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Abstract

Granger (1966) describes how the spectral shape of an economic variable concentrates spectral mass
at low frequencies, declining smoothly as frequency increases. Despite a discussion about how to assess
robustness of his results, the empirical exercise focused on the evidence obtained from a handful of series.
In this paper, I focus on a broad range of economic variables to investigate their spectral shape. Hence,
through different examples taken from both actual and simulated series, I provide an intuition of the
typical spectral shape of a wide range of economic variables and the impact of their typical treatments.
After performing 100 different exercises, the results show that Granger’s assertion holds more often than
not. I also confirm that the basic shape holds for a number of transformations, time aggregations, series’
anomalies, variables of the real economy, and also, but to a lesser extent, financial variables. Especially
fuzzy cases are those that exhibit some degree of transition to a different regime, as are those estimated
with a very short bandwidth.

JEL-Codes: A20, C02, C14, C18, E32.

Keywords: Frequency domain, spectral analysis, nonparametric econometrics.

Resumen

Granger (1966) describe cémo la forma espectral de una variable econémica concentra masa espectral
en bajas frecuencias, decayendo suavemente cuando aumenta la frecuencia. A pesar de presentar una
discusion sobre el andlisis de robustez de sus resultados, su ejercicio empirico se enfoca en la evidencia
obtenida con un punado de series. Este trabajo, por su parte, se enfoca en un amplio rango de variables
econémicas para investigar su forma espectral. Asi, a través de diferentes ejemplos desarrollados con
series efectivas y simuladas, se provee una intuicién sobre la forma espectral tipica de un amplio rango de
variables econémicas, asi como el impacto de algunos tratamientos tipicos en su forma espectral. Después
de 100 ejercicios diferentes, los resultados muestran que la afirmacién de Granger es valida para la mayoria
de los casos. También se confirma que la forma bésica se mantiene para una serie de transformaciones,
agregaciones de tiempo, anomalias, variables reales, y también, aunque en menor medida, en variables
financieras. Casos especialmente difusos son los que exhiben algin grado de transicién a un régimen
diferente, asi como aquellos estimados con un ancho de banda estrecho.

Codigos JEL: A20, C02, C14, C18, E32.

Palabras clave: Dominio de frecuencias, andlisis espectral, econometria no paramétrica.
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Resumen no técnico

En el influyente trabajo de Clive W.J. Granger, 1966, "The Typical Spectral Shape of an Economic Variable",
Econometrica 34(1): 150-161, se describe cémo la forma espectral de una variable econémica, es decir,
descompuesta a través de sus ciclos, concentra masa espectral en bajas frecuencias, decayendo suavemente
a medida que aumenta la frecuencia. A pesar de presentar una interesante discusién sobre como es posible
llevar a cabo un anilisis de robustez de los resultados, el ejercicio empirico se enfoca en la evidencia obtenida
con un punado de series.

En este trabajo, el foco se extiende a un amplio rango de variables econémicas para investigar su forma
espectral. Asi, a través de diferentes ejemplos desarrollados con series macroeconémicas efectivas de la
economia estadounidense y otras series simuladas con caracteristicas especiales, se pretende entregar una
intuicién sobre la forma espectral tipica de una variable econémica. También se analiza el impacto en la
forma espectral de algunos tratamientos tipicos dentro de la literatura de economia aplicada.

Después de 100 ejercicios diferentes, los resultados muestran que la afirmacién de Granger es vdlida para la
mayoria de los casos. También se confirma que la forma bésica se mantiene para una serie de transformaciones
tipicamente utilizadas en investigaciones empiricas, agregaciones de las series a través del tiempo —cambios
de frecuencia—, anomalias — como valores atipicos o cambios de base—, variables de la economia real, y
también, aunque en menor medida, en variables financieras. Casos especialmente difusos son los que exhiben
algin grado de transicién a un régimen diferente—distinta media y varianza—, asi como aquellos estimados
con un ancho de banda angosto.



