existing knowledge present in the patents of region j. This measure

9Matching method in knowledge spillovers literature was first used by Jaffe, Trajtenberg, and Henderson (1993) to
study the geography of knowledge flows using patent citations. They matched each citing patent to a non-citing patent,
which shares the same location with the citing patent, so as to control for the existing concentration of knowledge
production.

10Peri (2005) estimates that only 20% of average knowledge is learned outside the average region of origin, i.e., there
is around 80% of initial knowledge flows would be lost when they cross state borders.
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is a proxy for the quantity of knowledge flowing from j to i. Hence, j is the cited region, and i is the

citing region. Let yi and yj be the total number of citations region i and j receives, respectively, from

all regions in the world, including region i and j themselves. A region’s innovation outcome reflects

its knowledge production capacity, and in the literature is measured by the total number of patents

(weighted by citations received) in this region because the number of citations received captures a

patent’s importance.11 Following this idea, I use the total number of citations received in regions i

and j, yi and yj , to capture the size of the regions’ respective knowledge production capacities.

“Region” is defined flexibly in this paper, referring to MSAs within the U.S. and 38 countries

outside the U.S. A region-pair specific friction factor prevents the free movement of knowledge flows

between region i and region j. Subnational and national borders as well as distance and internal

distance serve as a proxy for the friction factor in knowledge flows. Following the gravity literature,

I assume that the friction factor is a loglinear function of observables, which mainly include bilateral

distance, dij , and the presence of a national border Bn
ij (1 if crossing countries, 0 otherwise), a state

border Bs
ij (1 if crossing states within the U.S., 0 otherwise), and a MSA border Bm

ij (1 if crossing

MSAs within the U.S., 0 otherwise). Thus, the basic gravity equation for estimating border and

distance effects in cross-sectional knowledge flows is given by:

ln(
cij
yiyj

) = α ln dij + β1B
m
ij + β2B

s
ij + β3B

n
ij + ri1CIi + rj2CEj + εij

where CIi is equal to 1 if i is the citing region (destination region of knowledge flows) and 0 otherwise,

CEj is equal to 1 if j is the cited region (source region of knowledge flows) and 0 otherwise, and

εij is error term. Thus, CEj and CIi are origin and destination fixed-effects terms. In general,

the two fixed-effects terms control for those citing- and cited-region-specific characteristics and can

replace unobservable, region-specific multilateral resistance terms as in the gravity literature (e.g.,

Anderson and van Wincoop, 2003).12 To identify the time trend of border and distance effects, I also

conduct the panel estimation where the citing-region-year fixed effects (vis-à-vis importer-year fixed

effects) and cited-region-year fixed effects (vis-à-vis exporter-year fixed effects) are used to control for

multilateral resistance.

Note that knowledge flows may differ from trade flows, especially in the aspect of technological

relations between regions. As the pattern of knowledge spillovers may be partly due to the existing

distribution of technological activity, it is reasonable to expect knowledge flows, compared with trade

flows, to be more affected by technological similarities between regions. Then, the existence of techno-

logical similarity undermines the attempt to identify the true border and distance effects in knowledge

flows: Do regions cite each other more because ceteris paribus knowledge flows easier between them or

because knowledge flows more easily between regions that are likely to be more technologically similar?

Therefore, it is of great importance to properly control for technological similarity. The literature has

seen contentious debate on how one controls for that and it remains to be a challenge.

11Think about a patent granted in one region. If this patent never receives any citations in the subsequent years, it
will be treated as a trivial innovation outcome and its impact is negligible.

12Anderson and van Wincoop (2003) show that region-fixed effects estimation and structural estimation obtain similar
results. Feenstra (2002) also proves that the fixed-effects estimator produces consistent estimates of the average border
effect.
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To address this issue, I adopt a “technology compatibility” index TechCompij, building upon the

one developed by Maruseth and Verspagen (2002) and recently used by the literature in urban and

regional economics (e.g., Mukherji and Silberman, 2013). In calculating the technology compatibility

index, I use the six one-digit patent technology category in the NBER Patent Citations Database.13

The index captures technological linkages between different patent classes using the observed pattern

of citations between different technology classes and the regions’ sectoral specialization in patenting.

The precise definition of this index is presented in Appendix A. When two regions are specialized in

technology classes that are often observed to cite each other, this region pair receives a high score

on the compatibility index, ranging between 0 and 1. This index is not symmetric. For instance,

if pharmaceutical patents are often observed to cite chemical patents, while chemical patents rarely

cite those pharmaceutical patents, and if region i patents to a relatively large extent in drugs and

medical class and region j patents relatively more heavily, among all technology classes, in chemicals,

TechCompij will obtain a high value. TechCompji, on the contrary, will receive a low value. The

impact of the index on the knowledge flows between two regions is expected to be positive. To sum

up, this index measures the compatibility of the patents of two regions to determine the likelihood

that patents of a given region will cite those of another.

To further control for the pre-existing industrial effects of technological activity, I also add the

cited- and citing-region-specific 3-digit-patent-class terms to isolate the pre-existing industrial effects

of technological specialization. Hence, the empirical gravity equation becomes

ln(
cij
yiyj

) = α ln dij+β1B
m
ij +β2B

s
ij+β3B

n
ij+β4TechCompij+ri1CIi+rj2CEj+

N
∑

n=1

γinT
i
n+

N
∑

n=1

γjnT
j
n+εij

(1)

where n (n = 1, 2, ..., N) denotes a 3-digit patent class of the total N 3-digit patent classes, and T l
n

(l = i, j) represents the proportion of knowledge production accumulation (patent citations received up

to the current period) in technological class/industry n to the total knowledge production accumulation

in region l. Equation (1) is the baseline regression equation.14

2.2 Data

Patent and citation data are drawn from the NBER Patent and Citation Database.15 This database

contains all the patents granted by the U.S. patent office (USPTO) and all patent citations since 1975.

The inventors’ geographic locations are determined by their registered residences. If an inventor is

located in a country outside of the U.S., she will be called a “foreigner”. Among all patents and

citations, more than 40 percent of patents have been granted to foreigners and more than 40 percent

of citations have been generated by foreigners. Hence, the database is sufficiently comprehensive to

examine international patterns of knowledge spillovers.

13The six rough categories of patents are: chemical, computers and communications, drugs and medical, electronics
and electricity, mechanical, and others. I also experimented with two-digit subclass and three-digit patent classes to
construct the technology compatibility index and the main results still hold.

14Using only ln cij as dependent variables and moving ln yi and ln yj to independent variables does not alter the main
results of border and distance effects. I also use Tobit estimation to handle the zero flows of citations between two regions
and find that the main results are preserved.

15See Hall, Jaffe and Trajtenberg (2001) for a detailed discussion of this database.
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I designate the region of a patent as the residence of its first inventor.16 For a patent invented

within the U.S., the region is the MSA of its location. For a patent invented outside the U.S. (i.e.,

a “foreign” patent), the region is the country of its location. The previous literature using a gravity

framework did not use MSA-level information and found very large effects of state (or province)

borders. As innovation is mainly an urban activity, knowledge spillovers are expected to be localized

at city or metropolitan level. Thus, to better examine the subnational pattern of knowledge spillovers,

I compile the data at the MSA level regarding the location of each patent inventor according to the

zip code and town/city/place name information (see Appendix B for details). Finally, I match more

than 93 percent U.S. inventors to 319 MSAs.

If the patent of region i (granted in year t) cites a patent of region j (granted in a year prior to

year t), it is assumed that there is a single unit of knowledge flowing from j to i in year t. Then, I

sum all directed citation flows from region j to i in year t as a measure of knowledge flows from j to

i in year t. Thus, I obtain all bilateral knowledge flows between each region pair ij in year t.

The sample contains citations between 1980 and 1997 associated with each citing and cited patent

pair whose inventors are residents of 1 of the 357 regions (319 MSAs within the U.S. and 38 other

countries). The 38 foreign countries were selected by their rank of knowledge production and the

importance of their economy.17 The time of citation is defined by the grant year of the citing patent.