1 Introduction

Any economic time series can be analyzed from two points of view: time domain and frequency domain.
The intuition behind frequency domain lies in the useful manner in which a variable can be plotted in
terms of its cycles—measuring its strength in decibels—for any given frequency, without requiring new
information. Thus, spectral analysis allows to analyzing the relationships between the frequencies with ease.
This distinction is worthwhile because it allows estimating model parameters on different frequency bands.
This implies that some set of parameters, estimated at a certain frequency band, casts for a better in-sample
fit and/or forecast accuracy. Also, model estimation on frequency domain accounts better for dissimilar
effects, say, rigidities or agents’ habits. This paper is an attempt to map from time to frequency domain
common cases and treatments typically applied in empirical economics.

Granger (1966) states that the spectral shape of an economic variable should concentrate spectral mass mostly
at low frequencies, declining smoothly as frequency increases. The paper was an attempt to promote the
use of frequency domain in economic time series analysis. It explains how the spectral shape of an economic
variable measured in levels should look: The long-term fluctuations in economic variables, if decomposed
into frequency components, are such that the amplitude of the components decrease smoothly with decreasing
period, (Granger, 1966, p. 155).

Despite a discussion about how to assess the robustness of his results, the setting is mainly focused on the level
of sporadic evidence obtained from a few series. As the purpose was to illustrate a typical economic variable,
the result holds in a broad range of cases. In this paper, I focus on a wide range of economic variables, plus
several typical treatments used in applied economics. This range covers real activity variables, interest rates,
and soft indicators, all of the US economy, along with simulated series with key macroeconomical/statistical
features. The treatments include sensitivity to sample span, bandwidth selection, transformations and time
aggregations, among others. Hence, through different examples taken from both actual and simulated series,
I will be able to provide an intuition of the typical spectral shape of a large set of economic variables with
different statistical properties.

Few systematic attempts have been carried out in the literature on a comprehensive manner. See, for
instance, Cunnyngham (1963), Hatanaka (1963), Granger and Morgenstern (1963), Granger and Hatanaka
(1964), and Nerlove (1964).! Priestley (1981) develops a comprehensive analysis including issues regarding
estimation in the frequency domain. As was stated before, the frequency analysis is important because
spectral methods are useful to uncover key characteristics of economic time series, with relevant implications
for model building (Granger, 1966). A recent example of this is the estimation on the frequency domain of a
medium-scale dynamic stochastic general equilibrium (DSGE) model presented in Sala (2013). Remarkably,
the author found that estimating under different frequency bands deliver significantly different parameters.
This is an indication that a model built with variables with equally-weighted frequencies—as the time domain
supposes—are unable to match all frequencies with one set of parameters.

The graph of frequencies versus decibel is called the periodogram—a special case of the spectrum. In a
spectral graph, the low frequencies at the left correspond to slowly changing components—Ilike a trend—
while higher frequencies correspond to rapidly changing components—Ilike a white noise variable. Peaks in
the spectral plot at certain frequencies of actual data indicate the presence of regular patterns within the
sample. For a covariance-stationary process {yt}ig, the sample periodogram for frequency w is defined as:

Tl
SWi=gr D, Are ™ )
J=—T+1
where 7, = 23 (yt — Y)(yt—; — J) are sample autocovariances of order j of {y;}, estimated until order

m, j = {1,..,m}, with ¥_; =7, as {y;} is a covariance-stationary process. Note that i stands for \/—1.
An order m chosen with information criteria, such as the Akaike Information Criterion (AIC), tends to

!For a comprehensive use of the spectrum for economic time series analysis, see Granger and Watson (1984) and Hamilton
(1994).



generate smoother spectral amplitudes as it exaggerates the dynamic of a series. Common strategies to
select the order m include Bartlett, Tukey, and Parzen’s window selection criteria. Since the parameters
7/, are variance-corrected covariances between y; and y;_;, the informational content of the spectrum with
respect to the time domain remains fixed (Hamilton, 1994).

Note that using De Moivre’s theorem, the term e~*J is equal to cos(wj) — i - sin(wj), and using the trigono-
metrical identities cos(0) = 1, sin(0) = 0, sin(—60) = —sin(f), and cos(—0) = cos(f), the expression can
be written in terms of the cosine function.? Since cos(wj) = cos|[(l + 27k)j] for any integers k and j, the
spectrum is a periodic function of w. Hence, it is necessary to know the values of §(w) between 0 and 7 to
infer the periodogram value for any w.

Thirty-seven years after Granger’s paper, Levy and Dezhbakhsh (2003) confirmed the shape of spectra by
analyzing the Gross Domestic Product (GDP) of 58 countries with annual data. As the authors focused on
the same variable—for different countries—it is not surprising that similar spectral shapes were found. In
this line, the objective of this paper is twofold: first, to confirm if the Granger results hold for a variety
of economic time series—and different to that used by Levy and Dezhbakhsh—such as interest rates or
other financial variables. Secondly, to document a general visual context of spectral shapes by stressing its
capabilities to provide intuition of its sensitiveness in different macroeconomical/statistical scenarios.

After performing 100 different exercises, the results show that Granger’s assertion holds for the majority of
the cases. This implies that the same basic shape is found regardless of the length of data available, the size of
the truncation point used in the estimations procedure, or the trend removal method used. (Granger, 1966, p.
154). Besides Granger’s statement I also confirm, by means of empirical exercises, that the basic shape holds
for a number of transformations, time aggregations, series’ anomalies such as outliers, variables of the real
economy, and also, but to a lesser extent, financial variables. Especially fuzzy cases are those that exhibit
some degree of transition to a different regime, as is the case of some financial variables of the US economy,
and corroborated with simulated data. The use of a very short truncation point to estimate the spectrum
(i.e. bandwidth) also deliver distorted spectral shapes, and therefore should be analyzed comprehensively.

Hence, the intuition of the spectral shape relies on the decomposition of a time series in terms of orthogonal
components, each one associated to a specific frequency that contributes to the total variance of the series.
This implies that spectral mass concentrated in a specific frequency—e.g. peaks—indicates that those
movements dominate the dynamic of the series. As the typical spectral shape for an economic variable
concentrates spectral mass mostly at lower frequencies, it implies that the long-run dynamics are those that
govern the series’ movements.

Alongside theoretical findings, the empirical exercise carried out in this investigation confirms that the finding
of spectral shape is robust to a number of situations. For instance, a series with outliers, ramp, level shift, or
other anomalies, does not interfere in the spectral shape. The sample span plays no role at spectra given that
the series considered are covariance-stationary. Furthermore, the shape holds even if the trend is removed
since it consists of an unbiased variance reduction. When the mean of the series relative to the standard
deviation is large, several transformations—especially those reducing variance, such as logarithms—keep the
spectral shape unaltered. Finally, more persistent series are closer to the typical spectral shape than those
less persistent because they have a longer memory. This should be also the case with fractionally integrated
series with an integration coefficient close to zero (Granger and Joyeux, 1980).

The rest of the paper proceeds as follows. Section 2 reviews general topics concerning spectral plots, based
on an idealized example for illustrative purposes. Next, section 3 details the setup of the different exercises
to be performed. Then, section 4 briefly discusses particular interesting results and concludes.

2Hence, becoming:
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2 The frequency domain: a typical example

For illustrative purposes, I make use of a highly seasonal simulated series, one of the most common appli-
cations of the spectrum in economics. As Granger (1979) pointed out, the decomposition of a series into
a trend plus a seasonal and a remaining irregular component, is relevant because seasonality explains the
majority of the variance of a series, while economically insignificant.?

Note that a series has seasonality if its spectrum exhibits a peak at frequencies of % or i —typically measured
in radians. As the spectrum is typically used to test the presence of seasonality and then the quality of the
adjustment, it is estimated for original and final seasonally adjusted series. The key issue is to keep in mind
the goal of the absence of residual seasonality; this is, absence of seasonality in series that theoretically
should not have it. According to the well-known program X-12-ARIMA (Findley et al., 1998), a series is
called seasonal if it shows a peak in the original series spectrum at seasonal frequencies. A peak is called
significant if it is above the median of 5(wy,) values (where wy, stands for the frequency wy = %, 0 <k <60),
and must be larger than its neighboring (not including weo = 1) values 5(wy,—1) and S(wy41) by at least 5
times the range §™2* — g™ where §™%* = maxy, §(wy) and $™" = miny $(wy). For this reason, X-12-ARIMA
plots spectra with 52 frequencies. So, the unit of measure is standardized to "stars"—equivalent to 5% unit
of frequency—so a peak (six or more stars) is easy to detect visually.