The cited patents in the sample are restricted to patents granted after January 1, 1976. My final sample

contains more than 1.6 million patents belonging to more than 400 3-digit patent classes and more than

6.6 million (realized) citations. The final sample covers more than 93 percent of patents and citations

between 1980 and 1997 in the original NBER database and therefore is sufficiently comprehensive.18

Table 1 presents the top 10 most cited regions according to the number of yearly received citations

(excluding self-citations).19 The most cited region is Japan, which received more than 59,000 citations

per year during the sample period. This result arises because the most cited country, U.S., has been

decomposed to 319 MSAs.20 Because some representative regions within the U.S. are multi-state

MSAs, it is worthwhile to investigate state borders and MSA borders simultaneously after controlling

for size effects, physical distance, technology similarities, and pre-existing technological specialization.

[Insert Table 1 here]

Distance data are from CEPII’s worldwide geographical database for countries. I use geodesic

distances, which are calculated by the great circle formula using latitudes and longitudes of the most

important cities/agglomerations (in terms of population). For subnational regions within the U.S.,

16The rule of “location by the first inventor” was designed by the constructor of NBER Patent and Citation Database.
17The sample (except for the U.S.) is constructed by the following procedure: (1) Rank all countries by the total number

of citations production (i.e., citations received) and the total number of patents production (i.e., patents granted), and
then choose the 30 largest countries in both ranking list. (2) Use the intersection set of these two groups of 30 largest
countries. (3) Add all other OECD countries (except for Slovakia) which are not included in the previous set. (4) Add
the OECD Non-Member Economies (China, Russia, Brazil) and India.

18The sample sizes of some recent studies of knowledge flows are: for instance, 1,456 patents and 16,095 citations by
Alcáer and Gittelman (2006), 1.5 million patents and 4.5 million citations by Peri (2005), and about 4 million (realized)
citations by Singh and Marx (2013).

19Self-citations refer to those citations whose citing patent and cited patent belong to the same assignee and do not
capture the true knowledge spillovers. Thus, all self-citations have been excluded from estimations.

20To be reminded that “region” is defined as a MSA within the U.S. and a country outside the U.S.
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I use coordinates of the largest city (by 1990 population) to locate MSAs. To investigate the intra-

regional knowledge flows, I also use the area-based internal distance formula (Mayer and Head, 2002).21

To obtain a better understanding of subnational barriers that impede knowledge spillovers, I also

apply additional subnational level data in analyzing effects of subnational borders. Those data include

Industrial composition data from BLS (U.S. Bureau of Labor Statistics) and Business travel

data from U.S. Department of Transportation (see Section 3.5 and Appendix B for more details).

3 Results

This section presents the main results regarding temporal trends and age profiles of distance and

border effects as well as the sources of border effects, in particular, the subnational borders. The

key findings are as follows: First, subnational borders significantly impede knowledge flows, and they

mainly originate at the MSA level. Second, border and distance effects are interestingly rising over time

for the same-age citations, yet decline with the age of knowledge. The increasing effects of borders

and distance are associated with strengthened knowledge agglomeration over time. Third, various

aggregation bias lead to overestimates of border and distance effects. Last but not least, industrial

specialization at MSA level and business travels across MSAs significantly facilitate knowledge flows

and effectively attenuate the effect of subnational borders.

3.1 Aggregate Border and Distance Effects

Table 2 presents the estimation results of equation (1) for the whole sample (357 regions and 18 years)

on aggregate knowledge flows. Different specifications refer to different border combinations or fixed

effects combinations. To interpret the economic meaning of those coefficients, take Specification (1) as

example. For the whole sample, after controlling for technology compatibility and 3-digit patent class

effects, the distance coefficient is approximately -0.03 over the period 1980-1997, which means that

holding everything else constant, a 1 percent increase in the distance between region i and j decreases

patent citation flows by 0.03 percent. In other words, halving the distance increases knowledge flows

by 1.5 percent. This suggests that knowledge flows are substantially less affected by physical distance

than trade flows are: according to Disdier and Head (2008), halving distance increases trade flows by

approximately 45 percent. However, distance still significantly impedes knowledge spillovers.

[Insert Table 2 here]

To interpret border effects, I start with the coefficient (-2.194) on national border dummy Bn
ij

in Specification (1). The percentage difference in the predicted value between cross-nation-border

citation flows (Bn
ij = 1) and intranational citation flows (Bn

ij=0) is -88.9% (= (e−2.194 − 1) · 100).

Cross-nation-border knowledge flows are thus on average 88.9 percent less than intranational citation

flows. This result is equivalent to the statement that 88.9 percent of initial knowledge flows are blocked

21It is an often used measure of average distance between producers and consumers in a country. I follow the formula:
dii = 0.67(area/π)1/2 in the context of flexible “region” to calculate the internal distance. Hence in this paper, the
internal distance dii 6= 0.

9



by national borders, holding all other factors constant. In other words, intranational knowledge flows

are 8.97 (= e2.194) times higher than cross-nation-border knowledge flows, which is referred to as the

average national border effect. In general, the average border effect is calculated as the exponent of

the (absolute value of the) coefficient of the border indicator (Feenstra, 2002).22 Correspondingly,

the magnitudes of the MSA border effect and the state border effect in Specification (1) are 4.20 (=

e1.435) and 1.35 (= e0.297) respectively. Intra-MSA knowledge flows are thus 4.20 times higher than

cross-MSA-border knowledge flows, and intra-state knowledge flows are 1.35 times higher than cross-

state-border knowledge flows. My estimate of national border effect is consistent with Peri (2005)

who reports that national borders diminish knowledge flows to 9 percent of their initial level; in my

estimate it is 11.1 percent. My estimates of subnational border effects are also similar to the magnitude

of the state border effect in Peri (2005) while Peri (2005) did not report MSA border effect. Thus,

both national and subnational borders significantly impede knowledge flows. On average, the national

border effect is larger than the MSA border effect, and the MSA border effect is larger than the state

border effect.

In all specifications in Table 2, the coefficients on distance and borders are all significantly negative,

while the coefficients on technology compatibility are significantly positive. If I use only the state

border to represent the subnational border effect as in Specification (3), the magnitude of the distance

effect becomes much larger, while the national border effect becomes smaller. This pattern suggests

that the model ignoring MSA borders compensates by moving part of the border effect into the distance

effect, creating an upward bias in estimates of the distance effect. This shift suggests the presence of

an geographic aggregation bias at the state level within the U.S. (see Section 3.4 for details). Thus, I

include both MSA and state borders as subnational borders.

3.2 Temporal Trends of Border and Distance Effects

In the recent trade literature, the question of whether distance decays over time has attracted sub-

stantial attention. In the knowledge flow literature, only quite recently have economists started to

concern themselves with this question (e.g., Griffith, Lee, and Reenen, 2011), and some conjectures

have been proposed that call for more empirical work along the line. Therefore, this paper fills in the

gap by examining the temporal trends of both border and distance effects for knowledge flows.

3.2.1 Increasing Effect of Distance and Borders

I first run baseline regressions by year and find that both border and distance effects significantly

increase over time (i.e., the magnitude of the coefficients on distance and borders increases over time).

However, the estimates of aggregate border and distance effects by year are not accurate when large

temporal and age heterogeneity exists. Thus, I divide the sample period into several sub-periods, add

year fixed effects to capture the time heterogeneity, and run regressions for the same cohort of citations

(i.e., the citations with the same age). I use three different time intervals to ensure the robustness of

results: (1) 1980s and 1990s; (2) every 5 years; and (3) every 2 years. Table 3 presents the results of

(1) and (2) with controlling for technology compatibility; Figure 1 illustrate the temporal trends of

22Feenstra (2002) proves that this simple method can produce the consistent estimates with the structural estimates.
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(3) without controlling for technology compatibility, for each 2-year age group.23

[Insert Table 3 and Figure 1 here]

Table 3 shows that border and distance effects are increasing over time within the same-age ci-

tations. This increasing pattern is very robust when one compares 1980s with 1990s, though it is

slightly volatile when the sample is decomposed into more disaggregated time intervals. All borders

and distance effects are increasing over time, except for the persistent and nearly unchanged distance

effect for some very old citations (for instance, citations with age between 10 and 15 years).24 Even

the youngest group (with age less than 1) also preserves increasing MSA and national border effects

over time though the distance effect is not significant. Those youngest knowledge flows with very

short citation lags are more likely to be added by patent examiners and thus less likely to represent

true spillovers (Jaffe, Trajtenberg, and Henderson, 1993).