As spectral analysis allows seeing the relationships between the frequencies, it is easy to quantify the impor-
tance of certain frequencies relative to the frequencies of other components. Thus, for a comparison between
two or more adjustments for the same variable, the result is direct. A lower insignificant peak—or even
better, the absence of it—in the seasonally adjusted series at specific frequencies reflects an adjustment of
better quality. Always keep in mind that the smoothness pursued by seasonal adjustment is in spectral plots
of seasonally adjusted series rather than in a filtered version of the original series.

In figure 1, I plot the illustrative series. Some comments about the example: First, the illustrator series is
built in "intrayear" cycles of 4 observations. Thus, it mimics a quarterly series. Second, it is composed of
a (nonstochastic) trend divided by seasonal factors across "years" without outliers. These factors fluctuate
by a little rate across years, leaving room for an irregular component. Third, by construction, the irregular
component has a small variance relative to the variance of the original series, making the identification
process easier. Fourth, the series is an index with a base year (1989) equal to 100, spanning from 1986 to
2009 (96 observations).

In this idealized example, the presence of seasonality is relatively obvious. But, in reality, economic time
series are hit by a large variety of shocks and other perturbations that obscure the identification of seasonality.
In these scenarios, spectral plots emerge as a powerful model-free tool for identification. Panel A shows the
logarithm of the original and seasonally adjusted series. Notice that the adjusted series should not exactly
coincide with the original trend because of the presence of the irregular component. Panel B shows the
annual and quarterly variation of previous series. The repeating pattern across the years of the quarterly
variation of the seasonally adjusted series reflects the presence of seasonal factors. The seasonal factors
are also depicted in panel B. Note that as they shrink as sample increases, the absolute value of quarterly
variation decreases.

Panels C and D depict three different spectral plots. The first two are those of the original and seasonally
adjusted series, while the third is the irregular component. Notice in panel C the effect on spectrum caused
by removing seasonality: a complete removal of peaks at seasonal frequencies. The resulting spectrum
illustrates the typical spectral shape of an economic variable. Panel D shows the erratic cyclical behavior of
the irregular series, which reflects a successful seasonal adjustment.

3The decomposition of a time series (y¢) to be seasonally adjusted includes a trend-cycle component (y7) plus (or times,
depending on the kind of seasonality) a seasonally adjusted component (y;7*), plus (or times) a residual irregular component
(yzr; then yr = y7 +yi* + ygT, or yr = y{ X yi¢ x yfT). Hence, the two latter components, y;* and yir, should not exhibit a
cyclical behavior. Seasonal factors correspond to y¢ — yi% = yj + yi" (or L

P ir
y3a =Ys XYy )



Figure 1: An example with a highly seasonal series
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3 Exercises

The exercises considered are divided into eight categories, representing typical situations confronted when
doing empirical economics. The aggregate series described within the Basic estimations category should be
also considered as a sum of disaggregates; a common situation with real-economy variables, such as GDP.
This category represents the most frequent model-free cases of economic variables, thus providing a valid
insight prior to modeling. In this same line, several decisions have to be made to this end concerning sample
length, bandwidth or window lag selection, data transformation, and frequency setting. Hence, all these issues
constitute the four subsequent categories. Finally, effective macroeconomic variables of the US economy
along with series pertaining to traditional ARMA models are also studied.

The preferred default bandwidth used is m = 30, following the suggestion given in Hood (2007). The
elements of each category are the following (the number of plotted spectra is presented in [ ]):

1. Basic estimations [16]. This category includes a constant-slope trend series, a constant-slope trend line
plus an outlier, a constant-slope trend plus two outliers in opposite directions, a series with level shift, a
series with a ramp, a series with a stochastic trend, a series with multiplicative seasonality, a series with
additive seasonality, a series with additive seasonality plus two opposite outliers, a deterministic cubic
trend, a white noise, a set of independent N'(0,5) realizations, a series with three regimes (suggesting
a successful gradual stabilization policy), a three-regime series with one outlier, an v-shaped line, and
a w-shaped line. Finally, all the series have a length of 100 observations.