To further confirm the increasing distance effect, I conduct the following exercise to show the

robustness of this result. I restrict the sample to those patents that belong to the same year and the

same 3-digit patent class, and further to those that eventually are cited in a particular region in a

given year. In other words, I restrict the sample to the citations with the same age, the same 3-digit

technology class of cited patents, and the same citing region. Then I compute three statistics: (1) the

average distance between citing and cited patent, (2) the fraction of patent citations that are from

abroad, and (3) the average distance to the cited patent among all foreign citations (average foreign

distance hereafter). I vary the parameters of this exercise (the age of citation and the citing region)

and report results for 6 representative regions (three countries outside of the U.S. and three MSAs

within the U.S.) in Table 4 where the cited patents belong to a certain 3-digit industry. Panel A in

Table 4 reports 3-year age group and Panel B reports 5-year age group.

[Insert Table 4 here]

Let me take the first region, Australia, in Panel A as example. For all age-3 citations, the aver-

age distance between citing and cited patents for Australia decreases by 7.4% from 1980s to 1990s.

Meanwhile, all citations in Australia remain to be foreign citations (i.e., Australian inventors cite

patents from abroad), and the average foreign distance reduces by the same proportion, 7.4%. This

pattern also holds for regions within the U.S. For instance, the Boston-Worcester-Lawrence MSA sees

a 29.7% reduction in average distance and a 4.0% reduction in average foreign distance. Its share of

foreign citations also declines by 49.3%. In Panel A, the only region without a reduction in average

distance is the Los Angeles-Riverside-Orange County MSA but it also experiences a decline in average

foreign distance. In general, all regions experience reductions in either average distance or average

foreign distance, which is consistent with the increasing distance effect over time. I repeat this exercise

for different industries and different years (see Table A.1 in Appendix). This exercise alleviates the

concern that the increasing distance effect over time is driven by changes in the composition of the

sample, such as different age cohorts, industries of cited patents, or citing regions.

23When I use each 5-year age group to depict the temporal trends, the same increasing pattern of border and distance
effects is obtained (see Figure A.1 in Appendix).

24Citations with age 0 and 1 do not see significant distance effects, perhaps because those citations are more likely to
be added by examiners rather than inventors.
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Still one compositional change at aggregate level is potentially related to the increase in distance

effect and is worth noting. That is the change in the share of foreign citations among all citations. If

inventors cite more and more home-country patents which is consistent with the increase in national

border effect, the measured average distance between citing and cited patent will be naturally reduced

because, on average, distance of domestic citations is much smaller than distance of foreign citations.

By computing the fraction of foreign citations for different age group at different periods, I find that

all citing regions and, in particular, the regions outside the U.S., clearly experience a reduction in

the share of foreign citations over time (see Table A.2 in Appendix for details). This reduction in

foreign share is consistent with the increasing national border effect, and can also partially contribute

to the rising time trend of measured distance effect. This increasing “home bias” of knowledge flows

is consistent with Singh and Marx (2013) who also find that the country effect in patent citations has

strengthened over time.

3.2.2 Strengthened Knowledge Agglomeration

It is an intriguing phenomenon that border and distance effects increase over time. If it is true, it

is expected to be associated with strengthened knowledge localization or knowledge agglomeration

over time. To verify this hypothesis that knowledge agglomeration has strengthened over time, I

compute the EG index of agglomeration (Ellison and Glaeser, 1997) for knowledge production (by

patents granted) at 1-digit, 2-digit, and 3-digit technological class levels in each year.25 Then I plot

the average agglomeration indexes by all regions, foreign regions, U.S. regions, and European Union

regions over time in Figure 2.

[Insert Figure 2 here]

In all regions the agglomeration indexes of knowledge production significantly rise over time at all

levels of patent classes. Among them, foreign regions outside the U.S. experience the largest increase

while the U.S. regions experience a moderate raise in knowledge agglomeration. European regions

enjoy higher knowledge agglomeration than the U.S. regions at 1- and 2-digit levels while at the 3-

digit level share similar degree of agglomeration as the U.S. regions. I also plot the agglomeration

indexes of knowledge production by six patent categories separately for different groups of regions and

confirm the same rising pattern (see Figure A.2 in Appendix).

The agglomeration analysis confirms that knowledge production indeed increasingly agglomerates

over time, which endogenously yields a stronger localization effect and thus generates endogenously

larger border and distance effects over time. It will be interesting to analyze what forces contribute to

this increasing pattern of knowledge agglomeration. In theory, the potential sources of agglomerative

forces could be transport costs (perhaps less relevant to knowledge flows), technological externality,

25To compute EG index of agglomeration for patents, I view each citing patent as an individual “knowledge producer”

and define its knowledge production as one. The EG index of knowledge agglomeration is given by γs =
Gs−(1−

∑
i
χ2

i )Hs

(1−
∑

i
χ2

i )(1−Hs)
,

where s and i index sector and region, respectively; Gs =
∑

i (pi − χi)
2; pi is the proportion of knowledge production

of region i in sector s; χi is the share of total knowledge production for region i across all sectors; Hs =
∑

k z
2
k is the

Herfindahl index of sector s and zk is the knowledge production share of a particular patent in sector s. Sector s could
be 1-digit, 2-digit, or 3-digit patent class. I also compute the agglomeration index with citations received and obtain the
same rising pattern of knowledge agglomeration.
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and the pooling of specialized skills, while separating out different sources of agglomeration remains

an empirical challenge (Redding, 2010). Disentangling detailed agglomerative forces of knowledge

spillovers is even more challenging. Some broadly related questions, such as the impact of skilled

emigration on innovation in India (Agrawal, Kapur, McHale, and Oettl, 2011) and the role of social

connections in facilitating knowledge flows (Agrawal, Cockburn, and McHale, 2006), have been ex-

plored by prior research. I will address some complementary aspects such as business travels and

industrial composition across MSAs later when analyzing the sources of subnational border effect of

knowledge spillovers. Yet a through analysis of why knowledge agglomeration has strengthened over

time is out of the scope of the current paper and therefore left for future research.

3.3 Age Profiles of Border and Distance Effects

It is expected that the different types of knowledge flows (e.g., international and subnational) have

different age profiles or age distributions. I draw on the proportion of citations received at each age to

total citations received to characterize the age distribution for each type of knowledge flows in Figure

3. It shows approximately a 6-year lag between local vs. non-local knowledge flows and within-MSA

vs. cross-MSA flows.26 It should be noted that as patents age, they are associated with more non-

local citation flows than local ones. However, this fact does not contradict the existence of positive

border effects because under the gravity framework, the border effect is estimated only after everything

else has been controlled, including the region’s knowledge capacity, the technology compatibility, the

pre-existing distribution of technological activities, and other region-specific characteristics. Thus,

although the number of non-local citations is larger than local citations as knowledge flows age,

borders still impede knowledge diffusion.

[Insert Figure 3 here]

Another message conveyed by Figure 3 is that border and distance effects are expected to decrease

with the age of knowledge because the integrals of the different age distributions converge. To verify

this prediction, I decompose the whole sample to 5 subsamples by age groups at 5-year intervalss.

As expected, the results are very significant and presented in Table 5. Distance and border effects

decrease with the age of knowledge, and almost all estimates are significant at 0.1 percent level. From

the age profiles, it can be seen that new knowledge flows face the largest distance and border effects.

On average, the effect of national borders is larger than the effect of subnational borders, and this

pattern holds true for each age group.

[Insert Table 5 here]

The age profiles of border and distance effects are consistent with the literature that knowledge

localization effects become weaker when the same cohort of patents age over their life time (see,

Jaffe, Trajtenberg, and Henderson, 1993; Thompson, 2006). In addition, Table 5 shows that age pro-

files are significant for both intranational and international knowledge spillovers. This result contrasts

26Local knowledge flows refer to all intra-region flows, i.e., intra-MSA flows within the U.S. and intranational flows
within a country outside the U.S. Here within MSA and cross-MSA flows are specific to knowledge flows within the U.S.
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with the finding of Thompson (2006) that only intranational localization effects decay with the passage

of time,27 but it is consistent with the seminal work by Jaffe, Trajtenberg, and Henderson (1993).28

Furthermore, the previous studies both use matching methodology and rely on the selection of con-

trol groups. The diverse results of previous studies are mainly from different matching controls, for

example, Thompson and Fox-Kean (2005a,b) and Henderson, Jaffe, and Trajtenberg (2005). One of

the strengths of the current analysis is adopting a different approach of the gravity model that avoids

the selection of control groups.