2. Sensitivity to sample span [16]. A common shortcoming to deal with in empirical economics is sample
span. Often, methodological advances in time series econometrics lie in asymptotic properties for
a certain framework. Nevertheless, few economic variables have been collected for a lengthy period
of time. Several drawbacks may emerge as a consequence of parameter uncertainty, due to a short
sample span. To tackle the impact of sample span on spectral shape, the following exercises are
performed. A stochastic trend with N = {5000;1000;500;200;100} observations, the monthly Industrial
Production Index of the US (IPI, source: FRED) with N = {1137;500;200;100}, the monthly Fed
Funds Rate (FFR, source: FRED) with N = {3096;2000;1000;200;50}, and the Box, Jenkins, and
Reinsel’s (1994) "Series G. International Airline Passengers: Monthly Totals, 1949—1960" (BJR-G)
with N = {144;52}, being n = 144 its original length. In the cases of IPI an FFR, the span is shortened
by dropping earlier observations.

3. Bandwidth selection [6]. Besides sample span, there are several other reasons why the spectral shape
may differ for the same variable. One of these options, along with data transformations, is bandwidth
selection. This relates to the selection/estimation of the integer m in equation (1). As was mentioned,
there are several procedures to estimate it efficiently as with Bartlett, Tukey, and Parzen’s window
selection criteria.* However, the three criteria tend to deliver same quantitative results. The exercises
analyzed in this paper considers different bandwidths for a given series and its sample span. These
series are a stochastic trend with N =5000, the IPI with N =1137, the FFR with N = {3096;50}, and
BJR-G with N = {144;52}. Thus, spectra are depicted using a bandwidth ranging from 141, 50, 30,
26, 30, 13, 10 to 2 lags.

4. Sensitiveness to typical transformations [14]. Major methodological issues in econometrics concern
stationary series. Many economic variables, however, are not stationary. Thus, a transformation is
required in order to meet methodological assumptions. The exercises considered are the following. Be-
ginning from a nonstationary simulated stochastic trend series: logarithmic transformation, detrended
series, and differenced series. Beginning from the US Consumer Price Index (CPI, source: FRED)
denominated in levels (index 1982-84=100): logarithmic transformation, annual variation, first differ-
ence of logarithmic seasonally adjusted series (monthly variation; adjusted with X-12-ARIMA, whole
sample), and the accumulated change in 3, 6, 9 and 24 months. Actual macroeconomic time series are
used on their default frequency and sample availability.

5. Time aggregation [14]. It is a matter of fact that a set of series used for modeling does not necessarily
match their original frequencies. Thus, a frequency (dis)aggregation is needed. There are basically
two kinds of time aggregations: one for stock series and other for flow series. In the first case, the last
value of the higher frequency matches those values of lower frequency. In the second case, averaging
(or adding up to) higher frequency values cast for the lower frequency value. To illustrate the effect
of these aggregations on their spectral shape, three exercises are performed. First, an aggregation of
the inflation rate starting from its original monthly frequency, passing by quarterly to lastly, annual
frequency (representing an annual rate time averaging). Second, the same treatment is made with the
IPI, to illustrate the averaging of an index series. Finally, FFR (considered as stock) is transformed
by taking its last value from weekly to monthly, quarterly, semi-annual and annual frequency. In the
two first cases, the annual variation of their aggregates is also computed to illustrate the different
behaviors.

6. Macroeconomic variables 1: Real activity series [16]. This category includes actual macroeconomic
variables from the US; all of them related to real activity (source: FRED). The series are used in their
default sample span, denomination, and frequency. All series are monthly except "Corporate Profits
After Tax (without IVA and CCAdj)" that is released on a quarterly basis. The series are the following:
Industrial Production Index, Capacity Utilization: Total Industry, Total Business Inventories, ISM
Manufacturing: PMI Composite Index, Real Retail and Food Services Sales, Light Weight Vehicle Sales:
Autos & Light Trucks, Manufacturers’ New Orders: Nondefense Capital Goods Excluding Aircraft,
Manufacturers’ New Orders: Durable Goods, Commercial and Industrial Loans at All Commercial
Banks, Total Consumer Credit Owned and Securitized, Outstanding, Corporate Profits After Tax

4See Bartlett (1955), Parzen (1961) and Tukey (1961) for details.