3.4 Aggregation Bias as Source of Border Effects

A potential source of aggregate border effect is aggregation bias. There are at least three types of

aggregation bias in the context of knowledge flows: geographic aggregation bias, age aggregation bias

and industrial aggregation bias.

First, geographic aggregation bias may overestimate border effects. The experiment is to decom-

pose data only to the state level and to compare the result with previous estimates. I find that the

magnitude of the state border effect is similar to that of the previous MSA border effect.29 However, if

I further decompose the data into the MSA level as in Table 2, the state border effect declines when in-

cluding the MSA border into regressions. If I estimate the state border as the only subnational border

using the MSA-level data as in specifications (3), (6), and (9) (compared with specifications (1), (4),

and (7), respectively) of Table 2, the magnitudes of both the subnational and national border effects

decrease while the measured distance effects more than double.30 These results suggest the existence

of potential geographic aggregation bias for measuring border and distance effects in knowledge flows.

According to the baseline regression (see Specification (1) in Table 2), approximately 84% of

subnational border effects are associated with the metropolitan borders. The smaller size of state

border and the larger size of the MSA border are consistent with the recent gravity literature on border

effect, for example, Hillberry and Hummels (2008) demonstrate that the state-level home bias in trade

flows is largely driven by geographic aggregation. However, it is worth noting that the measured MSA

and state border effects also depend on how one defines the border variables. According to my

definition of MSA border and state border, if a citation occurs between different MSAs and different

states, both the MSA border Bm and the state border Bs are defined as one. As most citations across

states are also across MSAs, including MSA borders largely absorbs the state border effects, yet the

state borders remain significant. Incidentally, Singh and Marx (2013) find strong state effects within

MSAs, which they view as a puzzle.

Second, decomposing data by age group also reduces the size of border effects (Table 5). This

pattern is to some extent surprising because it has been shown that new knowledge faces the largest

barriers to diffusion (i.e., border and distance effects). Hence, it should be expected that the magnitude

of aggregate border effects ranges between the estimates of newest and oldest age groups. However,

27Thompson (2006) gives the explanation of his result that individual researchers relocate frequently within the U.S.
but only infrequently across international borders.

28The rate of change in age profiles in my paper is larger than that in Jaffe, Trajtenberg, and Henderson (1993).
29This is also consistent with the reported state/province border effect in Peri (2005).
30In some specifications this change would result in an increase in distance effect by more than 10 times.
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the aggregate border effects are always larger than the estimates of each age group, even the newest

age group. It is difficult to explain this phenomenon without age-aggregation bias.

Third, decomposing data by technology category also helps to reduce border effects (Table 6). This

category aggregation bias might be related to industrial “specialization”. If the data on knowledge

flows are decomposed by category or by industry, is it possible to attenuate the border effects? To

answer this question, one needs to examine the knowledge flows at the industry level. Results from

the general category level yield some insights. If the specialization effect also contributes to border

effects, one should expect to see a substantial decrease when data are decomposed by category. I

find that border effects do substantially decrease and that the estimates at the category level are

much smaller than the aggregate border effects. This result indicates that part of border effects is

associated with the “specialization” effect. Splitting the sample by category attenuates the measured

border effects by partially ruling out the specialization effect. However, specialization cannot explain

all border effects. Even after controlling for the pre-existing distribution of technological activities and

technology compatibility, all MSA and national border effects are still significant at the 0.1 percent

level. Additionally, specialization varies by industry. I prefer to call this type of bias “industry

aggregation bias”, which captures all bias due to the industrial aggregation, and leave the more

detailed discussion of industrial specialization to the next section.

[Insert Table 6 here]

3.5 Further Discussion of Subnational Border Effects

What other factors account for the “border puzzle”, especially the subnational borders, in knowledge

flows? What are the barriers at the boundary of an MSA that make knowledge flows so much less

likely? To provide more complementary answers, I further apply additional MSA-level data regarding

industrial specialization and business travels to access how they affect subnational border effects.

3.5.1 Industrial Composition and Specialization

I use industrial data of real economic activities rather than the data of patent classes to examine

whether industrial composition at MSA level relates to knowledge spillovers and how industrial spe-

cialization affects the effect of subnational borders. Most often the prior research of knowledge flows

adopts the technology class of patents as proxy for industrial classification of real economy due to

the imperfect mapping between patent classification and industry classification.31 But in this paper

the gravity model allows for directly adding the industrial economic data at MSA level to control for

economic activities.

Thus, I collect the 2-digit NAICS (North American Industry Classification System) industrial

employment data from BLS (U.S. Bureau of Labor Statistics) in 1990 (see Appendix B for details)

for two reasons. First, 1990 is the earliest year available for MSA-level employment data from BLS

31Unlike the classification systems used to collect and disseminate economic data, the patent classification systems are
usually based on the function or structure (e.g., chemical formula, layered product, gear, etc.) of the patented technology
and not on the associated industry of manufacture or sector of use.
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website. Second, the MSAs in my sample are defined by the U.S. Census Bureau effective as of 1990.

The employment data are assembled either by MSA or by state. Eventually, I obtain 2-digit industrial

employment data for 265 MSAs, accounting for 91.73% of total citations received among all 319 MSAs

in my original sample.

Following Imbs and Wacziarg (2003), I compute the industrial specialization index Si for region i

at either MSA or state levels:

Si =
∑

s

(

∑

j Yijs
∑

s

∑

j Yijs

)2

=
∑

s

(

Yis
∑

s Yis

)

(2)

where s indexes sector, i indexes region (either MSA or state), j indexes sub-region within i, and Y

denotes economic activity (measured by employment). The numerator sums sectoral activity across

all sub-regions; the denominator represents aggregate regional economic activity. A higher value of

S implies a high degree of sectoral specialization in that region. Not surprisingly, the industrial

specialization index of MSAs is on average higher than that of states. Then I run the following

regressions:

ln(
cij
yiyj

) = α ln dij + β1B
m
ij + β2B

s
ij + β4TechCompij + β5S

MSA/State
j + ri1CIi + εij (3)

ln(
cij
yiyj

) = α ln dij + β1B
m
ij + β2B

s
ij + β4TechCompij + β6B

m/s
ij S

MSA/State
j + ri1CIi + εij (4)

Equation (3) includes the cited region’s industrial specialization and equation (4) examines the inter-

action term between subnational borders and industrial specialization. The citing region fixed effects

are also included. Equations (3) and (4) are both cross-sectional estimation for 1990. As subnational

border effects are mainly a cross-sectional pattern, one-year data is sufficient to test the effect of

industrial specialization on knowledge flows. The results are reported by Table 7.

[Insert Table 7 here]

There are several observations from Table 7. First, all distance and subnational borders remain

to be significantly negative with industrial specialization. Second, both MSA and state industrial

specialization positively facilitates knowledge flows when they are separately included (see columns

(2) and (3)). In other words, if a region is more specialized in its industrial composition, it is more

likely to receive citations from other regions. When both MSA and state specializations are included

simultaneously, only MSA specialization is significant (see column (4)). Third, more importantly, the

coefficients on interaction terms are significantly positive (see columns (5) and (6)), indicating that

subnational border effects are weaker for more specialized regions. Again, when interaction terms

with state and MSA specializations are both included in column (7), only the interaction between

MSA border and MSA specialization is significant. These results suggest that industrial specialization

indeed matters for subnational border effects, and in particular, the MSA border effects.

16



3.5.2 Business Travel

There is a growing literature in international trade and economic growth on the role of interna-

tional business travel in facilitating international goods trade (e.g., Poole, 2010; Cristea, 2011),

foreign direct investment, and innovation (Hovhannisyan and Keller, 2011). As knowledge is em-

bodied in researchers, face-to-face communication may be particularly important for the transfer of

technology because knowledge is best explained and demonstrated in person and business travels

(Hovhannisyan and Keller, 2011). Then it is fruitful to examine the role of domestic business travel

across MSAs in knowledge spillovers.

Hence, to answer whether business travel also matter for subnational border effects, I further

construct U.S. MSA level data on domestic business travel using American Travel Survey (ATS) 1995

from U.S. Department of Transportation.32 After careful data extracting and mapping, I compute the

number of business trips across different MSAs by filtering the information on “reason for trip” and

trip destination/origin in ATS. Eventually, I obtain data on the number of business trips across 132

MSAs that account for 87.56% of total citations received among all 319 MSAs within the U.S. in my

original sample (see Appendix B for more details).33

Accordingly, I construct three travel-related MSA-pair specific variables: tripOij, the number of

business travels from citing region i to cited region j (i.e., citing region as trip origin); tripDij , the

number of business travels from cited region j to citing region i (i.e., citing region as trip destination);

tripTij, the number of two-way business travels between citing and cited MSAs. Then I run the following

regressions:

ln(
cij
yiyj

) = α ln dij + β1B
m
ij + β2B

s
ij + β4TechCompij + β7 ln trip

O/D/T
ij + ri1CIi + rj2CEj + εij (5)

ln(
cij
yiyj

) = α ln dij + β1B
m
ij + β2B

s
ij + β4TechCompij + β8B

m
ij ln trip

O/D/T
ij + ri1CIi + rj2CEj + εij (6)

where β7 and β8 are coefficients of interest. The estimation results are presented in Table 8.

[Insert Table 8 here]

There are two findings. First, trips from cited region to citing region or two-way travels significantly

facilitate knowledge flows (see columns (3) and (4)) while travel from citing region to cited region alone

is not significant (see column (2)). When tripO and tripD are simultaneously included, both become

significantly positive (see column (5)) but the effect of trips from cited region is still greater than the

effect of trips from citing region. This seems to be consistent with the reality that researchers often

go to various places to publicize their studies. When an inventor has more business trips to other

metropolitan areas, it is more likely that her invention obtains more attention and thus receives more

citations. Second, the coefficients on the interaction term between MSA border and trips (tripD/T )

32ATS was only conducted in 1977 and 1995. So I use 1995 survey which is within my sample period. There is another
survey, “Nationwide Personal Transportation Survey” (NPTS), conducted in 1969, 1977, 1983, 1990, and 1995. But
NPTS more focuses on transportation mode and outbound trips to other countries, and thus is hard to merge with MSA
level data.

33Note that some small MSAs do not report travel data in ATS 1995 and converting 1995 MSAs to 1990 MSAs also
loses some observations.
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are also significantly positive. This suggests that more business travels from cited region to citing

region or the two-way travels significantly attenuate the subnational borders at MSA level.

4 Conclusion

This paper employs a gravity framework to investigate distance and border effects in knowledge

spillovers, using evidence from patent citations panel data at the metropolitan level within the U.S.

and in the 38 largest patent-cited countries outside the U.S. Strong subnational localization effects at

intranational levels are confirmed, and MSA border effects are found to be significantly larger than

state border effects. Approximately 84% of intranational border effects stem from the metropolitan

rather than the state level. This finding contributes to the literature on subnational knowledge local-

ization. I further differentiate between temporal trends and age profiles of knowledge spillovers and

find that border and distance effects decrease with the age of cited patents but interestingly increase

over time for a given-age group of citations. The increasing border and distance effects suggest that

knowledge agglomeration has strengthened over time which is supported by further empirical evidence

using agglomeration aalysis. Both age profiles and temporal trends of border and distance effects are

robust to different specifications and are significant for both intranational and international knowledge

spillovers. The paper also uncovers three types of aggregation bias in explaining sources of overesti-

mated aggregate border effects of knowledge spillovers. Decomposing data into finer levels, e.g., by

geographic unit, age group, and category, substantially reduces the magnitude of border effects. In

addition, this paper applies industrial composition data by employment at MSAs and business travels

across MSAs to show that industrial specialization and business trips effectively attenuate the effect of

subnational borders. Further analysis of subnational borders and distance effect requires finer data at

the resolution of county or zip code level. It will be also interesting to investigate barriers to knowledge

transmission and the scale at which physical distance remains relevant. These analyses are left for

future research.
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A Technology Compatibility Index

Adopting the approach by Maruseth and Verspagen (2002), I compute the index of technology com-

patibility between two regions (region i and j), TechCompij , in the following way. First, I construct

a sector-by-sector matrix Z which describes the sectoral citation relations. Here I use six technology

categories in patent classification system as sector. In this matrix, the element Zpq denotes the number

of citations received by patents in sector p from patents in sector q (i.e., q is citing sector and p is

cited sector) and Zpq is a 6×6 matrix. Then I construct a new matrix z by dividing the elements of

Z by the column sums, i.e., zpq = Zpq/
∑

p Zpq. Now the matrix z describes the share of citations to

existing patents in each of the six technology classes to total cited patents granted to all MSAs. For

example, the column for chemical patents gives the share of citations made by chemical patents to

patents in all six technology categories, including the chemical sector itself.

For each region i, I then calculate the share of sector p in total patenting as σi,p = Pi,p/
∑

p Pi,p,

where Pi,p is the number of patents in sector p in region i. Then for each region, I compute 6 (i.e.,

the number of sectors) correlation coefficients ρi,p between zpq (where q = 1, ..., 6) and σi,p (where

p = 1, ..., 6). I then calculate the share of a region in patenting of sector p as φi,p = Pi,p/
∑

i Pi,p.

The technology compatibility between regions i and j is then calculated as the correlation coefficient

between the 6 observations on ρi,p and φj,p. This correlation coefficient measures to what extent

the sectoral patenting structure of region j is likely to be cited by region i, given the technological

structure of i and the sectoral citation linkages.

The current technology compatibility index is constructed based on citing patents in 1980-1985,

the first six-year panel, to better capture the “prior” distribution of technological similarity. But I also

experiment with constructing this index using the whole sample period and all main results remain

to be robust.

B Data Appendix

Location of Patent Inventors at MSA Level

The procedure of matching each patent to MSA level is as follows. Among all inventors, 15 percent

of them reported the zip code of their residence in the U.S., and all inventors reported the town/city

or place name of their residence. I first locate inventors to MSAs by zip code and then locate the rest

by town/city or place name. The matching is done using correlation files provided by the Office of

Social and Economic Data Analysis (OSEDA) of the University of Missouri. However, the definition

of MSAs has evolved over time. For example, sometimes a small MSA was combined with another

nearby large MSA in a newer version of an MSA definition file. To ensure consistency and because my

sample period is 1980-1997, I use MSAs as defined by the U.S. Census Bureau in 1990. I also create 49

phantom MSAs, one for each state (except New Jersey), containing all locations in non-metropolitan

areas.34 In total, I match U.S. inventors to 310 MSAs, including 270 MSAs as defined by the U.S.

Census Bureau in 1990 and 49 artificial MSAs.

34In my sample, no citations come from non-metro area of New Jersey.
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Industrial Composition Data by Employment at MSA Level

The industrial employment data for each MSA in 1990 is collected from BLS and constructed by

the following way. As the BLS data set does not provide the MSA code directly, I generate MSA code

by combining “State Code” and “County Code”. I also drop data of other ownership types and only

keep ownership = 5 (Private Sector), since industrial level employment data are only available under

private sector. What I am mostly interested in is 2-digit industrial data. In BLS database, industries

are classified by NAICS 2002 and include industrial employment data from 2-digit to 6-digit level.

Some missing industrial employment data, varying from 6-digit to 2-digit level, increase the difficulty

of data cleaning. I solve the problem via the following steps: First, I keep all existing 5-digit level

data and use the sum of the belonging 6-digit level data to replace any missing value of the 5-digit

data. Next, after I fill in the missing values of 5-digit data, I aggregate up to 4-digit level, and then

to 3-digit level, and finally to 2-digit level employment data. Eventually, I obtain the structure of

employment data by 2-digit NAICS industry for each MSA.

Business Travel Data across MSA

I download American Travel Survey (ATS) 1995 from U.S. Department of Transportation.35 I

keep key variables such as “Metropolitan Area (MA) Code of Trip Origin”, “Metropolitan Area (MA)

Name of Trip Origin”, “Metropolitan Area (MA) Name of Trip Destination”, “Metropolitan Area

(MA) Code of Trip Destination”, “Reason for Trip”, and “U.S./International Destination Flag”. I

define the business trip as “reason” (Reason for Trip) = 1 (Business), 2 (Combined Business/Pleasure)

or 3 (Convention, Conference, Or Seminar). Then I delete the MSA and foreign country which is not

in my original sample of 357 regions. After that, I generate business trip number for every MSA as

origin to every other MSA or foreign country as destination.