(without IVA and CCAdj), Housing Starts: Total: New Privately Owned Housing Units Started, New
Private Housing Units Authorized by Building Permits, New Privately-Owned Housing Units Under
Construction: Total, S&P Case-Shiller 20-City Home Price Index, and Civilian Unemployment Rate.

7. Macroeconomic variables 2: Prices, financial, banking variables, and soft indicators [13]. This category
includes the following variables of the US economy (source: FRED): St. Louis Adjusted Monetary
Base, Reserve Balances with Federal Reserve Banks, M1 Money Stock, S&P 500 Stock Price Index,
Dow Jones Industrial Average, CBOE Volatility Index: VIX, St. Louis Fed Financial Stress Index, 3-
Month Treasury Constant Maturity Rate, 1-Year Treasury Constant Maturity Rate, 10-Year Treasury
Constant Maturity Rate, and Moody’s Seasoned Aaa Corporate Bond Yield. Also included are (source:
Survey Research Center, University of Michigan): Index of Consumer Sentiments (database symbol:
ics_all) and Current Economic Conditions Index (icc_all). The series are used in their default
frequency and denomination as well as sample availability.

8. Univariate autoregression processes of finite order [5]. This category analyzes several cases where the

data generating process for a series {y; }!=7 corresponds to the AR(p) model:
P
Yy =a+ Zmyt—i +éu,
i=1

where {a, py, ..., p,} are parameters to be estimated—fixed for the simulation exercises—and ¢; is a
white noise iidN(0,02). The spectral plot of the original series—that of true model—is presented in
this category along with the residuals of an AR(p) model estimated with the true order p—neglecting
model uncertainty—subject to parameter uncertainty. The following cases, with nonskipped terms
from 1 to p, have been considered:

a
b

) ,a=102=1,T = 5000, and p = 0.99,
)
c)
)
)

2
,a=1,02=1,T=5000, Y% p, = 0.99, with p; = p;_; + 0.05, p, = 0.04,
2, a=1,02=1,T=5000, Y7 p, =0.99, with p; = p;_; + 0.0025, p, = 0.0689,
1, 02 =1, T = 5000, and p = 0.50,
a=1,0=1,T =50, and p = 0.99.
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4 Results and concluding remarks

The results for the eight categories are presented in figures 2 to 9. Original series are depicted in blue
under the title time domain, while spectral plots in green under the title frequency domain. Spectra are
estimated and plotted across the integer k, 0 < k < &, corresponding to the frequency wy, = —. Information
about spectral bandwidth and the sample length of orlgmal series is always provided. In cases With actual—
nonsimulated—variables, the sample span is also reported.

The intuition behind the spectral shape relies on the decomposition of a time series in terms of orthogonal
components, each one associated to a specific frequency that contributes to the total variance of the series.
This implies that spectral mass concentrated in a specific frequency indicates that those movements dominate
the dynamic of the series. As the typical spectral shape for an economic variable concentrates spectral mass
mostly at lower frequencies, it implies that the long-run dynamics are those that govern series’ movements.

As a conclusion, effects suchs as outliers, ramp, level shift, or other anomalies, do not interfere in the spectral
shape. The sample span plays no role at spectra because the series considered are covariance-stationary.
Furthermore, the shape holds even if the trend is removed since it consists in an unbiased variance reduction.
Since the mean of the series relative to the standard deviation is large, several transformations kept the
spectral shape unaltered. Finally, more persistent series are closer to the typical spectral shape rather than
those less persistent because they have a longer memory. This should be also the case with series fractionally
integrated with an integration coefficient close to zero.
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Figure 2:

Basic estimations
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3: Constant-slope trend with two opposite outliers
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Figure 3: Sensitivity to sample span
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Figure 4: Bandwidth selection
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Figure 5: Sensitiveness to typical transformations
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Figure 6: Time aggregation
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Figure 7: Macroeconomic variables 1: Real activity series
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Figure 8: Macroeconomic variables 2: Prices, financial, banking variables, and soft indicators