35http://www.transtats.bts.gov/ (accessed in December 2013)
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C Tables

Table 1: Representative High-Cited Regions (1980-1997)

Rank Region Yearly received citations

1 Japan 59932

2 Germany 23095

3 New York-Northern New Jersey-Long Island, NY-NJ-CT-PA (U.S.) 21058

4 San Francisco-Oakland-San Jose, CA (U.S.) 14838

5 Los Angeles-Riverside-Orange County, CA (U.S.) 12619

6 Chicago-Gary-Kenosha, IL-IN-WI (U.S.) 10705

7 United Kingdom 10748

8 Boston-Worcester-Lawrence, MA-NH-ME-CT (U.S.) 9193

9 France 9031

10 Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD (U.S.) 7269

Table 2: Aggregate Border and Distance Effects

Specification: (1) (2) (3) (4) (5) (6) (7) (8) (9)

lndij -0.029*** -0.040*** -0.066*** 0.003* -0.011*** -0.039*** -0.030*** -0.040*** -0.067***

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Bm
ij -1.435*** -1.644*** -1.925*** -2.289*** -1.427*** -1.633***

(0.015) (0.014) (0.019) (0.017) (0.013) (0.012)

Bs
ij -0.297*** -0.621*** -0.493*** -0.947*** -0.294*** -0.616***

(0.008) (0.008) (0.011) (0.010) (0.007) (0.007)

Bn
ij -2.194*** -2.102*** -1.118*** -3.183*** -3.056*** -1.685*** -2.173*** -2.084*** -1.105***

(0.016) (0.016) (0.012) (0.018) (0.018) (0.011) (0.014) (0.014) (0.010)

Technology Compatibilityij 0.463*** 0.464*** 0.529*** 0.462*** 0.465*** 0.533*** 0.478*** 0.479*** 0.544***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

MSA border effect 4.199*** 5.177*** 6.856*** 9.863*** 4.165*** 5.121***

(0.063) (0.071) (0.130) (0.170) (0.054) (0.061)

state border effect 1.346*** 1.861*** 1.638*** 2.578*** 1.341*** 1.851***

(0.011) (0.015) (0.018) (0.025) (0.010) (0.013)

national border effect 8.971*** 8.186*** 3.059*** 24.131*** 21.242*** 5.395*** 8.789*** 8.033*** 3.018***

(0.147) (0.133) (0.037) (0.444) (0.387) (0.060) (0.125) (0.113) (0.032)

3-digit patent class effects yes yes yes yes yes yes yes yes yes

Citing-region fixed effects yes yes yes no no no no no no

Cited-region fixed effects yes yes yes no no no no no no

Year fixed effects yes yes yes no no no no no no

Citing-region-year fixed effects no no no yes yes yes yes yes yes

Cited-region-year fixed effects no no no no no no yes yes yes

No. of observations (ij,t) 467205 467205 467205 467205 467205 467205 467205 467205 467205

F-statistics 1740 1736 1696 13074 15738 13449 151 150 146

Adjusted R2 0.73 0.73 0.73 0.57 0.56 0.56 0.80 0.80 0.80

Notes: ∗∗∗, ∗∗, and ∗ indicate significance at the 0.1%, 1%, and 5% level. Robust standard errors in parentheses. All regressions include a
constant term.
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Table 3: Temporal Trends of Border and Distance Coefficients for Same-Age Citations

age 0 and 1 1980s 1990s 1980-1984 1985-1989 1990-1994 1995-1997

lndij 0.011 -0.013 0.022 -0.0002 -0.001 -0.029**

(0.016) (0.010) (0.023) (0.016) (0.011) (0.010)

Bm
ij -0.255* -0.548*** -0.495** -0.478*** -0.722*** -0.843***

(0.119) (0.076) (0.168) (0.119) (0.084) (0.079)

Bs
ij -0.115 -0.286*** 0.125 -0.227* -0.263*** -0.177**

(0.092) (0.057) (0.134) (0.090) (0.064) (0.060)

Bn
ij -0.909*** -1.272*** -0.927*** -1.170*** -1.449*** -1.404***

(0.128) (0.081) (0.178) (0.128) (0.091) (0.085)

age 2 and 3 1980s 1990s 1980-1984 1985-1989 1990-1994 1995-1997

lndij -0.022*** -0.028*** -0.018* -0.021*** -0.027*** -0.028***

(0.006) (0.003) (0.007) (0.006) (0.004) (0.005)

Bm
ij -0.775*** -1.228*** -0.769*** -0.976*** -1.208*** -1.301***

(0.047) (0.028) (0.062) (0.050) (0.033) (0.041)

Bs
ij -0.174*** -0.202*** -0.158*** -0.136*** -0.181*** -0.232***

(0.032) (0.018) (0.043) (0.034) (0.021) (0.026)

Bn
ij -1.412*** -1.866*** -1.381*** -1.572*** -1.856*** -1.935***

(0.051) (0.031) (0.067) (0.054) (0.037) (0.045)

age 4 and 5 1980s 1990s 1980-1984 1985-1989 1990-1994 1995-1997

lndij -0.016** -0.027*** -0.009 -0.019** -0.028*** -0.028***

(0.006) (0.004) (0.008) (0.007) (0.005) (0.004)

Bm
ij -0.779*** -1.118*** -0.799*** -0.884*** -1.052*** -1.265***

(0.052) (0.033) (0.066) (0.058) (0.042) (0.040)

Bs
ij -0.133*** -0.209*** -0.144** -0.156*** -0.195*** -0.234***

(0.035) (0.021) (0.045) (0.039) (0.027) (0.024)

Bn
ij -1.390*** -1.734*** -1.453*** -1.483*** -1.677*** -1.873***

(0.056) (0.036) (0.071) (0.062) (0.046) (0.044)

age 6 and 7 1980s 1990s 1980-1984 1985-1989 1990-1994 1995-1997

lndij -0.016* -0.020*** -0.009 -0.023** -0.021*** -0.022***

(0.006) (0.004) (0.008) (0.007) (0.005) (0.005)

Bm
ij -0.700*** -1.025*** -0.775*** -0.748*** -0.947*** -1.179***

(0.056) (0.037) (0.068) (0.062) (0.049) (0.043)

Bs
ij -0.181*** -0.203*** -0.143** -0.142*** -0.205*** -0.213***

(0.038) (0.024) (0.046) (0.042) (0.031) (0.027)

Bn
ij -1.293*** -1.614*** -1.346*** -1.326*** -1.547*** -1.769***

(0.059) (0.040) (0.072) (0.066) (0.052) (0.048)

age 8 and 9 1980s 1990s 1980-1984 1985-1989 1990-1994 1995-1997

lndij -0.017* -0.021*** 0.004 -0.018** -0.014 -0.029***

(0.008) (0.006) (0.010) (0.007) (0.007) (0.006)

Bm
ij -0.712*** -0.835*** -0.882*** -0.767*** -0.717*** -1.046***

(0.069) (0.051) (0.088) (0.061) (0.067) (0.051)

Bs
ij -0.193*** -0.191*** -0.0763 -0.162*** -0.226*** -0.143***

(0.046) (0.032) (0.064) (0.040) (0.043) (0.032)

Bn
ij -1.331*** -1.398*** -1.479*** -1.330*** -1.348*** -1.560***

(0.073) (0.055) (0.093) (0.065) (0.072) (0.055)

age ∈ [10,15) 1980s 1990s 1980-1984 1985-1989 1990-1994 1995-1997

lndij -0.023** -0.022*** - -0.023** -0.018*** -0.031***

(0.007) (0.003) - (0.007) (0.004) (0.004)

Bm
ij -0.820*** -0.986*** - -0.820*** -0.939*** -1.079***

(0.068) (0.033) - (0.068) (0.039) (0.043)

Bs
ij -0.112* -0.186*** - -0.112* -0.179*** -0.210***

(0.044) (0.020) - (0.044) (0.024) (0.026)

Bn
ij -1.325*** -1.560*** - -1.325*** -1.541*** -1.620***

(0.072) (0.036) - (0.072) (0.042) (0.047)

age [15,20) 1980s 1990s 1980-1984 1985-1989 1990-1994 1995-1997

lndij - -0.016** - - -0.017* -0.011*

- (0.005) - - (0.008) (0.005)

Bm
ij - -0.837*** - - -0.728*** -1.007***

- (0.052) - - (0.070) (0.047)

Bs
ij - -0.157*** - - -0.158*** -0.181***

- (0.032) - - (0.045) (0.028)

Bn
ij - -1.337*** - - -1.240*** -1.526***

- (0.055) - - (0.074) (0.050)

Notes: Technology compatibility, the 3-digit patent class effects, and all fixed effects terms
(i.e., year, citing-, and cited-region fixed effects) are included. ∗∗∗, ∗∗, and ∗ indicate
significance at the 0.1%, 1%, and 5% level. Robust standard errors in parentheses. All
regressions include a constant term. 24



Table 4: Temporal Trends: Three Statistics of Distance and Share of Foreign Citations

Panel A: citation age 3; industry 514

citing region: three statistics 1980s 1990s growth 1980 1985 1990 1994

rate(%)

Australia: 1 16050.47 14866.54 -7.38 15908.26 - 15625.26 13584.79

2 1.00 1.00 0.00 1.00 - 1.00 1.00

3 16050.47 14866.54 -7.38 15908.26 - 15625.26 13584.79

Canada: 1 4296.55 3908.35 -9.04 6403.35 3725.31 3216.25 4057.18

2 0.91 0.88 -3.23 1.00 0.82 0.88 0.85

3 4485.39 4342.73 -3.18 6403.35 4287.84 3485.89 4562.46

Japan: 1 7091.59 6772.28 -4.50 8799.50 6782.99 7638.96 7545.36

2 0.71 0.67 -5.25 0.90 0.64 0.76 0.76

3 9872.08 9930.56 0.59 9751.40 10422.24 9941.02 9866.95

San Francisco-Oakland-San Jose (U.S.): 1 6322.59 4864.82 -23.06 8454.93 7936.54 6860.95 5933.25

2 0.60 0.34 -42.52 0.89 0.86 0.67 0.50

3 8801.92 8510.36 -3.31 9142.07 8602.02 8786.73 8547.27

Boston-Worcester-Lawrence (U.S.): 1 4821.62 3389.01 -29.71 10806.93 3824.71 3470.26 4175.99

2 0.51 0.26 -49.29 1.00 0.60 0.25 0.50

3 7549.12 7249.60 -3.97 10806.93 5797.53 5776.34 6933.77

Los Angeles-Riverside-Orange County (U.S.): 1 5660.18 5943.77 5.01 3623.77 5907.79 4368.25 7827.22

2 0.51 0.57 12.21 0.00 0.67 0.67 0.79

3 9056.31 8619.83 -4.82 - 8805.63 6315.63 9159.27

Panel B: citation age 5; industry 514

citing region: three statistics 1980s 1990s growth 1981 1985 1990 1994

rate(%)

Australia: 1 16026.16 15701.66 -2.02 16460.92 15557.10 - 14818.49

2 1.00 1.00 0.00 1.00 1.00 - 1.00

3 16026.16 15701.66 -2.02 16460.92 15557.10 - 14818.49

Canada: 1 4547.06 3944.20 -13.26 - 874.07 6222.40 4492.95

2 0.86 0.88 2.14 - 0.60 1.00 0.89

3 4867.60 4297.18 -11.72 - 660.82 6222.40 4881.07

Japan: 1 7607.60 7115.08 -6.47 8741.06 8273.23 7342.26 6793.91

2 0.77 0.70 -7.98 0.86 0.83 0.72 0.67

3 9860.08 10000.10 1.42 10159.18 9928.71 10076.84 10074.70

San Francisco-Oakland-San Jose (U.S.): 1 6207.88 5336.84 -14.03 6060.57 5870.59 4415.91 4282.30

2 0.52 0.41 -20.81 0.57 0.39 0.35 0.24

3 8866.52 8696.91 -1.91 8578.63 8955.22 8549.65 8577.17

Boston-Worcester-Lawrence (U.S.): 1 4812.53 3984.34 -17.21 1675.02 5615.21 4298.37 3680.64

2 0.53 0.37 -30.61 0.00 0.67 0.50 0.18

3 8638.04 7298.56 -15.51 - 8269.61 8419.11 6528.46

Los Angeles-Riverside-Orange County (U.S.): 1 6913.92 4684.13 -32.25 9250.28 - 3277.17 5967.50

2 0.67 0.33 -49.97 1.00 - 0.13 0.55

3 9237.05 7935.38 -14.09 9250.28 - 3508.54 9122.72

Notes: Three statistics refer to “1 - average distance between citing and cited patent”, “2 - the fraction of patent citations that are from
abroad”, and “3 - average distance to the cited patent among foreign patent citations”. Industry 514 is “Drug, Bio-Affecting and Body
Treating Compositions”.
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Table 5: Border and Distance Effects by Age of Knowledge

Specification: whole age age age age age

sample [0,5) [5,10) [10,15) [15,20) [20,more)

lndij -0.029*** -0.028*** -0.025*** -0.022*** -0.016** -0.014*

(0.001) (0.002) (0.002) (0.003) (0.005) (0.007)

Bm
ij -1.435*** -1.218*** -1.085*** -0.919*** -0.837*** -0.714***

(0.015) (0.019) (0.023) (0.033) (0.052) (0.062)

Bs
ij -0.297*** -0.237*** -0.228*** -0.179*** -0.157*** -0.144***

(0.008) (0.012) (0.014) (0.020) (0.032) (0.041)

Bn
ij -2.194*** -1.920*** -1.715*** -1.475*** -1.337*** -1.095***

(0.016) (0.021) (0.025) (0.036) (0.055) (0.064)

Technology Compatibilityij 0.463*** 0.424*** 0.437*** 0.397*** 0.364*** 0.320***

(0.006) (0.008) (0.009) (0.013) (0.021) (0.026)

3-digit patent class effects yes yes yes yes yes yes

Citing-region fixed effects yes yes yes yes yes yes

Cited-region fixed effects yes yes yes yes yes yes

Year fixed effects yes yes yes yes yes yes

No. of observations (ij,t) 467205 283980 285081 169010 83960 14258

F-statistics 1740 458 386 220 154 353

Adjusted R2 0.73 0.72 0.68 0.67 0.74 0.97

Notes: ∗∗∗, ∗∗, and ∗ indicate significance at the 0.1%, 1%, and 5% level. Robust standard errors in
parentheses. All regressions include a constant term.

Table 6: Border and Distance Effects by Category

Specification: whole Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 Cat 6

sample Chemical C.&C. D.&M. E.&E. Mechanical Others

lndij -0.029*** -0.013 -0.024* -0.002 -0.006 -0.013** -0.021***

(0.001) (0.007) (0.012) (0.011) (0.007) (0.004) (0.003)

Bm
ij -1.435*** -0.762*** -0.380*** -0.532*** -0.748*** -0.880*** -0.918***

(0.015) (0.057) (0.100) (0.089) (0.062) (0.036) (0.028)

Bs
ij -0.297*** -0.213*** -0.111 -0.120 -0.174*** -0.174*** -0.221***

(0.008) (0.041) (0.069) (0.067) (0.043) (0.023) (0.018)

Bn
ij -2.194*** -1.404*** -0.908*** -0.962*** -1.281*** -1.570*** -1.613***

(0.016) (0.061) (0.107) (0.094) (0.066) (0.038) (0.030)

Technology Compatibilityij 0.463*** 0.396*** 0.172*** 0.129*** 0.232*** 0.255*** 0.167***

(0.006) (0.026) (0.038) (0.038) (0.025) (0.017) (0.013)