1: St. Louis adjusted monetary base

Time domain Frequency domain

2: Reserve balances with Federal reserve banks

Time domain Frequency domain

>
= 2
§ ‘;'g gg I/Feb/1984-11/0ct/2013 z 'i pwidh=30 % 2% jan/1984-1)/Nov/2013 [ 1 '; Bwidth=30
. ~ . H .
2 3000N=776 2o 22000, o 1o
> o s »
g 2,500 3 16 5 1,500 S 08
= 2,000 2 . = 2 E
= . A
S 1500 s 12 S 1,000 s 06
© » a e i =}
3 0.8 5 0.4
5 1,000 2 500
2 500 0.4 H 0.2
2 0° 0.0 = 0 0.0 .
H 250 500 750 100 200 300 a2 500 1000 1500 250 500 750
3: M1 money stock 4: S&P 500 stock price index
Time domain Frequency domain Time domain Frequency domain
£ 400 1.4 - 64 1.4 -
S 1I/Jan/1975-111/0ct/2013 Bwidth=30 1957-01-02 to 2013-11-07 Bwidth=30
g 380 7 1.2 60 " | 1.2°
2 Jgoh=260 . 10 = 56N . 10
4 = 2
S 340 2 08 S 52 2 o038
g 320 T 06 % 48 T 06
e a = b a
S 300 0.4 E 44 0.4
£ 280, 0.2 40 0.2
260 0.0 ] 36 0.0 4
100 200 50 100 250 500 750 100 200 300
5: Dow Jones industrial average 6: CBOE volatility index: VIX
Time domain Frequency domain Time domain Frequency domain
7218960526 to 2013-11-07 60 Bwidth=30 L, 2 2004-01-02 to 2013-11-07 661 Bwidth=30
68 50 2 64
5 N s
3 6 :; 40 > ;; 62
2 S 30 3 S 60
3 60 ° = S g
E a 20 5 a
56 10 H 56
- & ‘
52 V=261 0 54
100 200 50 100 50 100 150 200
7: St. Louis Fed financial stress index 8: 3-month Treasury constant maturity rate
Time domain Frequency domain Time domain Frequency domain
1.2 1,200 - 16 50 -
IV/Dec/1993-1/Nov/2013 Bwidth=30 1982-01-04 to 2013-11-07 5] Bwidth=30
5 1,000 - I
% @ 800 5 @
H £ 600 e g %
z Fi 8 2 30
e a 400 4 a8 5
£ &
200 20 {
0 t 15
50 100 50 100
9: 1-year Treasury constant maturity rate 10: 10-year Treasury constant maturity rate
Time domain Frequency domain Time domain Frequency domain
4.0 60 p 43 40 .
1962-01-02 to 2013-11-07 Bwidth=30 1962-01-02 to 2013-11-07 35+ Bwidth=30
= 38N-6s6 50 2 *Nz6u4 ] 30
= 3.6 @ 40 T 4.1 )
3 < 3 2 25
2 34 2 30 2 40 £ 20
] ]
g 32 2 20 g 309 2 15
K K] 10
3.0 10 3.8 5
2.8 0 3.7 0
250 500 100 200 300 250 500 100 200 300
11: Moody's seasoned Aaa corporate bond yield 12: Index of consumer sentiments
Time domain Frequency domain Time domain Frequency domain
132 1983.01-03 1 20131107 ;Z Bwidth=30 1?3 Jan/1978-Apr/2013 ;gg‘ Bwidth=30
E 128y 164 , 23 2 100MN=424 . 500
S 124 K gi é 90 2 400
g 120 3 20 2 80 | o 300
= a ) a
g 1 19 s 70 200
& 11.6 =
: 18 60 100
112 17 50 0 q
50 100 150 25 50 75 100 200 300 400 50 100 150 200
13: Current economic conditions index
Time domain Frequency domain
igg/an/197E-Apr/2013 ;gg Bwidth=30
2 q10N=42
£ I o 500
E o 3 400
5 g0 2 300
1) a
T 70 200
= 60 100
50 0 q
100 200 300 400 50 100 150 200

Source: Author’s elaboration.

14



Figure 9: Univariate autoregression processes of finite order
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5: AR(1), persistence=0.99, 50 obs.
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Source: Author’s elaboration.
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