3-digit patent class effects yes yes yes yes yes yes yes

Citing-region fixed effects yes yes yes yes yes yes yes

Cited-region fixed effects yes yes yes yes yes yes yes

Year fixed effects yes yes yes yes yes yes yes

No. of observations (ij,t) 467205 128987 84978 94177 123681 169061 222546

F-statistics 1740 189 174 173 212 329 440

Adjusted R2 0.73 0.56 0.61 0.58 0.59 0.65 0.66

Notes: ∗∗∗, ∗∗, and ∗ indicate significance at the 0.1%, 1%, and 5% level. Robust standard errors in parentheses.
All regressions include a constant term.
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Table 7: Border and Distance Effects with Regional Industrial Specialization

Specification: (1) (2) (3) (4) (5) (6) (7)

ln dij -0.101*** -0.037** -0.069*** -0.039*** -0.036** -0.067*** -0.038**

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

Bm
ij -1.750*** -1.761*** -1.790*** -1.757*** -7.159*** -1.825*** -7.246***

(0.106) (0.102) (0.105) (0.102) (0.196) (0.105) (0.212)

Bs
ij -0.260*** -0.371*** -0.336*** -0.366*** -0.373*** -5.535*** 0.103

(0.055) (0.053) (0.055) (0.053) (0.053) (0.405) (0.437)

Technology Compatibilityij 0.307*** 0.395*** 0.307*** 0.397*** 0.397*** 0.308*** 0.398***

(0.032) (0.031) (0.032) (0.031) (0.031) (0.032) (0.031)

SMSA
j 18.32*** 18.66***

(0.572) (0.643)

SState
j 18.24*** -1.751

(1.387) (1.510)

Bm
ij S

MSA
j 18.60*** 18.92***

(0.578) (0.647)

Bs
ijS

State
j 18.60*** -1.686

(1.416) (1.537)

Citing-region fixed effects yes yes yes yes yes yes yes

No. of observations (ij ) 13176 13176 13176 13176 13176 13176 13176

F-statistics 264 433 249 361 436 249 363

Adjusted R2 0.40 0.45 0.41 0.45 0.45 0.41 0.45

Notes: ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level. Robust standard errors in parentheses.
All regressions include a constant term.

Table 8: Border and Distance Effects with Business Travels

Specification: (1) (2) (3) (4) (5) (6) (7) (8) (9)

lndij -0.131*** -0.128*** -0.121*** -0.066*** -0.108*** -0.128*** -0.121*** -0.062*** -0.108***

(0.016) (0.016) (0.016) (0.018) (0.017) (0.016) (0.016) (0.018) (0.017)

Bm
ij -1.182*** -1.190*** -1.208*** -1.405*** -1.240*** -1.192*** -1.213*** -1.614*** -1.253***

(0.153) (0.153) (0.153) (0.156) (0.154) (0.154) (0.153) (0.164) (0.154)

Bs
ij -0.242*** -0.239*** -0.230*** -0.200*** -0.215*** -0.238*** -0.230*** -0.196*** -0.215***

(0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058)

Technology Compatibilityij 0.505*** 0.504*** 0.504*** 0.492*** 0.501*** 0.504*** 0.504*** 0.491*** 0.501***

(0.045) (0.045) (0.045) (0.044) (0.045) (0.045) (0.045) (0.044) (0.045)

ln tripOij 0.001 0.003**

(0.001) (0.001)

ln tripDij 0.003*** 0.004***

(0.001) (0.001)

ln tripTij 0.075***

(0.011)

Bm
ij ln tripOij 0.001 0.003**

(0.001) (0.001)

Bm
ij ln tripDij 0.003*** 0.004***

(0.001) (0.001)

Bm
ij ln tripTij 0.081***

(0.011)

Citing-region fixed effects yes yes yes yes yes yes yes yes yes

Cited-region fixed effects yes yes yes yes yes yes yes yes yes

No. of observations (ij ) 5004 5004 5004 5004 5004 5004 5004 5004 5004

F-statistics 15.9 15.8 15.9 16.2 15.8 15.8 15.9 16.3 15.8

Adjusted R2 .356 .356 .357 .362 .358 .356 .358 .363 .358

Notes: ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level. Robust standard errors in parentheses. All regressions include a
constant term.
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Figure 1: Increasing border and distance effects over time for each 2-year age group
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Figure 2: Agglomeration index for knowledge production (of patents) over time

0
.0

5
.1

.1
5

p
ro

p
o

rt
io

n
 o

f 
c
it
a

ti
o

n
s
 r

e
c
e

iv
e

d

0 2 4 6 8 10 12 14 16 18 20 22
age

local non−local

0
.0

5
.1

.1
5

p
ro

p
o

rt
io

n
 o

f 
c
it
a

ti
o

n
s
 r

e
c
e

iv
e

d

0 2 4 6 8 10 12 14 16 18 20 22
age

within U.S. MSA cross U.S. MSA

Figure 3: The age distribution of knowledge diffusion.
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Table A.1: Temporal Trends: Three Statistics of Distance and Share of Foreign Citations

Panel A: citation age 3; industry 604

citing region: three statistics 1980s 1990s growth 1983 1987 1991 1996

rate(%)

Australia: 1 15509.87 13652.99 -11.97 17013.58 14890.79 14256.87 13954.03

2 1.00 1.00 0.00 1.00 1.00 1.00 1.00

3 15509.87 13652.99 -11.97 17013.58 14890.79 14256.87 13954.03

Japan: 1 8969.52 8719.08 -2.79 7729.21 8416.71 8684.69 7535.13

2 0.91 0.90 -1.51 0.80 0.88 0.89 0.80

3 9844.03 9713.13 -1.33 9603.43 9484.24 9698.98 9360.83

San Francisco-Oakland-San Jose (U.S.): 1 3673.16 3683.56 0.28 5458.69 3596.99 3996.57 3213.07

2 0.14 0.16 14.61 0.40 0.18 0.15 0.07

3 8836.19 8570.42 -3.01 8866.60 8902.39 9104.80 8461.69

Boston-Worcester-Lawrence (U.S.): 1 2781.84 3176.85 14.20 1686.71 3571.91 3181.58 3855.48

2 0.13 0.19 49.55 0.00 0.19 0.14 0.21

3 7287.35 6632.95 -8.98 - 9868.69 8142.12 8894.20

Panel B: citation age 5; industry 428

citing region: three statistics 1980s 1990s growth 1981 1986 1993 1996

rate(%)

Australia: 1 15162.63 11424.71 -24.65 15520.86 11809.75 7832.51 -

2 1.00 1.00 0.00 1.00 1.00 1.00 -

3 15162.63 11424.71 -24.65 15520.86 11809.75 7832.51 -

Japan: 1 5452.72 4227.36 -22.47 7402.54 4849.14 4099.35 4227.00

2 0.55 0.42 -22.69 0.77 0.49 0.42 0.41

3 9746.53 9632.20 -1.17 9511.42 9742.95 9482.83 9922.36

San Francisco-Oakland-San Jose (U.S.): 1 5293.71 5398.06 1.97 7027.98 5496.83 4839.90 5505.83

2 0.42 0.49 16.87 0.67 0.50 0.38 0.55

3 8684.55 8555.63 -1.48 8734.29 8618.00 8672.81 8531.73

Boston-Worcester-Lawrence (U.S.): 1 5300.67 4222.72 -20.34 7147.32 4858.95 4665.56 3293.60

2 0.47 0.35 -25.66 0.67 0.36 0.32 0.30

3 8983.84 8902.51 -0.91 9597.29 9792.00 10191.32 6815.97

Notes: Three statistics refer to “1 - average distance between citing and cited patent”, “2 - the fraction of patent citations that are from
abroad”, and “3 - average distance to the cited patent among foreign patent citations”. Industry 604 and 428 refer to patent classification
“Surgery” and “Stock Material or Miscellaneous Articles”, respectively.

Table A.2: Fraction of Foreign Citations in Different Periods

all citing regions citing regions outside the U.S. citing regions within the U.S.

age 1980-1985 1986-1991 1992-1997 1980-1985 1986-1991 1992-1997 1980-1985 1986-1991 1992-1997

all age 51% 51% 47% 80% 76% 74% 31% 35% 33%

age [0,5) 51% 51% 46% 78% 69% 68% 31% 35% 33%

age [5,10) 51% 51% 48% 84% 80% 73% 30% 32% 34%

age [10,15) - 51% 48% - 86% 82% - 29% 32%
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Figure A.1: Increasing border and distance effects over time for each 5-year age group
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Figure A.2: Agglomeration index for knowledge production (of patents) by category over time
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